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Cooperative Localization for Mobile Networks:

A Distributed Belief Propagation – Mean Field

Message Passing Algorithm
Burak Çakmak, Daniel N. Urup, Florian Meyer, Member, IEEE, Troels Pedersen, Member, IEEE,

Bernard H. Fleury, Senior Member, IEEE, and Franz Hlawatsch, Fellow, IEEE

Abstract—We propose a hybrid message passing method

for distributed cooperative localization and tracking of mobile

agents. Belief propagation and mean field message passing are

employed for, respectively, the motion-related and measurement-

related part of the factor graph. Using a Gaussian belief approx-

imation, only three real values per message passing iteration

have to be broadcast to neighboring agents. Despite these very

low communication requirements, the estimation accuracy can

be comparable to that of particle-based belief propagation.

Index Terms—Belief propagation, mean field approximation,

cooperative localization, distributed estimation, information pro-

jection, Kullback-Leibler-divergence, mobile agent network.

I. INTRODUCTION

Cooperative localization is a powerful approach for mobile

networks [1]–[5]. An attractive methodology for cooperative

localization is sequential Bayesian estimation via message

passing algorithms [6]. In particular, distributed belief prop-

agation (BP) message passing algorithms were proposed in

[2], [3], [7]–[11] to localize static or mobile agents. Feasible

implementations involve certain approximations and use, e.g.,

particle methods [2], [3], [8]–[10] or the sigma point technique

[11]. Each message transmitted between neighboring agents

is a set of hundreds or more particles in the former case

[2], [3], [8] and a mean and a covariance matrix, i.e., five

real numbers in 2-D localization, in the latter case. For static

agents, also message passing algorithms based on expectation

propagation [12], [13] or the mean field (MF) approximation

[14] were proposed. Similarly to sigma point BP [11], they

use a Gaussian approximation and the transmitted messages

consist of a mean and a covariance matrix.

In this letter, building on the theoretical framework in

[15], we present a distributed hybrid BP–MF message passing

method for cooperative localization and tracking of mobile

agents. We employ BP and MF [15] for, respectively, the

motion-related and measurement-related part of the underlying

factor graph, and we use a Gaussian belief approximation.

Each BP–MF iteration includes an information projection
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[16] that is efficiently implemented by means of a Newton

conjugate-gradient technique [17]. Our method can achieve

an accuracy comparable to that of BP-based methods with the

same communication cost as the MF method [14], i.e., three

real numbers per transmitted message in 2-D localization.

This letter is organized as follows. The system model is

described in Section II. The hybrid BP–MF scheme is devel-

oped in Section III, and the Gaussian belief approximation in

Section IV. Section V presents simulation results.

II. SYSTEM MODEL

The mobile network at discrete time n ∈ {1, ..., N} is

described by a set of network nodes Vn and a set of edges En

representing the communication/measurement links between

the nodes. The set Vn is partitioned into a set Vn
M of mobile

agents at unknown positions and a set Vn
A of static anchors at

known positions. An edge (k, l) ∈ En indicates the fact that

agent or anchor l transmits data to agent k and, concurrently,

agent k acquires a noisy measurement of its distance to agent

or anchor l. The edge set En is partitioned into a set En
M

of edges between certain agents, i.e., (k, l) ∈ En
M implies

k, l ∈ Vn
M, and a set En

MA of edges between certain agents

and anchors, i.e., (k, l) ∈ En
MA implies k ∈ Vn

M and l ∈ Vn
A.

Information exchange between agents is bidirectional, i.e.,

(k, l) ∈ En
M implies (l, k) ∈ En

M. We consider a distributed

scenario where each agent knows only its own measurements.

Since the anchors have exact knowledge of their own position,

they do not need to acquire measurements and receive position

information from neighboring nodes. Accordingly, anchors

transmit position information to agents but not vice versa, i.e.,

(k, l)∈En
MA implies (l, k) /∈ En

MA.

Let the vector xn
k denote the state of agent k ∈ Vn

M at time

n∈ {1, ..., N}. Moreover, let xn ,
[

xn
k

]

k∈Vn

M

and x1:n ,
[

xi
]n

i=1
. While our approach applies to any linear-Gaussian

motion model, we here consider specifically those two motion

models (MMs) that are most frequently used in practice. In

MM1, xn
k = pn

k ∈ R
2 is the 2-D position of agent k at time

n. If agent k belongs to the network at times n and n−1, i.e.

k ∈ Vn
M ∩ Vn−1

M , then pn
k is assumed to evolve according to

the Gaussian random walk model [18]

pn
k = pn−1

k +
√
Tvn

k .

