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Genomic insights into members of the candidate
phylum Hyd24-12 common in mesophilic anaerobic
digesters

Rasmus Hansen Kirkegaard1, Morten Simonsen Dueholm1, Simon Jon McIlroy,
Marta Nierychlo, Søren Michael Karst, Mads Albertsen and Per Halkjær Nielsen
Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg,
Denmark

Members of the candidate phylum Hyd24-12 are globally distributed, but no genomic information or
knowledge about their morphology, physiology or ecology is available. In this study, members of the
Hyd24-12 lineage were shown to be present and abundant in full-scale mesophilic anaerobic
digesters at Danish wastewater treatment facilities. In some samples, a member of the Hyd24-12
lineage was one of the most abundant genus-level bacterial taxa, accounting for up to 8% of the
bacterial biomass. Three closely related and near-complete genomes were retrieved using
metagenome sequencing of full-scale anaerobic digesters. Genome annotation and metabolic
reconstruction showed that they are Gram-negative bacteria likely involved in acidogenesis,
producing acetate and hydrogen from fermentation of sugars, and may play a role in the cycling of
sulphur in the digesters. Fluorescence in situ hybridization revealed single rod-shaped cells
dispersed within the flocs. The genomic information forms a foundation for a more detailed
understanding of their role in anaerobic digestion and provides the first insight into a hitherto
undescribed branch in the tree of life.
The ISME Journal advance online publication, 8 April 2016; doi:10.1038/ismej.2016.43

Introduction

Production of methane by anaerobic digestion (AD)
is widely used to convert organic waste into biogas
and forms an important part of the transition from
fossil fuel to sustainable energy production. The AD
process is divided into four sequential steps that are
performed by specialized microbes: hydrolysis,
fermentation (acidogenesis), acetogenesis (dehydro-
genation) and methanogenesis (acetoclastic or hydro-
genotrophic) (Angenent et al., 2004). Hence, the
overall function, stability and efficiency of the AD
process are dependent on tightly coupled synergistic
activities of the complex microbial communities
(Schink, 1997; Weiland, 2010). However, the micro-
bial communities in AD are still poorly understood,
and relatively little is known about their diversity
and function (Chouari et al., 2005; Werner et al.,
2011; Sundberg et al., 2013; De Vrieze et al., 2015).
In addition, most of the microorganisms have no
pure culture representatives, and, given the

synergistic interactions of members of the commu-
nity, a reductionist approach to understand the
ecology of the system is not possible (Kaeberlein
et al., 2002; Fuhrman et al., 2015).

The AD environment also harbours extensive diver-
sity of previously uncharacterized bacterial phyla, often
known only by their 16S rRNA gene sequence, making it
an ideal environment for the study of novel bacterial
lineages (Guermazi et al., 2008; Pelletier et al., 2008;
Limam et al., 2014; Sekiguchi et al., 2015). New
developments in single-cell genomics andmetagenomics
have in recent years provided a glimpse into the ecology
and evolution of many novel candidate phyla (Dinis
et al., 2011; Albertsen et al., 2013; Rinke et al., 2013;
Brown et al., 2015; Nobu et al., 2015; Sekiguchi et al.,
2015). The genomes have enabled construction of
metabolic models that attempt to explain the physiology
of these organisms in detail. The genome-based models
form the basis of more extensive investigations, such as
in situ single-cell characterization, metatranscriptomics
and proteomics (Koch et al., 2014).

In this study, extensive 16S rRNA gene amplicon
sequencing was used to screen anaerobic digesters
for the presence of members of the Hyd24-12 lineage,
which remains one of the few known candidate
phyla for which no genomic information is available
with nothing known about their morphology,
physiology or ecology (Rinke et al., 2013). Selected
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samples were subjected to metagenome sequencing
and used for retrieval of three near-complete gen-
omes of Hyd24-12 through differential coverage
binning. The genomes were used for detailed meta-
bolic reconstruction and design of oligonucleotide
probes for the first in situ visualization of these
hitherto unrecognized players in AD.

Materials and methods

Sample collection and storage
A total of 306 biomass samples were obtained from
29 anaerobic digesters at 17 Danish wastewater
treatment facilities (see Supplementary Table S1).
Most digesters were mesophilic (22), whereas 7 were
thermophilic. A volume of 50ml was sampled,
homogenized and stored as 2ml aliquots at − 80 °C
for DNA extraction.

For fluorescence in situ hybridization (FISH)
analyses, diluted biomass samples (1:4 in 1×
phosphate-buffered saline) were fixed with 4% (w/v)
paraformaldehyde and stored in 50% (v/v) ethanol/
1×phosphate-buffered saline solution at −20 °C, as
previously described by Daims et al. (2005).

