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Abstract. This paper presents an approach for automatic visual in-
spection of chicken entrails in RGB-D data. The point cloud is first
over-segmented into supervoxels based on color, spatial and geometric in-
formation. Color, position and texture features are extracted from each
of the resulting supervoxels and passed to a Random Forest classifier,
which classifies the supervoxels as either belonging to heart, lung, liver
or misc. The dataset consists of 150 individual entrails, with 30 of these
being reserved for evaluation. Segmentation performance is evaluated
on a voxel-by-voxel basis, achieving an average Jaccard index of 61.5%
across the four classes of organs. This is a 5.9% increase over the 58.1%
achieved with features derived purely from 2D.

1 Introduction

As part of the quality control in poultry processing plants, the entrails of the
slaughtered chickens are visually inspected e.g. to ensure that the organ ex-
traction was successful. The entrails are extracted via the abdomen when the
chickens are hanging upside down. Hearts and livers are sold separately for hu-
man consumption and it is therefore important that these organs are extracted
undamaged. The lungs are not fit for consumption, but difficult to extract be-
cause they are intertwined with the chicken’s ribs. Incomplete removal of entrails
is a quality issue for chickens that are sold whole.

Inspection of these three organs is currently done manually, which is incredi-
bly strenuous for the operator and limits the throughput of the entire processing
plant. Assessing the quality of a set of entrails, calls for a segmentation method
for the organs of interest. Entrails are non-rigid bodies, without straight lines
and sharp edges, that only satisfies a weak spatial arrangement. In recent work
by [1], a modified auto-context algorithm was developed to segment pig organs in
RGB images. The modified algorithm uses an atlas of iteratively updated organ
positions.

Quality control of organic material has often been done with hyper spec-
tral imaging (HSI). HSI makes it possible to capture nuances in color, that are
normally not visible with RGB cameras [2][3][6][9][14]. [13] was able to detect
splenomegaly in poultry carcasses using ultra violet (UV) and color imaging.
The use of UV aids in separating the spleen from the liver, which proved dif-
ficult in RGB images. [4] concluded that near infrared imaging can be used to
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access quality measures like tenderness and color of fresh beef. [7] discovered
that two wavelengths, namely, 600nm and 720nm, were optimal for detecting
gallbladders attached to chicken livers.

Shape and depth information have been applied to other segmentation do-
mains with good results. With the recent advances in available depth sensors, like
Intel’s RealSense and Microsoft’s Kinect, this type of data has become very ac-
cessible. In this paper we show that state of the art 3D segmentation algorithms
can be used for segmentation of chicken entrails in RGB-D data.

2 Setup

The dataset was captured using the Intel RealSense F200 3D camera. The chicken
entrails were viewed frontally, from a distance of 35cm, while placed in a hanger
similar to the ones used on the production line. The entrails were taken directly
from the production line and placed in the hanger, while retaining the same
orientation as on the line. Figure 1 shows the setup used for data collection and
the 3D camera’s frontal view of the target.

(a) (b)

Fig. 1: (a) Hanger and 3D camera setup. (b) View from the camera. Red marks
the target entrails and green marks the camera.

A total of 150 unique entrails were captured. The first 120 of these were
reserved for training, while the remaining 30 were used in the evaluation. The
calibration between RGB and D is given by the Intel RealSense SDK.
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3 Segmentation Approach

Most existing research in segmentation of 3D scenes is focused on scenes with
man-made objects, which exhibit straight lines and sharp edges. Two widely used
datasets with these types of objects are the NYU V1 [12] and V2 [8] datasets.
[15] is an example of recent work that addresses this type of data. They segment
the point cloud into supervoxels and use a Random Forest (RF) classifier to
initialize the unary potentials of a densely interconnected Conditional Random
Field (CRF). In this paper we apply a similar framework to objects with signifi-
cantly different characteristics. Our system differs from [15], by not including the
CRF that is used for refining the labeling and by omitting the features that are
specific to man-made object, as well as the features that utilize the orientation
of the room. Figure 2 gives an overview of the pipeline for segmenting entrails
into heart, liver, lung and misc. Figure 3a shows a labeled set of entrails.

Fig. 2: Overview of the segmentation pipeline.

First the raw point cloud is cropped, leaving behind only the central region
where the organs of interest are located. All of the points that remain in the
point cloud are clustered into supervoxels based on spatial, color and geometric
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similarity. Color, position and texture features are extracted from each of the
supervoxels and passed to a RF classifier, that labels each supervoxel as either
heart, lung, liver or misc.