Here, T is the duration of one time step and vn
k ∈R

2 is zero-

mean Gaussian driving noise with component variance σ2
v .
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Note that vn
k can be interpreted as a random velocity. In MM2,

xn
k =

[

(pn
k )

T (vn
k )

T
]T

, where vn
k ∈ R

2 is the 2-D velocity of

agent k at time n. For k ∈ Vn
M ∩ Vn−1

M , xn
k is assumed to

evolve according to the constant velocity model [18]

xn
k = Fxn−1

k +Gan
k . (1)

Here, an
k ∈ R

2 is zero-mean Gaussian driving noise (a random

acceleration) with component variance σ2
a. Moreover, F =

[

1 T
0 1

]

⊗ I2 and G =
[

T 2/2
T

]

⊗ I2, where ⊗ denotes the

Kronecker product and Im is the m×m identity matrix. Note

that in both MM1 and MM2, the state-transition probability

density function (pdf) p(xn
k |xn−1

k ) is Gaussian. For agents

that are part of the network at time n but not at time n − 1,

i.e., k ∈ Vn
M \ Vn−1

M , we set p(xn
k |xn−1

k ) = p(xn
k ), where

the prior pdf p(xn
k ) is Gaussian. Under common statistical

independence assumptions on vn
k or an

k [3], the joint prior

pdf of all agent states up to time n is given by

p(x1:n) =

n
∏

i=1

∏

k∈Vi

M

p
(

xi
k|xi−1

k

)

. (2)

If (k, l) ∈ En, agent k ∈ Vn
M acquires at time n a noisy

measurement of its distance to agent or anchor l,

dnk,l = ‖pn
k−pn

l ‖+ wn
k,l . (3)

The measurement error wn
k,l is assumed zero-mean Gaussian

with variance σ2
w. Note that the local likelihood function

p(dnk,l|pn
k ,p

n
l ) is nonlinear in pn

k and pn
l . Let d1:n

,
[

di
]n

i=1

with dn
,
[

dnk,l
]

(k,l)∈En
. Assuming that all wn

k,l are indepen-

dent, the global likelihood function involving all measurements

and all states up to time n factors according to

p(d1:n|x1:n) =

n
∏

i=1

∏

(k,l)∈Ei

M

p
(

dik,l|pi
k,p

i
l

)

∏

(κ,λ)∈Ei

MA

p
(

diκ,λ|pi
κ, p̃

i
λ

)

,

(4)

where p̃n
λ denotes the (known) position of anchor λ∈Vn

A.

III. THE PROPOSED MESSAGE PASSING SCHEME

The task of agent k ∈ Vn
M is to estimate its state xn

k from the

total measurement vector d1:n, for n ∈ {1, . . . , N}. We will

consider the minimum mean-square error (MMSE) estimator

x̂
n
k ,

∫

xn
k p(x

n
k |d1:n)dxn

k , k ∈ Vn
M . (5)

Calculating the posterior pdf p(xn
k |d1:n) involved in (5) by

direct marginalization of the joint posterior pdf p(x1:n|d1:n)
is infeasible because of the excessive dimension of integra-

tion and because d1:n is not locally available at the agents.

Next, we develop a distributed message passing scheme that

approximates p(xn
k |d1:n), k ∈ Vn

M, n ∈ {1, . . . , N}.

By Bayes’ rule, p(x1:n|d1:n) ∝ p(d1:n|x1:n)p(x1:n),
where p(x1:n) and p(d1:n|x1:n) factor as in (2) and (4),

respectively. This factorization underlies the proposed hybrid

BP–MF message passing scheme, which provides approximate

marginal posterior pdfs (“beliefs”) qk(x
n
k ) ≈ p(xn

k |d1:n) for

all k ∈Vn
M. Our scheme is an instance of the general hybrid

BP–MF message passing scheme presented in [15]. We use

BP for the motion-related factors p(xn
k |xn−1

k ) and MF for the

measurement-related factors p(dnk,l|pn
k ,p

n
l ), and we suppress

all messages sent backward in time (cf. [3]). We thus obtain

the following iterative scheme at time n: In message passing

iteration t ∈ {1, ..., t∗}, beliefs q
[t]
k (xn

k ) are calculated as

q
[t]
k (xn

k ) =
1

Z
mk→k(x

n
k )