DNA extraction
DNA was extracted from anaerobic digester sludge
using the FastDNA Spin kit for soil (MP Biomedicals,
Santa Ana, CA, USA), following the standard
protocol except for four times increased bead beating
duration and a sludge input volume of 50 μl.
These digester-sample-specific modifications to the
protocol were found to provide the best trade-off
between DNA yield/biomass and DNA integrity
(Supplementary Figure S4).

Community profiling with 16S rRNA gene amplicon
sequencing
Bacterial community profiling was carried out as
recommended by Albertsen et al. (2015). The
bacterial primers used were 27F (AGAGTTTGAT
CCTGGCTCAG) (Lane, 1991) and 534R (ATTACC
GCGGCTGCTGG) (Muyzer et al., 1993), which
amplify a DNA fragment of ~ 500 bp of the 16S rRNA
gene (variable V1–V3 region). PCR amplification was
performed using 1 × Platinum High fidelity buffer,
400 pM dNTP, 1.5 mM MgSO4, 2mU Platinum Taq
DNA Polymerase High Fidelity, 5 μM illumina
barcoded V1–V3 adaptor mix (see Supplementary
Data 1), and 10 ng template DNA. PCR conditions
were 95 °C for 2min, 30 cycles of 95 °C for 20 s, 56 °C
for 30 s, 72 °C for 60 s, and a final step of elongation
at 72 °C for 5min. PCR products were purified using
Agencourt AmpureXP (Beckman Coulter, Brea, CA,
USA) with a ratio of 0.8 bead solution/PCR solution.
Barcoded amplicons were pooled and paired-end
sequenced on the Illumina MiSeq platform (v3
chemistry, 2 × 300 bp). The paired-end reads were
trimmed using trimmomatic (v. 0.32) (Bolger et al.,

2014) and then merged using FLASH (v. 1.2.11)
(Magoč and Salzberg, 2011). The reads were
screened for potential PhiX contamination using
USEARCH (v. 7.0.1090) (Edgar, 2010). The reads
were clustered into operational taxonomic units
(OTUs, sequence identity ⩾97%) using USEARCH
and subsequently classified using the RDP classifier
(Wang et al., 2007) with the MiDAS database (v. 1.20)
(McIlroy et al., 2015). Further processing was carried
out in the R environment (v. 3.1.2) using the ampvis
package (Albertsen et al., 2015) (v. 1.24.0), which
wraps a number of packages including the phyloseq
package (v. 1.8.2) (McMurdie and Holmes, 2013),
ggplot2 (v. 1.0.1), reshape2 (v. 1.4.1) (Wickham,
2007), dplyr (v. 0.4.2), vegan (v. 2.3-0), knitr
(v. 1.10.5), Biostrings (v. 2.36.1), data.table
(v. 1.9.4), DESeq2 (v. 1.8.1) (Love et al., 2014),
ggdendro (v. 0.1–15) and stringr (v. 1.0.0). The
samples were subsampled to an even depth of
10 000 reads per sample, and the fraction of reads
classified as Hyd24-12 was obtained. The survey
data are available at the SRA with the accession IDs
ERS861217-ERS861224.

In silico analysis of Hyd24-12 source locations
The Genbank IDs of the sequences classified as
Hyd24-12 in SILVA (v. 121, 1982 sequences in total)
(Quast et al., 2013) were used to download the
corresponding Genbank files. The fields ‘isolation
source’ and ‘PUBMED’ were extracted to classify the
sequences as originating from either engineered or
natural systems.

Metagenome sequencing, assembly and binning
Illumina TruSeq DNA PCR free libraries were
prepared for DNA extracts from three of the
mesophilic digesters (Supplementary Table S1)
according to the manufacturer’s protocol and
paired-end sequenced on the Illumina HiSeq 2000
platform (2× 150 bp) and Illumina MiSeq platform
(v3 chemistry, 2 × 300 bp). The metagenomic assem-
bly and binning process was carried out as described
by Albertsen et al. (2013) and detailed at ‘madsal-
bertsen.github.io/mmgenome/’. Unmerged reads
were quality-trimmed and filtered using default
settings in CLC Genomics Workbench (v. 7.5.1;
CLC Bio, Aarhus, Denmark). The metagenomic reads
were assembled separately for each plant using
default settings in CLC Genomics Workbench. Reads
were mapped to the assemblies using default settings
in CLC Genomics Workbench. The assemblies and
mappings were exported as .fasta and .sam files,
respectively. The exported files and the mmgenome
workflow script ‘data.generation.2.1.0.sh’ were used
to generate the files necessary for the binning
process. 16S rRNA gene sequences were extracted
from the assemblies using ‘rRNA.sh’ and classified
using the SINA Alignment service (SILVA v 121)
(Pruesse et al., 2012); essential genes were called
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using Prodigal (Hyatt et al., 2010). Binning was
carried out using differential coverage binning
in the R environment (v. 3.1.2, R Core Team, 2016)
using the R package ‘mmgenome’ (github.com/
MadsAlbertsen/mmgenome v. 0.4.1) (Albertsen et al.,
2013). The genome bins were checked for complete-
ness, essential single copy genes and coverage
distribution using CheckM (v. 0.9.7) (Parks et al.,
2015) and the metrics in the mmgenome package.
Average nucleotide identity between the genome
bins was calculated using JSpecies (Richter and
Rosselló-Móra, 2009), and CRISPR arrays were
identified with CRT (v. 1.1) (Bland et al., 2007).
The genome sequence data have been submitted
to DDBJ/EMBL/GenBank databases under accession
numbers LKHB00000000, LKHC00000000 and
LKHD00000000.

