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Abstract

The relation of the recently proposed E(5) critical point symmetry with the

interacting boson model is investigated. The large-N limit of the interacting

boson model at the critical point in the transition from U(5) to O(6) is ob-

tained by solving the Richardson equations. It is shown explicitly that this

algebraic calculation leads to the same results as the solution of the Bohr

differential equation with a β4 potential.
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The study of phase transitions is one of the most exciting topics in Physics. Recently the

concept of critical point symmetry has been proposed by Iachello [1]. These kind of sym-

metries apply when a quantal system undergoes transitions between traditional dynamical

symmetries. In Ref. [1] the particular case of the Bohr Hamiltonian [2] in Nuclear Physics

was worked out. In this case, in the situation in which the potential energy surface in the

β-γ plane is γ-independent and the dependence in the β degree of freedom can be modeled

by an infinite square well, the so called E(5) symmetry appears. This situation is expected

to be realized in actual nuclei when they undergo a transition from spherical to γ-unstable

deformed shapes. The E(5) symmetry is obtained within the formalism based on the Bohr

hamiltonian, but it has also been used in connection with the Interacting Boson Model

(IBM) [3]. Although this is not the form it was originally proposed [1], it has been in fact

argued that moving from the spherical to the γ-unstable deformed case within the IBM one

should reobtain, at the critical point in the transition, the predictions of the E(5) symmetry.

This correspondence is supposed to be valid in the limit of large number N of bosons, but

the calculations with the IBM should provide predictions for finite N as stated in Ref. [4].

In this letter, on one hand we calculate exactly the large N limit of the IBM at the critical

point in the transition from U(5) (spherical case) to O(6) (deformed γ-unstable case). On

the other hand, we solve the Bohr differential equation for a β4 potential. Both calculations

lead to the same results and are not close to those obtained by solving the Bohr equation for

an infinite square well (E(5) symmetry). We also show with two schematic examples that

the corrections arising from the finite number of bosons are important. With this in mind,

the IBM calculations still provide a tool for including corrections due to the finite number

of bosons.

In Ref. [1] the Bohr Hamiltonian is considered for the case of a γ independent potential,

described by an infinite square well in the β variable. In that case, the hamiltonian is

separable in both variables and if we set

Ψ(β, γ, θi) = f(β)Φ(γ, θi) (1)
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where θi stands for the three Euler angles, the Schrödinger equation can be split in two

equations. The solutions of the (γ, θi) part were studied in Ref. [5] and tabulated in Ref. [6].

Iachello solved the β part and found that the f(β) functions are related to Bessel functions.

The main results are illustrated in Table I and Fig. 1 of Ref. [1]. These results are obtained

from a geometrical picture and we would like to investigate its relation with the interacting

boson model.

The geometrical interpretation of the abstract IBM hamiltonian can be obtained by

introducing a coherent state [7–9] which allows to associate to it a geometrical shape in

terms of the deformation variables (β, γ). The basic idea of this formalism is to consider

that the pure quadrupole states are globally described by a boson condensate of the form

|g; N, β, γ〉 =
1√
N !

(Γ†
g)

N |0〉 , (2)

where the basic boson is given by

Γ†
g =

1√
1 + β2

[

s† + β cos γd†
0 +

1√
2
β sin γ(d†

2 + d†
−2)

]

, (3)

which depends on the β and γ shape variables. The energy surface is defined as

EN (β, γ) = 〈g; N, β, γ|Ĥ|g; N, β, γ〉 , (4)

where Ĥ is the IBM hamiltonian. Here we are interested in the case in which the hamiltonian

undergoes a transition from U(5) to O(6) and, consequently, the corresponding potential

energy surfaces are γ-independent.

In order to investigate the geometrical limit of the IBM in the transitional class going

from U(5) (spherical) to O(6) (deformed γ-unstable) the most general (up to two-body

terms) IBM hamiltonian is,

Ĥ = εdn̂d + κ0P̂
†P̂ + κ1L̂ · L̂ + κ2Q̂

χ=0 · Q̂χ=0 + κ3T̂3 · T̂3 + κ4T̂4 · T̂4 (5)

where n̂d is the d boson number operator, and
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P̂ † =
1

2
(d† · d† − s† · s†), (6)

L̂ =
√

10(d† × d̃)(1), (7)

Q̂χ=0 = (s† × d̃ + d† × s̃)(2), (8)

T̂3 = (d† × d̃)(3), (9)

