Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Towards an open digital audio workstation for live performance
Dimitrov, Smilen

DOl (link to publication from Publisher):
10.5278/vbn.phd.engsci.00028

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Dimitrov, S. (2015). Towards an open digital audio workstation for live performance: the development of an open
soundcard. Aalborg Universitetsforlag. (Ph.d.-serien for Det Teknisk-Naturvidenskabelige Fakultet, Aalborg
Universitet). DOI: 10.5278/vbn.phd.engsci.00028

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 30, 2017

http://dx.doi.org/10.5278/vbn.phd.engsci.00028
http://vbn.aau.dk/en/publications/towards-an-open-digital-audio-workstation-for-live-performance(bc25674a-3185-4c4a-bcda-361e6fc4481c).html

TOWARDS AN OPEN DIGITAL AUDIO
WORKSTATION FOR LIVE PERFORMANCE:
THE DEVELOPMENT OF AN OPEN SOUNDCARD

BY
SMILEN DIMITROV

DISSERTATION SUBMITTED 2015

(

AALBORG UNIVERSITY
DENMARK

Towards an open digital
audio workstation for live
performance: the
development of an open
soundcard

Ph.D. Dissertation
Smilen Dimitrov

Dissertation submitted June 18, 2015

Thesis submitted: June 18, 2015

PhD Supervisor: Prof. Stefania Serafin
Aalborg University

PhD Committee: Assoc. Prof. Olga Tim¢enko, Aalborg University
Prof. Anna Friesel, Technical University of Denmark
(DTU)
Prof. Nicola Bernardini, Conservatorio di Musica "Santa
Cecilia"

PhD Series: Faculty of Engineering and Science, Aalborg University

Dimitrov, Smilen. "Towards an open digital audio workstation for live perfor-
mance: the development of an open soundcard" / "Pa vej mod en aben, digital
lyd-arbejdsstation til live-optreeden: Udviklingen af et dbent lydkort"

ISSN (online): 2246-1248
ISBN (online): 978-87-7112-311-1

Published by:

Aalborg University Press
Skjernvej 4A, 2nd floor
DK -9220 Aalborg &
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Smilen Dimitrov

Printed in Denmark by Rosendahls, 2015

This document was typeset with pdfl&IEX (pdfTeX, Version 3.14159265-2.6-1.40.15
(TeX Live 2014)), based on template aau_phd_thesis_template_v1.2.1.zip, document
class book, using packages: iftex, hologo, setspace, trace, lipsum, cmap, fontenc,
babel, textcomp, inputenc, lmodern, mathpazo, paratype, tgpagella, substitutefont,
microtype, etoolbox, xcolor, graphicx, caption, array, booktabs, tabularx, multirow,
framed, tikz, pgfplots, tikzpagenodes, 1ilyglyphs, ifluatex, ifxetex, amsmath, amssymb,
ntheorem, geometry, titlesec, fancyhdr, calc, mparhack, csquotes, biblatex, xpatch,
tocbibind, appendix, lastpage, todonotes, soulutf8, pdftexcmds, hyperref, adjustbox,
nth, pdfpages, pax, glossaries, units, siunitx, hhline, comment, listings, grffile,
fixfoot, afterpage, CJKutf8, multicol, mathtools, environ, xstring, filecontents,
pgfplotstable, tikz-timing, rotating. Additional open-source software (such as gnuplot,
numpy, matplotlib, pdftk, gpdf, Ghostscript, ImageMagick, GIMP, Inkscape, and others) has
been used in preparation of data and figures in this document.

Curriculum Vitae

Smilen Dimitrov

Born in 1977, in Skopje, Macedonia; nationality Macedonian. Diverse areas
of interest and involvement, mainly revolving around music and technology;
some career development highlights are summarized below.

Education

1983-1988

1984-1992

1992-1994

1994-1995

1995-2001

-, M.B.U.C “Ilija Nikolovski - Luj”, Skopje, Socialist Republic of
Macedonia, Socialist Federal Republic of Yugoslavia.

Attended (and dropped out of) elementary music school: music theory
(solfege) and piano

-, O.U. “Johann Heinrich Pestalozzi”, Skopje, Socialist Republic
of Macedonia, Socialist Federal Republic of Yugoslavia.
Attended elementary school

-, S.U. “Orce Nikolov”, Skopje, Republic of Macedonia.
Attended high school, specializing in electronics

High School Diploma, “Bonny Eagle” H. S., Standish, Maine,
United States of America.
Attended high school, acquired high-school diploma

B.Sc., Faculty of Electrotechnical engineering, University “Sts. Cyril
& Methodius”, Skopje, Republic of Macedonia.

Obtained Bachelor of Science in Electronics & Telecommunication

iii

2002-2004

2004-2006

2007-2015

Curriculum Vitae

Multimedia Designer, Aarhus Technical College, Arhus,
Denmark.

Studied web design; trainee service in Brother, Brother & Sons ApS,
Copenhagen (software for 3D visualization of sensor-equipped ma-
chine parts)

M.Sc., Aalborg University, Copenhagen, Denmark.

Obtained Master of Sciences in Media Technology; master project at
Brother, Brother & Sons ApS, Copenhagen (software for 3D visualiza-
tion, sequencing and control of stage lights)

Ph.D., Aalborg University, Copenhagen, Denmark.

Studies of media technology; focus on sensors technology, data acqui-
sition and analog/digital interfacing, both in research and as lecturer

Music releases

2000 S.A.F., Safizam.

(Profundus - Skopje, Republic of Macedonia)

(Lithium Records - Skopje, Republic of Macedonia)
(Zort Produkcija - Skopje, Republic of Macedonia)
Long-play CD (first release), vinyl (2002 re-release), enhanced
CD (2007 re-release), vinyl & CD & compact cassette tape (2015

re-release); as rapper, co-producer

Pece Atanasovski Orchestra, s/t.
(Amanet Music - Skopje, Republic of Macedonia)
Long-play CD; as tambura player

Samoil Radinski & Smilen Dimitrov, Counterforce.
(Balance - Skopje, Republic of Macedonia)
Single, vinyl; as co-producer

iv

Abstract

The recent, decades-long, successes of electronic music in popular music busi-
ness, may warrant further inquiries into electronic music instruments. This
thesis explores various aspects in this domain, perceived as a part of media
technology research. Starting from a formal specification of a problem in the
electronic music instrument development domain: how to allow real-time ren-
dering and control, of the playback speed of digital audio loops — a major
stumbling block is identified in the ability to design and implement digital
audio algorithms in hardware.

Finding that cheap and freely accessible projects, that would serve as practi-
cal exercises into issues found in digital audio hardware design and implemen-
tation, were near impossible to discover — this thesis responds by identifying
the soundcard as suitable for exploration as a generic device, that implements
digital audio in both hardware, and computer software. In a series of projects,
free & open-source software and documentation was released, which describes
various hardware and software aspects of implementing soundcard systems
with differing qualities; whose relatively low cost makes them suitable for re-
implementation as exercises. These development efforts are documented in
peer-reviewed articles, that are collected in part II of this thesis.

An open approach to the design of the soundcard as a computer system
device, brings about the conclusion that relatively simple hacks would lead to
more versatile and open digital audio platforms; the peer-reviewed articles in
part III represent a sample of wider electronic music instrument and media
technology research, which might particularly benefit from such developments.
However, while free & open-source approaches have clear benefits — and, in
fact, may have made projects of this scope possible — in some respects, they are
susceptible to the same pressures as proprietary software: most notably, rapid
obsolescence. Such challenges are touched upon by this thesis along with the
details of more technical nature, as it is likely that they will be unavoidable for
any developer, aiming to work with digital audio hardware that can interface
with ever-evolving contemporary consumer technology.

Dansk Resumé

De seneste succeser (igennem drtier) af elektronisk musik i det populeere musik-
branche, sikrer muligvis fortsatte undersogelser i elektroniske musikinstrumen-
ter. Afhandlingen udforsker forskellige aspekter i dette domaene, set som en del
af medieteknologisk forskning. Med udgangspunkt i en formel specifikation af
et problem, fra elektronisk musikinstrument udvikling feltet: hvordan at tillade
rendering og kontrol i realtid, af afspilningshastigheden af digitale lydlekker -
en storre anstodssten er identificeret i evnen at designe, samt implementere,
digitale lyd algoritmer i hardware.

Eftersom billige og frit tilgeengelige projekter, der kunne tjene som praktiske
ovelser i problemstillinger fundet i design og implementering af digital lyd
hardware, var naesten umulige at spore — denne afthandling svarer med at fastsla
lydkortet som egnet til forskning som en generisk enhed, der implementerer
digital lyd i bade hardware, og computer software. I en projektserie, fri og dben-
kilde kode og dokumentation var udgivet, som beskriver forskellige hardware
og software aspekter i implementeringen af lydkort systemmer med diverse
kvaliteter; hvis relativt lav pris gor dem egnede til genopbygning som ovelser.
Disse udviklingsindsatser er dokumenteret i ekspertevaluerede artikler, som er
samlet i del II af denne athandling.

En aben tilgang til designet af an lydkort som en enhed i et computer system,
fremheever konklusionen at relativt enkle modifikationer kunne fere til mere
alsidige og abne digital lyd platformer; peergruppeevaluerede artikler i del III
repraesenterer et udsnit fra det bredere forskning i elektroniske musikinstru-
menter og medieteknologi, som er et omrdde der kan fa seerligt gavn af sadanne
udviklinger. Imidlertid, mens fri og dben-kilde tilgange har klare fordele — og
har muligvis gjort projekter med denne reekkevidde mulige —i visse henseender,
er de lige sa udsatte over for pres som proprieteer softwareudvikling: nemlig
hurtig foreeldelse. Sidanne udfordringer er berert af denne athandling sammen
med detaljer af mere teknisk natur, da de sandsynligvis vil veere uundgaelige
for enhver udvikler, som er malrettet til arbejde med digital lyd hardware der
kan forbindes med en evigt-udviklende moderne forbruger-teknologi.

vii

Contents

Curriculum Vitae
Abstract

Dansk Resumé
Thesis Details

Preface

I Introduction

1 Background
1.1 Thesisoutline L.,
12 Methodology,

2 Motivation: a labor of angst
21 Babysteps
22 Pedaltothemetal
2.3 Ridin’ on the wings of inflation
2.4 While my guitar gently weeps
2.5 Digitalaudioarrives 0.
2.6 Genre expansion - folklore and electronic music
2.7 Ahip to the hop, and youjustdon'tstop
2.8 Design ideas emerge: electronic music instrument sessions . . .
2.9 Further developments and opportunities
2.10 Reductiontosoundcard

3 On live performance paradigms in looped electronic music
3.1 The classic thythm/drum machine step sequencer
3.2 The classic DJ set - two turntables and a mixer
3.3 DProposals for user interface facilities merging
3.3.1 A trivial mapping from rotational speed to tempo

ix

iii

vii

XV

xxi

11
11
13
14
15
17
18
19
21
26

29

31
33
35
41
41

Contents

3.3.2 A sequence-rendering, double-buffered, mapping from

rotational speed totempo 43

34 Discussion e 50

4 Contributions of the present work: the open soundcard in focus 55

4.1 The soundcard as a didactic model for laboratory exercises in

digitalaudio L L oL 57

4.2 The soundcard as a research tool in media technology 62

4.3 Open development perspectives 66

5 Conclusion 81

5.1 Futureperspectives L. 83

52 Acknowledgements L oL 85

Bibliography 87
A Basic theoretical aspects of the classic rhythm/drum machine step se-

quencer 99

II Papers on open soundcard development 107

A Extending the soundcard for use with generic DC sensors 109

A1l Imtroduction 111

A1l Approach 113

A2 Problemoutline 114

A3 Soundcard platform. L Lo Lo 115

A3.1 ISA hardware implementation 116

A32 Software 118

A4 Testing procedure 118

A41 Determining the ISA card samplingrate 119

A4.2 Testof analog switch functionality 119

A5 Results 120

A6 Discussion o e 120

A.6.1 Thesoundcard platform 121

A7 Conclusion e 123

References 123

B Minivosc - a minimal virtual oscillator driver for ALSA (Advanced

Linux Sound Architecture) 127
B.1 Introduction 129
B2 Premise 130

B.2.1 Initial projectissues 131
B.3 Architectural overview of PCaudio. 131
B.4 Conceptofminivosc 134
B.5 Driverstructures 0. 134