Genome sequence-based phylogenetic analysis
The genomes were placed within the reference
genome tree of CheckM (Parks et al., 2015)
(v. 0.9.7) and subsequently visualized in ARB
(Ludwig et al., 2004).

Phylogeny of the 16S rRNA gene and FISH probe design
Phylogenetic analysis and FISH probe design
were performed with the ARB software package
(Ludwig et al., 2004). Potential probes were assessed
in silico with the mathFISH software (Yilmaz et al.,
2011) for hybridization efficiencies of target and
potentially weak, non-target matches (Yilmaz et al.,
2011). Unlabelled helper probes (Fuchs et al., 2000)
were designed for calculated inaccessible regions.
Unlabelled competitor probes were designed for
single-base mismatched non-target sequences
(Manz et al., 1992). The Ribosomal Database Project
(RDP) PROBE MATCH function (Cole et al., 2009)
was used to identify non-target sequences with
indels (McIlroy et al., 2011). Probe validation and
optimization were based on generated formamide
dissociation curves (Daims et al., 2005), where
average relative fluorescent intensities, of at least
50 cells calculated with ImageJ software (National
Institutes of Health, New York, NY, USA), were
measured for varied hybridization buffer formamide
concentrations in increments of 5% (v/v) over a
range of 5–50% (v/v) (data not shown). Where
available, weak base mismatch non-target axenic
cultures were used for probe optimization, otherwise
full-scale anaerobic digester sludge was used
(Table 1).

FISH
FISH was performed essentially as described by
Daims et al. (2005). Probes were applied, with
recommended competitors and helpers, at the
stringency conditions given in Table 1 or their
original publications. The NON-EUB nonsense
probe was used as a negative hybridization control
(Wallner et al., 1993). Oligonucleotide probes were T
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labelled on both the 3′ and 5′ ends with either
5(6)-carboxyfluorescein-N-hydroxysuccinimide ester
(FLUOS) or with the sulphoindocyanine dyes
(Cy3 and Cy5) (DOPE-FISH) (Stoecker et al., 2010).
Microscopic analysis was performed with an
Axioskop epifluorescence microscope (Carl Zeiss,
Oberkochen, Germany).

Genome analysis
Genome annotation was performed in the
‘MicroScope’ annotation pipeline (Vallenet et al.,
2009, 2013). Automatic annotations were manually
curated for all genes described using the integrated
bioinformatics tools and the proposed annotation
rules, which include an amino acid identity of at
least 40% to classify homologues and an identity of
at least 25% with the support of conserved domains
to determine putative homologues (Vallenet et al.,
2009, 2013). The set of bioinformatics tools includes
BlastP (Altschul et al., 1990) homology searches
against the full non-redundant protein sequence
databank UniProt (Uniprot Consortium, 2014) and
against the well-annotated model organisms Escher-
ichia coli K-12 and Bacillus subtilis 168 (Vallenet
et al., 2013), enzymatic classifications based on COG
(Tatusov et al., 2003), InterPro (Mitchell et al., 2015),
FIGFam (Meyer et al., 2009) and PRIAM (Claudel-
Renard et al., 2003) profiles, and prediction
of protein localization using the TMHMM
(Sonnhammer et al., 1998), SignalP (Bendtsen
et al., 2004) and PSORTb (Gardy et al., 2005) tools.
Synteny maps (i.e. conservation of local gene order)
were used to validate the annotation of genes located
within conserved operons (Vallenet et al., 2009).
Metabolic pathways were subsequently identified

with the assistance of the integrated MicroCyc
(Vallenet et al., 2009) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) databases (Kanehisa
et al., 2014).

