
 

  

 

Aalborg Universitet

Optimizing data access for wind farm control over hierarchical communication
networks

Madsen, Jacob Theilgaard; Findrik, Mislav; Madsen, Tatiana Kozlova; Schwefel, Hans-Peter

Published in:
International Journal of Distributed Sensor Networks

DOI (link to publication from Publisher):
10.1155/2016/5936235

Creative Commons License
CC BY 4.0

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Madsen, J. T., Findrik, M., Madsen, T. K., & Schwefel, H-P. (2016). Optimizing data access for wind farm control
over hierarchical communication networks. International Journal of Distributed Sensor Networks, 12(5),
[5936235]. https://doi.org/10.1155/2016/5936235

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60655175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1155/2016/5936235
https://vbn.aau.dk/en/publications/b5d19590-3496-4f02-9549-f003c7305095
https://doi.org/10.1155/2016/5936235


Research Article
Optimizing Data Access for Wind Farm Control over
Hierarchical Communication Networks

Jacob Madsen,1 Mislav Findrik,2,3 Tatiana Madsen,1 and Hans-Peter Schwefel1,2

1Department of Electrical and Computer Engineering, Aalborg University, 9000 Aalborg, Denmark
2Telecommunications Research Center Vienna (FTW), 1220 Vienna, Austria
3Austrian Institute of Technology (AIT), 1220 Vienna, Austria

Correspondence should be addressed to Hans-Peter Schwefel; hps@es.aau.dk

Received 16 October 2015; Accepted 31 March 2016

Academic Editor: Javier Matanza

Copyright © 2016 Jacob Madsen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate a centralized wind farm controller which runs periodically. The controller attempts to reduce the damage a wind
turbine sustains during operation by estimating fatigue based on the wind turbine state. The investigation focuses on the impact
of information access and communication networks on the controller performance. We start by investigating the effects of a
communication network that introduces delays in the information access for the central controller. The control performance as
measured by accumulated fatigue is shown to be significantly impacted by communication delays and also by the choice of the
time instances at which sensor information is accessed. In order to optimize the latter, we introduce an information quality metric
and a mathematical model based on Markov chains, which are compared performance-wise to a heuristic approach for finding
this parameter. This information quality metric is called mismatch probability, mmPr, and is used to express quantitatively the
information accuracy in a given scenario. Lastly, measurements of different communication technologies have been performed
in order to carry out the analysis in a practically relevant scenario with respect to the communication network delays. These
measurements are done in regard to packet loss and communication delays, and the simulations are rerun using either the traces
from the measurements or scenarios constructed from the delay parameters.

1. Introduction

Over the last few years, we have seen an increase in deploy-
ment of renewable energy generation. Due to increased
deployment and the fluctuating nature of renewable power
generation, there is a greater need for controlling the balance
between energy consumption and production by means of
Smart Grid deployments. One large contributor to renewable
generation is wind farms. Controlling a wind farm can be
done from a central controller which harmonizes the wind
farm’s power generation by sending set-points to each wind
turbine; thus, a control is performed via a communication
network. This way, a central controller ensures that each
wind turbine produces the required amount of power. For
deployment of the wind farm communication network,
it is possible to use different technologies; however, each
technology has different behavior; hence, it is important to

analyze the impact of these communication technologies on
the controller’s performance.

In this paper, we consider a central wind farm controller
gathering information from wind turbines distributed over
an area. We analyze control performance under communi-
cation network conditions and determine which parameters
of the information access have a strong impact. In order to
optimize the parameter, we determine an information quality
model, expressing quantitatively the information accuracy as
difference between the value used by the controller and the
real physical value.This information access model, therefore,
needs to include information dynamics, which we obtain
empirically from a simulation of the system. In order to
perform the analysis in a practically relevant scenario with
respect to communication delays, we performmeasurements
of different communication technologies, where we measure
packet loss and delays and use these measurements when
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simulating the wind farm controller. The comparison of the
simulation results of control performance metrics provides
a quantitative basis for the suitability of communication
technologies for this distributed control scenario.

In recent years, attempts have been made to create Smart
Grid test-beds that integrate electrical assets (or their mod-
els) with communication technologies (or communication
network simulators) in order to study interdependencies
between the cyberphysical systems [1]. One such example is
[2] which demonstrates a test-bed that includes wired and
wireless technologies. It is based on ethernet and ZigBee
networks. Reference [3] introduces a cognitive radio network
in a Smart Grid test-bed (specifically a microgrid), with the
main focus on the security of the Smart Grid. In [4], Zigbee is
used as the communication technology and is implemented
in an office environment with the goal of optimizing the
energy costs for the offices connected to the Smart Grid.
Measurements of WLAN technology in other scenarios
confirm the order of magnitude of the observed delays in
our experiments. However, in the presence of stronger cross-
traffic, the shape of the delay distribution will change; see [5].
Reference [6] details different communication technologies
available for wind farm communication; among these are
WLAN and ethernet based solutions. Another communica-
tion technology for a wind farm is fiber optics, as described
in [7]. Unlike previous work that analyzed communication
technologies for wind farms, our methodology is based on
measurements obtained from real communication networks
in a scaled down manner compared to the real environment.
Subsequently, we use the measurement results by plugging
the traces into a cosimulation framework which is similar to
the framework used in [8].

The use of sensor information in distributed systems is
subject to two types of inaccuracies: measurement errors at
the sensor may propagate through the whole computation
chain; see, for example, [9] for work characterizing such
errors and their impact. For distributed real-time systems,
a second cause of inaccuracies requires attention: while the
sensor data is being transmitted and processed, the actual
physical value changes so that it deviates from the value
used in the processing. In this paper, we focus on the
second aspect and utilize an information qualitymetric called
mismatch probability (mmPr).Thismetric andmathematical
model for certain base cases was introduced first in [10].
mmPr considers the aspect of real-time information access,
capturing impact of access delays and access strategies on
information accuracy in a distributed system. So far, this
metric has been used in the following context: (i) in [11],
mmPrwas used in context subscriptionmanagement systems
for effective configuration of context access strategies in order
to maximize the reliability of context information and (ii)
in [12], the metric was used to find optimal location-based
relay policies inmobile networks. In this paper, we investigate
whether optimization of the information quality is ameans of
improving the control performance of the hierarchical wind
farm controller.