Contents

B.6 Execution flow and driver functions 137
B.6.1 Audio data in memory (buffers) and related execution flow 138
B.6.2 The sound of minivosc - Driver execution modes 138

B.7 Conclusions 139

B.8 Acknowledgments 139

References 139

C Audio Arduino - an ALSA (Advanced Linux Sound Architecture) au-

dio driver for FTDI-based Arduinos 143
C1 Introduction 145
C2 Previouswork Lo 146
C.3 Degreesoffreedom 147
C4 Conceptof AudioArduino 148
C.5 Quantifying throughput rate - duplex loopback 150
C.6 Microcontrollercode 152
C.7 Driver architecture 152
C8 Analogl/O 155
C9 Conclusions 155
C10 Futurework o 156
C.11 Acknowledgments 156
References i 156

D An analog I/O interface board for Audio Arduino open soundcard

system 159
D.1 Introduction 161
D2 Premise 163
D.3 Analogl/Oaudiolevel standards. 164
D.4 PWM as analog signal representation 165
D.5 Board design / implementation 168

D.5.1 PWM to analog (SH) conversion 170

D.5.2 Speaker amp, H-bridgeand Class-D 175

D.5.3 Analog filters and input preamplification 176
D.6 Conclusions 176
D.7 Acknowledgments 177
References 177

E Towards an open sound card — a bare-bones FPGA board in context

of PC-based digital audio 179
E1l Introduction 181
E2 Workingwith FPGA 182
E3 HardwareConcept 185
E.4 Hardwareimplentation. 188
E.5 HDL DesignandIssues 190
E6 Conclusions 194
E7 Futurework 194

xi

Contents

E.8 Acknowledgments 194
References 195

Open soundcard as a platform for practical, laboratory study of digi-

tal audio: a proposal 199
F1 Introduction 201
F1.1 Soundcardasadevice 203
F2 A brief review of our open soundcard work 205
E3 An open soundcard as laboratory exercise in context of engineer-
ingeducation 0 0oL 208
F3.1 Related work: current use of soundcard in the student
laboratory L 211
F.3.2 The conflict between basic theory and laboratory demon-
stration in engineering 212
F3.3 APBLperspective 214

F.3.4 Potential for extension of our work as laboratory exercise 217
F.4 Example use case: open soundcard as laboratory capstone course

topic. 217
F41 Suggested research methodology 219
F5 Discussion 220
F51 Degreesoffreedom. 221
F52 Alow-costapproach 223
F.5.3 On practicality and obsolescence 224
F6 Conlusion 225
References 226

Comparing the CD-quality, full-duplex timing behavior of a virtual
(dummy), hda-intel, and FTDI-based AudioArduino soundcard drivers

for Advanced Linux Sound Architecture 233
G.1 Introduction 235
G.2 A basic understanding of Linux kernel operation and preemption238
G.3 Standard vs. high-resolution timers in the Linux kernel 244
G.4 The effect of period-long timer function jitter, with streaming
dataratesasparameter L L 251
G.4.1 Visualizing and sonification of timestamped log files with
numStepCsvLogVis 257
G.5 Developing a virtual, CD quality, ALSA driver 260
G.5.1 Yet another overview of an ALSA-based audio system . . 263
G.5.2 Frames, periods, and the meaning of full-duplex 268
G.5.3 ALSA,DMA and timers: comparing HDA intel and dummy
drivers L 273

G.5.4 Solving the virtual, full-duplex, CD-quality ALSA driver:
Visualizing and animating ftrace kernel log files with
gnuplot. L L Lo 282

xii

Contents

G.6 Profiling the CD-quality, full-duplex operation of FTDI FT232RL
USB-serial IC 290
G.6.1 A closer look at USB and full-duplex 291
G.6.2 An elusive overrun error, and the FT232 FIFO buffers . . 295
G.6.3 Aninconclusive analysis - ftdi_profiler and visualization

using multitrack_plotpy 307

G.7 Debugging facilities - overview 321
G.8 Anoteonobsolescenceo 327
G9 Conclusion 329
References 332
III Papers on related media technology research 337
H A simple practical approach to a wireless data acquisition board 339

I Combining DJ Scratching, Tangible Interfaces And A Physics-Based
Model Of Friction Sounds 345

J Developing block-movement, physical-model based objects for the
Reactable 351

K Audio-haptic physically-based simulation of walking on different
grounds 357

L Preliminary Experiment Combining Virtual Reality Haptic Shoes and
Audio Synthesis 365

M Identification of virtual grounds using virtual reality haptic shoes
and sound synthesis 375

xiii

Thesis Details

Thesis Title: Towards an open digital audio workstation for live perfor-

mance: the development of an open soundcard

Ph.D. Student: Smilen Dimitrov
Supervisor: Prof. Stefania Serafin, Aalborg University Copenhagen

The main body of this thesis consist of the following papers.
Papers in part II, “Papers on open soundcard development”:

[I-A]

[1-B]

[1I-C]

[1I-D]

[II-E]

Smilen Dimitrov, “Extending the soundcard for use with generic DC
sensors”, in Proceedings of the International Conference on New Interfaces for
Musical Expression (NIME 2010), Sydney, Australia, Jun. 2010, pp. 303-308,
1ssN: 2220-4792, 1sBN: 978-0-646-53482-4. URL: http://imi . aau.dk/
~sd/phd/index.php?title=ExtendingISASoundcard

Smilen Dimitrov and Stefania Serafin, “Minivosc - a minimal virtual
oscillator driver for ALSA (Advanced Linux Sound Architecture)”, in
Proceedings of the Linux Audio Conference (LAC 2012), Stanford, California,
USA, Apr. 2012, pp. 175-182, 1sBn: 978-1-105-62546-6. URL: http://imi.
aau.dk/~sd/phd/index.php?title=Minivosc

Smilen Dimitrov and Stefania Serafin, “Audio Arduino - an ALSA (Ad-
vanced Linux Sound Architecture) audio driver for FTDI-based Arduinos”,
in Proceedings of the International Conference on New Interfaces for Musical
Expression (NIME 2011), Oslo, Norway, May 2011, pp. 211-216, 1ssn: 2220-
4792, 1sBN: 978-82-991841-7-5. URL: http://imi.aau.dk/~sd/phd/
index.php?title=AudioArduino

Smilen Dimitrov and Stefania Serafin, “An analog I/O interface board
for Audio Arduino open soundcard system”, in Proceedings of the 8th
Sound and Music Computing Conference (SMC 2011), Padova, Italy: Padova
University Press, Jul. 2011, pp. 290-297, 1sBN: 978-8-897-38503-5. URL:
http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino-
AnalogBoard

Smilen Dimitrov and Stefania Serafin, “Towards an open sound card
— a bare-bones FPGA board in context of PC-based digital audio”, in

XV

http://imi.aau.dk/~sd/phd/index.php?title=ExtendingISASoundcard
http://imi.aau.dk/~sd/phd/index.php?title=ExtendingISASoundcard
http://imi.aau.dk/~sd/phd/index.php?title=Minivosc
http://imi.aau.dk/~sd/phd/index.php?title=Minivosc
http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino
http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino
http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino-AnalogBoard
http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino-AnalogBoard

[1I-F]

[II-G]

Thesis Details

Proceedings of Audio Mostly 2011 - 6th Conference on Interaction with Sound,
Coimbra, Portugal, Sep. 2011, pp. 47-54, 1sBn: 978-1-4503-1081-9. por:
10.1145/2095667 . 2095674. URL: http://imi.aau.dk/~sd/phd/
index.php?title=AudioBareBonesFPGA

Smilen Dimitrov and Stefania Serafin, “Open soundcard as a platform
for practical, laboratory study of digital audio: a proposal”, International
Journal of Innovation and Learning, vol. 15, no. 1, pp. 1-27, Jan. 2014, 1ssN:
1471-8197. por: 10.1504/IJIL.2014.058865

Smilen Dimitrov and Stefania Serafin, “Comparing the CD-quality, full-
duplex timing behavior of a virtual (dummy), hda-intel, and FTDI-based
AudioArduino soundcard drivers for Advanced Linux Sound Architec-
ture”, Linux Journal, 2015, Manuscript submitted /in review

Papers in part III, “Papers on related media technology research”:

[ITI-H]

[ITI-1]

[HI-]]

[II1-K]

[ITI-L]

Smilen Dimitrov and Stefania Serafin, “A simple practical approach to
a wireless data acquisition board”, in Proceedings of the International Con-
ference on New Interfaces for Musical Expression (NIME 2006), IRCAM —
Centre Pompidou, Paris, France, Jun. 2006, pp. 184-187, 1ssn: 2220-4792,
1sBN: 978-2-84426-314-8

Kjetil Falkenberg Hansen, Marcos Alonso, and Smilen Dimitrov, “Com-
bining DJ Scratching, Tangible Interfaces And A Physics-Based Model Of
Friction Sounds”, in Proceedings of the 2007 International Computer Music
Conference (ICMC 2007), vol. 2, Copenhagen, Denmark: The International
Computer Music Association, Aug. 2007, pp. 4548, 1sBN: 0-9713192-5-1

Smilen Dimitrov, Marcos Alonso, and Stefania Serafin, “Developing block-
movement, physical-model based objects for the Reactable”, in Proceedings
of the International Conference on New Interfaces for Musical Expression (NIME
2008), Genova, Italy, Jun. 2008, pp. 211-214, 1sBN: 978-88-901344-6-3

Luca Turchet, Rolf Nordahl, Stefania Serafin, Amir Berrezag, Smilen Dim-
itrov, and Vincent Hayward, “Audio-haptic physically-based simulation
of walking on different grounds”, in Proceedings IEEE Multimedia Signal
Processing Conference (MMSP’10), Stéphane Pateux, Ed. Saint Malo, France:
IEEE Press, 2010, pp. 269-273, 1sBN: 978-1-4244-8110-1. por: 10.1109/
MMSP.2010.5662031

Rolf Nordahl, Amir Berrezag, Smilen Dimitrov, Luca Turchet, Vincent
Hayward, and Stefania Serafin, “Preliminary Experiment Combining Vir-
tual Reality Haptic Shoes and Audio Synthesis”, Lecture Notes in Computer
Science, vol. 6192, pp. 123-129, 2010, 1ssn: 0302-9743. por: 10.1007/978-
3-642-14075-4_18

Xvi

http://dx.doi.org/10.1145/2095667.2095674
http://imi.aau.dk/~sd/phd/index.php?title=AudioBareBonesFPGA
http://imi.aau.dk/~sd/phd/index.php?title=AudioBareBonesFPGA
http://dx.doi.org/10.1504/IJIL.2014.058865
http://dx.doi.org/10.1109/MMSP.2010.5662031
http://dx.doi.org/10.1109/MMSP.2010.5662031
http://dx.doi.org/10.1007/978-3-642-14075-4_18
http://dx.doi.org/10.1007/978-3-642-14075-4_18

Thesis Details

[IT-M]

Stefania Serafin, Luca Turchet, Rolf Nordahl, Smilen Dimitrov, Amir
Berrezag, and Vincent Hayward, “Identification of virtual grounds using
virtual reality haptic shoes and sound synthesis”, in Proceedings of the Eu-
rohaptics 2010 Special Symposium, A. Nijholt, E. O. Dijk, P. M.C. Lemmens,
and S. Luitjens, Eds., 1sted. Ser. CTIT Proceedings WP10-01. Amsterdam,
Netherlands: University of Twente, Jul. 2010, pp. 61-70, 1ssn: 0929-0672

In addition to the main papers, the following publications by the author have
also been made, not included this thesis.