Results and discussion
Survey of 16S rRNA genes of Hyd24-12 in anaerobic
digesters
The survey of 22 full-scale mesophilic and 7
thermophilic anaerobic digesters from 17 Danish
wastewater treatment plants over 3 years revealed
that members of the Hyd24-12 lineage were stably
present in most mesophilic but no thermophilic
anaerobic digesters (Figure 1). In most mesophilic
digesters, they were among the five most abundant
bacterial OTUs and constituted around 1–3% and, in
some cases, up to 8.2% of all sequenced bacterial
reads (see Supplementary Figure S1). No 16S rRNA
gene sequences from Hyd24-12 were detected in the
incoming surplus sludge from the activated sludge
treatment plants, which demonstrates that these
bacteria were actively growing in the digesters. The
other abundant bacterial phyla in the mesophilic
digesters were Actinobacteria, Firmicutes, Chloro-
flexi, Synergistetes and Bacteroidetes (Figure 1). The
best (LCA) classification is shown in Figure 1, but the
lack of closely related organisms in the databases
and a curated taxonomy hampers taxonomic classi-
fication for a number of the most abundant OTUs. In
general, the abundance stability of these top genera
was high, and that may be due to relatively similar
growth conditions for all digesters: feed was primary
sludge and surplus activated sludge, temperature in
the interval 34–37 °C, pH 7.1–8.2 and total ammo-
nium 0.57–1.1 g N/l (see Supplementary Table S1).

Figure 1 Heatmap of the 25 most abundant bacterial OTUs in mesophilic digesters at wastewater treatment plants along with their
abundance in thermophilic digesters at 17 wastewater treatment plants. The OTU classified as belonging to the Hyd24-12 candidate
phylum (purple) was detected exclusively in mesophilic reactors. Classification levels presented are phylum, class, order, family and
genus and are separated by a semicolon. The field is empty where no classification at a given level could be provided. The abundance
profiles show mean abundances for plants with more reactors (1–4 reactors at each WWTP) and 2–97 samples for each plant over 4 years
(Supplementary Table S1). The OTUs are sorted on the basis of the mean abundance across the mesophilic samples.
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In silico analysis of 16S rRNA gene sequences
within Hyd24-12 of SILVA (Quast et al., 2013) from
other surveys confirmed that members of Hyd24-12
are widespread in anaerobic environments. The
sequences originate from 48 separate studies, with
engineered systems such as anaerobic bioreactors
accounting for 10 studies, and natural systems such
as marine sediments, microbial mats in hydrogen,
methane-rich waters and mud volcanoes accounting
for 38 studies (see Supplementary References).
Furthermore, the 48 studies show that members of
Hyd24-12 are globally dispersed (Supplementary
Figure S3 and Supplementary Table S2) and are
potentially important in many microbial ecosystems
besides ADs (Mills et al., 2005; Harris et al., 2012).
Some of the surveys of full-scale anaerobic digesters
detected some Hyd24-12 sequences (e.g., De Vrieze
et al., 2015), while others did not (Sundberg et al.,
2013). This was likely because they used the RDP
database, where Hyd24-12 sequences are classified
as ‘unclassified bacteria’.

Recovering genomic information from Hyd24-12
Three full-scale anaerobic digesters were sampled
for metagenomic analyses. To ensure differential
abundance of microorganisms needed to bin gen-
omes based on coverage profiles (Albertsen et al.,
2013), biomass samples were either taken from the
sludge and foam layer of reactors or from the same
reactor weeks apart. More than 50 gigabases of
metagenomic data were generated, and population
genomes were recovered by differential coverage
binning (Albertsen et al., 2013) from each of the
three plants (Table 2). The three population genomes
were ~ 2.2Mbp with a GC content of ~ 64%, and the
completeness of the genomes were estimated by
CheckM (Parks et al., 2015) to be between 86% and
91% with less than 2.2% estimated contamination
(Table 2). However, the level of completeness
may be underestimated, given that members of the
Hyd24-12 are distantly related to other characterized

organisms, and the genes used in the marker sets
might be too divergent or simply not present (Rinke
et al., 2013; Brown et al., 2015; Sekiguchi et al.,
2015). The three genomes each contained a single
rRNA operon and shared identical 16S rRNA gene
sequences, which suggests that they belong to the
same species (Yarza et al., 2014). The JSpecies
program determined that these three genomes shared
between 99.8% and 99.9% average nucleotide
identity (ANIb), supporting the close taxonomic
relationship observed from the 16S rRNA gene
analysis (Kim et al., 2014). In order to further
evaluate the similarity between the strains, the raw
metagenome reads from each digester were mapped
to the assembled Hyd24-12 genomes obtained from
the other two digesters. Complete coverage of all
genomes with the metagenome reads from the other
digester revealed that the Hyd24-12 genomes were
almost identical. This also indicates, along with the
high ANIb, that the genomes are more complete than
estimated in Table 2 by CheckM. Indeed, the data
suggested that the three strains might actually be
variants of the same strain with single-nucleotide
polymorphisms only. This is very interesting as the
digesters were from different parts of Denmark
without any exchange of sludge or feed. This could
indicate that they are highly adapted to the specific
AD environment in this type of mesophilic digesters.