The work in this paper builds upon the conference pub-
lications in [13–15]. Compared to these conference papers,
additional results are included, showing the following new

aspects: (1) the simulation results use longer traces and
drop the transient phase of the simulation; that way, better
statistical significance of the results is achieved; (2) the
communication network structure is now hierarchical and
performancemeasurements from aCANnetwork simulation
are used to characterize the impact of this hierarchical
structure; and (3) the analytic model from [14] for the
information quality metric has been newly developed to now
explicitly distinguish control actions and system evolution
without control. It now fully captures the qualitative behavior
of the corresponding simulations.

2. System Overview

This paper considers a system consisting of a central con-
troller, communicating with 𝑁 wind turbines over a com-
munication network, with each wind turbine containing 𝐾
sensors. There is a bidirectional information flow consisting
of sensor measurements from the sensors to the central
controller and set-points from the controller to the wind
turbine. The architecture of the system is shown in Figure 1
and explained further in Section 2.1.

The central controller has the objective to follow a set-
point for the wind farm’s power generation while reducing
the fatigue a wind turbine experiences in order to prolong
the lifetime of the wind turbine. The central controller
should ensure that each wind turbine in the farm produces
a certain level of power to ensure that the entire wind farm
reaches the given set-point for the wind farm, motivating
the central control architecture in Figure 1. The sensors
send information regarding the state of the wind turbine to
the central controller. The central controller uses the sensor
values and its internal state to compute set-points for the
wind turbine.These set-points are then forwarded to thewind
turbine, where the local controller uses them to adjust the
wind turbine. An overview of this scenario can be seen in
Figure 1, where the grayed boxes denote places that introduce
delay in the information flow. In this paper, we assume that
the central controller is executing periodically with a fixed
deterministic period of duration 𝑇

𝑠
.

2.1. Communication Network Architecture. The end-to-end
communication path between a sensor and the central con-
troller consists of two communication networks, which can
be seen in Figure 1, with conceptually different properties, a
SensorNetwork and anAccess Network.The SensorNetwork
is an internal communication network on the wind turbine
and can be implemented by different communication tech-
nologies, for example, a fieldbus. It handles the communica-
tion between the sensors on the wind turbine and contains a
gateway that handles communication from the wind turbine
to the central controller. The Access Network is the network
between a wind turbine and the central controller and varies
in size based on the size of the wind farm. An off-shore wind
farm can have lengths of over 20 km with hundreds of wind
turbines, whichmust be covered by the given communication
network.The network could be implemented by technologies
such as 2G, 3G, WLAN, fiber optics, or PLC.
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Figure 1: Overview of the communication architecture.
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Figure 2: Message sequence diagram between the sensor and central controller for a single wind turbine.

Cellular networks are already deployed in many regions
and hence can be used without further infrastructure.
Whether 2G or 3G fulfils the requirements of this scenario
is part of the analysis. WLAN is an off-the-shelf technology
readily available and covering a fewhundreds ofmeterswhich
could support wind farms in a geographically smaller area.
PLC in principal could be interesting, as the central controller
and the wind turbine controller may be connected via power
lines, which would mean that except the PLC modems
no additional infrastructure is needed. However, unlike the
hard-wired communication infrastructure, PLC and WiFi
technologies can have additional drawbacks impacting their
reliability. For instance, PLC communication is not possible
if the power line is cut, while WiFi technology has a shared
spectrum, possibly reducing the performance. The fiber
optics gives the best QoS but may not be available to already
deployed wind farms and may require additional costs to
implement.

Figure 2 depicts a message sequence diagram of a control
period with message delays. The figure shows that during a
given control period the central controller will calculate a
set-point for the wind turbine. The set-point will be sent to
the wind turbine, which will then act upon it. At some point

during the control period, defined by the value 𝑇
𝑜
, denoting

the offset time prior to control computation 𝐶
𝑖
, the sensor

will take a reading and will send it via the Sensor Network to
the gateway that forwards the sensor reading via the Access
Network to the central controller. For simplicity, Figure 2 only
shows the communication endpoints; the delays indicated by
the tilt of the messages are end-to-end delays.

The information access strategy, thus, is that the con-
troller sends one control set-point during each control
period, and the sensor sends a measurement once each
control period, determined by the offset 𝑇

𝑜
with sensor

readings.The gateway will forward any packet it gets from the
sensors immediately to the controller and is thus not shown
in this figure.

2.2. Controller Design. The central controller aims to reduce
the fatigue load of the shaft in the wind turbine. It does
this while tracking a desired power reference. To achieve
this, the central controller requires an input from a fatigue
estimator. This estimator requires sensor measurements of
the wind turbine, which are the physical measurements of
torque, as well as the angle rotation of the wind turbine.These
measurements are run throughdifferent hysteresis relayswith
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Figure 3: Centralized controller scheme without network effects.

different weights. For details on estimator synthesis and the
controller, see [16].

The control schemewithout network effects is depicted in
Figure 3. In this paper, we assume that the fatigue estimator
(F) and the controller (C) are colocated in a central controller.
This controller describes the procedures for an individual
wind turbine, while the same procedure, with coordination
on the generation share of each wind turbine, is applied for
the whole farm, which requires a centralized controller. For
control performance, we later analyze a single wind turbine
as we focus on the fatigue as the KPI describing control
performance, while the communication scenario is shaped by
the whole wind farm.