T̂4 = (d† × d̃)(4). (10)

The scalar product is defined as T̂L·T̂L =
∑

M(−1)M T̂LM T̂L−M , where T̂LM corresponds to the

M component of the operator T̂L. The operators d̃m = (−1)md−m and s̃ = s are introduced

to ensure the correct tensorial character under spatial rotations. The corresponding energy

surface is obtained from Eq. (4)

E(N, β) =
N

1 + β2

[

5κ2 + β2(εd + 6κ1 + κ2 +
7

5
κ3 +

9

5
κ4)

]

+
N(N − 1)

(1 + β2)2

[

(1 − β2)2

4
κ0 + 4β2κ2 +

18

35
β4κ4

]

. (11)

The condition to find the critical point is

(

d2E(N, β)/dβ2
)

β=0
= 0 (12)

and gives the following relation among the hamiltonian parameters

εd = −6κ1 + 4κ2 −
7

5
κ3 −

9

5
κ4 + (N − 1)(κ0 − 4κ2). (13)

Thus the most general energy surface at the critical point in the U(5)–O(6) phase transition

is

Ecrit(N, β) = 5Nκ2 + N(N − 1)

[

κ0

4
+
(

κ0 − 4κ2 +
18

35
κ4

)

β4

(1 + β2)2

]

. (14)

These expressions are consistent with those obtained in Ref. [10] for a slightly different

hamiltonian. Note that (14) completely defines the form of the potential up to a scale and

an energy translation. The expansion of this critical energy surface around β = 0 is

Ecrit(N, β) ≈ 5κ2N +
κ0

4
N(N − 1) + N(N − 1)

(

κ0 − 4κ2 +
18

35
κ4

)

[

β4 − 2β6 + . . .
]

. (15)
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whose leading term is β4. Alternatively, one can carry out the transformation β2/(1+β2) →

β̄2 and finds β̄4 as the critical potential.

In order to make some calculations to illustrate the large N limit in the IBM at the

critical point in the U(5)–O(6) phase transition and the corresponding finite N corrections,

we propose two schematic transitional hamiltonians. The first one is

ĤI = xn̂d +
1 − x

N − 1
P̂ †P̂ . (16)

The corresponding energy surface is obtained from Eq. (11) with εd = x, κ0 = 1−x
N−1

and all

the rest of the parameters equal to 0,

EI(N, β) = N



x
β2

1 + β2
+

1 − x

4

(

1 − β2

1 + β2

)2


 . (17)

The condition to localize the critical point, Eq. (13), gives in this case xI
c = 0.5. In Fig. 1

we represent as an example the energy surfaces for the hamiltonian (16) (left panel) with

three selections for the order parameter x: one at the critical point, one above that value

and one below it. For x > xc an equilibrium spherical shape is obtained, while for x < xc

the equilibrium shape is deformed. The value xc gives a flat β4 surface close to β = 0.

The second schematic hamiltonian we propose is

ĤII = xn̂d −
1 − x

N
Q̂χ=0 · Q̂χ=0 , (18)

The corresponding energy surface is obtained from Eq. (11) with εd = x, κ2 = −1−x
N

and

all the rest of the parameters equal to 0,

EII(N, β) = −(5 + β2)
1 − x

1 + β2
+ N x

β2

1 + β2
− 4(N − 1)(1 − x)

β2

(1 + β2)2
. (19)

Condition (13) gives in this case the critical point xII
c = 4N−8

5N−8
that in the large N limit gives

4/5.

In Fig. 1 the corresponding energy surfaces are plotted in the right panel. Same com-

ments as in the preceding case are in order. Thus, we conclude that, in the transition from

spherical systems to γ-unstable deformed ones, the critical point in IBM should be associated
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to a β4 potential rather that to an infinite square well. The question is then how different

are the E(5) predictions from those obtained with a β4 potential? In order to investigate

this point we have solved numerically the Bohr hamiltonian for a potential β4. The results

for energies are presented in Table I and in Fig. 2. Here we keep the label ξ used in the

E(5) case. It is related to the label nβ = nd−τ
2

, sometimes used in the U(5) classification,

by nβ = ξ − 1, where nd is the U(5) label and τ is the O(5) label. Particularly interesting

are the energy ratios given in Table II which have been used in recent works to identify

possible nuclei as critical. In this table the E(5) and β4 values are shown for comparison.

The labeling of the states is Lξ,τ .