(1]

Stefania Serafin, Smilen Dimitrov, Steven Gelineck, Rolf Nordahl, and
Olga Timcenko, “Sonic interaction design : case studies from the Medi-
alogy education”, in Proceedings of Audio Mostly 2007 - 2nd Conference on
Interaction with Sound, 2007

Smilen Dimitrov, “Scientific Report from ConGAS Short Term Scientific
Mission (STSM) to Stockholm”, ConGAS Cost action 287, Tech. Rep., Mar.
2007

Smilen Dimitrov, “Scientific Report from ConGAS Short Term Scientific
Mission (STSM) to Barcelona”, COST SID IC0601 Action, Tech. Rep., Jan.
2008

Niels Bottcher and Smilen Dimitrov, “An early prototype of the aug-
mented PsychoPhone”, in NIME’09: Proceedings of the 9th Conference on
New Interfaces for Musical Expression, 2009

Luca Turchet, Stefania Serafin, Smilen Dimitrov, and Rolf Nordahl, “Con-
flicting Audio-haptic Feedback in Physically Based Simulation of Walking
Sounds”, English, in Haptic and Audio Interaction Design, ser. Lecture Notes
in Computer Science, Rolf Nordahl, Stefania Serafin, Federico Fontana,
and Stephen Brewster, Eds., vol. 6306, Springer Berlin Heidelberg, 2010,
pp- 97-106, 1sBN: 978-3-642-15840-7. por: 10.1007/978-3-642-15841-
4 11

Luca Turchet, Stefania Serafin, Smilen Dimitrov, and Rolf Nordahl, “Physi-
cally Based Sound Synthesis and Control of Footsteps Sounds”, in Proceed-
ings of the 13th International Conference on Digital Audio Effects (DAFx-10),
Alois Sontacchi, Hannes Pomberger, and Frans Zotter, Eds., 1sted. 2010,
vol. 1, pp. 161-168, 1sBN: 978-3-200-01940-9

This thesis has been submitted for assessment in partial fulfillment of the PhD
degree. The thesis is based on the submitted or published scientific papers
which are listed above. Parts of the papers are used directly or indirectly in
the extended summary of the thesis. As part of the assessment, co-author
statements have been made available to the assessment committee and are also
available at the Faculty. The thesis is not in its present form acceptable for open
publication but only in limited and closed circulation as copyright may not be
ensured.

xvii

http://dx.doi.org/10.1007/978-3-642-15841-4_11
http://dx.doi.org/10.1007/978-3-642-15841-4_11

ITocBeTeHo HA MouTe poauTtenu, Binagumup n Tomopka JuMUTPOBU.

Dedicated to my parents, Viadimir and Todorka Dimitrovi.

XiX

Preface

This Ph.D. dissertation is a result of more than seven years of work, that I
had done at what is now the Department of Architecture Design and Media
Technology, in Aalborg University (AAU) in Copenhagen. During the Ph.D.
study period my research work, most of which is documented in this thesis,
was tightly coupled with my work as a lecturer in the Medialogy education,
led by the department — where I dealt with topics in introductory electronics in
undergraduate courses named Sensors Technology, or (later) Physical Interface
Design.

The dissertation discusses topics generally within the cross-disciplinary
intersection of the areas of music, and electronics and software engineering;
interests in which I have been invested for the most of my life. Thus there have
been truly many people, to whom I owe thanks as influences on this project
(some of which I have attempted to capture in the Acknowledgments further
on). However, specifically for my experience during my Ph.D. program at
AAU - beyond the support (financial and otherwise) of my parents and my
wider family — I am forever thankful to the efforts of the following individuals
in providing me with opportunities and support: the Chairman of the Study
Board for Media Technology, Dr. Rolf Nordahl; my main thesis supervisor
and Professor, Dr. Stefania Serafin; Professor Emeritus, Dr. Erik Granum; and
Professor, Dr. Lise Busk Kofoed. These opportunities - beyond conference
attendances to places like Sydney, Australia and Genova, Italy - also included
two short-term scientific missions (STSMs) to Stockholm, Sweden and Barcelona,
Spain, funded by the EU Cooperation in Science and Technology (COST).

This thesis consists of a collection of papers in two parts, for which a detailed
summary is provided in an introductory part. I therefore owe my sincere ac-
knowledgment to all co-authors, with whom I've collaborated on publications
during this period. The study generally focuses on open-source implementa-
tions for digital audio computer hardware; my claim for applying for the Ph.D.
degree is that in this period, reducing the available information (even if open)
to a format suitable as student exercises, required an amount of research labor
commensurate to the academic requirements.

Smilen Dimitrov
Aalborg University, June 18, 2015

XXi

Part 1

Introduction

Chapter 1

Background

In the middle of the second decade of the 21% century, it is difficult to speak
generally of electronic music as something novel or new; and the same can be
said of electronic music instruments. Since the origins of the Theremin [1] or
Rhythmicon [2] in the 1920s to 1930s, not only are there already decades of
academic research in existence on this topic at present, but there are also decades
of its commercial influence within popular music. Ignoring the fact that already
in the late 20" century, the default understanding of a rock'n’roll setup involved
electric guitars, distortion pedals and amplifiers (i.e., electronic instruments) —
it is still possible to perceive decades-long presence of "genuinely" electronic
music on the pop scene: from the historic successes of artists like Jean Michel
Jarre and Kraftwerk, to the current success of genres that could be broadly
categorized under either hip hop or electronic dance/club music (EDM); in
addition to its presence on experimental/subculture/underground scenes,
through genres such as industrial or electronic body music (EBM).

A possible cause for the success of the aforementioned artists and genres,
could be their ability to inspire joy or meaning in their audiences during their
concerts (live performances) — even if the performers use devices, that tradition-
ally wouldn’t even be recognized as musical instruments. Technology-wise, the
intimate connection of electronic music performers and the recording industry,
can be observed in the choices of many artists, to include what would usually
be regarded as studio or recording equipment in their live setups. There are
differences, however: according to one taxonomy [3], we could categorize elec-
tronic music instruments - as controllers - in: (a) instrument-like controllers,
(b) extended controllers, and (c) alternative controllers. Thus, Kraftwerk and
Jean Michel Jarre would represents users of (generally) acoustic instrument-like
interfaces that drive electronic sound generation; while hip hop and EDM gen-
res heavily rely on the presence of a DJ (disk-jockey), whose main instrument is
the combination of two turntables and a mixer - neither of which are devices
originally designed for a musical instrument purpose (and as such, can be

T'TYO

Chapter 1. Background

considered alternative controllers).

The original ambition of this thesis was in the domain of digital lutherie (as
promulgated by S. Jorda in his thesis [4]), because it starts with identifying spe-
cific live performance styles, common in urban varieties of popular electronic
music — and responding to that with a design of a digital audio workstation
(DAW), that could be used to support those playing styles. In doing so, it
would have positioned itself in a decades-long tradition: academically exem-
plified at the very least by the output of conferences, such as New Interfaces
for Musical Expression (NIME), International Computer Music Conference
(ICMC) or Digital Audio Effects (DAFX); but also embodied in the work of
artists, producers, instrument builders, and researchers.

Specifically in this case, what is common to the musical (and live perfor-
mance) styles of interest, is their reliance on audio samples, considered as (short
or long) snippets of audio recordings. In fact, some of these genres can be en-
tirely based on digital audio samples, as afforded by their reproduction through
instruments such as samplers (here, a colloquial synonym for digital audio sam-
pler). The underlying musical research motivation thus lies in exploring an
apparent paradox: if an audio sample is an implicitly unchanging recording of
past events - how is any ambition towards live, real-time, performance based
on samples, any different from the act of mere initiation of automatic playback
of an audio recording? While one general answer would be to emulate acoustic
musical instruments, the interaction methods that evolved in the genres of
interest - with devices not originally designed as musical instruments - can
be considered distinct from the acts of playing traditional wind, strings, and
percussion musical instruments.

However, addressing issues in this domain often relies, not so much on the
design, but the implementation of an instrument: only a working prototype can
provide the type of user testing and feedback, that could determine whether
a particular affordance is relevant to a performer or not. In this scope, this
translates to the question - to what degree should the implementation of designs,
capable of digital audio sample reproduction, be addressed? The answer often
lies not in what is possible, but in what is economical (also in terms of time):
should one build logic gates from discrete transistors; or wire-wrap a CPU
(central processing unit) from 7400-series logic ICs (integrated circuits); or write
the program of the operating system (OS) for this CPU directly as machine
opcodes? Clearly, some form of technology reuse naturally lends itself as a
possibility in this area. On the other hand, in today’s world enough capital
can acquire, outsource and manage the design and production (or any other)
stage, involved in bringing a finished digital technology to the market. This,
however, also implies the disappearance of products and platforms from the
mass market, as soon as they outlive their profitability; one way to address this
would be to seek to understand such platforms in as generic terms as possible,
and to reimplement them using available technology. Hence, the pursuit of
implementing a digital audio workstation, necessarily forces the consideration

of an economical and generic implementation of a digital audio sampler as an
issue.

In the past, this may have been a rather expensive sport — note that the
first commercially available digital sampler, the Fairlight, at its introduction
in 1979 [5] cost US$ 29,000 (adjusted for inflation, this sum is equivalent [6]
to ~91,000 US dollars in 2013!). In research departments, investments in new
technology of that scope are both welcome and highly relevant; and while the
voluptuous price tag may induce a degree of veneration among researchers and
other users of the technology - for the same reason, it also hinders experimenting
with modifications of a given device, colloquially often known as "hacking".
After all, no-one wants to solder wires inside a machine costing x thousands of
dollars, and thereby risk losing the device or its associated warranties - just to
experimentally confirm whether a vague idea about an approach might work.
However, the conditions — in terms of technology available for this kind of
research — are somewhat different at present day.

On one hand, in the past decades we’ve seen a near fulfillment of the predic-
tions of Moore’s Law [7] about smaller, faster and cheaper digital electronics;
this has made digital computer technology, in varying shapes (including smart-
phones), ubiquitous in the modern world - and as such, more accessible than
in the past. On the other hand, the economics of cheap, but plentiful mass-
market products, necessarily favors consolidation into big industrial players,
and so fosters an atmosphere of protectivity, not the least in the domain of
intellectual property. Academia is by no means excluded from this: for instance,
A. Huang describes in his 2003 book “Hacking the Xbox: an introduction to
reverse engineering” how his book research required the retrieval of a secret
key from a Southbridge chip — which led to publishing problems with MIT
(Massachusetts Institute of Technology), arising from the legal risk of contesta-
tion by the Microsoft corporation [8, p. 134]. Clearly, no researcher would ever
want to implicate their employing institution in legal struggles, including those
stemming from interpretation of intellectual property — trademark, copyright
and patent — law. However, this protectivity may have also triggered a reaction
in parts of the electronics and computing communities, in the form of work on,
and public releases of, free/libre/open-source software (FLOSS) and hardware.
The open-source community has also experienced growth in the recent decades,
likely reinforced by the very same results of Moore’s Law: increased public
ubiquity of, and access to, computing devices - and the code that they run.