The controller cycle, 𝑇
𝑠
, is determined by the design

of the controller and is in this scenario set to 150ms and
cannot easily be changed. The central controller is assumed
to have a 50ms computation time. We consider a total of 30
wind turbines, each with 3 sensors, in the wind farm, which
constitutes a small to medium sized wind farm.

3. Controller Performance under
Communication Network

We start by investigating if a delay in the communication
network and a specific access strategy have an impact on the
performance of the central controller. To do this, a cosimu-
lation framework has been developed, in which MATLAB is
used to simulate the wind turbine controller, and OMNeT++
is used to simulate the communication network. An interface
has been developed for the controller, allowing it to interact
with the OMNeT++ simulation. The OMNeT++ part of the
simulation is in charge of timing requirements, that is, when
to simulate the controller, wind turbine, or fatigue estimator,
and is thus in charge of handling the information access
strategies. In the simulations, time is handled by an internal
clock, ensuring perfect synchronization between all modules
in the simulation. The wind turbine is modelled by the
differential equation linearised around a chosen operating
point. Consider

𝑋 (𝑡 + 1) = 𝐴
𝑑
⋅ 𝑋 (𝑡) + 𝐵

𝑑
⋅ 𝑈 (𝑡) + 𝐸

𝑑
⋅ 𝑉 (𝑡) , (1)

where 𝑋 is the state of the wind turbine, 𝑈 is the control set-
point, and 𝑉 is the wind, which is real wind data. How these
interact is determined by thematrices𝐴

𝑑
, 𝐵
𝑑
, and𝐸

𝑑
, and we

refer to [16] for details for determining these matrices. Here,
we let 𝑡 be the discretized time.

Table 1: Parameters on the overall wind farm topology and
parameters for the control execution.

Controller cycle, 𝑇
𝑠

150ms
Controller computation delay 50ms
Number of wind turbines 1
Number of sensors 3
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Figure 4: The accumulated damage of the wind turbine over
increasing delays with 95% confidence intervals; the𝑋-axis denotes
the mean of the upstream end-to-end delays between sensors and
central controller.

3.1. Scenario Parameters. Some assumptions regarding the
controller and its physical representation are taken in order
to simplify the simulations. It is assumed that there will
be end-to-end communication delays in the communication
network due to propagation delay, queues, and computation
delays. We also assume that the controller and the sensors
have perfect clock synchronization. In regard to the con-
troller, it is assumed that both the fatigue estimator and
the computation of the wind turbine set-points have an
internal computation delay, as summarized in the value given
in Table 1. This computation delay is used by the fatigue
estimator to estimate the fatigue of the wind turbine based
on the wind turbine state and by the controller to calculate a
new set-point based on the output of the fatigue estimator. At
any given time, there is a change in the wind turbine state; it
is assumed that the sensors are able to get a reading of this
instantly. An example of this could be a new control set-point
or a change in wind speed.The wind turbine itself is assumed
to act on a set-point as soon as it is received, and we assume
that this is done instantly and that the change has an impact
on the state of thewind turbine instantly.Thewinddatawhich
have been used in the simulations have been downloaded
from [17]. The wind data used have a measurement every
12.5ms, leading to 12 samples per control period.

Table 1 details the relevant parameters for the simulation
scenario.

We start by investigating the performance of the central
controller over increasing delays. We assumed a periodic
access strategy as described in Section 2.1, where the offset
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Figure 5: Accumulated damage of the wind turbine with varying
offset with 95% confidence intervals.

is set to 75ms. As we are mainly interested in the impact of
the nonideal networks in the access to the sensor information,
we assume, for the downstream communication from central
controller to wind turbine, a constant 1ms delay. For the
“upstream” end-to-end communication between sensor and
controller, we assume a shifted exponential distribution, with
a fixed minimum of 1ms and we change the exponential rate
in order to change the mean of the upstream delays.

Figure 4 depicts the accumulated damage over increasing
total mean delays, with the dashed lines depicting the 95%
confidence interval. It shows that, as the average delay
increases, the accumulated damage increases, and thus the
performance of the controller decreases. For further analysis
in this section, we focus on the parameter regime of delays
that are well below the control period duration of 150ms.
We, therefore, choose to use a shifted exponential distribution
with a mean of 31ms in the remainder of this section. We
next attempt to determine the effect of different offsets on the
performance of the controller.

The results in Figure 5 show that the accumulated damage
of the wind turbine decreases as the offset increases, until it
reaches a minimum at 𝑇

𝑜
≈ 90ms. A consequence of a small

choice of𝑇
𝑜
is that a large fraction of the updatemessage from

the sensors does not arrive in time to be considered for the
control computation. As a consequence, the controller would
use the “old” value from the last received update message as
basis of its control computation. The poor values of control
performance to the left of Figure 5 show that such missed
updates have a negative impact on control performance. After
100ms, the accumulated damage drastically increases up to a
value close to that of the lower offset values. The reason for
this sudden increase is to be found in the central controller
computation time of 50ms. This means that if the offset is
higher than 100ms, the newest control set-point has not yet
been received on thewind turbine.The arrival of the set-point
causes a noticeable change in the sensor data, which means
that the data sent right before and right after the arrival of the
set-point are noticeably different as well.
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Figure 6: Controller performance in terms of accumulated damage
of, respectively, the baseline case and the heuristic cases.