∏

l∈Nn

k

m
[t]
l→k(p

n
k ) , k ∈ Vn

M , (6)

where Z is a normalization constant and Nn
k , {l |(k, l)∈En}

is the set of agents and anchors communicating with agent k
at time n (termed “neighbors”). The factors in (6) are obtained

as

mk→k(x
n
k ) =











∫

q
[t∗]
k (xn−1

k )p(xn
k |xn−1

k )dxn−1
k ,

k ∈ Vn
M ∩ Vn−1

M

p(xn
k ) , k ∈ Vn

M\Vn−1
M

(7)

and

m
[t]
l→k(p

n
k ) = exp

(
∫

q
[t−1]
l (xn

l ) ln p(d
n
k,l|pn

k ,p
n
l )dx

n
l

)

. (8)

(Note that pn
l = p̃n

l if l is an anchor.) This recursion is

initialized with q
[0]
k (xn

k ) = mk→k(x
n
k ).

In a distributed implementation, each agent k broadcasts its

belief q
[t−1]
k (xn

k ) to its neighbors l ∈ Nn
k and receives the

neighbor beliefs q
[t−1]
l (xn

l ), l ∈ Nn
k . These beliefs are then

used to calculate the messages m
[t]
l→k(p

n
k ), l ∈ Nn

k at agent k
as in (8). These messages, in turn, are needed to calculate the

updated belief q
[t]
k (xn

k ) at agent k according to (6). After t∗

iterations, the final belief q
[t∗]
k (xn

k ) is used for state estimation,

i.e. q
[t∗]
k (xn

k ) is substituted for p(xn
k |d1:n) in (5).

IV. GAUSSIAN BELIEF APPROXIMATION

Inspired by [14, Section IV], we introduce an approximation

of the message passing scheme (6)–(8) such that the beliefs

are constrained to a certain class of Gaussian pdfs. This leads

to a significant reduction of both interagent communication

and computational complexity relative to a particle-based

implementation. We first consider MM2. A more detailed

derivation is provided in [19].

A. Gaussian Belief Approximation for MM2

We constrain the beliefs to Gaussian pdfs by using the

information projection approach [16], i.e., substituting for

q
[t]
k (·) in (6)

q̃
[t]
k (·) , argmin

g∈G

D
[

g
∥

∥q
[t]
k

]

. (9)

Here, D
[

g‖q
]

,
∫

g(x) ln g(x)
q(x) dx is the Kullback-Leibler

divergence and G is the set of 4-D Gaussian pdfs g(x) =

N(x;µ,C) with covariance matrix of the form C =
[

cp c
c cv

]

⊗
I2. We will denote the mean and covariance matrix of

q̃
[t]
k (xn

k ) = N
(

xn
k ; (µ

n
k )

[t], (Cn
k )

[t]
)

defined in (9) as (µn
k )

[t] =
[

(µn
p,k)

[t]

(µn
v,k)

[t]

]

and (Cn
k )

[t] =

[

(cnp,k)
[t] (cnk )[t]

(cnk )[t] (cnv,k)
[t]

]

⊗ I2. Because

direct computation of the minimizer (9) is infeasible, we resort
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to an iterative method. To that end, we first derive an analytical

expression of the objective function D
[

g
∥

∥q
[t]
k

]

in (9), which

we abbreviate by F
[t]
k (θ) with θ , [µT cp cv c]T. Using the

factorization in (6), this function can be expressed as

F
[t]
k (θ) = D[g‖mk→k]−

∑

l∈Nn

k

G
[t]
k,l(µp, cp) + γ , (10)

where µp is the 2-D vector consisting of the first two entries

of µ, γ is a constant, and

G
[t]
k,l(µp, cp) ,

∫

N(pn
k ;µp, cpI2) lnm

[t]
l→k(p

n
k )dp

n
k . (11)

