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Abstract—The energy loss in a wind farm (WF) caused 

by wake interaction between wind turbines (WTs) is quite 
high, which can be reduced by proper active power 
dispatch. The electrical loss inside a WF by improper active 
power and reactive power dispatch is also considerable. In 
this paper, a coordinated active power and reactive power 
dispatch strategy is proposed for a Permanent magnet 
synchronous generator (PMSG) based WF, in order to 
maximize the total output power by reducing the wake 
effect and losses inside the devices of the WF, including the 
copper loss and iron loss of PMSGs, losses inside converters 
and transformers of WTs and the losses along the 
transmission cables. The active power reference and 
reactive power reference of each WT are chosen as the 
optimization variables and a partial swarm optimizing 
(PSO) algorithm is used for solving the problem. The 
proposed strategy is compared with traditional strategies in 
a designed WF. Simulation results show the effectiveness of 
the proposed strategy. 

Keywords—wind farm coordinated power dispatch; energy 

maximizing; wake effect; loss minimizing; PMSG 

I. INTRODUCTION  

Wake effect in a wind farm (WF) can cause a high level of 
energy loss, the study in [1] reports an average energy loss of 
12% in an offshore WF caused by the wake. There are two 
types of wake control method for a WF: redirecting the wakes 
by yaw control [2-5] and reducing wake interaction by 
adjusting the axial induction [6-14]. The first method is studied 
in [2-4] and recently developed by the work in [5], where a 
control-oriented wake model called FLORIS is proposed. Most 
of the research works focus on the second method. These 
works maximize the total captured power of WFs by 
optimizing the control settings to each WT. The control 
variables are chosen as the axial induction factors [6], [7] the 
yaw offset angle, the thrust coefficient [8], the pitch angle [9], 
the rotational speed (tip speed ratio), or the combination of two 
of them as the control variables [10-13]. However, WT 
derating control strategy was not properly considered in these 
works. In [14], the active power reference of each WT is 

chosen as the optimization variable, and a Max-Ω WT control 
strategy proposed in [15] is adopted for derating control. 
Choosing the active power reference as the control variables is 
more suitable for the optimal power flow problems in power 
system engineering. 

Besides the energy loss caused by wake effect, the 
electrical loss inside a WF is also considerable. The electrical 
losses inside the devices in a WF are related to the active and 
reactive power flows, which can be controlled by the WF 
controller or WT controllers. At the WF control level, the 
dispatch strategies which are used to distribute the demanded 
active and reactive power will decide the total losses. 
Proportional dispatch is a commonly used dispatch strategy for 
active power or reactive power [16-18]. This method is easy to 
implement and is unlikely to exceed the power limit of each 
WT. However, it cannot assure a high efficiency of the system. 
An optimal dispatch strategy for the reactive power is proposed 
in [19, 20], which includes the losses along the transmission 
cables and the transformers on WTs into the objective function. 
However, losses in the WT energy conversion systems were 
not considered. In [21], losses from wind energy conversion 
systems were included into the optimization, and an optimal 
dispatch of reactive power is proposed for total loss 
minimization. The above strategies only focus on active power 
dispatch or reactive power dispatch. However, the active power 
and reactive power are also related by the current and voltage 
limits of the WT energy conversion systems, so they should be 
considered together. The combined solution was proposed in 
[22, 23], where active and reactive power dispatch were 
optimized together mainly to minimize the electrical power 
losses in the transmission system.  

Most of these works only focus on minimizing the energy 
loss caused by wakes or minimizing the electrical loss caused 
by power flows. In [14], these two objectives were combined 
together to realize an optimized active power dispatch, but only 
the electrical losses in the transmission cables were considered. 
However, the electrical losses inside the wind energy 
generation systems are higher. For a Permanent magnet 
synchronous generator (PMSG) based WT, which is becoming 
popular in wind turbine applications, the electrical losses 
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include the copper loss and iron loss of PMSGs, losses inside 
the converters and losses in the transformers.  