Hyd24-12 phylogeny, FISH probe design and
morphology
The 16S rRNA genes obtained have a sequence
identity of 86% with the original clone Hyd24-12
sequence (AJ535232) (Knittel et al., 2003) and
classify to the Hyd24-12-lineage (Figure 2a). Addi-
tional phylogenetic analyses, based on the genome
sequence, placed the Hyd24-12 genomes within the
Fibrobacteres-Chlorobi-Bacteroidetes superphylum
(Figure 3). The Hyd24-12 genomes are distantly
related to all currently available genomes, support-
ing its status as a novel phylum.

Table 2 Genome statistics for the three Hyd24-12 genomes

Genome bin identifier Dam_1 Ran_1 Vib_1

Source digester Damhusaaen Randers Viborg
Closest env. 16S clone 6E6_cons (EF688250) 6E6_cons (EF688250) 6E6_cons (EF688250)
No. of contigs 247 168 224
Total length 2 182 231 2 013 453 2 188 467
Longest contig 90 522 171 008 113 480
N50 (contigs) 27 448 38 589 27 030
GC (%) 63.8 64.2 63.7
Genome completeness (%)a 86.1 90.7 90.7
Genome contamination (%)a 2.17 1.09 2.17
No. of tRNA genes 44 41 48
rRNA genes found in genome 5S, 16S, 23S 5S, 16S, 23S 5S, 16S
No. of CDS 2336 1995 2349
No. of CRISPR array 2 (33 repeats in total) 0 0
Coding density (%) 91.8 93.4 92.8

aEstimates provided by CheckM.
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Several FISH probes were designed to target
different clades within the phylum. In the MiDAS
taxonomy (v. 1.21) (McIlroy et al., 2015), a version of
the SILVA taxonomy (Quast et al., 2013) that is
curated for activated sludge-related organisms, the
Hyd24-12 lineage is delineated into four clades,
designated B-1AC, zEL51, Hyd-32 and B9.18. The
Hyd24-12_468 and Hyd24-12_659 probes were
designed to cover the B-1AC clade, which includes
the Hyd24-12 genome sequences obtained in this
study (Figure 2). The former probe covers almost all
the B-1AC sequences, with the closest non-target
sequence match having three internal base mis-
matches. The Hyd24-12_659 probe is less specific,
having one perfectly matched non-target sequence
and several with mismatches not covered by the

competitor probes. Overlap in the coverage of these
two probes, labelled with different fluorochromes,
allows greater confidence in their specificity. A
suitable probe to cover the entire Hyd24-12 lineage
was not found. However, the Hyd24-12_731 and
Hyd24-12_842 probes provide good coverage of the
other sequences in the phylum (see Table 1). As
sequences covered by these additional probes were
not detected in the full-scale anaerobic digesters
studied here, optimization and assessment of these
probes were not pursued.

When applied to several full-scale anaerobic
digester sludge samples, the Hyd24-12_468 and
Hyd24-12_659 probes hybridized to small rods,
approx. 2 × 0.4 μm in size, dispersed through the
flocs (see Figure 2b). Good overlap was observed for

Hyd24-12 genomes from this study
Anaerobic wastewater clone 1G9_cons, EF688157
Anaerobic wastewater clone 4E1_cons, EF688196

Anaerobic digestester clone NBGE28B, GU389686
Anaerobic swine waste lagoon, B−1AC, AY953152

Anaerobic wastewater clone 29e09, EF515519
Hypersaline mat clone SBZP_2498, JN536752

Hypersaline mat clone SBZP_6338, JN539472
Hypersaline mat clone SBZI_3015, JN523791
Hypersaline mat clone SBZP_1442, JN535787

Hypersaline mat clone SBYZ_525, JN492578
Hypersaline mat clone SBZI_3772, JN521842

Hypersaline mat clone SBZO_1994, JN530567
Hypersaline mat clone SBYZ_2237, JN496839

Mud volcano clone AMSMV−30−B6, HQ588614
Iron oxidising mat sediment clone 113B503, EF687508
Methane seep clone BC_B1_11e, EU622292

