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The Astaneh plutonic complex consists of a series of granitoid rocks ranging in composition from quartz-
diorites to monzogranites and evolving from metaluminous to weakly peraluminous compositions. They
belong to the high-K calc-alkaline series, having features of typical Andean-type cordilleran granitoids.
Trace and rare-earth elements distribution patterns for the Astaneh rocks indicate a distinctive depletion
in Nb, Sr, Ba, P and Ti relative to other trace elements and a greater enrichment in LILE compared to HFSE.
These geochemical characteristics suggest the participation of an important recycled (sedimentary?)
component in the source region of the granitoids. They have Sr initial isotopic ratios in the range
0.7078–0.7084 and negative eNd values of �5.39 to �6.13 for a time of generation of 170 Ma. There is
a genetic link between quartz-diorites and granodiorites, the dominant rock types of the Astabeh intru-
sion. Direct melting or fractionation from a diorite source is very unlike. It is proposed that the Astaneh
parental Qtd-diorite magmas were produced by the partial melting of a mixed source, dominantly com-
posed of amphibolites and sediments, that was formed during subduction of Neo-Tethyan oceanic crust
below the Iranian microcontinent during Middle Jurassic times.

� 2010 Elsevier Ltd. All rights reserved.
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R1. Introduction

The Zagros orogenic belt resulted form the collision between
the Arabia and Eurasia plates (Sengor, 1992; Alavi, 1994, 2007;
Agard et al., 2005). It belongs to the large Alpine–Himalayan
mountain chain, also referred to as the Tethysides orogenic belt
(Sengor, 1987). In contrast with other sector of this huge collisional
belt, the Zagros system is characterized for a long-lived magmatic
activity developed along more than 150 Ma from the Mesozoic to
the Plio-Quaternary (Omrani et al., 2008). This long-lived mag-
matic activity is widespread along two well-defined linear belts,
namely the Sanandaj–Sirjan magmatic belt (SSMB) and the Uru-
mieh–Dokhtar magmatic assemblage (UDMA), following the zonal
division modified by Alavi (2007). Most of the magmatic rocks
developed from the beginning of subduction at the Jurassic (Arvin
et al., 2007) up to the collision-related magmatism with climax at
the Eocene times (Mazhari et al., 2009; Omrani et al., 2008), have a
common calc-alkaline affinity with geochemical and petrological
features similar to those of Andean-type magmatism (Berberian
et al., 1982). However, some alkaline (Mazhari et al., 2009) and
shoshonitic magmas (Amidi et al., 1984) are associated in space
83
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and time with calc-alkaline batholiths and their extrusive equiva-
lents. These have been described in both the SSMB and the UDMA,
denoting the igneous complexity of the Zagros system (Ghalamg-
hash et al., in press) that resulted from a complex plate conver-
gence process (Alavi, 2007).

Some recent studies on the volcanic rocks in these two mag-
matic arcs (Omrani et al., 2008) revealed interesting data about
the relation of magmatism and plate convergence in this region.
The presence of two magmatic arcs separated in space and time,
containing a wide variety of igneous rock series, makes the Zagros
convergence system one of great interest to test petrogenetic mod-
els related to subduction and arc magma generation. Large plutonic
bodies, still poorly known, are associated with volcanic rocks in
both magmatic belts, SSMB and UDMA. One of these plutonic com-
plexes is the Astaneh intrusion studied in detail here for the first
time. It forms part of a linear belt of plutons distributed along
the SSMB. Most of these plutonic associations display a varied
spectrum of rocks from gabbros to granites, typical of active conti-
nental margins. Although the relation with a subducting slab is
clear for the tectonic environment, the processes of magma pro-
duction remains controversial. Whether granites represent frac-
tionates from a parental mantle-derived diorite or gabbro or, by
contrast, they are crustal melts produced from a mafic source is a
matter of sample debate in calc-alkaline associations.
cal constraints on the origin of Astaneh pluton, Zagros orogenic belt, Iran.
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The aim of this paper is to use geochemical features jointly with
field and petrographic relations to determine the origin of magmas
and tectonic environment for magma generation. The results of
this study may help to understand the complex magmatic evolu-
tion of active margins in relation with subduction and collision.
These results will shed light on this period of the Mesozoic history
in Iran, an area for which little information has been available so
far.
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Fig. 1. Geological map of the Astaneh intrusion and location of analyzed samples. Inset
Stöcklin and Setudinia (1972)).
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2. Geological setting

From Late Precambrian until Late Paleozoic, South Eastern Tur-
key, Central Iran, Central Afghanistan, Southern Pamir and Arabia
were part of the Gondwana supercontinent. This was separated
from the Eurasian plate by the Hercynian Ocean called Paleotethys.
During Middle to Late Triassic, coeval with the closure of the
Paleotethys in the north, a rifting episode along the Zagros belt
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resulted in the opening of a new ocean called Neo-tethys. Closure
of Paleotethys resulted in the subduction of the oceanic crust of the
Neo-tethys beneath the Eurasian plate during Triassic–Jurassic
time. Subduction inception dates back to the Late Triassic–Early
Jurassic (Berberian and Berberian, 1981; Arvin et al., 2007). This
led to an Early Cimmerian metamorphic event, recorded in the
southwest Sanandaj–Sirjan Zone (Berberian and King, 1981; Berbe-
rian and Berberian, 1981; Hooper et al., 1994) associated with
Upper Triassic emplacement of intrusive bodies (Sabzehei, 1994;
Berberian and Berberian, 1981) within this zone. Closure of the
oceanic domain was marked by the obduction of ophiolites along
the main Zagros thrust (MZT) in the late cretaceous (Agard et al.,
2005). Finally, the closure of the Neo-tethys and collision of Arabia
and Central Iran took place during the Neogene times (Berberian
and Berberian, 1981).

The Sanandaj–Sirjan magmatic belt (SSMB), in which is the
Astaneh pluton is located, is a 150–200 km wide zone extending
from northwest to southeast Iran (Fig. 1a). This tectonic-magmatic
zone has undergone various metamorphic episodes during the sub-
duction of the Tethyan Ocean under the Iranian block, obduction of
ophiolites along the MZT and, finally, continental collision (Stöck-
lin, 1968).

According to Mohajjel et al. (2003), major structures in the San-
andaj–Sirjan Zone formed during three separate major events: (1)
Subduction along the active margin of Central Iran, at the north-
eastern margin of the Tethys. (2) Ophiolite obduction along the
northeastern margin of the Tethys. (3) Continental collision of
the Arabia and Central Iran.

Subduction of the Tethys Ocean is the most important event in
the construction of the SSMB. Intense folding with south–south-
west vergence and low-grade metamorphism are associated with
this subduction event. Accordingly, Berberian (1983) considered
this zone as a Mesozoic magmatic arc, and a Tertiary fore-arc.
The presence of a narrow arc-trench gap in this belt is an indication
of steep subduction (Isacks and Barazangi, 1977; Berberian and
Berberian, 1981). It has been suggested that the Sanandaj–Sirjan
calc-alkaline magmatic arc, including the Astaneh pluton, devel-
oped over a high angle subducting oceanic slab in the Neo-tethyan
subduction zone from Late Triassic to Late Cretaceous times (e.g.
Berberian and Berberian, 1981; Shahabpour, 2005).

The second important constructing event in this zone is ophio-
lite obduction along the northeastern margin of the Tethys, includ-
ing the Neyriz and Kermanshah ophiolites, which indicate
obduction of oceanic fragments along the Zagros suture.

Finally, the third important event is the continental collision of
Arabia against Central Iran at the Miocene. This deeply affected this
zone reaching a climax after opening of the Red Sea and the Gulf of
Aden (Mohajjel et al., 2003). Some age determinations have been
reported in the SSMZ (Sabzehei et al., 1970; Valizadeh and Canta-
grel, 1975; Ahmadi-Khalaji et al., 2007; Arvin et al., 2007).
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N3. Geology of the Astaneh pluton

The Astaneh pluton is a NNW–SSE trending body covering an
area of 30 km2 (approximately 10 km length and 3 km width;
Fig. 1b). It is intrusive into low-grade metamorphic rocks such as
slates, phyllites and schists (Ahmadi Khalaji, 2006). The whole area
is characterized by metamorphic rocks of Jurassic age (Baharifar,
2004) and by the presence of the intrusive rocks that form the
Astaneh pluton. The intrusion of the Astaneh pluton produced a
contact metamorphism at the albite-epidote hornfels facies. Fre-
quent lithologies are spotted schist, hornfels schist and hornfelses
(Ahmadi Khalaji, 2006).