To derive an expression of D[g‖mk→k] in (10), we note

that for k ∈ Vn
M ∩ Vn−1

M , due to the Gaussian q̃
[t]
k (xn

k ) and

the linear-Gaussian model (1), the message in (7) (in which

q
[t∗]
k (xn−1

k ) is replaced by q̃
[t∗]
k (xn−1

k )) is also Gaussian, i.e.,

mk→k(x
n
k ) = N(xn

k ;η
n
k ,Σ

n
k ). By using (1) and standard

Gaussian integral identities [20], we obtain for k ∈ Vn
M∩Vn−1

M

ηn
k = F(µn−1

k )[t
∗] , Σ

n
k = F (Cn−1

k )[t
∗]FT+σ2

aGGT. (12)

For k ∈ Vn
M \ Vn−1

M , ηn
k and Σ

n
k equal, respectively, the

mean and covariance matrix of the Gaussian prior p(xn
k ) =

N(xn
k ;η

n
k ,Σ

n
k ). Accordingly, we obtain in either case [20]

D[g‖mk→k] =
1

2

[

tr
(

(Σn
k )

−1C
)

− ln det(C)

+ (µ−ηn
k )

T(Σn
k )

−1(µ−ηn
k )
]

+ γ′, (13)

where γ′ is a constant. Furthermore, one can express

G
[t]
k,l(µp, cp) in (11) via an expectation of −(dnk,l −

‖zn
k,l‖)2/σ2

w, where zn
k,l is a 2-D Gaussian random vector

with mean µp − (µn
p,l)

[t−1] and variance cp + (cnp,l)
[t−1]. For

l ∈ Vn
A, in particular, (µn

p,l)
[t−1] = p̃n

l and (cnp,l)
[t−1] = 0. By

using expressions of the first-order and second-order moments

of the Rician pdf [21], one obtains [19]

G
[t]
k,l(µp, cp)

= −d2µ+ 2cp

2σ2
w

+
dnk,l
σ2
w

√

πC

2
M

(

−1

2
; 1;− d2µ

2C

)

+ γ′′, (14)

where dµ ,
∥

∥µp−(µn
p,l)

[t−1]
∥

∥, C , cp+(cnp,l)
[t−1], M( · ; · ; ·)

denotes the confluent hypergeometric function of the first kind

[22], and γ′′ is a constant.

B. Iterative Minimization Algorithm for MM2

To derive an iterative algorithm for computing an approx-

imation of (θn
k )

[t] =
[

(µn
k )

[t]T (cnp,k)
[t] (cnv,k)

[t] (cnk )
[t]
]T

, i.e.,

of the minimizer of (10), we set the gradient of F
[t]
k (θ) to

zero. This yields the following system of non-linear fixed-

point equations θ = (χn
k )

[t](θ), whereof (θn
k )

[t] is a solution:

µ = ηn
k +Σ

n
k

∑

l∈Nn

k

∂G
[t]
k,l(µp, cp)

∂µ
, (15)

cp =
c2

cv

+

(

Jn
k,11+ Jn

k,22

2
−

∑

l∈Nn

k

∂G
[t]
k,l(µp, cp)

∂cp

)−1

, (16)

cv =
c2

cp

+
2

Jn
k,33+ Jn

k,44

, (17)

c =
1 +

√

1 + (Jn
k,13 + Jn

k,24)
2 cp cv

Jn
k,13 + Jn

k,24

, (18)

with Jn
k,ij ,

[

(Σn
k )

−1
]

ij
. The partial derivatives in (15) and

(16) can be calculated using the relation
dM(−1/2;1;x)

dx =
−M(1/2; 2;x)/2 [22], where M(−1/2; 1; x) can be com-

puted efficiently via an approximation [23, Section 4.5].

A Newton conjugate-gradient method [17, Chapter 7.1] is

now applied to (15)–(18) to solve the system θ = (χn
k )

[t](θ)
in jmax steps, starting from an initial value θ0. The method

iteratively computes θj+1 = (I7 − Ψj)θj + Ψj(χ
n
k )

[t](θj),

where Ψj is the inverse of the Hessian matrix of F
[t]
k (θ)

at θj . The Hessian matrix is approximated via the conjugate

gradient, which requires only F
[t]
k (θ) and its gradient [17].

While the algorithm’s convergence has not been proven so far,

it is suggested by our simulations. The algorithm may produce

a local minimum of F
[t]
k (θ), since this function is not convex

in general. Therefore, the algorithm is run several times with

different values of θ0, and the result yielding the smallest

value of F
[t]
k (θ) is retained. In our simulations, we used the

generic routine scipy.optimize.fmin_tnc [24].

