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Abstract— The life time of offshore wind farm is 
around 20 years. After that, the whole farm should be 
decommissioned which is also one of the main factors that 
contribute to the high investment. In order to make a cost-
effective wind farm, a novel optimization method for 
decommission is addressed in this paper. Instead of 
abandoning the foundations after the wind farm is running 
out of its life cycle, the proposed method can make good 
use of the existing facilities so that the cost of energy 
(COE) can be reduced. The results show that 12.93% 
reduction of COE can be realized by using the proposed 
method. 

Index Terms— offshore wind farm; optimization; 
decommission strategy, cost of energy (COE). 

Nomenclature 
V0 [m/s]                input wind speed at the wind turbine (WT)
Vx [m/s] wind speed in the wake at a distance x 

downstream of the upstream WT
R0 [m]  radius of the WT’s rotor  
Rx [m] generated wake radius at x distance along 

the wind direction 
Soverlap	[m ]   affect wake region 
Ct thrust coefficient 
kd decay constant 
Vn [m/s] wind speed at the blade of  downstream WT 

considering the impacts of several upstream 
WTs 

ρ [kg m3⁄ ] air density,  
Cp,i power coefficient of WT i 
Pm,i [MW] mechanical power generated by WT i
vi [m/s] wind speed at WT i 
Ptol,t [MW] total power production during interval t
TE [day] duration interval for energy yields 

calculation 
Tt [h] duration when the wind farm generating 

power of ,  
Etol,av [MWh] mean energy yields in one year 
t [hour] energy yields calculation time 
(xi, yi),	 xk ,	yk) coordinate of WT i and k 
Etol,av(xi, yi) 
[MWh] 

mean energy yields in one year when the 
WTs’ positions are (xi, yi) 

Ap, Bp  coefficient of WT cost model
CWT, Cf cost coefficient of WT and foundation
xmin, ymin minimum boundary of wind farm 
xmax, ymax maximum boundary of wind farm
dmin minimal distance between any pair of WT
R index of constraint function 
NWT,Nf total number of WTs and foundations
C total number of penalty functions that

should be used in the problem for 
unrestricted sea area 

φ(xi, yi) penalty function for WT i 
w inertia weight  
l1,  l2 learning factors 
r1, r2 stochastic numbers which can generate 

some random numbers within [0, 1]
qi

k, qi
k+1 [m] position of ith particle at iteration k and k+1 

respectively 
vi

k, vi
k+1 [m] speed of ith particle at iteration k and k+1 

respectively 
Qi

k [m] best position of ith particle at iteration k 

Qg
k [m] best position of all particles (the swarm) at 

iteration k
 Qi best position found so far by the ith particle
Qg   best position found so far by the swarm

I. INTRODUCTION  

Offshore wind farms have advantages of higher energy 
efficiency and less impact on residents compared with onshore 
wind farms, however, the investment is high. In order to make 
more profits, many works have been done on optimization of 
offshore wind farm layout.  

Due to the impact of wake effect, the wind speed reached at 
the downstream WTs will be reduced which incurs the energy 
losses of whole wind farm. To optimize the wind farm layout, 
two models are widely used. The first model is grid model 
which partition the whole wind farm into numbers of grids and 
the WT positions are selected from the center of some of these 
grids [1]-[5]. The other is coordinate model which used 
Cartesian coordinate system to represent the position of each 
WT   [6]-[11]. The initial work to minimize the wake losses by 
placing the WTs in an optimized way is done by Mosetti et al 
who used genetic algorithm (GA) to optimize the WT layout 
[1]. Later, the authors of [2] improve this method by 
considering the possibility of installing more WTs in the same This work has been (partially) funded by Norwegian Centre for Offshore

Wind Energy (NORCOWE) under grant 193821/S60 from Research Council
of Norway (RCN). NORCOWE is a consortium with partners from industry
and science, hosted by Christian Michelsen Research. 



area. Many researches have been done on WT position 
optimization and the results were compared with the above two 
layouts [3]-[5]. The Monte Carlo algorithm was demonstrated 
to be outperformed by GA in solving this problem by assuming 
the wind direction is constant in [3] while [4] shows the 
advantages of using Intelligently Tuned Harmony Search 
algorithm for WT locating. In [5] a binary particle swarm 
optimization method with time-varying acceleration 
coefficients (BPSO-TVAC) is proposed and the obtained 
results are compared with other 5 meta-heuristic algorithms. 
The above methods were proved to be effective in increasing 
the power production, however, some possible solutions have 
already been neglected using grid model. The layout was 
expected to be further optimized by giving WTs more freedom 
to move within predefined area.  