3.2. Performance Results of Heuristic Cases. As performance
metric, we consider the accumulated damage of the wind
turbine. The higher this value is, the worse the performance
of the controller is. How these values are determined is
explained in detail in [16]. Since we discovered in Section 3.1
that too small a choice of offset may negatively affect control
performance, a larger fraction of update message from the
sensor does not arrive in time at the controller; one way
of heuristically choosing an optimal offset is by taking a
𝑝% percentile of the end-to-end delay distribution between
sensor and central controller. We investigate such heuristic
in the following for percentiles of 80%, 90%, 95%, and 99%.
Given the shifted exponential end-to-end delay distributions,
these percentiles map into values 𝑇

𝑜
= 48ms, 69ms, 90ms,

and 138ms. We compare these heuristics with a baseline case
where the offset is chosen, for each control period, at random
from a uniform distribution between 0ms and 150ms. The
results can be seen in Figure 6, which shows the performance
for each of the cases.

The values for the controller performance, as well as
the 95% confidence interval, found from 10 repetitions of
400 control cycles each, can be found in Table 2. The
results show that performance-wise the baseline case and
the heuristic 99% case are clearly worse than the heuristic
95% and 90%, with the heuristic 80% case being in between.
We see that the heuristic cases 95%, 90%, and 80% have
overlapping confidence intervals, and we can as such not say
which one is the better option. There is, however, still the
problem of choosing the best heuristic case as the heuristic is
parameterized with the percentile 𝑝 of the delay distribution.
Obviously, 𝑝 can be obtained by a detailed simulation of the
control performance as done in Figure 5. However, we would
in that case not need a heuristic any more, as the minimum
can be read off from Figure 5 right away.Therefore, we will in
the next section search for computationally less costly ways
of optimizing 𝑇

𝑜
via a model-based approach.
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Table 2: The accumulated damage of the five different cases,
showing accumulated damage and 95% confidence interval.

Case name Accumulated damage Case number
Baseline case 73.1 ± 7.4 1
Heuristic 99% 64.5 ± 4.7 2
Heuristic 95% 47 ± 6.4 3
Heuristic 90% 46.1 ± 7 4
Heuristic 80% 55 ± 6.6 5

4. Model-Based Offset Optimization

As it was shown in the previous section, the offset of the
sensor information update should be chosen in a way that
(1) the offset is large enough such that the probability that
the update message is received at the controller before it
starts its control computation is increased, while (2) the offset
should be small enough so that changes of the sensor values
after generating the updatemessage are not impacting control
performance. As the two criteria are in trade-off, a model will
be needed to balance this trade-off.Thefirst aspect is, thereby,
mainly influenced by the end-to-end delay distribution,
while the second aspect is influenced by the information
dynamics of the sensor information. An analytic model for
the controller performance is, however, very complex; hence,
the approach is to instead optimize the information quality,
defined by the match between the controller’s view of the
system at the start of the control computation and the ground
truth system state in that time instance.

4.1. Information Quality Metric. Mismatch probability
(mmPr), as defined in [10], is a metric which fulfils our
requirements for an information quality metric. Let us
assume that𝑋

𝑠
(𝑡) is the state of the sensors’ information and

𝑋
𝑐
(𝑡) is the state of the sensor known to the controller.𝑋

𝑐
(𝑡)

is updated through the communication network, utilizing
the periodic update messages generated at offset 𝑇

𝑜
before

the control computation starts. The mmPr is defined for the
time instances, 𝐶

𝑖
; see Figure 2, at which the controller starts

its computation of the set-points. Consider

mmPr (𝜖) fl Pr (𝑋𝑠 (𝐶𝑖) − 𝑋𝑐 (𝐶𝑖)
 > 𝜖) . (2)

The parameter 𝜖 here corresponds to some “discretiza-
tion” threshold for continuous sensor value domains; changes
of the continuous sensor value are only counted if they exceed
this threshold 𝜖. The mmPr metric is mainly influenced by
the following factors: (1) the freshness of information at
the time the controller is calculating new set-points and (2)
how quickly information changes to a mismatching value,
that is, the information dynamics. Note that the information
freshness depends on the network delay and the data access
strategy, as well as sensor sampling frequency. The sensor
dynamics is modelled with a discrete time Markov chain
(DTMC), since the mathematical framework for handling
DTMCs is well known and suitable for the mmPr calcula-
tions. The following subsection describes how sensor values

are used for DTMC fitting and defines analytical models for
mmPr calculations.

4.2. Markov Model of the Controlled System. We approximate
the controlled system by a discrete time Markov model; we
thereby simplify to assume that the state of the system is
described by the time series of one of the sensors, denoted
by 𝑆
1
, 𝑆
2
, . . .; unless mentioned differently, we assume that

these values represent sensor 3 in the results shown later
on. The continuous values 𝑆

𝑖
are thereby mapped in an

equidistant manner to the discrete states 1, . . . , 𝑁 of the
Markov model. When analyzing a simulated trace of 𝑆

𝑖
,

it shows a different behavior in time steps when new set-
points are communicated, as opposed to time steps when no
action of the central controller is imposed. Therefore, we use
two different transition matrices, 𝑃 and 𝐶, to describe the
state transition probabilities in intervals without and with
central control action, respectively. The matrices 𝑃 and 𝐶
can be easily obtained from the observed transition counts
from the simulated system as the exact moments of set-point
adaptations are known. Note that the model is obviously a
simplification as it does not consider the values of the set-
points obtained by the controller.

To avoid too many technicalities, we here assume that
the computation delay and the downstream delay from the
central controller to the local controller are deterministic.
Due to the periodic nature of the controller, the system
behavior as a Markov chain within one control cycle is then
determined by the transition matrix𝑀 = 𝐶 ⋅ 𝑃𝑐−1, where 𝑐
is the number of discrete time steps in one control cycle. The
eigenvector 𝜋 = 𝜋⋅𝑀 for eigenvalue 1 of the matrix𝑀 is then
the steady state probability distribution of the Markov chain,
when observed just before the control action implementation
in each cycle.