Upper Cretaceous ages were reported for the Astaneh intrusion
(ca. 99 Ma; Rb–Sr data; Masoudi, 1997; Masoudi et al., 2002). How-
Please cite this article in press as: Tahmasbi, Z., et al. Petrologic and geochemi
Journal of Asian Earth Sciences (2010), doi:10.1016/j.jseaes.2010.03.001
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ever, precise U–Pb single zircon dating (Ahmadi Khalaji, 2006), car-
ried out on a VG sector 354 mass spectrometer at the
Massachusetts Institute of Technology (USA) for six different grani-
toids of the region, including a sample of the Astaneh granodiorite
(170.7 ± 1 Ma), indicate a short-lived episode of magmatic activity
during the period 172–169 Ma. Accordingly, a reference age of
170 Ma is used in this study for isotope initial ratio calculations.

The composition of the pluton ranges from quartz-diorite to
monzogranite. Abundant subvolcanic rocks of dacite composition
are also included as part of the same magmatic cycle. Tonalites
and more basic rocks are included as large enclaves. A common
feature of Sanandaj–Sirjan Zone granitic intrusions is the conspic-
uous presence of mafic microgranular enclaves, particularly well
represented in the granodiorites and monzogranites of Astaneh.

The studied rocks in the Astaneh pluton include: (1) quartz-
diorites, (2) granodiorites, (3) monzogranites, (4) microgranular
enclaves, and (5) a small dacitic body of 3 km diameter.

Qtz-diorites occur as minor irregular bodies at the centre and
southern areas of the intrusion. They are surrounded by granodior-
ites with which they show gradual boundaries. The grain size is
homogeneous (2–3 mm). Granodiorites are the most abundant
rocks in the pluton. They are medium to coarse-grained rocks
(2.5 mm, ranging from 0.7 to 5.6 mm) in which mica and amphi-
bole, are conspicuous phases. Monzogranites are abundant at the
southern area of the pluton (Fig. 1b). They are characterized by
homogeneous textures and mineralogy. They may form patches
within the granodiorites, with which they have transitional bound-
aries. These rocks are light colored and fine to coarse-grained
(3.1 mm, ranging from 1.7 up to 7 mm).

Mafic microgranular enclaves are normally found enclosed in
granodiorites and monzogranites. They are oval bodies and irregu-
larly shaped blobs, ranging in size from mm to meters. Enclaves
show sharp boundaries with the host granodiorite or monzogranite.

A small stock-like body of semicircular morphology (about 3 km
diameter), described here as ’’dacite stock”, outcrops at NE of the
study area. It is composed of subvolcanic rocks of dacitic composi-
tion. They may represent possibly the subvolcanic equivalent of
the pluton and, thus, they were also sampled for geochemical
analyses.
4. Sampling and analytical methods

A total of about 300 samples from different facies, including
quartz-diorite, granodiorite, monzogranite, enclaves and dacites
were collected. Two hundred thin sections of these samples were
prepared and studied by optical microscope and 40 thin polished
sections were selected for electron microscopy and microprobe
analyses. Representative samples (35 samples) were selected for
whole rock geochemistry. Sample weights were 1–1.5 kg before
crushing and powdering. This amount is enough due to the homo-
geneity and the medium (2–4 mm) to fine (<2 mm) grain size of
the selected samples. Major elements and Zr were analyzed by
X-ray fluorescence (XRF) at the University of Oviedo (Spain) using
glass beads. Precision of the XRF technique was better than ±1.5%
relative. Trace element and rare-earth elements (REE) were ana-
lyzed by inductively coupled plasma mass spectrometry (ICP-MS)
with an HP-4500 system at the University of Huelva, following
digestion in a HF + HNO3 (8:3) solution, drying and second dissolu-
tion in 3 ml HNO3. The average precision and accuracy for most of
the elements were controlled by repeated analyses of SARM-1
(granite) and SARM-4 (norite) international rock standards. They
fall in the range of 5–10% relative. The results of the analyses are
reported in Table 1.

The compositions of the minerals were determined by electron
microprobe analysis of polished thin sections. The analyses were
cal constraints on the origin of Astaneh pluton, Zagros orogenic belt, Iran.
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Table 1
Whole rock compositions of the Astaneh intrusion.

Sample Sa11 24 28 As5 M12 CSa25 14 Sa4 44 Sa14 K5 K2 CSa25 20
Lithology QD QD QD QD QD QD GD GD GD GD GD GD GD GD

SiO2 57.74 61.54 61.65 62.01 62.62 63.59 63.02 63.03 63.09 63.29 63.36 63.57 63.59 63.76
TiO2 0.59 0.53 0.59 0.54 0.49 0.52 0.53 0.53 0.54 0.56 0.55 0.54 0.52 0.52
Al2O3 16.61 16.40 16.58 16.80 16.12 16.00 16.10 16.10 16.41 16.01 15.09 16.02 16.00 15.99
FeOt(1) 7.23 6.06 6.25 5.53 5.34 5.13 5.81 5.41 5.36 5.75 5.76 5.56 5.13 5.33
MgO 4.55 3.49 3.38 2.86 2.89 2.46 3.09 2.82 2.86 2.90 2.96 2.86 2.46 2.81
MnO 0.17 0.13 0.12 0.12 0.12 0.10 0.12 0.11 0.11 0.11 0.12 0.11 0.10 0.11
CaO 6.63 5.22 5.12 5.16 3.92 4.30 4.75 4.98 4.83 4.73 4.62 4.61 4.30 4.60
Na2O 2.59 2.71 2.43 2.58 2.83 2.63 2.47 2.40 2.54 2.41 2.43 2.48 2.63 2.66
K2O 2.02 2.47 2.53 2.40 2.84 3.03 2.59 2.66 2.39 2.83 2.89 2.51 3.03 2.50
P2O5 0.08 0.11 0.11 0.11 0.08 0.11 0.10 0.10 0.10 0.12 0.11 0.11 0.11 0.1
LOI 1.46 1.47 1.11 1.26 2.62 1.54 1.42 1.13 1.60 1.14 1.37 1.58 1.54 1.66

Total 99.7 100.1 99.9 99.4 99.9 99.4 100.0 99.3 99.8 99.9 99.3 99.9 99.4 100.1
Mg# (2) 0.53 0.51 0.49 0.48 0.49 0.46 0.49 0.48 0.49 0.47 0.48 0.48 0.46 0.46
ASI (3) 0.90 0.99 1.03 1.04 1.09 1.04 1.04 1.01 1.06 1.02 0.97 1.06 1.04 1.04

