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Abstract—Marine Satellite Tracking Antenna (MSTA) is a
necessary device in ships for receiving satellite signals when
they are sailing on the sea. This paper presents a simple
methodology to obtain the dynamic equations of MSTA through
Lagrange method, which is fundamental in design of model-
based controllers. The detailed derivation procedure of using
basis vectors of coordinate system, is presented. Moreover,
modern softwares, such as Maple and Matlab, are used for
simulating the dynamic model of MSTA, whose results are
compared to that from SimMechanics for validation. The
proposed methods and tools can be easily applied on other
mechanical systems.

Keywords–Marine Satellite Tracking Antenna; Lagrange
method; SimMechanics

I. INTRODUCTION

Marine Satellite Tracking Antenna (MSTA) is an im-
portant device for ships to continuously communicate with
geosynchronous satellite. With the use of attitude control
system, MSTA can keep tracking a certain geosynchronous
satellite, whatever the ship sways due to the ocean waves.
The prerequisite of designing model-based controllers, such
as Model Predictive Controller (MPC), is deriving the dy-
namic model of MSTA firstly.

The previous works about modelling MSTA can be found
in [1], [2], [3], where the modeling of MSTA is divided
into three parts, that is, a model for satellite tracking, a
model for antenna dynamics, and a model of ship motion.
However, these works mainly focus on the kinematics of
MSTA. In [4], only the linear model of MSTA is stated
for controller design, no kinematic or dynamic model is
mentioned. In [5], [6], the Lagrange method is used to obtain
the dynamics of MSTA, but it is assumed that the position
of mass center of each part of MSTA will not be changed
by the rotation of each part, which results in the kinetic
energy of mass center to be zero. Lagrange method is one
of the two classic methods for obtaining dynamics of a
mechanical system, another is Newton-Euler method. Many
researching works can be found using Lagrange method for
system dynamic modeling [7], [8], [9]. The shortcomings
of these works are that they mainly focus on equation
derivation, and almost no modern modeling and simulation

tools are introduced to solve complicated equations. In fact,
when dealing with real mechanical systems, the scale of
complexity of mathematical equations usually exceed the
limit that we can handle manually.

The contributions of this paper are: (1) Detailed derivation
procedure using Lagrange method for obtaining dynamics
of 3-DOF MSTA is presented, in which basis vectors of
coordinate system are applied that are less complicated than
using rotational matrix directly and can be used to deal
with more complicated mechanical systems. (2) Modern
simulation tools, such as Maple, Matlab and SimMechanics
toolbox, are introduced to handle complicated dynamic
system and to validate the dynamic model of MSTA.

This paper is organized as follows: In Section II, the
configuration and reference frames of MSTA is introduced.
The procedure of deriving dynamic model of MSTA is stated
in detail in Section III. In Section IV, the derived model is
simulated using Matlab, whose results are validated through
comparing with that from SimMechanics. Finally, Section V
gives the conclusion.

II. MECHANICAL CONFIGURATION AND REFERENCE
FRAMES

The configuration and reference frames of the MSTA are
introduced firstly for derivation of dynamics equations in the
next section.

The MSTA consists of four parts, that is, base part, yaw
part, roll part and pitch part, as illustrated in Figure 1.

Correspondingly, four reference frames are defined:
1) Reference frame of base part, defined by

(xbase, ybase, zbase), with origin obase, as shown
in Figure 2(a). ibase, jbase, and kbase are mutually
perpendicular unit vectors.

2) Reference frame of yaw part, defined by
(xyaw, yyaw, zyaw), with origin oyaw, as shown
in Figure 2(b). iyaw, jyaw, and kyaw are mutually
perpendicular unit vectors.

3) Reference frame of roll part, defined by
(xroll, yroll, zroll), with origin oroll, as shown
in Figure 2(c). iroll, jroll, and kroll are mutually
perpendicular unit vectors.
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Yaw Part

Roll Part

Pitch Part

Figure 1. Illustration of four parts of antenna mechanical part.