Thus, if a model for a generic digital sampler is sought, for the purpose
of future integration into a digital audio workstation system - it would be
beneficial if this model, at the same time, addressed connectivity to a personal
computing device. This would allow possible DAW designs, based on such
a model, to capitalize on the modern numerous omnipresence of computing
devices. The most obvious model (intuitively speaking, but also for reasons
outlined further in the thesis) for a sampler digital audio device, that works in
concert with a personal computer (PC), is the sound card (alias soundcard). For
economical and legal reasons, consulting an open-source design of a soundcard

Chapter 1. Background

would thus be well advised; a basic assumption at the start of this PhD project
in 2007 was that the growth of open-source technologies would have generated
such content already at that time.

This assumption was, however, wrong: searches at the time resulted with
no obvious projects advertising open designs of soundcards, academic or oth-
erwise. This is what reduced the original scope of this thesis, from the design
of a DAW with emphasis on live performance, to the reimplementation of a
soundcard as an open design - considering it as a necessary step, towards open
designs of DAWSs. Partially, this thesis represents an academic tutorial into
soundcard implementation with different, relatively cheap, technologies: re-
lated papers in part II are all accompanied by associated webpages, containing
released source code and media files (e.g. videos). These papers can be seen as
series, discussing soundcard systems of progressively increasing performance
quality (though not chronologically), represented through the metric of au-
dio streaming parameters (sampling rate, sampling resolution, and number of
channels) — as noted on the overview on table 1.1 (further on, a comparison of
technologies is given on table 4.1).

Table 1.1: Overview of open soundcard projects in part II; stream quality is given as: sampling
rate / resolution / number of channels

Project short title Stream quality
Extending soundcard .

12.7kHz / 8bit
paper II-A, 2010 z / 8bit / mono
Minivosc :

8kHz / 8bit

paper 1I-B, 2012 z / 8bit / mono
AudioArduino .

44.1kHz / 8bit
paper 1I-C, 2011 2/ 8bit / mono
AudioArduino analog board (same as AudioArduino)
paper 1I-D, 2011
Audio bare-bones FPGA 44.1KHz / 8bit / mono
paper 1I-E, 2011 ’
Open s.card as lab platform N/A
paper 1I-F, 2014
Soundcard comparison 44.1KHz / 16bit / stereo

paper II-G, 2015

While circuity for computer-based audio may go back as early as 1957 [9], it
is important to recognize that the soundcard originally was embodied on the
mass market as an add-on card for specific IBM PC architecture products, not
necessarily as an implementation of an academic abstraction: the first soundcard
with dedicated ADC (analog-to-digital conversion) and DAC (digital-to-analog
conversion) circuitry for digital audio reproduction on PCs, the Sound Blaster
by the Creative Labs company, was considered a common denominator in that
business food chain already in the 1990s [10].

The effect of technological change should also be recognized - in the 1980s, it

may not have made sense to talk of a soundcard (in modern terms) for popular
computer platforms of the time, like e.g. the Commodore 64: not so much
because of the low (by today’s standards) CPU clock speed, but because it
already contained a sound chip, the MOS Technology 6581/8580 SID [11],
which could have been used to demonstrate digital audio reproduction - albeit
with low fidelity. Similarly, in the 1990s, it may not have made sense to talk
of an open-source soundcard: not so much because of lack of existence of
open-source software, but because it would have been difficult (i.e. prohibitively
expensive) to obtain information on assembling a working open operating system,
which would have allowed conveniences for development, matching those in
proprietary OSs. The tutorial aspect of this thesis is thus a testament, that
a synergy of technological changes had provided enough of a base, in the
period 2007-2010, to allow for a relatively straightforward derivation of open
soundcard designs: not only due to emergence of GNU/Linux OS distributions
(e.g. Ubuntu, Red Hat) that, in spite of problems [12], reached a point where no
bugs seriously impeded the basic user experience; but also because of emergence
of open hardware platforms like the Arduino; and the growth of the Internet:
here, most crucially because of developments in blogging and forum platforms,
Q&A websites (e.g. Stack Overflow and related [13]), and public open-source
repositories (e.g. SourceForge and GitHub [14, 15], providing content indexed
by search engine giants (e.g. Google) — allowing for previously unprecedented
access to information related to the usability of open source systems.
Academically, the implementation of a soundcard would require back-
ground from both electronics engineering and computer science. Education
programs in these disciplines, while intimately related, usually can only afford
to present their specific perspective, especially in undergraduate programs.
The release of the open-source content in this project, can thus be seen as a base
for development of a low-cost, cross-disciplinary, laboratory exercises related
to these fields: provided the tools in the electronics lab bench, supplemented
with a PC capable of running the noted OSs, are already invested in - exercises
can be developed ranging from purely software ones, requiring no additional
financial investment; to hardware exercises, where the most expensive parts
(e.g. an Arduino board, or a Xilinx IC chip) are in the range of 30 to 50 US$ per
unit. This price bracket would make the released content relevant to digital
audio hobbyists and enthusiasts as well (regardless of how small a percentage
of the general population they may represent). Such exercises don’t necessarily
have to maintain a digital audio perspective, even if that is their main intent -
they can just as well be seen as illustrating general issues in e.g. real-time data
streaming; this educational perspective is further elaborated in paper II-F.
The wisdom in choosing to implement an open soundcard can be questioned,
especially in light of preexisting literature: consideringe.g. [16, 17], white papers
from Cirrus Logic Inc. (a fabless semiconductor company) and their references
to Audio Engineering Society (AES) literature, is this not a case of reinventing
the wheel? While such content does seem open enough, most associations of
professional character have to operate under market conditions. As such, a vast

Chapter 1. Background

majority of such literature is not open access [18], but is instead behind a paywall
in terms of Internet access; although this, arguably, is not a problem for well-
funded research departments. More importantly, even if most of the literature
was open access, inclusion of designs from business entities in open source
content without explicit permission can be questionable: after all, no-one wants
to see their intellectual property included in an open source project, which -
while mostly intended to be offered gratis - can also, in principle, be sold. That is
why the tutorial part of the thesis attempts to maximize the use of open content,
where derivation from "first principles" doesn’t apply — and otherwise, make a
note where use of proprietary technology is inevitable. But ultimately, this open
soundcard project had to source its parts on the free market just like any other;
thus, by virtue of informing, the tutorial part necessarily also advertises output
of companies like Intel, Atmel, Xilinx, Arduino etc. This could be considered a
prime example of Internet’s Poe’s Law [19], but with an ironic twist, that could
be formulated as: “Even with a disclaimer, it is impossible to distinguish between
mere information and advertisement, where products are concerned” .

An open soundcard tutorial, in its practical relation of topics from computer
science (such as OS architecture and event timing) and electronics engineering
(such as digital communication protocols, or pulse-width modulation (PWM) as
de facto the cheapest method for analog audio output in a digital environment),
can be more than a stepping stone to a DAW musical instrument implementation,
or a base for an educational engineering laboratory exercise with a slightly lesser
chance of vendor lock-in. In part III, a sample of papers from wider academic
media technology research are included, where some of them might not concern
themselves with audio as their main problem — but where all use the soundcard
as a crucial part of the research tool chain. Availability of an open soundcard
platform could have assisted each of these projects: for instance, in paper III-K,
a high-end soundcard is used only to reproduce audio, while force-sensing
resistor (FSR) sensor data is acquired using an Arduino with a low sampling
rate. An open soundcard platform, where one could bypass the input coupling
capacitors, would have allowed the sampling of the same sensors with much
higher resolution, allowing for better quality research data; this bypass is an
intervention on a hardware level, which could be hazardous applied to high-
end (expensive) products - but, as paper II-A demonstrates, it is possible to
implement relatively cheaply in a do-it-yourself (DIY) platform. Similarly, other
projects reported in part III could have benefited from an open soundcard
platform — and that would extend to all research projects of similar nature.

It should be admitted, that in spite of covering major issues in soundcard
implementation, the tutorial part does not reach a "holy grail" of sorts, a self-
imposed milestone, of demonstrating the operation of a high-fidelity — Compact
Disc (CD) quality — soundcard. The reasons behind this, mostly (but not exclu-
sively) technical, are discussed in paper II-G. That, however, is possibly not as
important, as the note that — again, ironically — the same strong technological
development process that provided the grounds for carrying out the work in
this thesis, has already obsoleted some of the technology discussed in part II.

1.1. Thesis outline

In fact, similar processes are observable elsewhere, not the least in pop music
industry: the listening habits of the population, changed by technology, may
have caused enough losses to the pop music industry, to force it to focus more
on live events [20] - which may additionally validate the original emphasis on
live performance in this research process. Considering that Moore’s Law may
be peaking soon [21], which might lead to a plateauing in all electronics-related
industries (including musical instrument and media technology), this thesis
also touches upon issues of obsolescence and diminishing returns in this area,
among other possible future perspectives of an open digital audio platform.

1.1 Thesis outline

This thesis is organized as follows: in the introductory part I, the methodol-
ogy is discussed in the next, section 1.2; the motivation is given in chapter 2.
The DAW as a paradigm in live performance of looped electronic music is
elaborated in chapter 3, through a discourse on established live interaction ap-
proaches with classic drum machines in section 3.1 (with details in Appendix),
and with DJ setups in section 3.2 — resulting in a proposal for merging these
approaches on a DAW platform in section 3.3, concluded upon in section 3.4.
The contributions of the articles included in this thesis, focused on the open
soundcard perspective, are argued in chapter 4: section 4.1 considers primarily
the educational perspective of the work in part II, while section 4.2 considers
the advantages of open soundcard technology use in research, exemplified
by publications in part III; and diverse perspectives on open development of
technology, which ultimately underlie and influence the development of open
soundcards as well, are reflected upon in section 4.3. Finally, the conclusion
along with future perspectives, is in chapter 5.

Note that as the papers in part II refer to each other, papers II-A to II-G
appear as citations [1a] to [7a] in the respective bibliographic references.

1.2 Methodology

Chapter 2 is meant to historically outline the technology tree, that led to some
of the proposal ideas in chapter 3. The autobiographical character of chapter 2,
which outlines the motivation behind what become requirements for a DAW
adapted for live performance, imparts an ethnographic methodology (cf. [22])
aspect to this thesis. But, as the response to a digital music instrument prob-
lem here is the development of open soundcard systems, which is technical
in nature — in general, the major part of the Ph.D. work can be said to have
followed an engineering methodology, as applied to both electronics and soft-
ware development. Each of the papers in part II, as a project, is a standalone
study of particular software or hardware aspects in soundcard development,
which can be seen as a technical experiment; the papers in part III are likewise

Chapter 1. Background

standalone studies, but each with methodologies respective to their field. The
projects typically passed through stages of design, implementation, verification,
and analysis of operation through data collection; while the design stage in
electronics (where appropriate) is more distinct — in software development, it
was often conflated with the implementation stage in iterative, rapid develop-
ment cycles; close in spirit to some aspects of established software development
methodologies such as AGILE [23].