Trace elements (ppm)
Li 55.2 32.8 29.8 60.4 58.1 54.4 31.0 53.5 41.1 64.8 51.2 53.8 54.4 44.1
Be 1.5 1.0 1.4 1.9 1.5 1.6 1.2 1.8 1.6 1.7 1.4 1.3 1.6 1.3
Cr 146 90.7 78.3 151 62.4 144 96.2 166 171 200 153 110 144 114
Co 20.5 10.5 14.0 15.7 9.34 11.8 11.1 17.0 13.0 18.5 13.2 24.1 11.8 24.1
Ni 21.1 10.5 16.2 17.1 15.1 12.7 14.5 19.5 14.8 21.3 13.2 14.1 12.7 14.6
Rb 87.4 74.7 86.3 95.7 91.5 95.3 70.4 101 79.5 108 97.3 82.8 95.3 80.2
Sr 142 123 141 160 128 144 124 153 153 151 136 139 144 147
Y 42.0 11.9 16.9 17.7 14.3 17.7 17.7 22.1 16.9 24.6 19.9 16.6 17.7 18.0
Zr 63.1 96.6 91.9 97.3 89.2 103 103 104 117 104 110 104 116 362
Nb 11.1 6.77 8.52 9.82 7.81 8.54 8.18 10.5 8.79 11.7 8.68 8.92 8.54 8.67
Cs 10.6 6.46 6.16 14.0 11.9 8.22 7.03 9.23 12.8 12.6 9.48 10.7 8.22 9.01
Ba 162 204 286 292 230 284 206 268 247 284 261 257 284 262
La 29.8 12.1 15.4 20.6 19.0 23.8 17.9 26.4 22.4 34.3 14.0 14.2 23.8 23.7
Ce 65.3 26.0 32.6 41.5 38.5 49.6 36.9 51.1 45.8 63.6 31.5 29.3 49.6 46.5
Pr 9.78 3.17 4.17 5.11 4.55 6.01 4.76 6.58 5.44 8.25 4.13 3.77 6.01 5.76
Nd 33.7 11.6 15.6 18.7 16.0 20.9 16.1 21.2 19.2 25.7 16.2 12.9 20.9 18.8
Sm 7.92 2.46 3.49 3.84 3.11 4.10 3.52 4.47 3.73 5.04 3.70 2.88 4.10 3.82
Eu 0.87 0.47 0.80 0.94 0.63 0.77 0.67 0.94 0.77 0.98 0.77 0.74 0.77 0.86
Gd 7.77 2.25 3.32 3.59 2.83 3.74 3.56 4.36 3.32 4.84 3.72 2.99 3.74 3.49
Tb 1.62 0.39 0.58 0.63 0.51 0.62 0.69 0.83 0.58 0.94 0.66 0.57 0.62 0.70
Dy 8.48 2.48 3.55 3.75 3.00 3.68 3.49 4.19 3.50 4.65 4.09 2.96 3.68 3.48
Ho 2.08 0.49 0.72 0.77 0.61 0.74 0.85 0.97 0.69 1.13 0.84 0.74 0.74 0.83
Er 5.27 1.33 1.98 2.01 1.72 2.00 2.16 2.49 1.95 2.87 2.35 1.88 2.00 2.06
Tm 0.88 0.20 0.29 0.30 0.25 0.30 0.35 0.40 0.27 0.46 0.33 0.30 0.30 0.35
Yb 4.86 1.32 1.83 1.87 1.67 1.93 1.93 2.20 1.83 2.60 2.24 1.70 1.93 1.96
Lu 0.83 0.19 0.26 0.28 0.24 0.27 0.33 0.39 0.27 0.46 0.34 0.30 0.27 0.33
Hf 1.26 1.82 2.57 1.96 1.76 1.70 0.54 0.71 3.94 0.82 4.24 1.09 1.70 1.22
Ta 1.44 3.31 1.24 2.53 1.64 1.80 0.84 1.00 1.76 1.31 1.73 0.85 1.80 0.88
W 4.29 4.43 1.05 8.05 0.92 8.10 3.51 7.23 9.38 10.2 8.60 5.20 8.10 5.14
Pb 15.6 9.43 18.5 31.6 20.9 16.9 11.8 15.4 153 15.4 14.6 24.7 16.9 27.1
Th 14.5 5.35 9.03 9.34 8.58 12.1 8.11 11.2 11.8 17.3 11.9 7.96 12.1 10.9
U 1.95 1.05 1.55 1.96 1.39 2.50 2.01 2.35 2.30 2.65 3.70 2.37 2.50 1.75
CeN/YbN 3.53 5.17 4.67 5.83 6.04 6.74 5.02 6.11 6.58 6.43 3.68 4.53 6.74 6.24

Sample Ch4 10 Ch1 Pa7 Pa21 Sa2 CSa15 EK4 E25 CESa4 EPa1 E17
Lithology GD GD GD GD GD MZG MZG EHMg EHMg EHMg EHMg EHMg

SiO2 64.07 64.20 64.50 65.14 65.53 69.16 70.05 52.63 53.82 54.35 54.57 56.09
TiO2 0.54 0.54 0.54 0.47 0.43 0.31 0.30 0.56 0.48 0.45 0.41 0.45
Al2O3 15.83 16.17 15.90 15.64 15.57 15.07 14.66 15.12 13.98 14.97 14.66 15.65
FeOt 5.43 5.49 5.55 4.96 4.69 3.25 3.29 9.56 9.31 8.24 9.40 7.12
MgO 2.66 2.79 2.81 2.66 2.27 1.41 1.45 7.08 7.83 6.98 7.28 6.33
MnO 0.11 0.11 0.11 0.09 0.11 0.06 0.06 0.25 0.23 0.23 0.27 0.17
CaO 4.11 4.72 3.98 4.80 3.88 2.72 2.80 8.95 9.49 8.53 8.12 8.02
Na2O 2.49 2.42 2.45 2.42 2.56 2.74 2.79 2.67 2.15 2.52 2.06 2.72
K2O 2.70 2.57 2.55 2.74 3.23 4.17 3.71 1.37 1.32 1.69 1.27 1.68
P2O5 0.10 0.10 0.12 0.09 0.09 0.14 0.07 0.09 0.07 0.06 0.06 0.06
LOI 2.07 1.15 1.86 0.93 1.61 0.93 0.99 1.27 0.93 1.56 1.44 1.70

Total 100.1 100.3 100.4 99.9 100.0 100.0 100.2 99.6 99.6 99.6 99.5 100.0
Mg# 0.47 0.48 0.47 0.49 0.46 0.44 0.44 0.57 0.60 0.60 0.58 0.61
ASI 1.09 1.05 1.13 1.00 1.05 1.08 1.07 0.68 0.63 0.70 0.75 0.75

Trace elements (ppm)
Li 39.4 36.0 49.9 34.2 60.3 89.1 66.2 27.3 25.4 23.9 44.2 38.7
Be 1.5 1.4 1.7 0.8 1.9 1.2 1.6 1.1 1.0 1.2 1.4 1.1
Cr 116 116 155 100 173 158 145 304 440 371 337 336
Co 11.6 12.7 29.5 8.25 12.6 9.29 6.11 25.5 45.4 27.2 32.8 42.0
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Table 1 (continued)

Sample Ch4 10 Ch1 Pa7 Pa21 Sa2 CSa15 EK4 E25 CESa4 EPa1 E17
Lithology GD GD GD GD GD MZG MZG EHMg EHMg EHMg EHMg EHMg

Ni 11.5 15.2 19.4 9.91 16.6 11.3 7.83 66.8 70.6 79.0 88.8 41.0
Rb 81.6 83.9 89.8 58.1 116 137 118 47.0 52.7 55.0 60.6 60.2
Sr 134 129 167 90.2 152 107 95.2 131 156 157 144 166
Y 16.5 16.9 24.8 10.4 30.7 18.0 11.1 31.5 31.5 64.4 51.5 17.2
Zr 109 106 120 80.2 90.2 69.3 70.4 31.4 31.3 10.7 25.8 33.7
Nb 8.61 9.04 11.2 6.00 10.9 9.91 7.59 6.76 7.35 9.18 7.76 6.25
Cs 4.79 8.28 9.77 11.7 13.7 15.0 12.2 6.86 6.05 6.51 8.44 4.83
Ba 276 223 256 164 255 234 200 133 261 212 144 262
La 19.2 30.5 26.9 12.8 29.1 26.3 23.0 23.1 20.9 24.7 20.2 16.2
Ce 40.0 57.1 52.7 26.9 55.2 50.0 46.6 54.8 47.8 64.7 54.4 34.4
Pr 4.93 7.13 6.88 3.21 7.33 6.30 5.50 8.22 7.28 11.4 9.35 4.36
Nd 17.6 21.7 22.8 10.3 23.9 19.6 19.4 28.2 25.8 44.1 36.6 14.3
Sm 3.41 3.98 4.89 2.16 5.23 3.98 3.50 6.42 6.31 12.3 10.2 3.02
Eu 0.70 0.80 1.04 0.45 0.92 0.67 0.52 0.92 1.06 1.02 0.98 0.89
Gd 3.23 3.69 4.74 2.14 5.34 3.74 2.97 6.12 6.24 13.0 10.1 2.96
Tb 0.56 0.67 0.93 0.42 1.12 0.75 0.45 1.23 1.30 2.77 2.14 0.56
Dy 3.45 3.28 4.63 2.16 5.78 3.58 2.47 6.55 6.48 14.2 10.9 3.04
Ho 0.70 0.76 1.14 0.51 1.42 0.83 0.47 1.53 1.57 3.38 2.57 0.75
Er 1.96 1.94 2.85 1.32 3.60 1.97 1.23 3.87 3.82 7.99 6.20 1.98
Tm 0.29 0.31 0.48 0.20 0.60 0.32 0.18 0.62 0.62 1.26 0.99 0.32
Yb 1.81 1.69 2.58 1.18 3.58 1.78 1.15 3.47 3.30 6.27 5.24 1.82
Lu 0.26 0.29 0.44 0.20 0.58 0.30 0.17 0.58 0.57 1.06 0.89 0.31
Hf 4.75 0.50 1.24 0.53 1.38 1.04 2.29 1.42 2.58 1.66 1.81 1.85
Ta 1.42 0.83 1.08 0.60 1.27 1.42 2.27 0.79 1.95 0.88 2.02 0.61
W 5.17 6.67 6.76 6.31 9.96 9.70 9.11 1.44 2.15 3.48 2.18 3.39
Pb 12.8 13.6 35.6 10.6 12.6 28.8 21.4 14.1 32.0 19.9 16.3 30.5
Th 11.5 11.6 11.7 7.52 16.2 15.6 18.9 5.02 3.26 9.02 3.67 5.74
U 2.45 1.93 2.06 2.20 2.59 2.00 2.41 1.22 0.87 2.02 2.14 1.40
CeN/YbN 5.82 8.88 5.36 5.98 4.05 7.38 10.6 4.15 3.81 2.71 2.72 4.96