4) Reference frame of pitch part, defined by
(xpitch, ypitch, zpitch), with origin oyaw, as shown in
Figure 2(d). ipitch, jpitch, and kpitch are mutually
perpendicular unit vectors.

(a) (b)

(c) (d)

Figure 2. (a) Reference frame of base part. (b) Reference frame of yaw
part. (c) Reference frame of roll part. (b) Reference frame of pitch part.
Detailed explanation can be found in the patent [10].

There are three rotational axes in the MSTA :

1) azimuth axis, which is coincide with ybase in Figure
2(a).

2) cross-elevation axis, which is coincide with xroll in
Figure 2(c).

3) elevation axis, which is coincide with zpitch in Figure
2(d).

The three rotation angles corresponding to the above three
rotation axes are

1) ψ is the rotation angle of yaw frame around azimuth
axis.

2) φ is the rotation angle of roll frame around cross-
elevation axis.

3) θ is the rotation angle of pitch frame around elevation
axis.

my ,mr, and mp are the masses of yaw part, roll part,
and pitch part respectively. θm is the mount angle of roll
part, which is indicated in Figure 2(c). Iy, Ir, Ip ∈ R3×3

are moments of inertia of yaw part, roll part, and pitch part
respectively and Iy = (Iy)

T , Ir = (Ir)
T , Ip = (Ip)

T .
The following distance vectors are used to indicate the

position relationships between different mass center:

1) dy
ymc = [dxymc, dyymc, dzymc]

T , is the distance vec-
tor from oyaw to mass center of yaw part, expressed
in yaw frame.

2) dr
rmc = [dxrmc, dyrmc, dzrmc]

T , is the distance vec-
tor from oroll to mass center of roll part, expressed in
roll frame.

3) dp
pmc = [dxpmc, dypmc, dzpmc]

T , is the distance vec-
tor from opitch to mass center of pitch part, expressed
in pitch frame.

4) db
by = [dxby, dyby, dzby]

T , is the vector from origin of
base frame, ob, to origin of yaw frame, oy , expressed
in base frame.

5) dy
yr = [dxyr, dyyr, dzyr]

T , is the vector from origin of
yaw frame, oy , to origin of roll frame, or, expressed
in yaw frame.

6) dr
rp = [dxrp, dyrp, dzrp]

T , is the vector from origin of
roll frame, or, to origin of pitch frame, op, expressed
in roll frame.

The damping coefficients of rotation around azimuth axis,
cross-elevation axis, and elevation axis are Cdy , Cdr, and
Cdp respectively.

III. DYNAMIC EQUATIONS DERIVATION

The dynamic equations of MSTA are derived in this
section using Lagrange method. There are three rotation
parts in the MSTA and each part will be analysed sep-
arately, which are then combined together to obtain the
whole dynamic model of MSTA. Instead of using rotation
matrix directly, the unit vectors of reference frame are
used in derivation, which are powerful enough for handling
complicated mechanical system.



The yaw part is analysed firstly, then the roll part, and
finally the pitch part. For each part, the kinetic energy is
calculated firstly followed by the potential energy.

A. Yaw part

1) Kinetic energy of mass center:
The relationship between yaw frame and base frame is

expressed as

iyaw = cos(ψ) · ibase − sin(ψ) · kbase (1)
jyaw = jbase (2)
kyaw = sin(ψ) · ibase + cos(ψ) · kbase. (3)

From (1) to (3), the rotational matrix from yaw frame to
base frame is obtained

Rb
y =

 cos(ψ) 0 sin(ψ)

0 1 0

− sin(ψ) 0 cos(ψ)

 . (4)

The position vector from ob to mass center of yaw part,
expressed in base frame, is

db
oyc = db

by + db
ymc (5)

where db
ymc = Rb

y · dy
ymc, is the position vector from oyaw

to mass center of yaw part, expressed in base frame.
The velocity of mass center of yaw part expressed in base

frame is

vb
ymc =

d(db
oyc)

dt
. (6)