The verification and data collection and analysis stages involved quanti-
tative research methods. In part I, besides the basic literature overview for
each project, the data collection process in terms of hardware involves obtaining
measurements through instruments like multimeters, but more importantly,
digital oscilloscopes - which allow download to a PC and further computer-
based analysis; in software terms it involves capturing programs’ output, often
timestamped, in log files. The data analysis phase in both hardware and software
mostly revolved around time measurements, such as determining temporal
difference between two events, or finding signal period (i.e. frequency). How-
ever, for software analysis in particular, the research process at times required
custom visualization, which then yielded development of customized software
tools; this is most apparent in paper II-G. Beyond this technical research core,
papers in part III additionally demonstrate a methodology common in the field
of human-computer interaction (HCI): usability evaluation through user testing,
and statistical analysis of the results thus obtained. Had the project resulted
with prototypes of relevant quality and reliability, usability testing would have
also been a critical milestone in the development of both an open soundcard -
and a DAW for live performance, based partially on its technology.

10

Chapter 2

Motivation: a labor of angst

“

.. writing about music is, as Martin Mull put it, like dancing about
architecture.” [24]

If this is the section where the thesis author is allowed a degree of autobi-
ographical reflection, I will take the opportunity and switch to a first-person
narrative. As my Curriculum Vitae shows, I have had formal connection with
both music and technology, in varying degrees throughout time. In fact, the
main motivation comes from my younger time, when I was intimately involved
with music and recording studio scenes and communities: above and beyond
assisting musicians in general with an improvement of an instrument, the DAW
for live performance - as described further on in this thesis - was something
that I personally would have wanted to use, for a potential musician’s career of
mine. In my younger days, I would have certainly described the efforts towards
this instrument as a "labor of love"; but with age, comes cynicism - and if I'm to
be honest today: to a comparable degree (if not higher), these efforts could just
as well be described as a labor of angst. Angst notwithstanding, the motivation
is also a product of all the good, positive and exciting experiences I've had at
the time - including the influences of music artists and producers that I have
listened to and appreciated. This section will describe some of those influences,
that have had the strongest impact on the development of my particular idea of
the DAW as a live instrument.

2.1 Baby steps

Technology-wise, I have since earliest childhood had interest for what I would
describe as media technology - technology that, unlike most inanimate matter,
would directly appeal to my perception: technology that could record and
reproduce speech, music or images (moving or not). In other words, while I
could clearly notice the utility in devices as an electric refrigerator or stove, such

11

[A®)

Chapter 2. Motivation: a labor of angst

examples of technology never piqued my interest, as much as a black & white
TV set, a mono radio/tape-recorder, or a diaslide projector did. Maybe more
accurately, what fascinated me about these devices are two factors: that they
could convey a message meaningful to me, and not only that - they often have
allowed me immersion in that message’s implied context (in a more natural
way than, say, printed media did). For instance, one of the most immersive
experiences for me during childhood, that I can still recall, is listening to the
Muppet Show Album (1977) vinyl record on a mono gramophone; the music
just sounded so "crazy" (yet amicable) and different from my daily experience -
it could grab my attention to the point of immersion on its own (rather than by
association with the Muppet Show characters, which I also liked). This in itself
was a source of wonder to me, as immersion was the unexpected end result of
combining a black vinyl plastic disc, with a suitcase featuring a metal spinning
disc and a plastic arm: both, on their own, rather mechanistically inanimate
objects.

Thus, I (like, presumably, many others) came under the spell, of what is
maybe best expressed through the wording of author Arthur C. Clarke’s Third
Law: “Any sufficiently advanced technology is indistinguishable from magic”
[25]; in this case, the "magic" of inanimate objects producing messages that
can affect people personally. And the infatuation with media devices hardly
stopped at the gramophone. I experienced the arrival of two new products in
the early 1980s which left a profound impression on me; both of which carried
some prestige to owners at their introduction.

The first was the VHS (Video Home System) video-tape recorder: I found it
absolutely mind-blowing that this machine could both record and reproduce
television programs, and you could have it at home. Disappointed at my parents’
refusal to acquire one for many years, I spent quite some time pondering (having
realized that both audio and video cassettes alike contain magnetic tape) how I
could possibly modify a mono audio tape recorder to record TV video signals —
so as to avoid spending money on a new VHS recorder. This thought experiment
certainly contributed to my choice of electronics engineering studies later on.
The second profound product for me was the Commodore 64 computer: not
only it controlled both the audio and video signal of a TV set, it could use that
to reproduce diverse games, loadable from an audio cassette tape — and more
than that, it offered the user a possibility to eventually program and implement
their own games (or more generally in today’s terms, multimedia productions).
I'was rather excited with these possibilities, and after my parents got one from
me (not the least due to permanent nagging from myself), I spent a lot of time
with the C64. Notably, most of this time was spent in a state, that the current
Western legal outlook would consider piracy: while the Commodore company
may have had representation/distributor in my country of origin at the time,
the game software producers definitely didn’t; and the only way to get new
software was to copy it from someone else: from their tape to mine (given that
blank audio cassettes were readily available at the time). However, I also spent

12

2.2. Pedal to the metal

a portion of the time buying magazines, typing in the source code they printed
of diverse small programs and games, and running it; this would presumably
be seen as a legal customer action even today. This computer allowed me early
contact with BASIC and assembler programming languages; though I must
admit that I've forgotten most of these Commodore experiences in the decades
that followed.

Music-wise, my beginnings as a child are in the mid portion of the 1980s,
when I was signed up to elementary classical music education, which involved
both voice training and piano lessons. While I was mildly impressed at myself,
once I could play the piano with both hands without effort — the kind of classical
music used for training didn’t appeal much to me, and moments of immersion
were rare. Slowly, I started feeling it as a burden, and ultimately asked to be
relieved of the music school attendance duties. A short period of no particular
interest in music followed, until T hit puberty, around 7t grade elementary
school (which would be the period before and around 1990). This approximately
coincided with the introduction of so-called "satellite TV" in the local area where
T'used to live: essentially, inhabitants of residential buildings would pool money
together, and buy a satellite dish and receiver equipment, whose signal via
cable was then distributed to households. This allowed, in addition to the state
channels, up to 4 additional foreign TV channels on a household TV; most
notably, the Music Television (MTV) channel was typically offered in such a
package, and that is how I got in touch with it and its offerings. In this period, I
discovered the hard rock band Guns N’ Roses, and their hits from the "Appetite
for Destruction” (1987) album — and I was instantly hooked on the heavy sound
of the distorted guitar.

2.2 Pedal to the metal

I'hardly stopped with Guns N’ Roses, who merely spawned an interest into ever
so harder expressions of music; and soon after, I discovered the heavy metal
band Metallica with their "...And Justice for All" (1988) album; which, along
with their previous releases, officially turned me into a "metalhead". Expanding
first to bands like Motorhead or Iron Maiden, my interest was then led to what
was known as speed or thrash metal genre, especially through albums like
Bathory’s "Blood Fire Death" (1988), Kreator’s "Extreme Aggression" (1989), or
Sepultura’s "Beneath the Remains" (1989). Ultimately, I settled on primarily
honing my tastes for death metal, grindcore and noise; consuming releases
such as "From Enslavement to Obliteration" (1988) by Napalm Death, "Realm of
Chaos" (1989) by Bolt Thrower, or "Left Hand Path" (1990) by Entombed (and
occasionally, slower, doom metal variants like "Forest of Equilibrium" (1991) by
Cathedral). Titles like these can certainly be read as a form of teenage rebellion,
or even angst - although, I feel for me it was more a way to deal with feelings
of increasing inadequacy in respect to wider society, through reinforcing an
escapist sense of weltschmerz in a (somewhat) small community of like-minded

13

Chapter 2. Motivation: a labor of angst

people, distinct from what would have been locally recognized as alternative
music at the time (for an analysis of the local musical output in the generation
preceding this one, consider [26]).

Having so deeply ingrained myself with a music scene of this character,
which very clearly revolved around the sound of distorted electric guitar, I
was naturally motivated to take up playing the instrument; this time, however,
because of sheer desire to be able to play. Musically, one of the things that I
found so exciting in the electric guitar, was not so much the capability for melody
and harmony, inherited from its acoustic ancestor; but the capability to function
as a nearly rhythmical instrument, especially with the metal playing technique
of palm-muting; which comes most prominently to life, when involving power
(fifth) chords - and, especially, distortion. I found that this enforces a specific
relation between the performer and the instrument: the instrument is no longer
just the guitar, even if it is electric: the complete instrument is composed of
the guitar, a distortion pedal, and an amplifier (plus assorted cables, and of
course, access to the electrical power grid). And besides the conceptual shift in
considering this system as an electronic instrument (even if the guitar is still
played, in many respects, in the traditional acoustic manner), such a relationship
also means that this instrument becomes somewhat more expensive to own
and play, especially for a teenager.

2.3 Ridin’ on the wings of inflation

While mentions of expenses in this context rarely deserve a response, other
than "Get a job!" — this period, unfortunately, coincided with what was known
in South-Eastern Europe as "transition". My first memory of this is inflation,
maybe most vividly captured on Fig. 2.1. The size of the banknote denomination
on Fig. 2.1 is maybe not so impressive, compared to contemporary currencies
of functioning economies like the Japanese yen; however, it is a symbol of the
times when money was worth less by the day, and the desperate response of
the government to add more zeroes merely reinforced the perceived loss of
value; at the end of 1989, the inflation rate was [27] around 1300 %.

Fig. 2.1: Left: A banknote for 1-10° dinars, 1989 issue by the People’s Bank of Yugoslavia. The same
year, the largest banknote issued was for 2:10° dinars; the previous year, the highest denomination
issued was for 5-10* dinars. Right: The next year, 1990, there was a revaluation of the currency,
resulting with the same amount being represented as 10 dinars.

14

2.4. While my guitar gently weeps

With the independence of Macedonia in 1991 and introduction of own
currency in 1992, the inflation may have stabilized a bit; and even if the country
was spared from the brunt of the chaos in the rest of ex-Yugoslavia, things hardly
improved drastically. This is not to say that I was living in poverty, which I
wasn't (after all, my family could afford to send me for a year to the USA in
1994) — however, those were otherwise the real prospects for many, if not most,
people there at the time. With that in mind, most people at the time (including
my family) simply couldn’t afford to invest in anything beyond assurance of
survival, and musical instruments, just like entertainment technology, was
considered a luxury. And that I got a taste for the electric guitar in that period,
clearly wasn’t helping anyone.

Of course, I would have preferred to invest my own money, bypassing the
approval of my family; and so I did get the idea of getting a job already then —
especially inspired by the American notion of teenagers "flipping burgers" to
earn for instruments. However, consider the general economic depression of
the times: for instance, the CIA World Factbook for 1995 [28] states an inflation
rate of 54 %, unemployment rate of 30 %, and a national GDP per capita of
900 US$ (which amounts to some 75 US$ per month) in Macedonia; and it
wasn’t better in the early 1990s. What I saw, was the same other young people
did: that there were no jobs available - and even if there were, one could hardly
save even the entirety of such salaries towards equipment costing hundreds (if
not thousands) of dollars, in a time frame less than years. So much for "getting a
job"; which was especially irritating after I visited the USA, and saw for myself
that "flipping burgers" was indeed a real option to teenagers there at the time.
Interestingly, the idea of DIY as applied to electric guitars didn’t quite appeal
to me at the time, even if I was aware of the work of luthiers in the country,
such as Branko Radulovié. I think it is because I saw it as mostly involving
woodworking, which in itself requires quite a bit of knowledge and equipment;
but in which I didn’t have as much interest as in electronics, where I had already
started to get invested in.