In this paper, a coordinated active power and reactive 
power dispatch strategy is proposed for a PMSG based WF, 
which combined the purpose of minimizing the energy loss 
caused by wake effects and the purpose of minimizing the 
electrical losses caused by power flows. The electrical losses 
include not only the losses along the transmission system, but 
also the losses inside the energy conversion systems. The 
models of WTs, wakes and device losses are given and the 
optimization problem is formulated and solved by partial 
swarm optimizing (PSO). The proposed strategy is compared 
with traditional strategies in a designed WF. Simulation results 
show the effectiveness of the proposed strategy. 

This paper is organized as follows: Section II describes the 
WF model.  Section III shows the formulation of the 
optimization problem and the solving method. The simulation 
results of proposed strategy are given and discussed in Section 
IV, and finally conclusions are drawn in Section V. 

II. WIND FARM MODEL 

The wake model and the power loss model on transmission 
cables are specified in this section. The WT model using 
traditional control strategy with no derating is also illustrated 
and will be used as a baseline for comparison. 

A.  Wind Turbine Model 

The WT can be described using a static model, which is 

based on the look-up tables of the power coefficient  ,PC    

and the thrust coefficient  ,TC   . Then, the WT mechanical 

power 
mecP  can be calculated using [24],    

 2 3 ,
2

mec pP R v C

                         (1) 

where   is the air density, R  is the rotor radius, v  is the 

wind speed,   is the blade pitch angle and   is the tip-speed 

ratio, which can be expressed by  

R v  ,                                     (2) 

where   is the rotor rotational speed.  

The control strategy decides the steady state values of 

 and   under a certain v , thus deciding the  , and 
PC  and 

TC  then. The normal control of WT in the whole wind speed 

region can be divided into five regions, more details can refer 
to [26]. However, under derating operation, the control 
strategies need to be modified. In derating operation, the 
control target is to maintain the captured power at a reference 
value, usually lower than the available power. The WT 
normally uses torque control to regulate the power captured by 
the rotor, which increases the rotational speed. After the 
rotational speed is beyond its limits, the WT keeps the 
rotational speed at its limit and turns to pitch control. 

B.  Wake Model 

The wake models can describe the aerodynamic interaction 
between WTs in the WF. The multiple wake model based on 
Jensen model is a common model to simulate the wakes, which 
can be expressed in the following equations [27], [28]:   

 
2
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   0 * ij ijR R k L .                               (4) 

All the parameters have the same meaning as in the 
references. The wind velocity at the WT at row n, column m 
can be derived as:  

_ _
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i j
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v v

v 

 
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C.  PMSG Loss Model 

The steady state model of the surface-mounted PMSG in 
the magnet flux reference frame can be expressed as [29]: 

sd s sd s sq

sq s sq s sd

u R i L i

u R i L i



 

  

   
                           (6) 

Where 
sR  and 

sL  are the generator resistance and 

inductance respectively,   is the generator rotational speed, 

and   is the amplitude of the flux induced by the permanent 

magnets of the rotor in the stator phases. The electromagnetic 
torque can be given by [29] 

3

2
e sqT p i                                        (7) 

where p  is the number of pole pairs. The q-axis current is 

proportional to the generator torque. The d-axis current is 
controlled to be zero to maximize the torque [30]. The copper 
loss can be calculated using 

2
3Cu s sP R I                                      (8) 

Where 
sR  is the armature phase resistance and sI is the 

RMS magnitude of the phase current. And the iron losses is 
calculated using the relation [30] 

2

1Fe elP k                                          (9) 

Where 
el  is the electrical speed of the machine and 

1k  is 

a constant extracted from the iron losses at rated speed, and is 
found to be 0.1 [30].  

D.  Converter Loss Model 

The losses in the converter, which consists of transistors 
and reverse diodes, can be divided into switching losses and 
conducting losses [31]. According to [31], the losses in a 
converter can be expressed as 

2

con l rms l rmsP a I b I                               (10) 



where rmsI  is the rms value of the sinusoidal current at the 

converter ac terminal, and la  and lb  are the power module 

constants and can be expressed as 

, ,

6 2 ON OFF rr
l IGBT sw sw

C nom C nom

E E E
a V f f

I I

 
    

 

        (11) 

3l IGBTb r                                       (12) 

where  IGBTV  is the voltage across the collector and emitter of 

the IGBT, ON OFFE E  is the total turn-on and turn-off losses of 

the IGBTs,
,nomCI is the nominal collector current of the IGBT, 

swf is the switching frequency, rrE is the turn-off (reverse 

recovery) loss of the diodes, IGBTr  is the lead resistance of the 

IGBT.  