Mud volcano clone KZNMV−5−B49, FJ712470
Methane seep sediment clone livecontrolB2, FJ264754
Tube worm clone v1t44, FM165274
Hydrogen ridge sediment clone Hyd24−12, AJ535232
Sediment clone Zplanct34, EF602495
Sulfidic cave stream biofilm clone zEL51, DQ415843

Bottlenose dolphin clone DolOr_J063, JQ209362
Bottlenose dolphin clone DolOr_C385, JQ216446
Leachate sediment clone De100, HQ184025
Marine sediment clone A34, GQ249498
Marine sunken wood clone SWB304, JN107026
Harbor sediment clone VHS−B5−74, DQ395066

Brewery wastewater clone NBBME0409_45, JQ072335
Hydrogen ridge sediment clone Hyd24−32, AJ535231
Hydrothermal vent clone 257−34, FN553950
Marine sediments clone MatB12bac40, GU302435

Hypersaline mat clone SBZF_8355, JN515238
Hypersaline mat clone SBZA_2594, JN501544
Hypersaline mat clone Kir21gry B9.b18, HM480226
Hypersaline mat clone SBZH_2894, JN518677
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these probes, supporting their specificity. Of the two
probes, a much higher signal was observed for the
Hyd24-12_659 probe. There was no observed overlap
between the signal of two Hyd24-12 probes and the
universal bacterial EUBmix probe set (see Figure 2b),
which is supported by the absence of the target site
for the probes of the latter in the Hyd24-12
sequences. Quantitative FISH was very difficult to
carry out in the digesters due to high levels of
background fluorescence. Instead, abundance esti-
mates were carried out for the domains Bacteria,
Archaea, Eukarya, and the Hyd24-12 lineage,
based on read mapping from the PCR free meta-
genomes to the 16S rRNA genes of the MiDAS
database. It showed that Archaea constituted 4–9%
of the reads in sludge samples and 7–13% in
foam samples. Reads from the Hyd24-12 lineage
constituted 0.4–3.5% in the different samples
(Supplementary Table S3).

Morphology and motility
The rod shape morphology of B-1AC clade organ-
isms observed by FISH is supported by mreBCD and
mrdAB operons in the Hyd24-12 genomes (see
Supplementary Data 2). These operons encode
proteins involved in the formation of membrane-
bound actin filaments, which are essential for the
biogenesis of rod-shape stabilizing peptidoglycans

along the lateral cell wall of rod-shaped bacteria
(Kruse et al., 2003, 2005; Osborn and Rothfield,
2007; Bendezú and de Boer, 2008).

The cell envelope characteristics of genome-
sequenced bacteria can be determined based on
PFAM protein families that are substantially
enriched or depleted in archetypical monoderm
lineages relative to archetypical diderm lineages
(Albertsen et al., 2013). A search for such protein
families in the Hyd24-12 genomes revealed an
archetypical diderm cell envelope with lipopolysac-
charides (see Supplementary Figure S2).

None of the Hyd24-12 genomes encode any
flagella-related proteins, suggesting limited motility.
However, genes associated with type IV pili were
identified using the PilFind algorithm (see
Supplementary Data 2) (Imam et al., 2011). These
pili enable the bacteria to generate surface-associated
twitching motility. This allows them to move
effectively through environments that contain
shear-thinning viscoelastic fluids, such as the extra-
cellular polymeric substances of biofilms (Conrad
et al., 2011; Jin et al., 2011). In addition to motility,
type IV pili play a role in the attachment to living
and non-living surfaces, including those of other
bacteria (Giltner et al., 2012).

No genes associated with spore formation were
detected in the Hyd24-12 genomes. This suggests
that the Hyd24-12 genomes investigated represent
non-sporulating bacteria.

Energy metabolism
The three genomes do not contain any genes for
respiration with oxygen, nitrate/nitrite or Fe(III) and
seem primarily to have a fermentative metabolism.
However, the genomes indicate that the organisms
may be able to use elemental sulphur as an electron
acceptor, see below. The Hyd24-12 genomes encode
a complete glycolysis pathway, along with the non-
oxidative branch of the pentose phosphate pathway
(Figure 4 and see Supplementary Data 2). This
allows Hyd24-12 to potentially catabolize a wide
range of hexoses and pentoses to pyruvate, thereby
providing the cell with energy in the form of ATP
and reducing equivalents in the form of NADH
(Stincone et al., 2014). The sugars are probably
obtained from the environment through a major
facilitator superfamily transporter at the expense of
the proton motive force (Madej, 2014; Wisedchaisri
et al., 2014). The transporter does not share
similarity (430%) with any experimentally vali-
dated transporters, and it is therefore impossible to
infer a specific substrate preference. It is known that
primary sludge and activated sludge fed into the
digesters contain many different polysaccharides
(Raunkjaer et al., 1994; Frølund et al., 1996). No
genes encoding for extracellular glycosylases were
identified, which might indicate that Hyd24-12 is
reliant on the hydrolytic action of other organisms
present within the anaerobic digesters.
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Hyd24-12 encodes for the complete pathway for
glycogen biosynthesis and catabolism (Figure 4 and
see Supplementary Data 2) (Preiss et al., 1983;
Wilson et al., 2010). Hence, glycogen may serve as
a carbon and energy storage which can be utilized to
mitigate fluctuations in substrate availability. The
Hyd24-12 genomes did not encode for pathways for
other storage compounds such as trehalose or
polyhydroxyalkanoates.