4.3. Analytic Model for the Mismatch Probability. Assuming
that the controlled system is adequately described by the
Markov model in the previous section, the information
quality metric, mismatch probability from Section 4.1, can be
calculated from the Markov model and from the cumulative
distribution function, 𝐹

𝐷
(𝑡), of the upstream end-to-end

delay as follows:

1 −mmPr = 𝐹
𝐷
(𝑇
𝑜
)

𝑁

∑

𝑘=1

𝜋
𝑢
(𝑘)

⋅ Pr (MCis in state 𝑘 at time instant 𝐶
𝑖
|

MC has been in state 𝑘 at time instant 𝐶
𝑖

− 𝑇
𝑜
) + (1 − 𝐹

𝐷
(𝑇
𝑜
)) 𝐹
𝐷
(𝑇
𝑜
+ 𝑇
𝑐
)

𝑁

∑

𝑘=1

𝜋
𝑢
(𝑘)

⋅ Pr (MC is in state 𝑘 at time instant 𝐶
𝑖
|

MC has been in state 𝑘 at time instant 𝐶
𝑖

− 𝑇
𝑜
− 𝑇
𝑐
) .

(3)
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Figure 7: mmPr of sensor 3 for different number of Markov States.

Thereby, 𝜋
𝑢
is the steady state probability vector of the

Markov model at the moment just before the updates are
sent by the sensors. The first term considers the case that the
last update message reaches the controller in time before the
start of the control computation; the second term considers
the case that the last update does not arrive in time, but the
previous update does. The above equation yields an upper
bound for the mismatch probability as other cases; 𝑛 last
updates do not arrive in time but (𝑛 + 1)th does, for 𝑛 ≥ 2
are not considered in detail, but all these cases are mapped
into a mismatch (hence, the resulting upper bound).

When implementing (3), the state 𝜋
𝑢
(𝑘) and the detailed

composition of the conditional probabilities (which basically
are the diagonal elements of products of the form 𝑃𝑖 ⋅ 𝐶𝑗 ⋅
𝑃
𝑘) depend on the cycle duration, the offset 𝑇

𝑜
, and the

computation and downstream delay. Therefore, the Markov
transition probabilities in the sums can be obtained from
adequate products of the matrices 𝑃 and 𝐶; we skip the
technical details here.

4.4. Offset Optimization. The above analytic model can be
used to obtain optimal offset choices by simple numeric
minimization with respect to 𝑇

𝑜
. Figure 7 shows the result

of the analytic mmPr model from the previous section,
when applied to the scenario analyzed in Section 3; the
corresponding control performance graph is in Figure 5 and
showed a minimum around an offset choice of 90ms. The
Markovmodel with different state-sizes𝑁 = 2, . . . , 12 is fitted
to a trace of sensor 3 that has been obtained from a closed-
loop control simulation with ideal network. The analytic
mismatch metric calculations show a minimum (marked by
a cross) around an offset value of 50ms (when using 𝑁 = 8
states or less) and this minimum shifts to 37.5ms for 𝑁 =
9, . . . , 12 states. The shift of the minimum to the left can
be intuitively explained as follows: The more states are used
in the Markov model, the more the mismatch probability is
influenced by small changes in the sensor information, so
the mismatch metric becomes more sensitive to information
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Figure 8: mmPr of sensor 3 for different offsets: the solid curves
show the simulation result togetherwith the 95% confidence interval
(dotted); the two dashed curves show the model-based result for
Markov models with𝑁 = 4 and𝑁 = 5 states.
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age. With smaller offset, the information at the controller
is fresher given that it arrives in time. So, this gain in
freshness here seems to overcompensate the effect of late
arrival of messages for some range of offsets. As Figure 7
shows, the absolute value of the mismatch metric depends
on the number of states in the Markov model; however, the
benefit of themodel is not the absolute value but that it allows
determining an optimal offset.
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4.5. Sensor mmPr Simulation Results. Figure 8 shows the
mmPr of sensor 3 for different offsets found both via the full
cosimulation (solid blue curve) and from the model of the
sensor information dynamics (dashed red and green curve).
All curves are simulated using the same scenario parameters,
as described in Section 3.1. The red curve is found from a
Markov chain containing𝑁 = 5 states, while the green curve
contains 𝑁 = 4 states. These are chosen as they are the
number of states that match the blue curve most closely, both
in mmPr values and in optimal offset.

Note that the simulation of the mmPr also takes a
discretized version of the sensor space as basis, that is,
mmPr(𝜖) fl Pr(|𝑋

𝑠
(𝐶
𝑖
) − 𝑋
𝑐
(𝐶
𝑖
)| > 𝜖). A smaller discretiza-

tion level 𝜖 would lead to higher mismatch probabilities. The
simulation takes the whole value space of all sensor values for
all offsets and uses an 𝜖 which is 1/20 of this range. Note that
this does not correspond to a Markov chain with 20 states, as
theMarkov chain is fitted to only one simulation run (with an
ideal network) and hence the value range is smaller for that fit.
It turns out that a Markov chain between 𝑁 = 4 and 𝑁 = 5
states has the similar discretization level as assumed for the
simulated mmPr.

The control performance that is analyzed in Figure 5 is,
however, influenced by the information quality of all three
sensors. Therefore, Figure 9 shows the average mismatch
probability, where the average is taken over the simulated and
model-based values for all 3 sensors when using the same
offset. Note, however, that different sensors with different
dynamics and different end-to-end delays could also use
different offset values. In this paper, however, we restrict
ourselves to the analysis of the case when the same offset
is applied to all three sensors. The number of states is the
same for each sensor, and these values are chosen because
they matched the curve in Figure 8. We see that while the
curves still match in terms of optimal offset, there is a distinct
difference in the mmPr values that each curve takes. The
optimal offset for 𝑁 = 4 and 𝑁 = 5 in Figure 9 is in both
cases at 62.5ms.