C. Gaussian Belief Approximation for MM1

The results in Sections IV-A and IV-B can be used with

minor changes also for MM1. We here have µ= µp and C =

cpI2, and the Gaussian belief approximation reads q̃
[t]
k (pn

k ) =

N
(

pn
k ; (µ

n
p,k)

[t], (cnp,k)
[t]
I2

)

. The objective function F
[t]
k (θ)

(with θ , [µT
p cp]

T) is still given by (10) together with (13)

and (14); however, the expressions (12) are replaced by

ηn
k = (µn−1

k )[t
∗] , Σ

n
k = (Cn−1

k )[t
∗] + Tσ2

v I2 , (19)

where (µn−1
k )[t

∗] = (µn−1
p,k )[t

∗] and (Cn−1
k )[t

∗] = (cn−1
p,k )[t

∗]
I2.

Finally, fixed point equations in µp and cp are obtained by

setting to zero the gradient of F
[t]
k (θ), and an iterative belief

approximation algorithm is again based on these equations.

D. Distributed Cooperative Localization Algorithm

The results of the previous subsections lead to a distributed

algorithm for cooperative localization in which only parame-

ters of Gaussian pdfs have to be communicated. At time n,

agent k performs the following operations:

1. Mobility update: For k ∈ Vn
M ∩ Vn−1

M , ηn
k and Σ

n
k are

calculated from (µn−1
k )[t

∗] and (Cn−1
k )[t

∗] as in (12) (for

MM2) or as in (19) (for MM1). For k ∈ Vn
M \Vn−1

M , ηn
k and

Σ
n
k are the mean and covariance matrix of the Gaussian prior

pdf p(xn
k ), which are assumed already available at agent k.

2. Iterative message passing: The message passing iterations

are initialized (t = 0) with (µn
k )

[0]= ηn
k and (Cn

k )
[0]= Σ

n
k .

At iteration t ∈ {1, . . . , t∗}, agent k broadcasts (µn
p,k)

[t−1]

and (cnp,k)
[t−1] and receives from the neighbors (µn

p,l)
[t−1] and
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(a)

τ

P̂
o
u
t

SBP (t∗= 30)
SBP (t∗= 5)
BPMF (t∗= 5)
NBP (t∗= 5)
NBP (t∗= 30)
BPMF (t∗= 30)

0 0.5 1 1.5 2 2.5 3 3.5 4

10−1

100

(b)

τ

P̂
o
u
t

NBP (t∗= 30)
BPMF (t∗= 5)
BPMF (t∗= 30)
SBP (t∗= 30)
SBP (t∗= 5)
NBP (t∗= 5)

0 0.5 1 1.5 2 2.5 3 3.5 410−2

10−1

100

(c)

τ

P̂
o
u
t

NBP (t∗= 30)
NBP (t∗= 5)
BPMF (t∗= 5)
BPMF (t∗= 30)
SBP (t∗= 5)
SBP (t∗= 30)

0 0.5 1 1.5 2 2.5 3 3.5 410−2

10−1

100

Fig. 1. Average outage probability versus outage threshold: (a) at n=1 for both MMs, (b) at n=30 for MM1, and (c) at n=30 for MM2.

(cnp,l)
[t−1], l ∈ Nn

k . Note that the anchors (l ∈ Nn
k ∩ Vn

A)

broadcast their true position, so that (µn
p,l)

[t−1] = p̃n
l and

(cnp,l)
[t−1] = 0. Then, new parameters (µn

k )
[t] and (Cn

k )
[t] are

calculated using the iterative belief approximation algorithm.

After the last iteration (t= t∗), an approximation of the MMSE

state estimate x̂
n
k in (5) is obtained as (µn

k )
[t∗]. This equals

the result of (5) with p(xn
k |d1:n) replaced by q̃

[t∗]
k (xn

k ).
The iterative belief approximation algorithm uses ηn

k and

Σ
n
k , which are locally available at agent k, and (µn

p,l)
[t−1] and

(cnp,l)
[t−1], l ∈Nn

k , which were received from the neighbors of

agent k. Therefore, at each message passing iteration t, each

agent k must broadcast to its neighbors l ∈Nn
k only three real

values, namely, two for (µn
p,k)

[t−1] and one for (cnp,k)
[t−1].