2.4 While my guitar gently weeps

Still, through a combination of savings, begging and perusal of the second-hand
market, I managed to acquire a rather worn-out electric guitar in the early 1990s
(Fig. 2.2) - which [, in a fit of egotism, lovingly named "the Smikicaster" (a
portmanteau of my nickname at the time and the names of the famous models
of the Fender company, which ended up as a nice little in-joke).

With the acquisition of an electric guitar, I could participate in bands in the
local scene. I should note that given the underground scene at the time was
rather small, it often times allowed for a degree of genre cross-pollination; and
thus, aside from a brief appreciation of the grunge scene, as exemplified by
Nirvana’s "Nevermind" (1991), I also got exposed to punk/hardcore releases
such as D.R.Is "Dirty Rotten EP" (1983), Youth of Today’s "Can’t Close My

15

Chapter 2. Motivation: a labor of angst

Fig. 2.2: left: concert of the hardcore band Dead Cops Rock, Codex club, Skopje, 1992 - on stage,
from left to right: me, Zoki (vocals), Slave (drums), Iko (vocals), Meto (bass); right: me, "rocking
the place” with my guitar, "the Smikicaster" (VHS captures, [29])

Eyes" (1985), Bad Religion’s "Suffer" (1988) or Kromozom 4’s "Rien Ne Sert De
Gacher De La Bande, Il Faut Faire Cuire Son Steak A Point" (1987), while still
retaining my tastes for metal. One of the attractions of this kind of music, for
me, was definitely the fact that I didn’t need to be a master guitar instrumental-
ist, in order to sound acceptable (even according to my own criteria) for that
particular aesthetics. In fact, instead of metal, at the time in Skopje I mostly
ended up playing in bands such as the hardcore "Dead Cops Rock", or the
experimental projects with Filip & Dimitar Mitrov "V.LS. Segobijci”, "Arpadzik"
- and "Nekrojagotki", with its demo album "Majcice vestice". I presume most
of the material (like audio cassette demos) that I was involved with from this
period has long disappeared; Fig. 2.2 is a memento of those times.

The crossing between genres may have been facilitated by two factors: for
one, the underground music scene was small, so "everyone knew each other" -
and it was thus difficult to sustain clashes between genres, akin to the ones in
its native Western environment (as in e.g. "punks" vs. "hippies"; here, enmity
was mostly reserved for external poseurs); and secondly, this scene (just like for
C64 software mentioned earlier) operated mainly by copying audio tapes - that
is, by piracy. However, the analog method of copying audio signal from/to
cassette tapes, meant that each successive generation of a copy accumulated
more noise than its originator (see e.g. [30]); resulting with practically unusable
copies several copy generations "downstream" from the original recording.
Thus, owning an original record in those days was seen as somewhat of a status
symbol, and a small second-hand market for such imports did emerge. And
from that — for me, as well as for nearly all of the people I've played music
with — it didn't take long, for the ambition to record our own music to develop.
But while owning an electric guitar may be enough for band rehearsals and
concerts, it most surely isn't enough to perform recording. The cheapest and
most straightforward way to record a band demo at the time was to utilize
a cassette tape recorder with a built-in microphone; which, given that there

16

2.5. Digital audio arrives

was no way to adjust the volume of individual instruments on the recording,
typically resulted with a rather poor quality live recording. And from that
point on, my interest in technology was strongly focused on music processing
and recording equipment (even if, incidentally, poor quality recordings were
not necessarily shunned by subcultures with a DIY aesthetic, like the hardcore
scene).

2.5 Digital audio arrives

By the mid 1990s, however, the emergence of digital audio products seriously
disrupted the understanding of copying inherent in analog methods. To begin
with, the introduction of cheap CD players popularized the notion of the CD
as an undisputed source for first-generation copying to analog tape: especially
because the signal quality does not deteriorate by mere use of the medium
(which is otherwise inherent in the audio cassette), and digital signal correction
ensures that small scratches on the surface do not have the same effect on
audio reproduction as in the case of the vinyl phonograph record. Then, the
emergence of Creative Labs’ soundcards, in particular Sound Blaster 16 in
1992 and later generations, allowed for a popular shift in perception of the
personal computer as an audio device. Up to this time, the idea of the PC in
the studio was mostly established as a Musical Instrument Digital Interface
(MIDI) controller, driving sound reproduction in external synthesizers; with
the Atari brand being quite popular in this context. With the introduction of
the soundcards, the IBM PC architecture (which started becoming increasingly
more affordable) began to be seen as platform that allowed manipulation and
reproduction of digital audio with CD quality, with unprecedented precision
(down to a single sample) and without the deleterious effects of noise.

I may have penanced slightly for my lifelong participation in music piracy,
by using the opportunity of my visit to the USA as an exchange high-school
student in 1994 /95, to spend nearly all my allowance on acquiring original CDs.
In the USA, I also acquired a small 4-track analog recorder, which could use the
space for two sides of audio stereo signals on a normal cassette tape to store
4 mono signals, and had a mixer interface with a channel strip for each mono
channel (I cannot recall the brand, unfortunately). This recorder did find a
limited use after I got back to Skopje in 1995, but already then it was clear that
this device was more a remnant of the past, than a tool that would allow for
serious music production. Eventually, the emergence of relatively cheap CD
writers and writable CDs allowed music fans identical copying of audio on a
digital level, without any signal degradation with noise; which finally pushed
the audio cassette toward obsolescence.

17

Chapter 2. Motivation: a labor of angst

2.6 Genre expansion - folklore and electronic music

For me, this technological change was also followed with further changes in
musical interests; and the expansion towards different genres for me didn't stop
at styles that involved the heavy, distorted guitar. In fact, while involvement
with rock’n’roll-derived forms of music can be seen as an expression of values
that could be seen as modern and international (that is, values identical to
particular Western subcultures), there was also a motivation to look inwards,
towards music that would be independent of that heritage, and thus unique in
a global scope. Thus, I ended up studying with a group of people as students
of the doyen of Macedonian folklore music, Pece Atanasovski, until his passing
in 1996; subsequently, the student group evolved into an orchestra, that carried
the late teacher’s name (for related information, consider [31]). Given my guitar
background, I took up the study of the string folk instrument tambura in that
group (see Fig. 2.3). While the general outlook towards history and tradition
wouldn’t necessarily relate to music technology, playing in a folk orchestra
exposed me to the concept of ethnographic field recording (and the value of
portable audio recorders in that context) — and subsequently, allowed me the
unique experience of participating in recording an acoustic album (which was
nonetheless recorded and mastered digitally) in a "real" studio. Additionally, I
was exposed to a culture, where songs may have existed for centuries; but due to
the nature of oral transmission of folklore, authorship copyright as understood
today is not applicable - simply because the actual author is not known.

Fig. 2.3: An incarnation of the Orkestar Pece Atanasovski during the release of the self titled
album (remarkably enough, it included members of the other hip-hop band in town at the time,
Cista Okolina). From left to right: Risto Solunéev (gajda), Gjorgji Donev, Vanéo Damjanski, Viktor
Siljanovski (kaval), Dejan Spasovi¢ (kemane), me, Vladimir Martinovski, Dejan Sibinovski (tambura)
and Vele Soluncev (tapan). From the CD booklet.

However, I had also been exposed to genres that explored expression beyond
the allowances of electric guitar, or indeed, any heritage from acoustic music
instruments; and could be considered fundamentally electronic music genres.
To begin with, I was exposed to what was variously referred to industrial or
EBM genres, which some fans from the metal and hardcore scenes listened to as

18

2.7. A hip to the hop, and you just don’t stop

aside indulgence (and as such, I cannot recall a local scene exclusively dedicated
to these genres at the time). Therewith, I gained appreciation of albums like
"Psalm 69: The Way to Succeed and the Way to Suck Eggs" (1992) by Ministry,
"T.V. Sky" (1992) by Young Gods, "Kapital" (1992) by Laibach, or "05:22:09:12
Off" (1993) by Front 242. Initially, I appreciated this kind of material solely
in terms of a studio recording intended for reproduction (playback); with my
background pretense of a guitar instrumentalist, I simply found the concept of
live performance of electronic music laughable (especially since I had witnessed
events, where "performers" would shamelessly play back digitally prerecorded
material, and otherwise merely pretend to turn buttons and perform live - in the
times when audiences wouldn’t notice, as they’d mostly recognize attempts at
playback by the presence of audio cassette noise; for similar sentiments, see [22]).
On the other hand, this kind of material exposed me to thinking about sound
which was musical, yet beyond the usual musical essence: we could consider
a musical composition traditionally as a collection of notes, each with a pitch,
volume and duration, arranged in time; and put in music technology terms,
a MIDI recording of a song will still convey its musical essence, even if the
(pitched) instruments that reproduce those notes are interchanged, e.g. violin
for piano.But in these genres, you might have a memorable sonic passage, which
might not even have a recognizable pitch at all - but rather, a distinct evolution
in time of the sound’s spectral content, which in terms of instruments would be
called timbre; except here with an extended meaning, so it would also encompass
the difference between sound recordings, say, of a car and of a refrigerator. For
instance, the more exciting moments for me were when bands would utilize a
"montage"” of samples of distorted electric guitars, however taken from entirely
different albums, and thus with completely different productions of their sound
spectrum; this would result with a sudden and rhythmical change in "timbre",
which was very difficult (if not impossible) to reproduce as an electric guitar
player (the closest would be to suddenly turn on a distortion pedal with your
foot, and thus switch the timbre of the electric guitar from "non-distorted"
to "distorted"; but rhythmical switching between multiple distortions, even if
supported by multiple pedals, would require extremely demanding footwork
while also standing and playing the guitar with your hands). Still, this influence
was partially responsible for developing my interest in rhythm machines and
samplers, as well as contacts with people focused more on electronic music
instruments.

2.7 A hip to the hop, and you just don’t stop

Another significant influence on me was the one of rap music and hip-hop
culture. I must admit that initially, I didn’t show much appreciation for this
kind of music (for instance, when MC Hammer’s "U Can’t Touch This" (1990)
became a hit, I was absolutely horrified that I had to hear that song everywhere;
I first found appreciation for it years later). That was all to change with the

19

Chapter 2. Motivation: a labor of angst

discovery of the band Das EFX, initially through the exposure of the videos
from their "Dead Serious" (1992) album on the "Yo! MTV Raps" TV show. That
brought the realization that rap can sound hard and heavy, while not referring
to the dictionary of the hard and heavy music stemming from rock’n’roll I knew
up to then (clearly, also here I was first attracted by angst) - and, on top of that,
could even sound funky. This brought me in contact with the local (at the time,
extremely tiny) hip-hop scene; and by 1993, I became a part, along with Goce
Trpkov and Mitko Gastarovski, of the rap band S.A.F. (also SAF, Fig. 2.4), where
I'had the role of a rapper.

Fig. 2.4: Boyz n the Hood: old S.A.F. promo image; from top to bottom, clockwise: Mitko a.k.a.
Pikisipi, me, and Goce.