E.  Transformer Loss Model 

The active power loss in transformers can be calculated 
using [32] 

2

0trans kP P P                                 (13) 

where   is the load ratio, 0P  is the no-load loss, and kP  is the 

load loss. 

F.  Cable Loss Model 

For a cable connecting two buses i and j, the cable 

current,
ijI , measured at bus i and j and defined positive in the 

direction i j  is given by [33] 

 0 0ij l i ij i j i iI I I y V V y V     ,                  (14) 

where y and I mean the admittance and current of each cable, 

and V means the voltage on each bus. Similarly, the cable 

current 
jiI  is given by 

 0 0ji l j ij j i j jI I I y V V y V      .              (15) 

The power loss in cable ij is the algebraic sum of the 

complex powers 
ijS  from bus i and j and 

jiS  from bus j and i,  

* *loss

ij ij ji i ij j jiS S S V I V I    .   (16) 

III. PROBLEM FORMULATION AND OPTIMIZATION 

The optimization problem including the objective function 
and constraints are formulated and is solved by an improved 
PSO algorithm in this section.  

The output active power of the WF can be calculated by: 

  
1 1, 1

W BN N
WF k k k k k loss

out mec Cu Fe con trans ij

k i j

P P P P P P P
  

          (17) 

where 
k

mecP , 
k

CuP , 
k

FeP , 
k

conP , and
k

transP  are the captured power, 

copper loss, iron loss, losses of converters and transformer loss 

from WT k , respectively, WN  is the number of WTs,  
loss

ijP  is 

the active power loss in cable ij , BN  is the number of buses. 

The reactive power at the PCC of the WF is expressed by: 

1 1, 1

W BN N
k loss

PCC ref ij

k i j

Q Q Q
  

    

where 
k

refQ is the reference reactive power of WT k  and loss

ijQ  

is the active power loss in cable. 
Then, the optimization problem can be expressed as: 

Objective:                   
,

max
k k

ref ref

WF

out
P Q

P                                     (18) 

Constraints: 
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WF
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min max
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i
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where 
jP  and 

jQ  are the active power and reactive power 

injected at bus j , jV and j  are the voltage and angle of 

each bus, 
jiY  is the entry in the j

th
 row i

th
 column of the 

admittance matrix,  WF

refQ  is the reactive power reference of the 

WF, rated

GSCI is the rated current of the Grid Side Converter (GSC), 

The optimization variables used here are active power 

reference 
k

refP and reactive power reference 
k

refQ of each WT. 

The constraints include the power flow balance limits (19), 
(20), the WF reactive power constraint (21), the bus voltage 
limit (22), the current constraint of the GSC (23), which is used 
to limit the reactive power, the pitch angle limit (24), the active 
power limit (25), and the WT operation region constraints (26), 
(27). In the power flow problem, the point of common coupling 
is treated as slack bus and all the other buses are treated as PQ 
buses. A full Newton–Raphson method is used to solve the 
power flow equations. Since the problem is nonlinear and non-
convex, the PSO algorithm [34] is adopted to solve the 
optimization problem. 

IV. CASE STUDY 

In this paper, the chosen WF has 5 rows, 5 turbines each 
row, with 882 m (seven times the WT diameter) between the 
turbines. The layout of the WF is shown in Fig. 1. The cables 
in the WF are XLPE-Cu and operated at 34 kV nominal 



voltage. The parameters are shown in Table I. The WT 
parameters are shown in the appendix. 
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Fig. 1.  The layout of the wind farm 

TABLE I.   
PARAMETERS OF CABLES [35] 

Cross section  
mm2 

Resistance 

Ω /km 

Capacitance 
µF/km 

Inductance 
mH/km 

95 0.1842 0.18 0.44 

150 0.1167 0.21 0.41 

240 0.0729 0.24 0.38 

There strategies are compared in this paper. Strategy A uses 
traditional WT active power control strategy (maximum power 
tracking) and traditional WF reactive power dispatch strategy 
(proportional distribution). Strategy B uses improved WF 
active power dispatch strategy (maximizing the captured power 
by derating the upwind WTs) and optimal reactive power 
dispatch strategy (optimal dispatch to minimize the active 
power loss). Strategy C uses coordinated WF active and 
reactive power dispatch strategy (maximizing the total output 
active power considering all the losses).  