Figure 10 compares the accumulated damage of the wind
turbine of the offset chosen from the model and the offset
found via heuristic methods. Cases 1 to 5, as described in
Table 2, are also shown in Figure 6, case 6 (yellow colour)
denotes the offset found via the mean mmPr of all 3 sensors,
while, for case 7 (green colour), the offset is found based on
the mmPr of sensor 3, in both cases for 𝑁 = 5. We see that
for the mean case the accumulated damage is slightly lower;
however, the two cases are still within each other's confidence
interval.

5. QoS Parameters of Communication
Technologies

We have in the previous sectionmade assumptions regarding
the end-to-end delay, which was modelled by a shifted
exponential distribution with a mean of 31ms. However,
for different communication technologies in the Access and
Sensor Networks, the delays experienced may vary, and also
other types of delay distributions as well as correlations
between subsequent delay values may occur. In this section
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Figure 10: Controller performance in terms of accumulated damage
of, respectively, the baseline case, the heuristic cases, and the model
cases.

we investigate the delays of different communication tech-
nologies and afterwards use these delay traces to determine
the end-to-end delay in the cosimulations.

The aimof themeasurement setup for theAccessNetwork
was to mimic the communication pattern generated between
the central controller and 30 gateways on the wind farm
communication network in order to characterize the network
properties in terms of delays and packet losses. For each of the
technologies, ICMP ping measurements are performed with
64 bytes of application layer payload in the uplink (i.e., for
the sensor measurements) and downlink (i.e., for the control
commands) roughly corresponding to an actual size of the
messages [18]. In further subsections, details of measurement
setups for each of the technologies are given, while Section 5.4
describes the measurement setup for the Sensor Network.

5.1. 2G/3G Measurement Setup. The test-bed setup for con-
ducting cellular 2G/3G measurements is comprised of three
Huawei E392 USB modems [19] equipped with SIM cards
from Austrian telecom provider YESSS. Three SIM cards
connected to the modems are provisioned to allow both
GPRS and UMTS transmission access. Furthermore, the
equipment is placed indoors, in the same room on the second
floor of an eight-floor office building. First, the modems are
configured to have access only to a GPRS network. Through
each modem, ten ICMP ping connections were executed in
parallel with a time interval of 150ms between the probes;
thus, 30 connections in total were running in order to mimic
the communication pattern between the gateway and the cen-
tral controller. Subsequently, the same procedure is repeated
for the 3G network by configuring the modems for UMTS
transmissions. In both cases, around 4000 measurements are
collected from each ICMP ping connection during a week
day between 11 am and 12 am. The resulting distribution of
the measurements for 2G and 3G, respectively, can be seen
in Figures 14 and 11. The distance between the modems and
GPRS/UMTS base transceiver stations (BTS) is around 30m,
since the stations are located on top of the same building.



International Journal of Distributed Sensor Networks 9

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Delay (ms)

Empirical PDF of 3G measurements

Pr
ob

ab
ili

ty
 d

en
sit

y

Figure 11: PDF of the 3G RTT measurement results.

5.2. PLC Measurement Setup. Powerline communication
technology is evaluated with narrow-band Devolo G3-PLC
500 k PLC modems [20], having a total throughput capacity
of 240 kbps. Five such PLCmodems are connected via power
lines of approximately 1 meter length in total, which is much
shorter than an actual implementation where they would
potentially be hundreds of meters long, making this a best
case scenario. In an initial test, three parallel ICMP ping
connections are ran from three different PLC modems (9
connections on the PLC network), with 150ms time interval.
It is shown later that, for nine connections running over a
PLC network, the network performance is impractical for the
wind farm controller due to high delays and packet losses
even in this best case setup with short distances.

5.3. WiFi Measurement Setup. WiFi technologies are tested
using two commercially available embedded boards “ALIX
3D2” [21], which allow different IEEE 802.11 hardware
modules to be added onto the system. For this study, we
connected the 802.11 g (2.4GHz band)modules of type CM9-
GP Wistron [22] onto the boards. The WiFi points are
placed indoors within the same room, on the distance of
approximately 3 meters, line-of-sight, which again is shorter
than an actual implementation, making this a best case setup.
In the vicinity of the WiFi points, 23 other networks were
scanned; 16 of them were running on 2.4GHz band, thus
adding some interference to the signal; the transmission
power is set to 15 dBm.Over suchWiFi link, 30 parallel ICMP
ping connections were executed during a work day between 3
pm and 5 pm, with the same interval as before. The resulting
delay distribution observed on the link is shown in Figure 12.

5.4. CANBUS Simulation Setup. The CANBUS is set up with
3 sensors and 1 gateway connected to the CANBUS, with the
gateway having the highest priority, then sensor 1 followed
by sensors 2 and 3, respectively.The CANBUS is transmitting

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Delay (ms)

Empirical PDF of WLAN measurements

Pr
ob

ab
ili

ty
 d

en
sit

y

Figure 12: PDF of the WLAN RTT measurement results.

Table 3: QoS results of the RTT measurements.

Technology Minimum
delay

Average
delay

Maximum
delay

Packet
loss

3G 10.5ms 16.7ms 98.5ms 0%
WLAN 0.5ms 5.4ms 83.2ms 0%
2G 84.5ms 385.2ms 2131ms 0%
PLC 50.4ms 1504ms 3400.8ms 78%

Table 4: Simulation results for CANBUS one-way delay.

Sensor Delay
1 5ms
2 10ms
3 15ms

with 500 kbps and 0% packet loss on the connection. There
are no othermodules connected to the BUS to generate cross-
traffic. Each sensor is set to transmit at the same offset 𝑇

𝑜

once each control period (every 150ms). The CANBUS is
implemented in OMNeT++ and simulated.