There are limited catabolic options for the pyr-
uvate formed, for example, by glycolysis. The tri-
carboxylic acid cycle of Hyd24-12 is incomplete (8 of
10 key enzymes are missing) and probably non-
functional. However, pyruvate can be converted into
acetyl-CoA by a pyruvate ferredoxin oxidoreductase,
providing additional reducing equivalents in the
form of reduced ferredoxin (Figure 4 and see
Supplementary Data 2) (Menon and Ragsdale,
1997). Acetyl-CoA can then be converted into acetate
by the action of phosphate acetyltransferase and
acetate kinase, thus providing the bacterium with
additional ATP (Latimer and Ferry, 1993; Mai and
Adams, 1996).

All three Hyd24-12 genomes also encode for two
aldehyde ferredoxin oxidoreductases (Figure 4 and
see Supplementary Data 2). These may be used to
oxidize formaldehyde and acetaldehyde to formate
and acetate, respectively, providing the cell with

energy in the form of additional reduced ferredoxin
(Mukund and Adams, 1991). However, the enzyme
may also be used in the reverse reaction to regenerate
oxidized ferredoxin. The presence of a membrane-
embedded, energy-conserving hydrogenase allows
the cell to establish a proton motive force, based on
the energy-rich reduced ferredoxin, which reduces
H+ to H2 in the process (Strittmatter et al., 2009). The
energy stored in the proton motive force may then be
harvested through an ATP synthase to yield ATP.

High concentrations of H2 inhibit glycolysis and
acidogenesis due to thermodynamic considerations
(Huang et al., 2015). Hyd24-12 therefore needs a way
to remove excess H2. This can be achieved by
syntrophic association with other microorganisms,
or internally by the action of a cytosolic hydro-
genase, which couples the oxidation of H2 with the
reduction of NAD+ (Figure 4 and see Supplementary
Data 2). Alternatively, Hyd24-12 may employ a
sulfhydrogenase to couple the oxidation of H2 to H+

with the reduction of elemental sulphur (S0) or
polysulphide to hydrogen sulphide (H2S) as is seen
for Pyrococcus furiosus (Mukund and Adams, 1991).
The genomes do not indicate a potential for sulphate
reduction. Elemental sulphur is continuously pro-
duced in the digesters because activated sludge fed
into the digesters contains oxidized iron (Fe(III)),
which in the presence of sulphide produces S0 and

Figure 4 Metabolic model of Hyd24-12 species in mesophilic anaerobic digesters, based on the annotated genome sequences. Selected
metabolic pathways important for the bacteria in the anaerobic digestion process are highlighted. Numbers correspond to annotated genes
in Supplementary Data 1.
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black iron sulphide (FeS) (Rasmussen and Nielsen,
1996; Nielsen et al., 2005; Omri et al., 2011).
Sulphide is a normal compound in digesters and is
produced from amino acids and reduction of
sulphate. Notably, other studies have also detected
members of the Hyd24-12 phylum in sulphur-rich
environments such as hydrothermal vents, sulphur-rich
springs and sediments (Elshahed et al., 2003; Schauer
et al., 2011; Pjevac et al., 2014). Thus, Hyd24-12 related
organisms potentially play a role in sulphur trans-
formations in digesters and other environments.
Such a role requires further investigation.

The Hyd24-12 genomes do not contain the genes
required for fatty acid β-oxidation or for the
catabolism of amino acids. Sugars are therefore
considered the primary energy source of the
Hyd24-12 in anaerobic digesters.

Whereas Hyd24-12 is able to take up carbon in the
form of amino acids, carbohydrates, etc., it is unable to
carry out fixation of CO2 as such genes are missing.

