

Aalborg Universitet

Compositional Control of Sub-Critical Crack Growth in Silicate Glasses

Smedskjær, Morten Mattrup; Bauchy, Mathieu

Publication date: 2016

Link to publication from Aalborg University

Citation for published version (APA): Smedskjær, M. M., & Bauchy, M. (2016). Compositional Control of Sub-Critical Crack Growth in Silicate Glasses. Abstract from 24th International Congress on Glass, Shanghai, China.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Compositional Control of Sub-Critical Crack Growth in Silicate Glasses

Morten M. Smedskjaer¹, M. Bauchy²

¹ Department of Chemistry and Bioscience, Aalborg University, Denmark ² Department of Civil and Environmental Engineering, University of California, Los Angeles, USA

<u>mos@bio.aau.dk</u>

Improving the mechanical reliability of glass and its resistance to breakage is important for enabling advanced glass applications. The presence of water in the surrounding atmosphere can cause sub-critical crack growth (SCCG) in glasses, a phenomenon known as fatigue or stress corrosion. To facilitate the compositional design of more fatigue-resistant glasses, we here investigate the composition dependence of SCCG by studying fourteen silicate glasses [1]. The fatigue curves (*V*-*K*_I) have been obtained by indentation experiments through measurements of the crack length as a function of post-indentation fatigue duration. Interestingly, we find that the fatigue resistance parameter *N* is generally improved by increasing the alumina content and is thereby found to exhibit a fairly linear dependence on the measured Vickers hardness H_V for a wide range of *N* and H_V values. This finding highlights the important role of network topology in governing the SCCG in silicate glasses, since hardness has been shown to scale linearly with the number of atomic constraints [2-5]. Our results therefore suggest that glasses showing under-constrained flexible networks, which feature floppy internal modes of deformation, are more readily attacked by water molecules, thus promoting stress corrosion and reducing the fatigue resistance.

[1] M.M. Smedskjaer, M. Bauchy, Appl. Phys. Lett. 107, 141901 (2015).

- [2] M.M. Smedskjaer, J.C. Mauro, Y.Z. Yue, Phys. Rev. Lett. 105, 115503 (2010).
- [3] M.M. Smedskjaer, Front. Mater. 1, 23 (2014).
- [4] G.L. Paraschiv, S. Gomez, J.C. Mauro, L. Wondraczek, Y.Z. Yue, M.M. Smedskjaer, J. Phys. Chem. B 119, 4109-4115 (2015).
- [5] M. Bauchy, M.J.A. Qomi, C. Bichara, F.-J. Ulm, R. J.-M. Pellenq, Phys. Rev. Lett. 114, 125502 (2015).