5.5. Delay Results. As explained previously, the delays mea-
sured on the different technologies, and thus the results
shown in this section, are all RTT delays and can be seen
in Figures 11–14 and in Table 3. The results in Table 4 are,
however, one-way delays. As can be seen in Figure 11, there
are two peaks to the 3G measurements. The first peak is at
roughly 15ms, and the other, smaller, peak is at 20–22ms.
We have outliers of the data as high as 98.5ms, which can be
caused by spikes in traffic on the base station. In contrast to
the measured delay distribution for 3G, the delays of WLAN
in Figure 12 by shape appear like an exponential distribution
with a small shift. Similar results, delay-wise, can be seen in
[5], however, with a slight different distribution, most likely
to be attributed to cross-traffic.
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Figure 13: Time series of the 2G RTT measurement results.
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Figure 14: PDF of the 2G RTT measurement results.

From the 30 2G connections we take the data from a
single connection on sim card 2 and plot it as a time series in
Figure 13. The measurements of the other connections show
the same trend as we see in Figure 13. We see low delays at
start of the measurements, which may be caused by not all
sim cards and/or connections being set up right away. We
see a few spikes in the delays between 0 and up until sample
number 4250, which can be caused by spikes in traffic on
the base station. After measurement 4250, we start to see
a steady increase in delays, most likely caused by increased
traffic leading to longer queues on the base station and in the
sim cards. For the evaluation later, we only use the samples
from 250 to 4250, in order to avoid the large instability period
that occurs after. Table 3 and Figure 14 show the distribution
of these 4000 samples.

Results from the PLC measurements show that the
average delay is several control cycles long, and the packet
loss is 78%, even for only 9 parallel connections.This is rather
problematic for the controller, as it will lead to instability and

the controller being unable to generate set-points. For this
reason, these results are not used further in this paper, as it
is clear from the statistics that the solution is not feasible.
The statistics for all the measurements results can be seen in
Table 3.

Thedelays from theCANBUS simulation showdetermin-
istic delays for each sensor, with sensor 1 having the lowest
delay as it has the highest priority. Each delay is the one-way
delay and there were no packet losses experienced. The delay
values are summarized in Table 4.

The results of the measurements are used as a time series
in the cosimulation framework in order to determine the
delays of individual messages. The measurements we have
access to are, as explained above, RTT ping messages, except
for the CANBUS delays. The delays we are interested in
are, however, one-way delays. Therefore, we assume that the
uplink and downlink channel properties are identical and
we can thus divide the RTTs by 2 to get one-way delays.
This represents an approximation as many technologies
differentiate in their handling of uplink and downlink data
streams.

6. Wind Farm Control Using Cellular
Communication Technologies and CANBUS

In this section we use the delay traces found in Section 5
to create different simulation scenarios. To start, we create
scenarios where only theAccess Network delays are used, and
we simulate this scenario using the traces of the technologies
for this network. We then create a combination scenario,
where we use both the traces from the 3G measurements,
as well as the delays incurred by the CANBUS in the Sensor
Network. This scenario, thus, entails both networks, creating
a simulation of the entire system. The performance of the
controller is described by two metrics: reference tracking
and accumulated damage of the wind turbine. Analogous to
Section 3, we focus on the second metric, the accumulated
damage.The simulations are done using the same framework
as described in Section 3, where the end-to-end delays both in
uplink from sensor to the central controller and in downlink
from the central controller to the local controller are obtained
now by the traces from the technology measurements in
Section 5.

6.1. Control Performance over Cellular Access Technologies.
The accumulated damage for the 3G trace (Figure 15) shows
an increase in low offsets when offsets get smaller than
≈40ms, and a sharp increase at an offset of 100ms. Both
of these increases are expected, as at 100ms offset the
computational delay of the central controller means that the
control set-point is not yet received. At low offsets, there is
a higher chance that the messages will be delayed past the
control point 𝐶

𝑖
, and thus old data will be used. The optimal

offset is between 37.5ms and 100ms, where no statistically
significant differences between those offset choices can be
observed.

Figure 16 shows the control performance when using
the 2G data that was the basis for the pdf in Figure 14. As
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Figure 15: Accumulated damage of wind turbine based on 3G
measurements with 95% confidence intervals.
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Figure 16: Accumulated damage of wind turbine based on 2G
measurements with 95% confidence intervals.

2G delays are generally rather long, on average more than 1
control cycle, the controller will in this case most of the time
use sensormeasurementswhich are several control cycles old.
Figure 16 shows that in this case the control performance is
about twice as bad as in the better 3G cases; furthermore,
the detailed choice of the offset within the control period is
irrelevant as the sensor measurement will be outdated by the
time it arrives at the controller anyway.Therefore, there is no
offset optimization beneficial for this 2G case given the short
control periods of the central controller.

For comparison to the other technologies, a simulation
with an ideal network, meaning a network with 0ms delays
and 0% packet loss, has also been executed. The result of
this can be seen in Figure 17. This shows a relatively flat
curve until an offset of 100ms, at which point we again see
an increase in accumulated damage, as expected based on
previous simulation results. We have not included the figure
for accumulated damage for the WLAN technology in this
paper, as the results are very similar to the results for the
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Figure 17: Accumulated damage of wind turbine based on ideal
network.
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Figure 18: Performance of controller under combined 3G traces and
CANBUS delays.

ideal network. The biggest difference was in a small increase
at offsets below 50ms; however, this increase was so slight to
be within the 95% confidence interval of the ideal network
simulation.

6.2. Combined 3G and CANBUS Scenario. Finally, we com-
pare the analytic model in a scenario that mimics the use of
3G access for connections to the wind turbines and a CAN
network for the sensor data access with delays as stated in the
previous sections. Figure 18 shows a simulation runwhere the
3G trace is used, as in Figure 15, and the deterministic delay of
the CANBUS is added to the delay between the sensors and
the central controller. The figure shows a sharper drop in the
accumulated damage than for the pure 3G simulation yet is,
otherwise, very similar within the 95% confidence intervals.