Sample ESalO E19 E28 E29 E38 38 33 Asl5
Lithology ELMg ELMg ELMg ELMg D D D D

SiO2 55.74 57.81 58.03 59.22 60.49 67.18 67.68 67.82
TiO2 0.53 0.59 0.50 0.45 0.74 0.38 0.37 0.38
Al2O3 16.73 17.64 16.67 16.11 18.25 16.44 16.53 16.24
FeOt 7.83 7.00 7.87 8.12 5.04 2.93 2.82 2.76
MgO 5.17 4.05 4.55 4.64 2.32 1.58 1.58 1.55
MnO 0.19 0.15 0.18 0.21 0.93 0.03 0.02 0.02
CaO 7.03 5.66 6.99 5.86 4.67 3.00 2.76 3.15
Na2O 3.02 2.60 2.01 2.35 4.38 3.97 4.01 4.03
K2O 1.69 2.39 1.77 1.96 2.41 3.10 3.15 2.72
P2O5 0.08 0.09 0.07 0.07 0.17 0.10 0.10 0.10
LOI 1.67 1.78 0.97 0.46 0.78 1.03 1.13 1.43

Total 99.7 99.8 99.6 99.4 100.2 99.7 100.1 100.2
Mg# 0.54 0.51 0.51 0.50 0.45 0.49 0.50 0.50
ASI 0.85 1.03 0.93 0.97 1.00 1.07 1.10 1.06

Trace elements (ppm)
Li 46.2 55.7 25.3 35.3 31.9 21.0 23.7 22.3
Be 1.4 1.2 0.8 1.4 1.3 1.3 1.3 1.5
Cr 175 96.5 104 165 35.4 60.6 88.9 90.1
Co 23.8 16.9 19.4 24.6 24.6 7.65 9.18 9.25
Ni 28.4 17.9 17.7 25.2 2.76 6.62 9.17 10.5
Rb 132 80.0 49.1 79.5 96.7 106 95.8 117
Sr 147 143 141 165 246 203 211 214
Y 28.1 17.4 11.6 14.7 15.3 7.20 8.50 10.1
Zr 22.3 82.2 35.7 37.3 142 148 149 169
Nb 9.32 8.37 5.83 7.16 15.6 10.6 11.6 12.5
Cs 11.7 18.3 5.17 6.22 18.1 14.8 24.0 12.4
Ba 219 186 173 225 298 275 292 306
La 32.2 18.4 12.7 15.4 19.0 11.8 12.1 13.3
Ce 60.2 35.9 24.3 29.8 34.8 20.2 22.0 22.7
Pr 7.58 4.50 2.94 3.70 4.17 2.24 2.53 2.61
Nd 22.7 14.9 9.77 12.2 13.8 6.91 8.07 8.09
Sm 4.57 3.19 1.91 2.67 2.88 1.40 1.70 1.64
Eu 0.74 0.80 0.85 0.95 1.06 0.54 0.55 0.65
Gd 4.48 3.20 2.02 2.51 2.83 1.42 1.69 1.69
Tb 0.94 0.63 0.40 0.51 0.56 0.26 0.31 0.34
Dy 4.95 3.27 2.12 2.62 2.81 1.45 1.69 1.80
Ho 1.22 0.83 0.56 0.65 0.70 0.32 0.42 0.43
Er 3.27 2.06 1.48 1.79 1.76 0.85 0.99 1.09
Tm 0.56 0.36 0.26 0.30 0.28 0.13 0.15 0.16

(continued on next page)

Z. Tahmasbi et al. / Journal of Asian Earth Sciences xxx (2010) xxx–xxx 5

JAES 666 No. of Pages 17, Model 5G

25 March 2010
ARTICLE IN PRESS

Please cite this article in press as: Tahmasbi, Z., et al. Petrologic and geochemical constraints on the origin of Astaneh pluton, Zagros orogenic belt, Iran.
Journal of Asian Earth Sciences (2010), doi:10.1016/j.jseaes.2010.03.001

http://dx.doi.org/10.1016/j.jseaes.2010.03.001


T

F

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

Table 1 (continued)

Sample ESalO E19 E28 E29 E38 38 33 Asl5
Lithology ELMg ELMg ELMg ELMg D D D D

Yb 3.15 2.03 1.61 1.79 1.52 0.72 0.88 0.95
Lu 0.56 0.35 0.30 0.33 0.26 0.12 0.15 0.16
Hf 1.70 0.61 0.77 0.93 1.79 0.64 0.73 0.84
Ta 1.46 1.10 1.56 0.68 1.16 0.88 1.27 1.11
W 16.2 3.58 4.86 5.70 8.05 9.18 10.6 7.72
Pb 13.2 16.7 14.4 11.5 21.8 5.97 8.83 6.88
Th 20.3 10.3 2.92 2.05 7.63 8.21 8.75 11.2
U 4.65 1.94 0.71 0.70 1.30 1.35 1.74 1.92
CeN/YbN 5.02 4.64 3.96 4.37 6.01 7.35 6.57 6.29

FeO(t): total iron as FeO; (2) Mg#: mol MgO/MgO + FeO(t); (3) ASI: alumina saturation index = mol Al2O3/Na2O + K2O + CaO. QD: quartz-diorite; GD: granodiorite; MZG:
monzogranite; EHMg: high-Mg enclaves; ELMg: low-Mg enclaves; D: dacite.
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performed with a four-spectrometer JEOL JXA-8200 electron probe
at university of Huelva (Spain), operated with an accelerating volt-
age of 15 kV and a probe current of 5 nA. Silicate standards were
jadeite for Na, wollastonite for Ca, alkali feldspar for K and Al,
enstatite for Mg, fayalite for Fe and Mn and apatite for P.

For determination of Sr and Nd isotopic ratios, whole-rock pow-
dered samples were used. Rb–Sr and Sm–Nd isotopic ratios were
determined with a Finnigan MAT-262 mass spectrometer at the
University of Granada. Samples for Sr and Nd isotope analyses
were digested using ultraclean reagents and analyzed by thermal
ionization mass spectrometry (TIMS) in a Finnigan Mat 262 spec-
trometer after chromatographic separation with ion-exchange res-
ins. Normalization values were 86Sr/88Sr = 0.1194 and
146Nd/144Nd = 0.7219. Blanks were 0.6 and 0.09 ng for Sr and Nd.
The external precision (2 sigma), estimated by analyzing 10 repli-
cates of the standard WS-E (Govindaraju et al., 1994), was better
than ±0.003% for 87Sr/86Sr and ±0.0015% for 143Nd/144Nd. 87Sr/86Rb
and 143Sm/144Nd were directly determined by ICP-MS following
the method developed by Montero and Bea (1998), with a preci-
sion better than ±1.2% and ±0.9% (2 sigma) respectively. Nd isoto-
pic ratios were corrected for mass fractionation using a
146Nd/144Nd ratio of 0.7219. The results are reported in Table 2.