In this regard, I was mostly influenced by releases of what was known as
the East Coast "new school", such as "Whut? Thee Album" (1992) by Redman,
"No Pressure" (1993) by Erick Sermon, or "The Most Beautifullest Thing in
This World" (1994) by Keith Murray. What impressed me here was that it was
possible to rediscover new musical quality from old recordings: a short looped
sample might serve as a standalone song background, where it could offer a
significantly different aesthetics from the sample’s source recording. And while
the minimalist approach to composition in hip-hop could be perceived as "bor-
ing" in the classical music sense, it also heightened the sense of polyrhythmics
that the rapper’s diction formed with the beat, during the performance of the
lyrics - which for me, at the time, was a newly found musical appreciation. But
that wasn’t all: rap music is intimately connected to the concept of DJ-ing, where
two turntables and a mixer are used as a musical interface (for more, see [32]);

20

2.8. Design ideas emerge: electronic music instrument sessions

while I initially appreciated DJ scratching more as a form of acrobatics, what
changed my mind most strongly was the work of DJ Premier in the group Gang
Starr, in releases like "Hard to Earn" (1994) — whose sophisticated scratching in
songs often left a musical impression of the same prominence, that guitar solos
have in rock-based genres. Realizing the musical potential of the DJ equipment,
I eventually got the opportunity to try it - and finally started fully appreciating it
as a musical instrument: namely, it was hard for a novice to sound good playing
live, as it was easy to make mistakes. The experience of recording S.A.F.’s debut
album, "Safizam", brought me in contact with - among other technologies -
both (some of the) "classic" sequencers discussed later in chapter 3, and digital
multitrack recorders like the Roland VS880 (incidentally, this album gained
somewhat of a cult status as time went on, maybe most obviously apparent at
the concert for the 15" anniversary of its release, on 24" April 2015 in Skopje,
which attracted nearly 5000 people in attendance).

While there were DJ techniques that were relatively easy to learn on turnta-
bles and a mixer (such as beat-juggling, where a loop is played out of two
identical records, by rewinding the one record while the other is playing), it
was clear to me that more expressive playing would involve a steep learning
curve. Furthermore, the sensibility of the turntable styluses means that external
factors can be just as influential in live playing, as the mastery of the instrument
is (especially important in open-air performances, where e.g. wind, or feedback
vibration from the live sound reproduction system on the floor of the stage,
could cause a stylus to skip to a random location on the record). This is often
addressed by adding heavy bases to the turntables (for instance, the legendary
DJ turntable Technics SL-1200 weighs 11 kg); making the whole instrument (of
two turntables and a mixer) less portable than, say, a guitar. But above all, with
a starting price tag of at least 1000 US$ for the instrument (as turntables and
mixer devices), which then merely serves as a gateway to a nearly endless need
to purchase new vinyl records — say for up to 15 US$ a piece (and additional
postage fees and import taxes on top) — I finally got discouraged in pursuing
proficiency as a DJ instrumentalist. After all, I wasn’t that interested in reaching
the full scope of techniques a so-called battle D] might express; I was mostly
interested in relatively simple moves that I found both musically interesting
and intuitive — which mostly revolved around the use of the mixer’s knobs and
faders in rhythm with the playing track(s) (such as the use of crossfader to
"cut" between two different songs playing with synchronized tempo; which
also results with a sudden change of "timbre" - or rather, sound spectrum - of
the overall sound).

2.8 Design ideas emerge: electronic music instru-
ment sessions

In parallel with the strengthening of my interest in hip-hop DJ-ing techniques,
in the second half of the 1990s many people I knew, who owned bits and pieces

21

Chapter 2. Motivation: a labor of angst

of audio equipment, engaged in borrowing equipment to each other for amateur,
often impromptu recording sessions. I came to attend, and often participate
in, many such sessions - even if the devices I could have contributed with (e.g.,
the 4-track recorder) weren't very interesting in that context. These sessions
were essentially an alternative night out with friends - except not in town,
but in someone’s home studio; where diverse amount of synthesizers, drum
machines, and possibly computers, would be connected to a mixer, and the
final mix routed both to amplifiers and a recording device. Every participant
would either program a sequencer track, or modify the synthesizer sounds or
the mix, and that may have gone on for hours until all agree something sounds
good; in which case a snippet of that production would have been recorded. It
was in this environment where I met rhythm machines like Yamaha RY30 (first
introduced 1991) and RY20 (1994), synthesizers like Roland Jupiter-6 (1983)
and Juno-106 (1984), or Korg MS-10 (1978) and MS-20 (1978), and samplers like
E-mu Emax (1986), SP-1200 (1987) and ESI-32 (1994), or Akai MPC2000 (1997).
Here I firstly learned to appreciate that even if a synthesizer is driven digitally
(via MIDI), if it has an analog engine it would still reproduce the "warmth" and
fullness of sound expected of such instruments. Second, I started to appreciate
the step sequencer interface on drum machines like the Roland TR-808 (1980):
having 16 buttons to represent 16 steps in a sequence, it was relatively easy to
insert (or remove) a drum sound at a precise location "live" (i.e., while the drum
sequence loop is playing) by toggling the respective button; in contrast, on the
Yamaha RY20, choosing the particular step involved multiple button presses,
which in some instances may have required the beat to stop — which is why
the only reliable "live" thing (in respect to sequencing) on this machine was to
switch between pre-programmed drum sequences (which could only occur at
a full measure). Samplers like the ESI-32 were rack-mounted units that were
solely intended as MIDI-driven sound generators; and as such couldn’t have
been thought of as standalone instruments. All the good times notwithstanding,
these sessions could end in frustration as well: often times it was enormously
difficult to combine up such diverse instruments in a sensible way for a single
performance context (at least, before the meeting would end) —and this was one
of the main motivators for me, to start thinking about an extensible platform
that would integrate features of drum machines (step sequencer, pad bank),
samplers and analog synthesizer engines in a single machine with a mixer
interface. I simply wished for something that I could power up, and after
several minutes of booting, have the possibility to play with these features -
while 1 still have the inspiration (in contrast, if you have an inspiration for a
guitar riff and you have a guitar laying around, all you have to do is pick it up
and start playing).

Communicating within this environment eventually brought me in contact
with people from the, then nascent, EDM scene - in particular what was known
as the techno & house scene. While I was previously exposed to releases like
"Experience" (1992) by The Prodigy, "Musik" (1994) by Plastikman or "Selected
Ambient Works Volume II" (1994) by Aphex Twin, simply by having been

22

2.8. Design ideas emerge: electronic music instrument sessions

informed about popular music — here I came to appreciate records like "Jill’s
Meth" (1996) by DJ Slip, "Kat Moda" (1997) by Jeff Mills, or releases by the
Tresor (Berlin) label (again, attracted by angst). In fact, I cannot even recall
what other artists I may have liked best; in this scene, the label may have
meant just as much (if not more) as the artist - and after all, most fans were
more concerned with consuming hours-long mixes by a trusted DJ, rather than
individual tracks; accurate knowledge of artists was mostly the concern of DJs.
And having no ambition of being one, I found that I was quite content with
just asking to copy whatever I fancied, from what I'd end up hearing in that
community - without putting too much effort into encyclopedic facts. However,
I still continued participating in sessions, which eventually brought me to an
event, which strongly reinforced the idea for an integrated hardware platform
for live performance of electronic music.

S.Radi'n?Jé‘i
A.Ordev.
S.Dimitrov

F.Mitrov

Dj.Sintetik '-

gircias

Fig. 2.5: Advertising flyer for the live event in club Sachmo, 2000

Namely, the thought emerged that these sessions should be presented live
to an audience, and so I, along with Aleksandar Ordev, Filip Mitrov and Samoil
Radinski, was a part of a concert in the club Sachmo in Skopje, on March 8th,
2000. A flyer for the event is shown on Fig. 2.5, and there were about 50 (or
less) people in attendance, for whom we prepared some techno oriented tracks.
The concept was to prepare some drum tracks and MIDI sequences for the
synths beforehand; the output of individual synths and drum machines was
then taken to a mixer; and the mixer real estate was essentially split in two:
one drum machine and a pair of synths (i.e. 3-4 channels on the mixer) would
play one song, while another drum machine and synths would play the other.

23

Chapter 2. Motivation: a labor of angst

The live playing then consisted mostly of real-time changes of either synth
parameters, or of rhythmical track volume changes through mixer faders. Of
course, using faders to rhythmically modify recorded music is not without
precedent: for instance, consider the interventions of producer Lee "Scratch"
Perry on the tune "Revelation Dub" (1976) by The Upsetters, which result with
rather quick rhythmical fades of the vocals, in a track otherwise performed on
traditional instruments.

The trick thereafter was to prepare songs that were close in tempo (or prepare
suitable transitions), try to start the drum machines manually in sync, and then
try to make a crossfade transition between the two songs like a D] would do;
except here, as there was no D] mixer (and thus no main crossfader), we’d have
had to do that manually on the main mixer (that is, 3-4 channels of the one
song would be put down, whilst the 3-4 channels of the other song are put
up). This may have been a necessity, because I think at least one of the drum
machines was not able to load a new song (as a collection of drum sequence
patterns) without stopping the currently playing one. This was a one-of-a-kind
experience for me (I haven't had a similar one since), and the key findings from
it were:

e [t took as more than 2 hours to set up the instruments on stage, about 40
minutes for the performance, and more than 2 hours to disassemble the
equipment

e Having two people perform a song crossfade (where each controls their
own respective 3-4 channels) on a mixer makes sense musically; but bump-
ing into each other on a crowded stage every 5 minutes isn’t fun (as we’d
go back to whatever instrument we were tending as soon as the crossfade
was over)

* The only times we’d elicit a response from the audience (i.e. mild dancing
and cheering) was during the song crossfades (about 40 seconds), plus
about 40 seconds into the start of the new song; as we had to stretch the
songs to up to 5 minutes, the audience quickly grew bored (and tweaking
synth filters wasn’t always successful in gaining their attention back)

While it is a form of success to elicit any sort of positive response at all (even
if mild), this event certainly wasn’t an extraordinarily positive memory for the
audience. It is true that this outcome can be attributed to beginner’s growing
pains, and that further practice may have eventually alleviated those problems.
However, I couldn’t resist the thought that if we each had a single platform
with a mixer interface, many of these technical problems would not have even
been encountered. As a starting point, I imagined that a device like that should
be capable of being "split internally": I should be able to program a (say) 2-
track drum sequence and 2-track synth sequence, with individual outputs on
channels 1-4, and have it considered as one song, driven by one tempo; with
channels 5-8 representing another song with an independent tempo - and I

24

2.8. Design ideas emerge: electronic music instrument sessions

should be able to seamlessly mix from one song to the other, loading a new song
in the muted section while the non-muted one is playing, continuously. Clearly,
this "internal split" could extend to arbitrary number of channel groupings and
tempos involved; however, the presence of a master crossfader would be most
clearly defined in the case of a 2-way split. In fact, if the device would support
a network interface (which, to an extent, implies an addition of an embedded
computer), then a network protocol between such platforms could be devised,
which would allow for at least two modes of group playing:

* A common tempo information signal is distributed to all devices, used to
drive individual sequencers; the mixed output of all individual devices is
collected and mixed in equal measure

e "Token Chain": Player A has the "token", so the tempo of A is available to
all others, while A is playing own sequence, with own crossfader fully to
the "left". The system is informed (either pre-programmed, or on the spot),
about which player has the token next, say player C. As A starts moving
the crossfader from "left" to "right", the sequence player C is playing (who
keeps own crossfader to the "left") starts being mixed in. As soon as A
has moved the crossfader fully to the "right", the "token" passes to player
C, which means player C is now fully in control; which will last until a
new next player is chosen, and C moves own crossfader to the "right" - to
pass the "token" to the next player in the "chain".