In order to analyze the impact of the downstream delay
from the central controller to the wind turbine, another
simulation run like in Figure 18 has been conducted but
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Figure 19: Performance of controller using deterministic down-
stream delay and a shifted exponential fitted to the 3G traces.

now with a deterministic downstream delay with the same
mean (8.35ms). The resulting control performance curve
did not show any visual difference and any deviations were
minor compared to the confidence intervals. As a conclusion,
the deterministic assumption for the downstream delay, as
taken for the analytic model, does not change the control
behavior in this scenario. We also ran a simulation of the
scenario in Figure 18, where the correlation in the UMTS
delays used in the upstream (from sensor to controller) was
destroyed by scrambling the delay trace. Also, in this case, the
control performance did not significantly change. Hence, the
assumption of a renewal process for the upstream delays in
the analyticmodel does not have any impact for this scenario.

As the analyticmodel assumes a shifted exponential delay
distribution for the access to the sensor data and a determinis-
tic downstreamdelay, and since wewant to see the differences
caused by other model assumptions, we, however, do not use
the trace of the 3G delaymeasurements but rather fit a shifted
exponential distribution to the parameters of Table 3; and
analogously, we use also in the simulation a deterministic
downstream delay with the parameter matching the mean
3G delay. We call this the exponential approximation of the
combined 3G and CANBUS scenario.

Figure 19 shows the accumulated damage resulting from
such a simulation run with varying offset 𝑇

𝑜
for the sensor

information access. Figure 19 shows a clear minimum for
offsets between approximately 25ms and 87.5ms, taking the
95% confidence intervals (marked dashed) into account.
Figures 18 and 19 show very similar performance, the main
difference being the accumulated damage at 𝑇

𝑜
= 37.5ms,

with Figure 19 having higher accumulated damage, however
still within the confidence intervals of each other.The relative
flat curves for offset between 50ms and 87.5ms are due to the
rather low variability of the 3G delays.

Figure 20 now takes the Markov models for sensor 3
(with the same calibration as earlier, as this calibration is
independent of network delays) of sizes 𝑁 = 2, . . . , 12 and
applies the mmPr calculations to these Markov models. The
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Figure 20: mmPr over changing offsets for sensor 3 in the exponen-
tial approximation of the combined 3G and CANBUS scenario.
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Figure 21: Average mmPr of all 3 sensors over changing offsets in
the exponential approximation of the combined 3G and CANBUS
scenario.

curves show minima around 40ms while, for small 𝑁, they
are rather flat in the interval 40ms ≤ 𝑇

𝑜
≤ 90ms.

Control performance of the system simulated in Figure 19
is, however, influenced by all 3 sensors. In the CAN setting,
the 3 sensors have different CAN delays. The analytic model
can also be used to calculate mismatch probabilities for
each of these sensors. Figure 21 shows the resulting average
over the 3 sensors for the mismatch probability. The curves
show the same shape as Figure 19, while the optimal offset
remains at around 40ms. Nevertheless, by comparison of
Figures 20 and 21 with the simulated control performance
in Figure 19, it becomes clear that the approach to use
data quality metrics, here, mismatch probability, has general
potential for optimizing control performance in periodic
control systems.
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7. Conclusion

In this paper, we investigated the impact of end-to-end com-
munication delays and sensor access scheduling optimization
on the performance of a wind turbine controller as part of a
Smart Grid use-case. We started by determining in Section 3
that there indeed was an impact of the communication
network delays, and that an optimized choice of the offset,
defined as the time interval between sensor information
update generation and controller computation, can be used
to improve controller performance. We found that using a
simple heuristic to determine the offset ran the risk of choos-
ing a suboptimal offset, and that determining the optimal
offset is not a trivial task. In Section 4, we modelled the
sensor information dynamics to use an analytical approach to
determining the optimal offset, instead of relying on extensive
simulations of the controller and network together.We found
that it was possible to use the mmPr metric to determine
an offset, and that this chosen offset performed as well as,
within a 95% confidence interval, or better than the consid-
ered heuristic methods. Lastly, we investigate the impact of
imperfect communication on controller performance using
different communication technologies in Section 5. The
delays found from this analysis were then used to simulate
the performance of the wind turbine controller once again,
and the analytical models were used to find the mmPr of
the sensors. We find that due to the low variability of the 3G
data there is a rather large offset range in which to choose
the optimal offset. The measurements of WLAN data had
even lower variability and would not lead to a narrower offset
range. Alternatively, the delays of the 2G data were too long
for offset optimization to make sense in the chosen scenario.
However, for controllers with longer control periods, the 2G
data might be more interesting to make offset optimization
for, due to the increased variability of the delays.

Future work will look at the impact of different control
period choices: slower network technologies like 2G may
still be utilized when running the controller less frequently;
however, the trade-off of modifications in the control period
given a certain end-to-end delay will need to be analyzed and
understood. For the analysis of this paper, we assumed that
the exchange of sensor values to the central controller and of
set-points to the local controller is executed via a very lean
protocol, containing just the actual values and a few bytes of
information type. The analysis of the impact of intermediate
layers like TCP [8, 23] or protocols that try to achieve real-
time bounds and reliability [5] or just improve performance
behavior of off-the-shelf shared transmission media [24] for
the setting of the wind farm control is interesting for future
work.

An assumption made in this paper was perfect clock
synchronization between the central controller and the sen-
sors. This may not be the case and could cause the offset 𝑇

𝑜

chosen at the sensors to drift, time-wise. This could be fixed
by including time synchronization packets on the network;
however, this would increase traffic and could increase the
delays on the communication network.

This work has been done for a specific Smart Grid
scenario; however, in future work, it would be interesting

to expand to cover other scenarios, for example, a voltage
control scenario as in [25].

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

The authors would like to thank José de Jesús Barradas-
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