The first paper that used coordinate model to solve wind 
farm layout optimization problem (WFLOP) was addressed in 
[6]. Several WTs are optimized placed within a predefined 
circular shape wind farm. Similarly, [7] used colony 
optimization algorithm to solve the WFLOP and was 
demonstrated to be outperformed than [6]. A particle filtering 
approach was presented in [8] and the optimized layout was 
compared with the obtained layout in [6] and [7]. In addition to 
heuristic optimization, some attempts to use mathematical 
programming to solve WFLO problem were done in [9]-[11]. 
In [9], a random search (RS) algorithm was proposed which 
showed better performance by GA on computational time, 
moreover, the RS algorithm was also applied to design the 
Horns Rev I wind farm layout so that the energy yields can be 
increased. Also, Horns Rev I wind farm layout was selected as 
the benchmark and compared with the optimized layout 
obtained by sequential convex programming in [10]. Since the 
WFLOP is non-convex, global optimal solution cannot be 
guaranteed. In order to get an even near optimal solution, a 
mathematical programming method was adopted in [11] which 
used heuristic method to set an initial layout then used 
nonlinear mathematical programming techniques to get a local 
optimal solution.  

As it is known, the life time of offshore wind farm is around 
20 years [12]. After that, the WT cannot be used. The above 
works focused on maximizing the energy yields of wind farm 
without considering the decommission cost. In consideration of 
marine ecological environment and ensure the safety of 
navigation and other marine function, offshore wind farm 
should be decommissioned after stop production [13], however, 
the foundation of WT can still be used at that time. It is 
possible to use the existing foundations to establish a new wind 
farm so that the cost of decommission as well as the cost of 
installing new WTs can both be saved.  

In this paper, a new decommission strategy is proposed 
which can reduce the cost of energy of the wind farm 
compared with the cost of establishing a new one. Instead of 
abandoning the foundations, new WTs can be installed on the 
original location. In consideration of the reduction of the 
foundation intensity after the wind farm life cycle, smaller 
WTs were selected to install on the original place. In order to 
have the same wind farm capacity, more WTs were elected on 
new locations and the locations were decided using adaptive 
PSO (APSO). A regular shape reference wind farm is chose as 

the study case and the result show that the proposed method is 
an effective way to reduce the cost of energy. 

The paper is organized as follows. In Section II, the wind 
farm models are proposed at first. Followed by which is the 
objective function. The methodology is discussed in Section III. 
The simulation results and analysis are presented in Section IV 
and Conclusions are given in Section V.  

I.  MODELLING OF WIND FARM 

In this section, the model of calculating energy yields 
considering wind speed deficit is introduced at first. Then the 
cost model and objective function are specified.   

A.  Wake Model 

In this paper, Jensen model is selected to estimate the wind 
speed deficit. The analytical equations for calculating the wake 
velocity are in the following [14]. 

     
2   
       

overlap0
x 0 0 t

x 0

SR
V =V -V 1- 1-C

R S
            (1) 

x 0 dR =R +k x                                         (2) 
The decay constant, kd , describes the feature of the wake 

expansion, the recommended value for offshore environment 
should be 0.04 [14]. 

The above equations described how to calculate the wind 
speed behind one WT. The interaction of WTs within whole 
wind farm could also be described based on Katic et al’s ‘sum 
of squares of velocity deficits’ method. The analytical equation 
is as follow [15]: 
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The energy yields calculation considering variation of both 
wind velocity and wind direction has been done in a previous 
work. The detailed information can be seen in [16]. 

B.  Energy Production of Offshore Wind Farm 

In [17], the power extracted by individual WT is given as:  
 2 3 6

, ,0.5 R /10m i p i iP C v                       (4) 

By assuming a maximum power point tracking (MPPT) 
control strategy [18], the power production of each WT can be 
found by (4). The velocity at each WT is related to the WTs’ 
positions ( xi, yi ). Hence, the total power production that 
generated by the WTs can be written as: 

N

tol m,爄
i

i i
=1

(P = xP , y )                               (5) 

Considering (1) to (5), the energy yields of the wind farm 
can be rewritten as:  
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C.  Cost Model 

In this paper, the cost of WT which includes a 33kV 
transformer is set up according to its rated power. The 
mathematical equations can be written as [19]: 

 WT ratedPp pC A +B                                (7) 

In this model, the cost of the WT is assumed to be increased 
linearly and the cost of foundation for each WT is 6.075 
MDKK, which is assumed independent of water depth and size 
and type of WT [19]. 

