

Aalborg Universitet

Dynamic behavior of the 3CaO-1AI2O3 liquid

Pan, R.K.; Qiao, A.; Tao, H.Z.; Ruan, J.; Zhao, X.J.; Greaves, G.N.; Yue, Yuanzheng

Published in: The 24th International Congress on Glass - Abstracts

Publication date: 2016

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA): Pan, R. K., Qiao, A., Tao, H. Z., Ruan, J., Zhao, X. J., Greaves, G. N., & Yue, Y. (2016). Dynamic behavior of the 3CaO-1Al2O3 liquid. In The 24th International Congress on Glass - Abstracts (pp. 152). International Commission on Glass (ICG).

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

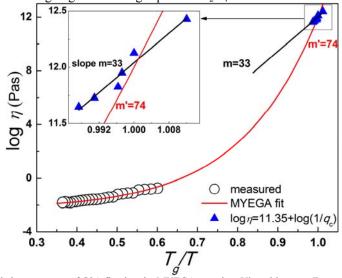
- ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Dynamic behavior of the 3CaO-1Al₂O₃ liquid

R.K. Pan^{1,2}, A. Qiao¹, H.Z. Tao¹, J. Ruan¹, X.J. Zhao¹, G.N. Greaves^{1,3}, Y.Z. Yue^{1,4}


¹State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China ²School of Materials Science and Engineering, Hubei University, Wuhan 430062, China

³Centre for Advanced Functional Materials and Devices, Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ, United Kingdom

⁴Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, Denmark

panruikun5@sina.com

Calcium aluminates $(CaO)_x(Al_2O_3)_{1-x}$ are main components in the Earth's mantle and also in the aluminate cement, which have been studied by many researchers.^{1,2)} Calcium aluminates are very fragile glass formers and do not contain typical network-forming cations. The structure of $(CaO)_x(Al_2O_3)_{1-x}$ with x=0.33, 0.5 and 0.75 was investigated in a laser heated aerodynamic levitation (ADL) furnace.^{3,4)} The ADL technique enables vitrifying calcium aluminates in the composition range of 0.37 < x < 0.75, whereas the conventional melt-quenching method can vitrify only those in a much narrower x range (0.6 < x < 0.7).³⁾ Kargl et al studied the viscous behavior of the CaAl₂O₄ liquid in the temperature range of 2000 to 2800 K by using ADL.⁵⁾ Hennet et al studied the structural evolution of the fragile glass-forming liquid-CaAl₂O₄.⁶⁾

 T_g/T Figure 1: Viscosity η vs T_g -scaled temperature of C3A fitted to the MYEGA equation. Viscosities near T_g were determined from the relation $\log \eta = 11.35 + \log(1/q_c(T_f))$.⁷⁾ The slope of linear fitting to $\log(1/q_c(T_f)) \sim T_g/T_f$ plots of DSC results is the fragility m.

The 3CaO-1Al₂O₃ (C3A) bulk glass was prepared using the ADL technique. The viscosities at high temperatures (1773~2923 K) of the C3A liquid were measured using the ADL technique as shown in Figure 1. By conducting differential scanning calorimetric (DSC) measurements, we determined the glass transition temperature (T_g =1092 K) and the dependence of fictive temperature (T_f) on cooling rate (q_c). The temperature dependence of viscosity was fitted to the Mauro-Yue-Ellison-Gupta-Allan (MYEGA) equation.⁸⁾ The fragility parameter *m*' of the C3A liquid was determined to be about 74 by extrapolating the MYEGA fitting curve to the T_g , while *m* was determined using DSC to be about 33. This implies that the fragile-to-strong liquid transition occurs in the C3A liquid upon cooling.⁹⁾

- 1) G. Urbain, viscosity of liquids system CaO-Al₂O₃, Rev. Int. Hautes Temp. Ref. Fr. 20 (1983) 135-139.
- J.W.E. Drewitt, L. Hennet, A. Zeidler, S. Jahn, P.S. Salmon, D.R. Neuville, H.E. Fischer, Structural transformations on vitrification in the fragile glass-forming system CaAl₂O₄, Phys. Rev. Lett. 109 (2012) 235501.
- J.W.E Drewitt, S. Jahn, V. Cristiglio, A. Bytchkov, M. Leydier, S.Brassamin, H.E Fischer, L. Hennet, Corrigendum: The structure of liquid calcium aluminates as investigated by neutron and high-energy x-ray diffraction in combination with molecular dynamics simulation methods, J. Phys.: Condens. Matter. 24 (2012) 099501.
- D. Langstaff, M. Gunn, G.N. Greaves, A. Marsing, F. Kargl, Aerodynamic levitator furnace for measuring thermophysical properties of refractoryliquids, Rev. Sci. Instrum. 84 (2013)124901.
- F. Kargl, C.C. Yuan, G.N. Greaves, Aerodynamic Levitation: Thermophysical property measurements of liquid oxides, Int. J. Microgravity Sci. Appl. 32 (2015) 320200.
- 6) L. Hennet, I. Pozdnyakova, A. Bytchkov, D.L. Price, Development of structural order during supercooling of a fragile oxide melt, J. Chem. Phys., 126 (2007) 074906.
- 7) Y.Z. Yue, R. von der Ohe, S.L. Jensen, Fictive temperature, cooling rate, and viscosity of glasses, J. Chem. Phys., 120 (2004)8053.
- J.C. Mauro, Y.Z. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan, Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 19780-19784.
- C.Z. Zhang, L.N. Hu, Y.Z. Yue, J.C. Mauro, Fragile-to-strong transition in metallic glass-forming liquids, J. Chem. Phys. 133 (2010) 014508.