The kinetic energy of mass center of yaw part is

Ekym =
1

2
·my ·

∥∥vb
ymc

∥∥2
2
. (7)

2) Kinetic energy of moment of inertia:
The angular velocity of yaw part is expressed in yaw

frame as
wy

y = ψ̇ · jyaw. (8)

The kinetic energy from moment of inertia is

EkyI =
1

2
· (wy

y)
T · Iy · (wy

y). (9)

3) Total kinetic energy:
The total kinetic energy of yaw part is the sum of kinetic

energy from mass center and moment of inertia, and is
expressed as

Eky = Ekym + EkyI . (10)

4) Potential energy:
The potential energy of yaw part is

Epy = 0, (11)

as there is no displacement in the direction of gravity.

B. Roll part
1) Kinetic energy of mass center:
The relationship between roll frame and yaw frame is

expressed as

iroll = cos(θm) · iyaw + sin(θm) · jyaw (12)
jroll = (− sin(θm) · iyaw + cos(θm) · jyaw) · cos(φ)

+ sin(φ) · kyaw (13)
kroll = −(− sin(θm) · iyaw + cos(θm) · jyaw) · sin(φ)

+ cos(φ) · kyaw. (14)

From (13) to (14), the rotational matrix from roll frame to
yaw frame is obtained

Ry
r =

 cos(θm) − sin(θm) · cos(φ) sin(θm) · sin(φ)
sin(θm) cos(θm) · cos(φ) − cos(θm) · sin(φ)

0 sin(φ) cos(φ)

 .
(15)

The position vector from ob to mass center of roll part,
expressed in base frame, is

db
orc = db

by + db
yr + db

rmc (16)

where db
yr is the position vector from oyaw to oroll, ex-

pressed in base frame, and db
rmc is the position vector from

oroll to mass center of roll part, expressed in base frame.
db
yr and db

rmc are obtained by

db
yr = Rb

y · dy
yr (17)

db
rmc = Rb

y ·Ry
r · dr

rmc. (18)

The velocity of mas center of roll part in base frame is

vb
orc =

d(db
orc)

dt
. (19)

The kinetic energy of mass center of roll part is

Ekrm =
1

2
·mr ·

∥∥vb
orc

∥∥2
2
. (20)

2) Kinetic energy of moment of inertia:
The angular velocity of roll part in roll frame is

wr
r = ψ̇ · jraw + φ̇ · iroll. (21)

Decompose jraw into roll frame

jyaw = sin(θm) · iroll
+cos(θm) cos(φ) · jroll
− cos(θm) · sin(φ) · kroll. (22)

Substitute (21) into (42),

wr
r = ψ̇ · jraw + φ̇ · iroll

= ψ̇ · (sin(θm) · iroll
+(cos(φ) · jroll − sin(φ) · kroll) · cos(θm)

+φ̇ · iroll
= (φ̇+ ψ̇ · sin(θm)) · iroll

+ψ̇ · cos(θm) · cos(φ) · jroll
−ψ̇ · cos(θm) · sin(φ) · kroll. (23)



Equation (23) is then expressed in vector form,

wr
r =

 φ̇+ ψ̇ · sin(θm)

ψ̇ · cos(θm) · cos(φ)
−ψ̇ · cos(θm) · sin(φ)

 . (24)

The kinetic energy from moment of inertia is

EkrI =
1

2
· (wr

r)
T · Ir · (wr

r). (25)

3) Total kinetic energy:
The total kinetic energy of roll part is the sum of kinetic

energy from mass center and moment of inertia, and is
expressed as

Ekr = Ekrm + EkrI . (26)

4) Potential energy:
The potential energy of roll part is

Epr = mr · g · db
orc(2, 1). (27)

where g is acceleration of gravity. db
orc(2, 1) is the second

element of db
orc, that is, the element in the direction of jbase.