Besides the excitation energies, B(E2) transition probabilities can be calculated using

the quadrupole operator

T (E2)
µ = t β

[

D(2)
µ0 (θi) cos γ +

1√
2

(

D(2)
µ2 (θi) + D(2)

µ−2(θi)
)

sin γ

]

, (20)

where t is a scale factor. In Table II two important B(E2) ratios are given for E(5) and β4

cases. In Fig. 2 the B(E2) values for a β4 potential are shown besides the arrows. They are

given normalized to the B(E2; 21,1 → 01,0) value which is taken as 100.

Comparing Figs. 1 and Table I in Ref. [1] with the present Fig. 2 and Table I we

can observe important differences between E(5) and β4 potentials. In order to see which

is the actual large N limit of IBM we have performed calculations with the IBM codes for

hamiltonians HI (Eq. 16) and HII (Eq. 18) at the critical point for different number of

bosons. These codes allow to manage a small number of bosons, typically 20. In Fig. 3 the

results of these calculations are shown with a full line for Eq. (16) and with a dashed line

for Eq. (18). The values for E(5) and β4 potentials are shown as dotted lines as references.

The last two panels labeled with R1 and R2 refer to the B(E2) ratios presented in Table II.

From Fig. 3 it is clear that the finite N effects are important and depend on the precise

form of the hamiltonian used. However, it is difficult to conclude whether E(5) or β4 is the

large N limit of the corresponding IBM hamiltonian. It is necessary to perform calculations

with larger values of N. Fortunately, Dukelsky et al. [11] have recovered an exactly solvable
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model for pairing proposed by Richardson in the 60’s [12]. Following Ref. [11] we have

solved the Richardson’s equations and obtained the exact eigenvalues for the hamiltonians

(16) and (18) up to N = 1000, so approaching the large N limit of the corresponding IBM

hamiltonians. Details of this method will be given in a longer publication. In Fig. 4 we

present the results of these calculations for energy ratios up to N = 1000 and B(E2) ratios

up to N = 40 together with the corresponding values for the E(5) symmetry and the β4

potential. From this figure it clearly emerges that the large N limit for the studied IBM

hamiltonians corresponds to the β4 potential. Both hamiltonians Eq. (16) and Eq. (18)

converge to the same results in the large N limit, although the corresponding corrections for

finite N are quite different (see Fig. 3).

We conclude that the large N limit of the IBM hamiltonian at the critical point in

the transition from U(5) (spherical) to O(6) (deformed γ-unstable) is represented in the

geometrical model by a β4 potential. The results are similar but not close to those of an

infinite square well as in the E(5) critical point symmetry. The analysis of the IBM energy

surface followed by an IBM calculation, as presented in Ref. [13], can provide the appropriate

finite N corrections and thus lead to the identification of nuclei at the critical points. In that

work a systematic study of the properties of the Ru isotopes allowed to select the appropriate

form of the hamiltonian. Once it is fixed the construction of the energy surfaces identify

the critical nucleus (104Ru in that case). The corresponding IBM calculation for the critical

nucleus then provides the correct finite N corrections. We believe that this is a fundamental

step if we wish to robustly identify the spectroscopic properties that signal the presence of

criticality in the atomic nucleus.
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TABLES

TABLE I. Excitation energies for a β4 potential relative to the energy of the first excited state.

ξ = 1 ξ = 2 ξ = 3 ξ = 4

τ = 0 0.00 2.39 5.15 8.20

τ = 1 1.00 3.63 6.56 9.75

τ = 2 2.09 4.92 8.01 11.34

τ = 3 3.27 6.26 9.50 12.95

TABLE II. Energy and B(E2) transition rate ratios in the E(5) symmetry and for the β4

potential.

E41,2
/E21,1

E02,0
/E21,1

E01,3
/E21,1

E02,0
/E01,3

R1 =
B(E2;41,2→21,1)
B(E2;21,1→01,0) R2 =

B(E2;02,0→21,1)
B(E2;21,1→01,0)

E(5) 2.20 3.03 3.59 0.84 1.68 0.86

β4 2.09 2.39 3.27 0.73 1.82 1.41
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FIG. 1. Representation of the energy surfaces for N = 20 as functions of the shape parameter

β obtained for two schematic hamiltonians, Eq. (16) (left panel) and Eq. (18) (right panel). In

each case three values of the order parameter are presented, one at the critical value, one above and

one below that value. The curves have been arbitrarily displaced in energy so as to show clearly

the behavior.
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