Amino acid and nitrogen metabolism
Based on the genome annotations, Hyd24-12 is only
predicted to be able to synthesize few amino acids
(glycine, serine, cysteine, threonine, asparagine,
aspartate, glutamate and glutamine). Accordingly,
Hyd24-12 might rely on amino acids present within
the environment. As most amino acids are found as
proteins, which cannot be taken up by the bacterium,
Hyd24-12 needs a way to degrade these polymers,
and this is achieved by the action of multiple
extracellular proteases encoded in the genome,
which are likely secreted in a Sec- or Tat-dependent
mechanism (Natale et al., 2008) (see Supplementary
Data 2). The cells may subsequently import the amino
acids using ABC-transporters encoded in the genome.
Owing to the lack of experimentally validated homo-
logues from closely related species, it is not possible to
predict the substrate specificity of these transporters.
A reduced capacity of microorganisms for synthesizing
amino acids is known from strict symbionts and,
recently, also from a number of candidate phyla with
very small genomes (o1Mbp) (Brown et al., 2015).
However, the relatively large size of the Hyd24-12
genomes (~2.2Mbp) and their dispersed growth in the
anaerobic sludge suggest that they are not strict
symbionts.

Hyd24-12 does not have the necessary pathways
for fixation of nitrogen. The nitrogen metabolism of
Hyd24-12 is generally limited. Amino acids may also
represent a source of nitrogen. However, nitrogen
can also be obtained from ammonium assimilation
via the glutamine synthetase/glutamate synthase
pathways (Bravo and Mora, 1988).

Oxidative stress protection
The three Hyd24-12 genomes each contains a gene
cluster encoding for a superoxide reductase, nitric
oxide reductase and ferroxidase. These genes are

probably involved in resistance against oxidative
stress, and may allow the bacteria to survive in the
presence of oxygen. However, 16S rRNA gene
sequences from Hyd24-12 have only been observed
in oxygen-depleted environments.

Ecological significance and concluding remarks
This study applied metagenomic sequencing to
obtain genomes from the candidate phylum Hyd24-
12 and provides the first morphological and physio-
logical information for the lineage. Members of the
phylum were shown to be very abundant and stably
present in mesophilic anaerobic digesters, occasion-
ally accounting for the most abundant OTU in the
samples, but absent in thermophilic reactors. This
indicates that they are likely to play a substantial role
in the ecology of mesophilic AD systems at waste-
water treatment plants fed with primary sludge and
surplus activated sludge. Metabolic reconstruction
based on the genomic information showed that
members of Hyd24-12 are likely to be fermenters
relying on simple sugars. In addition, they may also
use elemental sulphur as an electron acceptor, thus
forming part of the microbial cycling of sulphur in
anaerobic systems and partly responsible for produc-
tion of hydrogen sulphide. Sulphide is unwanted in
the biogas due to toxicity and corrosion (Syed et al.,
2006), but will also provide more elemental sulphur
by reacting with incoming Fe(III). In that case,
members of Hyd24-12 may compete with the
methanogens for organics. An in silico investigation
of environmental 16S rRNA gene surveys suggests
that members of the phylum are present in anaerobic
environments, often associated with sulphurous
compounds and methane production, such as sedi-
ment mats and anaerobic bioreactors. The fact that
the genomes are auxotrophic for several amino acids
and lacking putative secreted glycoside hydrolases
also indicates a strict reliance on other organisms
for nutrients. The genomes generated in this
study provide the foundation for future detailed
analyses of members of the phylum, such as
metatranscriptomics and metaproteomics. The
design of FISH probes for the phylum also revealed
their morphology and spatial arrangement in anae-
robic digesters and will also facilitate future in situ
investigations of the phylum in digesters and other
environments.

Phylogenetic and genomic analyses of the three
Hyd24-12 genomes classified them as a single
species within a novel phylum located within the
Fibrobacteres-Chlorobi-Bacteroidetes superphylum.

We propose the following taxonomic names for the
novel genus and species of Hyd24-12:

� ‘Candidatus Fermentibacter’ gen. nov.

� ‘Candidatus Fermentibacter daniensis’ gen. et
sp. nov.
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Based on this, we propose the following names for
the phylum, class, order, and family:

� ‘Candidatus Fermentibacteria’ phyl. nov.

� ‘Candidatus Fermentibacteria’ classis nov.

� ‘Candidatus Fermentibacterales’ ord. nov.

� ‘Candidatus Fermentibacteraceae’ fam. nov.

Etymology. Fermentibacter (Fer.men.ti.bac'ter. M.L. n.
ferment -um to ferment, Gr. dim. n. bakterion a small
rod, M.L. neut. n. Fermentibacter a small fermenting
rod-shaped bacterium). Fermentibacter daniensis (da.ni.
ensis. M.L. fem. adj. daniensis, pertaining to Dania, the
Medieval Latin name for the country of Denmark, where
the species was first discovered).
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