C. Pitch part

1) Kinetic energy of mass center:
The relationship between pitch frame and roll frame is

expressed as

ipitch = cos(θ) · iroll + sin(θ) · jroll (28)
jpitch = − sin(θ) · iroll + cos(θ) · jroll (29)
kpitch = kroll. (30)

From (28) to (30), the rotational matrix from pitch frame to
roll frame is obtained

Rr
p =

 cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 . (31)

The position vector from ob to mass center of pitch part,
expressed in base frame, is

db
opc = db

by + db
yr + db

rp + db
pmc (32)

where db
rp is the position vector from oroll to opitch,

expressed in base frame, and db
pmc is the position vector

from opitch to mass center of pitch part, expressed in base
frame. And they can be obtained by

db
rp = Rb

y ·Ry
r · dr

rp (33)

db
pmc = Rb

y ·Ry
r ·Rr

p · dp
pmc. (34)

The velocity of mass center of pitch part in base frame is

vb
opc =

d(db
opc)

dt
. (35)

The kinetic energy of mass center of roll part is

Ekpm =
1

2
·mp ·

∥∥vb
opc

∥∥2
2
. (36)

2) Kinetic energy of moment of inertia:
The angular velocity of pitch part expressed in pitch frame

is
wp

p = φ̇ · iroll + ψ̇ · jyaw + θ̇ · kpitch. (37)

Decompose iroll, jroll, kroll into pitch frame.

iroll = cos(θ) · ipitch − sin(θ) · jpitch (38)
jroll = sin(θ) · ipitch + cos(θ) · jpitch (39)
kroll = kpitch. (40)

Decompose jyaw in pitch frame,

jyaw = sin(θm) · iroll
+cos(θm) cos(φ) · jroll
− cos(θm) · sin(φ) · kroll (41)

= sin(θm) · (cos(θ) · ipitch − sin(θ) · jpitch)
+ cos(θm) cos(φ) · (sin(θ) · ipitch + cos(θ) · jpitch)
− cos(θm) · sin(φ) · kroll. (42)

By substituting (38) and (42) into (37),

wp
p = (φ̇ · cos(θ) + ψ̇ · (cos(θ) · sin(θm)

+sin(θ) · cos(φ) · cos(θm))) · ipitch
+(−φ̇ · sin(θ) + ψ̇ · (−sin(θ) · sin(θm)

+cos(θ) · cos(φ) · cos(θm))) · jpitch
+(−ψ̇ · sin(φ) · cos(θm) + θ̇) · kpitch. (43)

Equation (43) can be expressed in vector form by,

wp
p =

 φ̇ · cθ + ψ̇ · (cθ · sθm + sθ · cφ · cθm)

−φ̇ · sθ + ψ̇ · (−sθ · sθm + cθ · cφ · cθm)

−ψ̇ · sφ · cθm + θ̇

 .
(44)

where c∗ = cos(∗) and s∗ = sin(∗).
The kinetic energy from moment of inertia is

EkpI =
1

2
· (wp

p)
T · Ip · (wp

p). (45)

3) Total kinetic energy:
The total kinetic energy of pitch part is the sum of kinetic

energy from mass center and moment of inertia, and is
expressed as

Ekp = Ekpm + EkpI . (46)

4) Potential energy:
The potential energy of roll part is

Epp = mp · g · db
opc(2, 1) (47)

where g is acceleration of gravity. db
opc(2, 1) is the second

element of db
opc, that is, the element in the direction of jbase.