5. Petrography

5.1. Quartz diorites

These rocks have granular to porphyritic textures with plagio-
clase megacrysts. They are predominantly composed of plagioclase
(40–50% vol.%), amphibole (5–10% vol.%), biotite (15–20% vol.%), al-
kali feldspar (<5% vol.%) and quartz (�10% vol.%). Plagioclase ap-
pears as anhedral to subhedral plates, zoned and altered to
sericite, epidote and calcite. Biotite occurs as brown flakes, de-
formed and altered to chlorite, sphene, prehnite, muscovite, opa-
ques, and quartz. Biotite is frequently associated with amphibole,
which predate biotite in the crystallization sequence. Amphibole
shows a euhedral prismatic habit, green colour, and it is often
twinned, associated with biotite and altered to chlorite, epidote
and prehnite. Quartz occurs as both anhedral to subhedral crystals
and as a late interstitial phase. Alkali feldspar is anhedral to subhe-
dral. Zircon, titanite, apatite are conspicuous accessory minerals.
Minor alteration products are sericite, chlorite, epidote, prehnite,
and calcite. Orthopyroxene (En56-58) has been observed only in
one sample. It is partially replaced to anthophyllite at the rims
(Fig. 2a).

5.2. Granodiorites

They are coarse-grained, mesocratic rocks mainly composed of
plagioclase (30–40 vol.%), quartz (25–30 vol.%), biotite (5–15
Please cite this article in press as: Tahmasbi, Z., et al. Petrologic and geochemi
Journal of Asian Earth Sciences (2010), doi:10.1016/j.jseaes.2010.03.001
E
D

P
R

O
Ovol.%). amphibole (5–10% vol.%) and K-feldspar (<10 vol.%). Acces-

sory minerals are apatite, zircon and allanite. Plagioclase is nor-
mally zoned, forming euhedral to suhedral crystals. K-feldspar is
perthitic and appears as anhedral to subhedral crystals. Quartz
forms anhedral crystals or aggregates of several grains with irreg-
ular boundaries. It occupies the interstices between feldspars and
often displays undulatory and lamellar extinction indicative of
incipient solid-state deformation. Amphibole shows a characteris-
tic euhedral prismatic habit, green colour, and twinning. It is asso-
ciated with biotite (Fig. 2b). Amphiboles show CaB > 1.5 (1.7–1.85),
(Na + K)A < 0.5 (0.12–0.25). They classify as calcic amphiboles
according to Leake et al. (1997). In general, the composition may
vary from magnesio-hornblende to actinolitic hornblende. Biotite
is the most abundant mafic mineral in the studied samples. It is
frequently associated with amphibole. Most biotite is altered to
chlorite, or replaced by sphene, muscovite, opaques, and quartz.
Biotite is highly aluminous (Al/Al + Si + Mg + Fe = 0.2–0.22) and
ferrous (Fe/Fe + Mg = 0.49–0.53).
5.3. Monzogranites

These rocks have granular to porphyritic texture, with biotite-
rich clots, feldspar megacrysts and quartz. Amphibole is present
in some samples. Biotite crystals are variably transformed into
chlorite and less commonly to epidote. Inclusions in alkali feldspar
are apatite (Fig. 2c). Euhedral zircon and allanite are frequently
associated with biotite. Plagioclase (An14-30) is markedly zoned.
5.4. Dacites

Quartz, plagioclase and biotite occur as phenocrysts in a seriate
texture (Fig. 2d). Normal alteration is to aggregates of chlorite, opa-
que minerals and epidote. These rocks contain numerous dark
xenoliths, which show phenocrysts of pargasitic amphibole
[CaB > 1.5 (1.71–1.77), (Na + K)A > 0.5 (0.55–0.7); Fig. 2f] and pla-
gioclase in a fine grain matrix of biotite and plagioclase.
5.5. Enclaves

Enclaves range in composition from diorite to monzodiorite.
The crystal habit of K-feldspar together with zoned, euhedral pla-
gioclase inclusions, suggest that they have an igneous origin (Ver-
non and Paterson, 2002). Their mineralogy and textures show that
they have a typical multistage magmatic crystallization (Castro
et al., 1991). Enclave minerals are essentially composed of plagio-
clase, amphibole and biotite (Fig 2e). Two types of enclaves are
identified in Astaneh granitoids: (1) a fine- to medium-grained,
weakly porphyritic, hornblende ± biotite gabbro and (2) fine-
grained Qtz-diorites. These are the most abundant in the Astaneh
cal constraints on the origin of Astaneh pluton, Zagros orogenic belt, Iran.
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granitoids. Gabbroic enclaves range from 5 to 45 cm diameter
(commonly 20–30 cm).

Amphibole, which may contain locally small relic inclusions of
clinopyroxene, has a euhedral habit and classifies as magnesio-
hornblende. It is associated with subordinate biotite. Plagioclase
(An35-40) is usually euhedral and zoned. Acicular apatite occurs as
inclusions preferentially in plagioclase. Quartz (<10 vol.%) occupies
the interstices between plagioclase crystals.

The fine-grained Qtz-dioritic enclaves are more abundant than
gabbroic enclaves. They have porphyritic (plagioclase phenocrysts)
and poikilitic textures. They are essentially composed of plagio-
clase (40–50 vol.%), amphibole (5–10 vol.%), biotite (15–20 vol.%),
alkali feldspar (<5 vol.%) and quartz (<10 vol.%). The fine-grained
matrix is composed of plagioclase laths an amphibole with intersti-
tial quartz ± K-feldspar. Accessory minerals are iron oxides, apatite,
zircon and titanite. They commonly show quenched textures such
as acicular amphibole and acicular apatite, characteristic of rapid
crystallization.
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R6. Geochemical features

6.1. Major elements

Representative whole rock major compositions of Astaneh
granitoids and related rocks are reported in Table 1. Major element
variations are illustrated in major oxide (harker) diagrams (Figs. 3
and 4). The rocks exhibit a range in SiO2 from 52 to 71 wt.%. The
abundances of Fe2O3, MgO, CaO, TiO2, Al2O3 and MnO decrease
with increasing SiO2, whereas K2O increases and Na2O remains
nearly constant. The enclaves show higher MgO, Fe2O3, TiO2, CaO
and lower K2O, Na2O and SiO2 values than the granite samples.
Granodiorites and Qtz-diorites, the most abundant rocks of the
Astaneh intrusion, are well grouped in terms of major elements
showing a regular variation with silica. This is characteristic of
magmatic processes by either fractionation or partial melting.
The relations with the other magmatic groups are more complex.
Enclaves are plotted along the same linear trend than granodiorites
and Qtz-diorites, coincident in general terms with the typical trend
of calc-alkaline batholiths and continental margin andesites (Figs.
3 and 4). This is so for CaO, FeO and MgO. However, enclaves de-
part from the general calc-alkaline array for other elements as
Al2O3, TiO2 and alkalis. The most outstanding distinction is an in-
crease of alumina with silica. These enclaves have an average
andesite composition for diagnostic elements such SiO2, MgO and
CaO. However, they are depleted in TiO2, Na2O and Al2O3 with re-
spect to the andesite trend (e.g. the Cascades trend shown in the
diagrams). Most granodiorites and associated mozogranites and
Qtz-diorites are metaluminous to slightly peraluminous, with Al
saturation index (ASI = mol Al2O3/Na2O + K2O + CaO) within the
range 1.0–1.09 in the more mafic Qtz-diorite group and 0.97–
1.13 in the granodiorite-monzogranite group. Also some enclaves
are slightly peraluminous with ASI from 0.68 to 1.03 (Table 1).

A relevant feature is the silica gap observed between the two
groups, enclaves and host granodiorites and Qtz-diorites. The silica
gap (59–62 wt.% SiO2) is in agreement with the sharp boundary be-
tween enclaves and host granordiorites and the absence of any
transitional or intermediate rock. A second silica gap is observed
between monzogranites and granodiorites (66–69 wt.% SiO2).
However, in this case the origin of the gap may be due to the scar-
city of samples (two analyzed samples) from the mosnzogranite
group.