D.  Objective Function 

In this work, the performance of the new wind farm using 
existing foundations will be compared with the ordinary one 
based on the evaluation index, cost of energy (COE) as follow: 

Obj:          
,

min( )
tol av

WT WT f f

E
COE

C N C N



                      (8) 

Contraints:              min max , (1, N )i WTx x x i                   (9) 

min max , (1, N )i WTy y y i                 (10) 

 2 2
minF (x , y ) (x x ) (y ) 0,r i i i k i ky d i k             (11) 

II.  METHODOLOGY 

Presently, heuristic algorithms are widely used in solving 
the non-linear problem. In this paper, APSO is selected as the 
optimization method. The theory and the optimization 
procedure are presented in the following. 

A. PSO 

The PSO algorithm was firstly proposed by Kennedy and 
Eberhart [20] in 1995. As one of the evolutional algorithms, it 
has a good performance of finding a near optimal solution for 
the nonlinear optimization problem. The global version PSO 
(GPSO) can be expressed in following equations [21].  

              k+1 k k k kk
ii i 1 1 i 2 2 g iv =wv +l r -q Q+l r -qQ         (12) 

1 1k k k
i i iq q v                                  (13) 

In PSO, the possible solutions (particles) will be coded into 
swarm and the size of swarm means the number of the 
particles, in other words, the number of possible solutions in a 
swarm is decided by the swarm size. As can be seen in (12), 
there are three parts. The first part represents the velocity of 
previous particle. A larger w ensures a stronger global 
searching ability while smaller w ensures the local searching 
ability. The other two parts are used to ensure the local 
convergence ability of the algorithm. Hence, the final result is 
sensitive to the setting of the control parameters (l1,	l2and w). 
In order to reduce the sensitivity of final result to control 
parameters, many works have been done on the parameter 
control methods for w which can be concluded into two 
categories [22]: simple rule based parameter control [23]-[26] 
and adaptive parameter control strategy [27]. The first strategy 
indicate that the PSO performance can be improved by using 
linear, non-linear or fuzzy rule inertia weight while the other 
introduce evolutionary state estimation (ESE) technique [28] 

to further improve the performance of PSO. In this project, the 
WT positions were decided using the method in [27] .  

B. Penalty Function  

The heuristic algorithm as PSO can be used to solve the 
unconstrained optimization problem within the predefined 
area. In this case, (9) and (10) can be satisfied by PSO, 
however, (11) can be violated if no specific condition are 
defined. Conversely, if the particle is limited to follow (11) 
then the particles might be out of predefined boundary. In 
order to ensure the feasibility of the solution and simplify the 
numerical calculation, a penalty function method is used and 
defined as follow: 

  (x , y ) min 0, F (x , y )i i r i i                      (14) 

Then, the objective function for unrestricted sea area wind 
farm layout optimization can be rewritten as: 

1

(COE PF (x , y )


 
C

i i
i

max                      (15) 

The penalty function (11) represents the distance between 
the infeasible solution and the feasible region. φ(xi, yi) = 0 
means that all the WTs’ positions are found within the 
predefined area, F, in other words, the solution is feasible, 
while φ(xi, yi) > 0 indicates that some WTs’ positions are out 
of construction area boundary. By using this method, (11) can 
be easily realized. The advantage of using penalty function is 
that the constrained optimization problem could be 
transformed into an unconstrained one so that the 
computational time can be reduced. In this paper, the penalty 
factor, PF, is determined as 1000. The value of this factor is 
selected by trial and error. 

C. Optimization Framework 

The optimization framework is shown in Fig.1. 
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Figure. 1. Optimization flowchart based on APSO 



The parameters of APSO are initialized in the first step. The 
existing WT and the new optimized WT positions will be 
integrated in Fitness Function and then the energy yields as 
well as the cost was calculated based on this wind farm layout. 
The penalty function will be used to ensure (11). After that, 
the COE will be calculated based on (4)-(8). The first 
calculated COEs as well as the corresponding particles 
(solutions) will be saved as the initial particle population 
which is the basis for comparison later. Then the particles will 
be updated and transferred into the fitness function by 
following the same procedure. The calculated result can be 
obtained and send out to the Fitness Function for comparison. 
Or it may stop if the maximum iteration is reached. Finally, a 
series of new installed WT positions will be decided.  