The strategies are compared when 
WF

refQ is 0.3 pu and wind 

directions are 90° and 270°. After 10 times simulation using 
PSO, the values are averaged and the results are shown in 
TABLE II.  

TABLE II 

COMPARISION OF THESE STRETEGIES AT DIFFERENT OPERATION CONDITIONS 

Wind 

direction 
Strategy 

Output 

Power 

(MW) 

Total loss 

(MW) 

Cable loss 

(MW) 

WT loss 

(MW) 

90° 

Strategy A 49.59 2.49 0.21 2.28 

Strategy B 52.23 2.45 0.23 2.22 

Strategy C 52.29 2.44 0.22 2.21 

270° 

Strategy A 49.53 2.56 0.27 2.28 

Strategy B 52.27 2.50 0.26 2.23 

Strategy C 52.33 2.47 0.26 2.21 

It can be seen that using Strategy C, the WF output power 
is increased and the WT loss is reduced. The cable loss is 
increased at direction 90°, whereas it decreased at direction 
270°. The reason is that the cable loss is related to the power 
circulation distance along the cables, and when wind direction 
is 90°, the WT produce more power is nearer to the PCC, so 
the power circulation distance is less than the solutions where 
upwind WTs are derated. However, the total loss is reduced 
because the WT loss decrease is more than the cable loss 
increase. 

V. CONCLUSION 

The coordinated active power and reactive power dispatch 
strategy proposed in this paper shows the potential to improve 
the output power of a WF. Comparing with the traditional 
active power and reactive power dispatch strategy, the loss 
reduction of an optimized dispatch strategy depends on if the 
loss model is accurate and complete, also depends on the wind 
direction, i.e., the original active power distribution pattern. 
Models of all the devices should be considered in the objective 
function. Otherwise, reducing losses in part of the devices will 
increase the losses in the other part. The cable loss is related to 
the wind directions, so it may be increased at some wind 
directions. The proposed dispatch strategy can be used in WF 
energy management systems or wind power dispatch centers.  

APPENDIX 

A.  Wind Turbine 

The 5 MW NERL WT is adopted as the reference WT [36]. 
The parameters are as follows: 

TABLE III 

NERL 5MW WIND TURBINE SPECIFICATION [36] 

Parameter 5 MW NERL Wind Turbine 

Cut-in, Rated, Cut-out Wind Speed 3 m/s, 11.4 m/s, 25m/s 

Rotor, Hub Diameter 126 m, 3m 

Rated Power 5 MW 

Cut-In, Rated Rotor Speed 6.9 rpm, 12.1 rpm 

B.  Converters 

The converters are chosen based on the method in [30]. Two 
IGBT modules (ABB 5SNA 2000K451300) are series 
connected on each bridge. Based on the data for the IGBT 
module on the data sheet [37], the power module constants 

la = 7.0252 and lb = 0.0087, and swf  is chosen as 800 Hz. 

C.  Transformer 

The Siemens GEAFOL cast-resin transformer rated at 
8000kVA is chosen as the transformer set in the WT, with no-
load loss of 13.5 kW and load loss of 36 kW [38].  

D.  PMSG[30] 

TABLE IV 

PMSG PARAMETER 

Parameter Value 

Rated Output Power (kW) 5000 

Number of Poles 8 

Frequency (Hz) 50 

Armature Phase Resistance (Ohm) 0.0375 

D-Axis Main Reactance (Ohm) 2.93 



Q-Axis Main Reactance (Ohm) 2.93 

Fundamental Induced Stator Line Voltage (Vrms) 5032.09 

Stator Phase Current (Irms) 742.962 

Power Factor 0.809748 

Rated Rotational Speed (rpm) 750 
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