Interesting variations are also observed between major oxides
and molar ratios. These are shown in selected diagrams in Fig. 4.
The CaO–MgO diagram is diagnostic for magmatic series related
by fractionation or melting trends. All the samples from Astaneh
cal constraints on the origin of Astaneh pluton, Zagros orogenic belt, Iran.
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Fig. 2. Microphotographs of representative samples (crossed polarized light) from the Astaneh intrusion. (a) Orthopyroxene in quartz-diorite. (b) Biotite replaced by chlorite
and prehnite. (c) Needles apatite in K-feldspar. (d) Porphyritic texture in the rhyodacite. (e) Microgranular enclaves. (f) Amphibole (Pargasite) in an enclave of the rhyodacite.
Mineral abbreviations are according to Kretz (1983).
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Cfollow a regular curved trend very close to the trend displayed by
andesites and calc-alkaline batholiths (Fig. 4a). However, the gaps
mentioned above for SiO2 are also present in this diagram. A sim-
ilar curved trend is observed in the diagram plotting K# (mol K2O/
K2O + CaO) against wt.% MgO (Fig. 4d). Two groups of enclaves are
distinguished in these diagrams according to the MgO content. A
more primitive group with MgO > 6.0 wt.% (high-Mg enclaves)
and a more evolved group with MgO < 6.0 wt.% (low-Mg enclaves).
This distinction is not so clear in the silica variation diagrams.
These two groups will be analyzed in terms of trace elements in
the next item. Series classification diagrams are shown in Fig. 4c,
d. All the Astaneh rocks plot in the subalkaline field of the TAS dia-
gram (Fig. 4c). They define a regular trend almost coincident with
the trend of calc-alkaline andesites and batholiths from the North
America active continental margin (Cascades andesites and plu-
tonic rocks from the Sierra Nevada and Peninsular Ranges batho-
liths). In the K2O-silica diagram (Fig. 4d) the Astaneh rocks
Please cite this article in press as: Tahmasbi, Z., et al. Petrologic and geochemi
Journal of Asian Earth Sciences (2010), doi:10.1016/j.jseaes.2010.03.001
follow a linear trend evolving from normal calc-alkaline to high-
K calc-alkaline fields. In general terms, the Astaneh rocks are rich
in K and they plot close to the upper limit of the typical calc-alka-
line trends. Enclaves plot in these diagrams very close to the more
mafic members, namely basaltic andesites and high-Mg primitive
andesites of the Shasta volcanics from the cascades. These compar-
isons will be used for petrogenetic considerations of the Astaneh
intrusion.

6.2. Trace elements

Trace element abundances were determined for representative
samples of the Astaneh intrusive complex (Table 1). Fig. 5 shows
primordial mantle (Sun and Mc Donough, 1989) normalized dia-
grams for the six groups of rocks distinguished in the Astaneh
intrusion. The group of Qtz-diorites is taken for comparison with
other groups. Also included for comparison is the pattern of aver-
cal constraints on the origin of Astaneh pluton, Zagros orogenic belt, Iran.
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Fig. 3. Silica variation diagrams of igneous rocks from the Astaneh intrusion. Data from calc-alkaline rocks from the N America margin are shown for comparison: Sierra
Nevada and Peninsular ranges batholith (red dots; data from Lee et al. (2007)) and Cascades andesites from Medicine Lake, Mt. Shasta, Mt. St. Helens and Mt. Larsen (data
from GEOROC data base in http://georoc.mpchmainz.gwdg.de/georoc/). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Rage continental andesites taken from Kelemen et al. (2003). Gran-
odiorites and Qtz-diorites have very similar patterns.

These similarities confirm the major-element affinities between
these two groups. Compared to average andesites, all rocks from
Astaneh share depletion in Ba, Sr and P. Moreover, they show the
typical Pb enrichment and Ti depletion that characterize crustal
signatures in arc magmas. Enclaves show a marked enrichment
in HREE compared to the other groups and also compared to the
average continental andesites. With exception of the Ba, Sr, P
depletion, the rocks of Astaneh share the most relevant features
of arc magmas. The available data are not enough for identification
of regional anomalies. An assessment of these geochemical anom-
alies will require further geochemical studies in other intrusive
massifs associated to the same magmatic system.

Similar comparisons can be made in terms of REE (Fig. 6). In
general, the Astaneh rocks exhibit strongly fractionated REE pat-
terns (La/Yb = 2.57–22.04) with variable Eu anomalies (Eu/
Eu* = 0.24–1.33). Granodiorites are enriched in HREE compared to
Qtz-diorites. However, these two groups and the monzogranites
show strong similarities suggesting that they form part of a single
magma series. However, enclaves display markedly distinct pat-
terns compared to the diorite-granodiorite series. The two groups
of enclaves that were identified by petrography mineral assem-
Please cite this article in press as: Tahmasbi, Z., et al. Petrologic and geochemi
Journal of Asian Earth Sciences (2010), doi:10.1016/j.jseaes.2010.03.001
blages can be distinguished in terms of the REE patterns. The gab-
broic group is strongly enriched in HREE with a large Eu anomaly.
The Qtz-diorite group is formed by less depleted compositions
showing little or null Eu anomaly. Some samples of this second
group are similar to the Qtz-diorites. Interestingly, these two
groups correspond to the high-Mg and low-Mg enclaves respec-
tively (Fig. 7), suggesting that they form two separate groups with
different origins though they are collinear in major element varia-
tion diagrams. High-Mg enclaves are also richer in Ni compared to
low-Mg group (Fig. 7a), supporting the separation in two groups
with possible differences in magma generation and source
compositions.

Primordial mantle normalized diagrams (Fig. 5) also show
marked affinities between Qtz-diorites and granodiorites. How-
ever, the Astaneh Qtz-diorites show a marked depletion in Ba
and Sr departing from the typical trend of continental andesites.
Again, the available data are not enough to establish regional or lo-
cal anomalies. Granodiorites and monzogranites display similar
patterns (Fig. 5b and c) compared to Qtz-diorites. Enclaves are
markedly different (Fig. 5d) form the former groups. However, they
share with the Qtz-diorite-granodiorite group a marked depletion
in Ba. Dacites (Fig. 5e and f) show patterns almost identical to gran-
odiorites as they are the volcanic-subvolcanic equivalents.
cal constraints on the origin of Astaneh pluton, Zagros orogenic belt, Iran.
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Fig. 4. Major oxide plots showing the general magmatic trend of the Astaneh intrusive rocks compared with the typical calc-alkaline trends of batholiths and andesites.
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R6.3. Isotopes

Isotopic ratios for 143Nd/144Nd and 87Sr/86Sr of the Astaneh
granitoids and subvolcanic rocks are listed in Table 2. The initial
(87Sr/86Sr)i ratios and eNd(t) values have been calculated at
170 Ma on the basis of zircon U–Pb datings (Ahmadi Khalaji,
2006). The data are shown in a plot of eNd(t) vs. (87Sr/86Sr)i in
Fig. 8. All the granitoids plot in the lower right quadrangle, corre-
sponding to crustal signatures. With exception of the dacite sam-
ple, granodiorites and Qtz-diorites are grouped within a narrow
interval. These relations are consistent with the geochemical affin-
ity of these two groups in terms of major and trace elements. Low
negative eNd values in the Astaneh rocks may suggest an important
implication of old crustal materials in their genesis. These infer-
ences are analyzed in detail below. However, the scarcity of isoto-
pic data in this study, and also in other adjacent plutonic areas
within the SSMZ, precludes the elaboration of a definitive petroge-
netic model, which is pending for further studies.
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7. Discussion

7.1. Origin of the parental magmas

A relevant feature of the Astaneh intrusion is the close relation
found between Qtz-diorites and granodiorites. Both form part of a
Please cite this article in press as: Tahmasbi, Z., et al. Petrologic and geochemi
Journal of Asian Earth Sciences (2010), doi:10.1016/j.jseaes.2010.03.001
magma series in a very similar way to the calc-alkaline series in ac-
tive margins. In this sense, the comparisons made with the typical
cordilleran batholiths and the Cascades andesite suits of the North
America pacific margin are very useful to address petrogenetic
estimations. Another relevant feature of Astaneh is the presence
of two well-distinguishable groups of magmatic enclaves. One of
them, the low-Mg group, has clear affinity with the Qtz-diorites.
The other group of enclaves, the high-Mg group, is characterized
by a more primitive chemistry, with Mg# values (Mg# = molar
MgO/MgO + FeO) around to 0.6 and high Ni contents (>50 ppm),
both indicative of equilibrium with the peridotite mantle. At the
same time, this Mg-rich group is enriched in HREE and other HFS
incompatible elements. Both the primitive character (high Mg#,
high Ni content) and the high content in incompatible elements
are characteristic features of magmas derived by melting of an en-
riched mantle source in a suprasubduction environment (Tatsumi
et al., 2003; Martin et al., 2005). However, a petrogenetic link relat-
ing these primitive magmas and the other intermediate and felsic
rocks, namely Qtz-diorites and granodiorites, of the Astaneh intru-
sion cannot be established in the light of the available data. The
petrogenetic link by means of either fractional crystallization or
partial melting is discussed later.