D. Damping energy

The total damping energy of yaw, roll, and pitch parts are

Ed =
1

2
· Cdy · ψ̇2 +

1

2
· Cdr · φ̇2 +

1

2
· Cdp · θ̇2. (48)



E. Lagrange method
The Lagrange equation is

L = Ek − Ep

= (Eky + Ekr + Ekp)− (Epy + Epr + Epp).(49)

Apply Lagrange method into yaw, roll, and pitch parts
respectively,

Mya =
d

dt
(
∂L

∂ψ̇
)− ∂L

∂ψ
+
∂Ed

∂ψ̇
(50)

Mrc =
d

dt
(
∂L

∂φ̇
)− ∂L

∂φ
+
∂Ed

∂φ̇
(51)

Mpe =
d

dt
(
∂L

∂θ̇
)− ∂L

∂θ
+
∂Ed

∂θ̇
. (52)

where Mya is the external moment on azimuth axis. Mrc

is the moment on cross-elevation axis. Mpe is the moment
on elevation axis. In antenna mechanical system, Mya, Mrc,
and Mpe are generated by stepper motors.

Writing (50) to (52) in the following form Mya

Mrc

Mpe

 =M1

 ψ̈

φ̈

θ̈

+M2

 ψ̇2

φ̇2

θ̇2

+M3

 θ̇ · φ̇
φ̇ · ψ̇
ψ̇ · θ̇



+M4

 my

mr

mp

+

 Cdy · ψ̇
Cdr · φ̇
Cdp · θ̇


 .

(53)

where M1,M2,M3,M4 ∈ R3×3.
Isolating acceleration terms will result in ψ̈

φ̈

θ̈

 =−M1
−1

−
 Mya

Mrc

Mpe

+M2

 ψ̇2

φ̇2

θ̇2



+M3

 θ̇ · φ̇
φ̇ · ψ̇
ψ̇ · θ̇

+M4

 my

mr

mp

+

 Cdyψ̇

Cdrφ̇

Cdpθ̇


 .

(54)

Euler angles, [ψ, φ, θ], are obtained by integrating (54)
using Euler method.

IV. SIMULATION AND VALIDATION

As the scale of complexity of these equations exceeds
our handling limit, the practical way in this paper to obtain
M1,M2,M3 and M4 in (53) from (50) to (52), is through
the use of Maple software, in which the symbolic calculation
is carried out and symbolic results can be converted into
Matlab code through one command.

To validate the simulation results of dynamics of MSTA,
SimMechanics toolbox is used to generate the reference re-
sults. SimMechanics provides a multibody simulation envi-
ronment for 3D mechanical systems. The mechanical system

can be modelled by using blocks representing bodies, joints,
constraints, and force elements. SimMechanics formulates
and solves the equations of motion for the complete me-
chanical system [11]. Part of SimMechanics file of MSTA
is shown in Figure 3.

Figure 3. Part of SimMechanics file of MSTA.

The simulation results from (54) using Matlab code are
compared with that of SimMechanics, as shown in Figure 4
to Figure 6. The Simulation conditions are:

• Mya = 0, Mrc = 0, and Mpe = 0.
• ψ0 = 0, φ0 = 0, θ0 = 0

where ψ0, φ0, θ0 are initial values of yaw, roll and pitch.
During simulation, the whole mechanical system of MSTA
is only acted on by gravity.
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Figure 4. Comparison of yaw from derived equation and SimMechanics.

From Figure 4 to Figure 6, it can be seen that the
simulation results from these two methods are almost the
same, which validate the derivation of MSTA dynamic
model.
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Figure 5. Comparison of roll from derived equation and SimMechanics.

time(s)
0 5 10 15 20 25 30 35 40

P
itc

h(
de

g)

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20
Pitch

DerivedEquation
SimMechanics

Figure 6. Comparison of pitch from derived equation and SimMechanics.

V. CONCLUSION

The dynamic model of MSTA is firstly derived in this
paper using Lagrange method. Instead of using rotational
matrix directly, unit vectors of reference frame are used
during equation derivation, which can be extended to deal
with complicated mechanical systems. Moreover, Maple
software is introduced to get coefficient matrices. Finally, the
obtained dynamic model is simulated in Matlab using Euler
integration method, whose results are compared with that
of SimMechanics. From the comparison results, it is seen
that the derived dynamic model of MSTA and simulation
methods used are correct.
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