Supervoxel segmentation The purpose of over-segmentation is to reduce the
amount of data and limit noise while preserving organ borders. We use the Voxel
Cloud Connectivity Segmentation (VCCS) [10] supervoxel segmentation algo-
rithm. VCCS produces the supervoxels by seeding the point cloud geometrically
even. An iterative clustering algorithm groups voxels within

√
3Rseed of each

seed in a 39 dimensional space, based on spatial, color and geometric similarity.
The importance of each feature type can be adjusted using weights. The 39 di-
mensional feature vectors consists of the CIELab channels, 3D point coordinate
and the Fast Point Feature Histograms [11] descriptor.

Random Forest A label prediction for each supervoxel is given by a RF clas-
sifier. The RF consists of an ensemble of label distributions in the leaf nodes of
the trees. The label distributions are created, during training, from the labels
of training features that reaches particular leaf nodes when traversing through
the RF. The dataset is skewed from the differences in organ sizes. Hence, priori
probabilities that reflect the skewed distribution are assigned each class. Train-
ing is done, based on features extracted from supervoxels belonging to 120 sets
of entrails. A feature vector and a label is passed for each supervoxel. Since the
dataset is annotated on a voxel-by-voxel level, the label of a supervoxel is deter-
mined by majority vote on the voxel labels belonging to the given supervoxel.
The feature vectors used for the RF consists of the mean and standard deviation
of each CIELab channel and the supervoxel center coordinate, which brings the
total of features to 9.

4 Evaluation

Since we have a manually annotated dataset we use a supervised evaluation
approach, where the similarity between a labeled GT and the segmented output
is quantified using the Jaccard Index. Figure 3(a) shows one example of a RGB
2D image that is used when annotating the entrails. Figure 3(b) shows the
resulting annotation in 2D. Because of the uncertainty when annotating border
regions, evaluation is done, using annotations with a “don’t care” zone on the
border of each class, as done in [5]. The annotation with the “don’t care” zone
can be seen in 3(c). Before the labels can be used for training and evaluation
they are mapped onto the 3D point clouds, resulting in the labeled point cloud
shown in Figure 3(d).
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(a) (b) (c) (d)

Fig. 3: (a) 2D RGB image of entrails, with labeled organs. (b) Annotation in
2D. (c) Annotation with one pixel wide “don’t care” zone around each class. (d)
Annotation mapped to 3D.

The final evaluation based on the 30 entrails in the test set, is done on a
voxel-by-voxel basis. Every point belonging to a given supervoxel, thus inherits
the supervoxel’s label. Finally, the quality of the segmentation can be evaluated
by comparing the predicted labels in Figure 4(b) to the GT 4(c).

(a) (b) (c)

Fig. 4: (a) Original RGB point cloud. (b) Segmented point cloud. (c) GT point
cloud with one voxel wide “don’t care” zone around each class. Green is misc.,
red is heart, blue is liver and purple is lung.
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4.1 Results

Table 1 shows the voxel-wise Jaccard index for segmentation of the four classes.
For the exclusively 2D based results, the features that are related to 3D are
disabled. This is primarily impacting the clustering into supervoxel, as the geo-
metric similarity is an important feature for that.

Table 1: Voxel-wise Jaccard index for the four classes.

Misc Heart Liver Lung Avg.

2D 62.9% 44.4% 76.8% 48.4% 58.1%
2D+3D 66.1% 53.1% 79.2% 47.5% 61.5%

It is clear from Figure 4 and Table 1 that the lung and heart are the most
challenging organs to segment. The heart is small and much of it is covered by fat,
which makes the color features much less effective. The lungs are also small and
often occluded, therefore there is few voxels available for training and testing.
Additionally, the lungs exhibit large variance in color, based on the amount of
blood left in them. The segmentation example in Figure 4 indicates that the
miss-classification of the misc. class as either heart or lung is the main issue.
This might be addressed by modifying the weights on each class during training
or by looking into the impact of the different features. In this case, it is likely
that the spatial feature is too significant in the upper part of the point cloud.

5 Conclusion

We presented an approach for automatic visual inspection of chicken entrails
and show that a segmentation algorithm previously used on man-made objects
is able to function on vastly different objects. We achieve an average Jaccard
index of 61.5% across the four organ classes. This is a 5.9% increase over the
58.1% achieved with features derived purely from 2D. Thus, the segmentation
benefits from the additional information, that is available in RGB-D compared
to RGB. Our use of 3D derived features is mainly limited to the segmentation
into supervoxels. Therefore, improvements might lie in utilizing posterior opti-
mizations as well as global and neighborhood features, many of which would be
based on 3D.
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