Most of the samples of the Astaneh pluton belong to the I-type
granites of Chappell and White (1974). Regarding the origin of
these calc-alkaline felsic and intermediate magmas, two groups
of hypotheses have been proposed. According to the first group,
cal constraints on the origin of Astaneh pluton, Zagros orogenic belt, Iran.
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Fig. 5. Primitive mantle-normalized spider diagrams (Sun and Mc Donough, 1989). The slight enrichment in Ta may be caused by contamination with CW mortars during
crushing. See text for further explanations.
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Ofelsic arc magmas are derived from basaltic parent magmas by

assimilation, fractional crystallization (AFC processes; De Paolo,
1981). In the second group of hypotheses, basaltic magmas provide
heat for the partial melting of crustal rocks (Annen and Sparks,
2002; Huppert and Sparks, 1988). Combined models including heat
and fluid transfer to the continental crust by wet-basalt magmas
have been also proposed (Annen et al., 2006; Thompson et al.,
2002). The low concentration of MgO, low content in transition ele-
ments (Ni, Cr, Co, V), the large volume of the granitoid rocks and
the absence of rocks with basaltic compositions (all samples have
SiO2 content >52%, Table 1) in the Astaneh area, suggest that frac-
tionation from a basaltic parent magma is unlikely.

Large-scale melting of a mafic crustal source may have been fa-
vored by high heat flow during Cimerian Orogenesis by underplat-
ing of mantle-derived magmas into the crust. Consequently, it can
be argued that the Astaneh rocks originated by partial melting of
crustal protoliths in an active margin. Basaltic magma may contrib-
ute to the thermal budget; so, the calc-alkaline granitoids seem to
reflect, essentially, hydrous partial melting of mafic lower crust
(and/or basic under plate) rather than direct origin from a man-
Please cite this article in press as: Tahmasbi, Z., et al. Petrologic and geochemi
Journal of Asian Earth Sciences (2010), doi:10.1016/j.jseaes.2010.03.001
tle-derived parent magma. Some experimental data supports that
hydrous melting of basalt can produce tonalitic–trondhjemitic
magmas (e.g. Wyllie, 1984) that might evolve by fractionation
and/or crustal contamination toward more granitic compositions.
The second part of the process is needed to account for the enrich-
ment in K and incompatible elements. However, little evidence is
supplied about a relevant role of crustal assimilation to produce
the observed geochemical trends. Independently of a more or less
effective crustal assimilation, it is a fact that the more primitive
magmas, the high-Mg group of enclaves, in Astaneh are the most
enriched in incompatible elements, pointing to an enriched mantle
source. Furthermore, it is very unlikely that high-K granites can be
produced directly by melting of low-K basalt and metamorphic
equivalent (amphibolite), without involvement of a K rich sedi-
mentary component (Winther and Newton, 1991). The Sr–Nd iso-
topic ratios also point to an important participation of a crustal
source in the generation of the magmas.

Experimental melts derived from partial melting of different
crustal source rocks such as felsic pelites, metagreywackes, gneis-
ses and amphibolites fall into distinct fields based on the major
cal constraints on the origin of Astaneh pluton, Zagros orogenic belt, Iran.
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Roxide ratios or molar ratios (Patiño Douce, 1999). The Astaneh
rocks are characterized by low ratios for Al2O3/FeO + MgO + TiO2

(1.1–3.46), Na2O + K2O/FeO + MgO + TiO2 (0.37–1.4) and Al2O3/
MgO + FeOt (0.42–2) and a rather high range of CaO/(FeO + MgO + -
TiO2 (0.44–0.67). These values support that these magmas cannot
be originated by partial melting of pelites (Fig. 9). Most of the Asta-
neh rocks (and the adjacent Boroujerd rocks used here for compar-
isons) generally plot in the amphibolite and metabasalt-
metatonalite fields (Fig. 9a and d). This feature, associated with rel-
atively high Mg# values (0.35–0.61) precludes a derivation from
felsic pelite and/or metagreywacke. Thus, the possible implication
of a mafic source (diorite?) with addition of some recycled material
(sediments?) in the source region is considered here.

7.2. Derivation of granodiorites (and monzogranites) by partial
melting and/or equilibrium fractionation of a diorite precursor

The possibility that granodiorites were derived by partial melt-
ing of a diorite source or fractional crystallization of a wet diorite
magma was analyzed in detail by Sisson et al. (2005) means of lab-
oratory experiments and applied to the some cordilleran granites
of the Sierra Nevada batholith (Ratajeski et al., 2005). The strong
similarity between the plutonic associations described by these
Please cite this article in press as: Tahmasbi, Z., et al. Petrologic and geochemi
Journal of Asian Earth Sciences (2010), doi:10.1016/j.jseaes.2010.03.001
authors and those described here in the Astaneh complex, suggests
that the application of this hypothesis must be taken into account
in this study. Diorite inclusions in Astaneh may represent the
source material, either the parental melts or solid source, from
which the granodiorite magmas were possibly extracted by either
fractionation or partial melting. It can be remarked the close sim-
ilarity between these diorites (e.g. sample CESa4, Table 1) and the
Hb-diorite used by Sisson et al. (2005) in their experiments (YOS-
55A, Sisson et al., 2005, their Table 1). For this reason, we have
used this sample to model melt and magma composition by means
of the MELTS algorithm (Ghiorso and Sack, 1995). A proxy for melt-
ing of a similar source is given by the experiments by Patiño Douce
(1995) and Castro et al. (1999) by using a composite source
(basalt + pelite) of a broad andesite composition. The results of
these experiments produced abundant melt (30–60 vol.%) of
granodiorite composition leaving a noritic residue at conditions
of medium and lower crust and at temperatures of 900 and
1000 �C. The application of the MELTS algorithm produced inter-
esting results that will be summarized here.

Table 3 shows the composition of a melt extracted at 30% of
partial melting (or 30% remaining liquid in equilibrium crystalliza-
tion) at 875 �C (QFM buffer) and 8 kbar from diorite CESa4. The va-
lue of 30% is justified because this is the lower rheological
cal constraints on the origin of Astaneh pluton, Zagros orogenic belt, Iran.
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threshold (Didier and Barbarin, 1991) that allows the melt to be
extracted from the source. However, the composition of melt gen-
erated at this melt fraction is far from the average granodiorite
composition. The granodiorite CSa25 from Astaneh may be taken
for comparison. This is much higher in Fe and Mg compared with
the theoretical melts. There are two ways to increase the Fe and
Mg content in the melt: (1) by increasing the temperature and melt
fractions, and (2) by mixing the extracted melt with Fe- and Mg-
U
N
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rich restites from the source. The two possibilities are analyzed
here.

Increasing temperature and, hence, the melt fractions, has the
limit imposed by the minimum silica content in the resulting melt.
Melts developed at high melt fractions may contain large amount
of Fe and Mg dissolved in the melt but, at the same time, they
may have silica contents below the minimum required for granod-
iorites (63 wt.% SiO2). This limit is found at 1024 �C and 8 kbar for
the studied sample (Table B). The amount of melt produced at
these conditions is about 50 wt.%. However, if this melt is com-
pared with a typical granodiorite from Astaneh (sample Csa25) it
is still poorer by half in Fe and Mg (Table 4).

Thus, the way of increasing melt fraction to get the granodior-
ites by either partial melting or equilibrium crystallization is very
unlikely. A different source, necessarily more felsic, is required. An-
other possibility is that granodiorites are not pure melts but repre-
sent magmas with a high crystal content (restites and/or
cumulates) dragged from the source. This is also analyzed here
below.