Climatological information: The data is obtained from the 
work of the Norwegian Meteorological Institute [29], in which 
the wind speeds are sampled per 3 hours. For convenience of 
calculation, the raw data is formulated into a wind rose which 
is used to calculate the energy production over a year. 

II. CASE STUDY 

The simulation is implemented on the platform of Matlab 
software. One study case was adopted to verify the feasibility 
of the proposed method.    

A. Scenario I: Rebuild on the Original Locations 

The reference wind farm was established with 80, Vestas 
V80-2.0 MW (80m rotor diameter) [30] WTs which can be 
seen in Fig. 2. The total power capacity is 160MW. The 
locations of WTs are predefined within a 7D*7D regular 
shaped wind farm which means that the distance between each 
two WTs are 7 rotor diameters.  

 
Figure. 2. Reference wind farm layout 

The red stars show the WT positions while the blue line is 
the boundary for installing new WTs to rebuild the wind farm. 
Monopile foundation was adopted since the average water 
depth is assumed to be 10m. Since the design of WT has been 
developed during the decades of wind farm operating period, 
the present 2MW WT which has a lower cut-in speed can 
generating more power when the incoming wind speed is 
lower compared with the old version WT. Hence, the wind 
farm was rebuilt using the original locations with 2MW Vestas 
V90-2.0MW WT [31]. Since the foundation has been used for 
more than 20 years, strengthen cost is required. It is assumed 
that the cost for strengthening foundation is 10% of the 
foundation cost. 

B. Scenario II: Decommision Optimization for Reference 
Wind Farm Wind Farm 

In this work, the existing foundation will be used. For safety 
consideration, the Vestas V90-1.8MW WT [31] will be 
installed on the original place instead of 2MW WT. In order to 
have the same power capacity as original one has. 9 WTs will 
be installed and the new installed WT positions will be 
optimized considering the wake effect using APSO. Since 
smaller WTs are adopted in this case. The cost of 
strengthening foundation is assumed to be only 5%. The 
optimized layout is shown in Fig. 3. 

 
Figure. 3. Optimized wind farm layout 

In Fig. 3, the red stars showed the original WT which has 
been replaced using 1.8 MW WTs while green plus indicated 
the nine new installed WT positions. The optimized WT 
positions are found by APSO and the fitness value 
corresponds to each iteration is illustrated in Fig. 4. 

TABLE I.  RESULTS COMPARISON 

 Benchmark Scenario I  Scenario II 

Costs of WTs (MDKK) 991.44 991.44 982.15 

Costs of 
renovation/bulid 

foundations (MDKK) 
600 48.6 79.0 

Total cost 1591.4 1040.04 1061.2 

Energy yields (GWh) 764.90 764.90 806.32 

 CoE (DKK/MWh) 2080.5 1359.7 1316.1 

 
Figure. 4. Fitness Value corresponds to each iteration 

In Fig. 4, the fitness value was stabilized around 810 after 
90th iteration using APSO algorithm. In Table I, the 
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benchmark is the common way of decommissioning which 
rebuild all the foundations on original place. It can be seen 
that the total cost is decreased by 33.32% using proposed 
method compared with benchmark while the cost will be 
increased by 2.03% compared with scenario I, however, by 
installing 9 more WTs with optimized locations, the total 
energy yields can be increased by 5.42% compared with 
benchmark and scenario I which resulted in the 36.47% and 
3.21% reduction of COE at last.  

III. CONCLUSIONS AND FUTURE WORK 

The offshore wind farm will be decommissioned in order to 
protect marine ecological environment after approximately 20 
years’ operation. This is mainly due to the fact that the WT 
cannot be used after this period. However, the foundation is 
always overdesigned. In order to make best use of the 
foundation and save the investment, a new decommission 
strategy is proposed in this paper. Instead of paying for 
abandoning the foundations, a new wind farm can be 
established using the original foundations. From simulation 
results, it can be seen that the decommission strategy can help 
reduce the cost of energy a lot (14.94% in the study case) and 
by merely installing 9 more WTs, the energy yields of whole 
wind farm can be significantly increased by 17.20%. The 
potential value of this method will not merely on foundations 
since the life time of parts of the WTs, such as tower body can 
also be longer than 20 years. The recycling idea in offshore 
wind farm proposed in this paper could show more 
commercial benefits in future. 
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