V. SIMULATION RESULTS

We consider a region of interest (ROI) of size 120m×120m

with the same |Vn
M|=41 agents and |Vn

A|=18 anchors at all

N = 30 simulated time steps n. The anchors are regularly

placed within the ROI. To avoid boundary effects, agents

leaving the ROI reenter it at the respective opposite side.

Agents and anchors have a communication radius of 20m;

thereby, each agent communicates with one or two anchors.

The agents measure distances according to (3) with σw=1m.

For generating the agent trajectories, we set T = 1s, σv =√
1.5m/s, and σa =

√
0.03m/s2. The initial agent positions

are uniformly drawn on the ROI and, for MM2, the initial

agent velocities are drawn from a Gaussian pdf with mean

[0 0]T and covariance matrix 0.6·I2. For initializing the various

algorithms, the prior pdf for p0
k is chosen Gaussian with mean

µ0
p,k and covariance matrix 900·I2. Here, if agent k is adjacent

to one anchor l, then µ0
p,k is uniformly drawn from a circle

of radius d0k,l around the true anchor position p̃0
l , and if agent

k is adjacent to two anchors l and l′, then µ0
p,k is chosen as

(p̃0
l + p̃0

l′)/2. For MM2, the pdf for v0
k is chosen Gaussian

with mean [0 0]T and covariance matrix 0.6 · I2.

We compare the proposed hybrid BP–MF method as stated

in Section IV-D (abbreviated BPMF) with nonparametric BP

(NBP) and sigma point BP (SBP). NBP [8] is an extension

of the particle-based BP method of [2] to mobile agents, and

SBP [11] is a low-complexity sigma-point-based BP scheme

in which, similarly to BPMF, only Gaussian parameters are

communicated. Our simulation of NBP uses 800 particles.

For simulating BPMF, we perform the fixed-point iteration

(with 30 iteration steps) multiple times with different initial

values θ0. More specifically, 20 initial values of µ are drawn

from mk→k(x
n
k ), 20 are drawn from q̃

[t∗]
k (xn−1

k ), and, for

each adjacent anchor l, 20 are uniformly drawn from an

annulus of radius dnk,l and radial width 3σw around p̃n
l

[2]. Furthermore, the initial values of cp and, for MM2,

of cv and c are always equal to the respective parameters

of q̃
[t∗]
k (xn−1

k ). Our measure of performance is the outage

probability Pout , Pr
[

‖p̂n
k − p̃n

k‖ > τ
]

, where p̃n
k is the true

position of agent k at time n, p̂
n
k is a corresponding estimate,

and τ > 0 is a threshold.

Fig. 1 shows the simulated outage probability P̂out, averaged

over 30 simulation trials, of the three methods versus the

outage threshold τ . It is seen that, at n=1, BPMF outperforms

NBP and SBP for t∗= 30; in particular, SBP performs poorly.

Since BPMF and SBP use a Gaussian approximation, one may

conclude that in the case of a noninformative prior (which

is in force at n = 1), the Gaussian approximation degrades

the performance of a pure BP scheme like SBP more than

that of the proposed hybrid BP–MF scheme. At n = 30,

for MM1, BPMF performs as NBP and SBP. However, for

MM2, where the state can be predicted more accurately from

the previous time, SBP outperforms both BPMF and NBP.

Indeed, as previously observed in [11], SBP works very well

when informative prior knowledge is available. We expect that

NBP would be similarly accurate if more particles were used;

however, the complexity of SBP grows quadratically with the

number of particles. It is also seen that for both MMs, contrary

to BPMF, the performance of NBP and SBP at n = 30 does

not improve when t∗ is increased beyond 5. We note that in

less dense networks, where beliefs can be multimodal, NBP

can be expected to outperform SBP and BPMF.

The communication requirements, in terms of number of

real values broadcast per message passing iteration t by each

agent k to adjacent agents l ∈Nn
k , are 3 for BPMF, 5 for SBP,

and 1600 for NBP.

VI. CONCLUSION

The proposed algorithm for cooperative localization and

tracking combines the advantages of existing BP and MF

methods: its accuracy is similar to that of particle-based BP

although only three real values per message passing iteration

are broadcast by each agent, instead of hundreds of particles.

Our simulations showed that the algorithm performs particu-

larly well relative to pure BP-based methods when the prior

information on the agent positions is imprecise.
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