The composition of the residue left at 30.2 wt.% melt fraction,
calculated by means of the MELTS algorithm, is shown in Table 3.
The average composition of this residue may be mixed in variable
proportions producing magmas with variable contents in Fe and
Mg. Table 5 shows the results of mixing variable amounts of solids,
formed in equilibrium at the source region, with melts produced at
30 wt.% melt fraction (Table 3). There is a close similarity between
the mixture with 30 wt.% restite and the granodiorite CSa25. Thus,
variable separation of entrapped crystals from the source seems to
be an efficient mechanism in accounting for the observed chemical
composition of granodiorites. This mechanism is more favorable
than increasing the melt fraction, as demonstrated here by using
the results of the MELTS algorithm. However, it is unclear if granite
melts may carry and transport for many km a so high content of
solid material from the source. Amphibole polycrystalline clots
are identified as restites derived from a pyroxene precursor in
calc-alkaline granodiorites (Castro and Stephens, 1992; Stephens,
2001). However, these mafic restites represent a small fraction of
the whole mafic components in granodiorites, the rest showing
textural evidence of crystallizing from the magmas. Consequently,
Absence of any evidence for so high restite content is a handicap in
roujerd Granitoids

Bulk Earth
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cal constraints on the origin of Astaneh pluton, Zagros orogenic belt, Iran.
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Raccepting this genetic mechanism from a diorite or gabbroic
source.

It seems that the Astaneh diorite inclusions unlikely represent
the source from which the granodiorites were generated. A more
silicic source must be involved to generate these granodiorite
melts. Alternatively, the source may be represented by a subducted
mélange that undergone partial melting within the mantle at the
U
N

CTable 3
MELTS calculations of phase compositions at 30% melting of the CESa4 Qtz-diorite of
Astaneh intrusion.

Melt Cpx Grt Opx PI

wt.% phases 30.21 28.8 21.31 3.64 15.13
SiO2 66.16 50.88 39.63 52.78 61.73
TiO2 0.29 0.74
Al2O3 15.99 5.44 22.41 2.38 23.7
Fe2O3 0.18 1.17 0.36
FeO 0.67 7.3 21.96 20.12
MnO 0.77
MgO 0.36 13.12 9.82 23.11
CaO 1.92 20.32 6.18 1.16 5.15
Na2O 3.71 1.03 7.34
K2O 4.58 2.09
P2O5 0.2
H2O 5.19

Total 100 100 100 100 100

Please cite this article in press as: Tahmasbi, Z., et al. Petrologic and geochemi
Journal of Asian Earth Sciences (2010), doi:10.1016/j.jseaes.2010.03.001
core of a cold diapir (cold plumes). The composition of these
mélanges can be very close to andesites. Thus, the experiments
with composite sources (Patiño Douce, 1995; Castro et al., 1999;
MELTS calculations of liquid compositions with increasing T from CESa4 Qtz-diorite of
Astaneh intrusion.

Pressure 8 kbar 8 kbar 8 kbar 8 kbar 8 kbar Granodiorite
Temperature 760 875 960 1025 1090 CSa25 Astaneh

Wt.% melt 20 30 40 50 60
SiO2 75.67 69.78 66.34 63.3 59.66 63.59
TiO2 0.11 0.3 0.5 0.52 0.54 0.52
AI2O3 13.73 16.86 18.61 20.09 21.19 16
Fe2O3 0.08 0.19 0.37 0.56 0.8
FeO 0.25 0.71 1.53 2.61 4.13 5.06
MnO 1.23 0.81 0.61 0.48 0.4 0.1
MgO 0.22 0.37 0.6 0.91 1.51 2.46
CaO 1.65 2.02 2.68 3.47 4.73 4.3
Na2O 3.31 3.91 4.4 4.47 4.02 2.63
K2O 3.42 4.83 4.21 3.48 2.92 3.03
P2O5 0.32 0.21 0.16 0.12 0.1 0.11
H2O 0.00a 0.00a 0.00a 0.00a 0.00a 1.54

Total 100 100 100 100 100 99.34

Same conditions than Table 3.
a Melts recasted to an anhydrous base.

cal constraints on the origin of Astaneh pluton, Zagros orogenic belt, Iran.
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Table 5
Composition of liquid plus restite mixtures from MELTS calculations with CESa4 Qtz-
diorite of Astaneh intrusion.

% of restite 10 20 30 Gd CSa25

SiO2 67.7 65.63 63.59 63.59
TiO2 0.3 0.3 0.3 0.52
AI2O3 16.62 16.38 16.14 16
Fe2O3 0.23 0.26 0.29
FeO 1.78 2.84 3.89 5.06
MnO 0.72 0.64 0.56 0.1
MgO 1.36 2.33 3.29 2.46
CaO 3.03 4.02 5 4.3
Na2O 3.72 3.52 3.33 2.63
K2O 4.37 3.91 3.47 3.03
P2O5 0.19 0.17 0.14 0.11
H2O 0a 0a 0a 1.54

Total 100 100 100 99.34

Same conditions than Table 3.
a Melts recasted to an anhydrous base.
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Castro and Gerya, 2008) are equally applicable to the generation of
granodiorites by partial melting and partial restite unmixing.

The origin of an andesite precursor, either as a subducted
mélange or underplated andesite magmas, is out of the scope of
this study. However, a simple generation from a mantle source is
not so straightforward. Part of the Astaneh inclusions represented
by the high-Mg enclaves show evidence of derivation from a meta-
somatised mantle source (high Mg#, high Ni contents). However,
we have shown that derivation of a silicic melt of granodiorite
composition from this source, either as solid or parental magma,
is very unlikely. We propose that the parental magmas for granod-
iorites and monzogranites of Astaneh are possibly the Qtz-diorites.
They have silica contents, as well as the other major elements, very
close to the composition of subducted mélanges. Also we have
shown in this paper that Qtz-diorites and granodiorites form a
magmatic trend that can be interpreted as either a magma frac-
tionation trend or incremental melting from a solid source with
the composition of a Qtz-diorite. Consequently, the melting, total
or partial, of a composite source of the kind of a subducted
mélange (=Qtz-diorite, =andesite) composed by sediments and
oceanic crust, may account for the observed magma compositions
satisfactorily (Castro and Gerya, 2008).
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R7.3. Tectonic implications

The Astaneh rocks are typically formed of a medium to high-K
calc-alkaline suite (Fig. 4c), in which quartz-diorites, granodiorites
and monzogranites are the dominant rock types. Regarding field
relations, petrography and geochemistry these rocks show similar-
ities with intrusions in active continental margins. Furthermore, as
discussed earlier, rocks of the Astaneh area are enriched in LILE
such as Cs, K, Rb, and Th with respect to the HFSE, especially Nb
and Ti (Figs. 5 and 6). Saunders et al. (1980) explained the high LILE
abundances of continental calc-alkaline magmas as resulting from
the presence of enriched mantle beneath continental margins.
Magmas with these geochemical characters are generally ascribed
to the subduction-related environments and the role of crustal
source component in the genesis of these rocks (e.g. Rogers and
Hawkesworth, 1989; Sajona et al., 1996). High Th/Yb ratios corre-
lated with high values for La/Yb are consistent with continental arc
magmas (Fig. 8c). In summary, the geochemical and mineralogical
data of the Astaneh rocks indicate a subduction-related environ-
ment. These data are consistent with previous studies on the plu-
tonic rocks in the Sanandaj–Sirjan Zone (Ahmadi Khalaji, 2006;
Ahmadi-Khalaji et al., 2007; Arvin et al., 2007). Our results are in
good agreement with the general model of Berberian (1983) and
Please cite this article in press as: Tahmasbi, Z., et al. Petrologic and geochemi
Journal of Asian Earth Sciences (2010), doi:10.1016/j.jseaes.2010.03.001
Shahabpour (2005), which assumed that the Sanandaj–Sirjan
calc-alkaline magmatic arc formed over a high angle subducting
oceanic slab in the Neo-tethyan subduction zone during Late Trias-
sic to Late Cretaceous time.
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8. Conclusions

The Astaneh rocks belongs to metaluminous to slightly peralu-
minous, medium to high-K calc-alkaline series, and displays geo-
chemical characteristics typical of volcanic arc granites related to
an active continental margin. Two separate magmatic cycles have
been identified. One is represented by diorites that form a part of
the enclave population for which a primary origin from an en-
riched mantle source is proposed. The second cycle is more silicic.
It is formed by Qtz-diorites and granodiorites, the most abundant
rocks in the Astneh intrusion. An origin by partial or total melting
of a composite source with amphibolites and sediments (subduct-
ed mélange) is proposed for this silicic magmatic cycle. Direct
melting or fractionation from a diorite source is very unlikely.
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