The "token chain" approach would essentially allow for a DJ-like crossfading
experience between songs, except where songs are performed live by individual
artists; with passing of control, similar to the approach for managing perfor-
mance of multiple DJs known as "back-to-back". However, it also increases the
problem domain of such a platform development: in addition to analog and
digital signal processing, one would have to consider embedded computing
and networking as well. The machine was otherwise imagined primarily as
a multichannel audio sampler, which would be driven by the independent
sequencers, with the resulting sound assignable arbitrarily to individual mixer
channels faders. While such a device would principally drive external synthe-
sizers via protocols like MIDI — implementing it as a customizable platform
would have allowed insertion of analog oscillators and envelopes, allowing for
synchronized control of both digital and analog synthesis from a single unit.
Around this time, I saw the introduction of Roland VS880 (1996) Digital Studio
Workstation (multitrack recorder with fader interface), and Yamaha 01V (1998)
Digital Mixing console, both of which controlled multiple channels of digital
audio, through motorized faders that could be driven via MIDI. As both of
these were sometimes colloquially called "workstations", I thought this as an
appropriate category for my imagined platform, even if it was meant to address
issues in live performance (unlike the main functions of the VS880 and 01V).
Still, motorized faders are a powerful visual effect, and they could have well
been used in the platform, especially to indicate cross-fading: by moving the

25

Chapter 2. Motivation: a labor of angst

crossfader left-to-right, the group of individual channel faders for the one song
would automatically move down, while those of the other song would move
up.

Sadly, this was to remain a mere vision, even if since 1995 I have been
enrolled in bachelor university studies of electronics & telecommunication
at the Electro-Technical Faculty in Skopje. The program there used to have
heavy focus on theoretical math and physics, which I found rather tedious
and straining at the time; by now, however, I have learned to appreciate that
approach —especially since that very background, is what allowed me to pursue
the research in this thesis in the first place. The labs, however, I found generally
unappealing; mostly because none of them (that I can remember) dealt with
practical reproduction of either sound or video - at least not in a context that
I could personally take further, to independently develop a DAW platform.
While I didn’t stop hoping I would eventually gain the practical knowledge
of building such a platform up to my graduation in 2001 - in retrospect, the
problem is that such development requires practical, "catalog" knowledge of
parts, as well as means of sourcing those parts; and it was difficult to find related
information in a systematic, tutorial format on the (then, expensive and dial-up)
Internet (as the only alternative to the university, which did not concern itself
with such issues).

2.9 Further developments and opportunities

While I ultimately had to abandon the idea for actual development of the DAW
platform, there were a few additions to the idea during the late 1990s and the
early 2000s. In that period, I, together with Samoil Radinski, Ognen Uzunovski
and Ivan Todorovski, was a part of a promotional agency for techno music
events called Balance (see Fig. 2.6); there I mostly had the role of a multimedia
(web, graphic and audio/video advertisements) designer.

Fig. 2.6: Together with Balance promotional agency, somewhere in year 2000; left: me, Samoil,
Ognen, and Ivan; right: me, Derrick May, Ognen and Samoil (enumerated from left to right on
both images)

26

2.9. Further developments and opportunities

The first booking the agency made was for the international star DJ from
Detroit, Derrick May; whose performance in 2000 profoundly changed my view
of techno DJ mixing. Namely, while at the time I had gained great admiration
for hip-hop DJs, most of the techno DJs I found bland in terms of handwork,
even if I liked their selection: they would mostly perform slow crossfades, and
the rare scratching was mostly simple, and even more rarely sounded appealing
(especially with fast tunes, with tempi >120 BPM). Derrick May, on the other
hand, used quick, rhythmical crossfades, which in the most successful moments
could even sound as a meta-composition over two playing songs; supplemented
with motions like stopping a record by slowing it down in the last beat of a
measure (which could be compared to a scratching motion), before a quick
transition into the same (or different) song. This kind of performance I could
very well appreciate; at least in terms of fader operation, the envisioned DAW
would have been able to support similar kind of operation. But, an addition
of a turntable interface, whose rotational speed controls both the sequencers’
tempi and the speed of sample reproduction, to the platform, would have also
allowed for a DJ-scratch-like control of sound from live-playing sequences; and
could thus integrate more closely with the production workflow of hip-hop,
techno and many other related DJ cultures.

In fact, it didn’t take long for aspects of this idea to be validated by the
music instrument industry: already in 2001, the Final Scratch platform [33]
started emerging, which allowed for a system where turntables playing special
time-code encoded vinyl records controlled playback of digital audio files from
a computer. The close contact to the DJ cultures also motivated me to wish
for a solo career in a similar sense: while I wasn’t exactly interested in being
an actual D] who mixes other people’s records — I was inspired by the concept
of a one-man live show, based on rhythm and involving electronic equipment;
and the concept of releasing music through own label, which can be seen as
self-publishing (and somewhat similar to the concept of Russian camusgat
[samizdat] literature). However, having no means to acquire actual studio
equipment (which I'd anyways have found tedious, having already imagined
a platform that in a single device would offer me capabilities existing studio
equipment didn’t), and no starting point to start developing my own DAW, at
the time I had to come to terms with temporarily setting away my solo musical
career ambitions; and at that time, I came to saw multimedia design as an
emerging opportunity, which would allow me creative participation in the
music scene while not being a musician - and hopefully, eventually, bring me
the means for equipment acquisition or development.

Thus, I came to take the opportunity to study multimedia design in Den-
mark, and further seek to attend master studies in Medialogy in Aalborg Uni-
versity (AAU) in Copenhagen. These studies, while opening me to the world of
software, again led me back in contact with hardware, especially during my
internships with the company Brother, Brother & Sons ApS in Copenhagen
(where I also did my master’s thesis [34]), and my duties as lecturer and super-
visor in AAU. In addition, the studies exposed me to a world of electronic music

27

Chapter 2. Motivation: a labor of angst

instrument development, with related academic literature and corresponding
conferences such as NIME, ICMC or DAFX. This motivated me to revisit the
shelved idea about the development of a DAW for live performance; however,
in spite of the plethora of ideas I was exposed to, the only addition from this
period to the idea of the platform as such, is the addition of a haptic actuator
to the faders. Essentially, the haptic actuator would be a linear motion motor
(like a magnetic loudspeaker), which would be small enough to fit in a fader
knob, and strong enough so that when fed with audio signal, it would cause
a rhythmical haptic sensation on the fingers holding the knob (similar to the
haptic sensation felt when a playing loudspeaker is touched). As such, it would
have provided a possibility for monitoring alternative to (and independent
from) headphones, of what individual channels are playing - even when they
are audibly muted from the main mix.

That is why, upon getting the opportunity for PhD studies in Medialogy in
2007, T'had to insist that the main topic concerns the design and implementation
of the envisioned DAW; after all, that would be probably the only opportunity
I'll ever have at developing audio hardware like that - considering my chances
for getting employed at the likes of Roland or Yamaha, and having a first-hand
experience of such development, are rather slim. As an initial guideline into
this development, I produced an initial 3D model of the DAW, a screenshot of
which is shown on Fig 2.7.

Fig. 2.7: A model of the planned DAW interface

The outline shown on Fig 2.7 shows the influence of the machines I've met
throughout the 1990s and early 2000s: the top four channel strips would rep-
resent individual channel controls; below them is a step sequencer interface;

28

2.10. Reduction to soundcard

followed by a "DJ mixer" interface, consisting of two master/group faders, and
a crossfader between the two. To the right there is a percussive pad bank, and
on the left a screen-like interface; the internals show that the machine would
be built based on PC components, allowing for a computing and networking
capability; turntable interfaces were intended to be additionally attached, and
as such are not shown on Fig 2.7. In fact, it wasn’t too big of a design problem
to develop an initial engine for this platform, in the FLOSS audio processing
visual programming software Pure Data (PD). However, there was one tech-
nical problem with the software approach: it is not scalable easily, in terms of
adding individual channels, on a single computer: once too many channels are
added, latencies and stuttering of audio are to be expected. And this was the
main impetus for looking into how could the engine for this DAW platform
be implemented in hardware. But the biggest impediment here was that, in
spite of my education, I still did not have a practical model of how digital audio
functions: what sort of actual hardware parts do you need to implement the
functionality of a digital sampler; and how is that different from the hardware
a PC uses to reproduce digital audio?

2.10 Reduction to soundcard

Since one of the biggest limitations of early samplers was storage of audio sample
data (e.g. the E-mu ESI-32 had a, from today’s perspective, mere 1.4 MB floppy
drive with 2 MB random access memory (RAM)), I found the understanding
of audio hardware in context of a PC more crucial (as a PC typically provides
access to large storage like a hard disk). Considering it is the soundcard hardware
that has the responsibility to reproduce PC audio, I set upon looking up designs
of soundcards for study. Having been exposed to successful open-source audio
projects such as PD, I fully expected that I would track down a project discussing
the hardware and software internals of the working of a soundcard, providing
me with a base for further development; unfortunately, after several months of
searching, I found nothing that significantly advanced my understanding in
practical terms (as in, something that I could implement myself for study). My
expectations may have been too high: I expected material discussing hardware
to provide basic understanding of the PC bus interface, followed by analysis,
schematics and identification of points in the circuit where digital and analog
signals can be observed, supplanted by oscilloscope traces, images and possibly
videos (on a related webpage); for software, I expected discussion of the effects
of code in respect to known hardware, described as previously, as well as
pointers to tools for analyzing the software performance - which ultimately
became my standards for the papers in part II. Thus, I was faced with a choice:
either I continue working on the level of prototyped DAW interface design, but
without reaching the level of practical understanding of digital audio to allow
me independent further development in terms of scale and performance; or, I
scale down the scope of the PhD project to producing a set of works discussing

29

Chapter 2. Motivation: a labor of angst

the operation of soundcards in as generic and as reproducible terms as possible,
but with the risk of not reaching the stage of a playable DAW prototype.

I found the second option — the study of a soundcard — more crucial; and
thus I asked, and got a permission, for scaling down the scope of the project to
this area. Being aware (and angsty) that the architectural hardware and soft-
ware details of soundcards might be considered protected intellectual property
(IP), whose disclosure in an open manner might present a legal problem - the
decision, that this soundcard study is conducted as open source (in the sense
of building soundcard systems to the greatest extent either from basics/"first
principles", or from open-source code and designs), was immediate. Finally,
after tracking down the design in paper II-A (which is not quite a soundcard),
switching to the GNU/Linux operating system Ubuntu, several years of re-
search and submissions (complicated by my lack of formal training in computer
science), the rest of the papers in part Il were produced. The results of these
papers, while not necessarily implementable directly in the envisioned DAW,
have however finally provided me with the necessary experience, to evaluate
parts on the market that would be appropriate for a possible future prototype
implementation of the envisioned platform. And I firmly believe, that if I had
access to comparable material at the start of the PhD project - instead of spend-
ing 5+ years to study digital audio as implemented in soundcards, it would have
taken me mere months to gain these basics (whereupon I could have proceeded
to fit them in the context of the DAW); and this didactic aspect, I believe, is the
strongest contribution of the papers in part II.

30

Chapter 3

On live performance paradigms
in looped electronic music

This section outlines some of the main aspects of live performance in context
of looped electronic music; which, by extension, would cover a wide area
of styles within contemporary popular music, such as hip-hop or electronic
dance music. The overview is based on affordances of instruments which have
been established in concert use already, and from today’s perspective can be
considered classic - rather than focusing on later developments in audio loops
utilization (such as e.g. the Ableton Live [35] software, or related tools). Finally, a
platform integrating these affordances for live performance is proposed, whose
technical implementation intricacy might justify its designation as a digital
audio workstation. The discussion in this section is illustrated by software
examples, implemented in Pure Data [36] with GriPD [37] and developed on
Ubuntu 11.04 GNU/Linux OS, and released as open-source software collection
named sd-phdemo through the webpage associated to this thesis [38].

Specifically, here the focus is on contrasting the affordances of a classic
drum machine’s step sequencer; versus the traditional DJ set, consisting of two
turntables (vinyl record players, alias gramophones) and what is known as a DJ
variant of a sound mixer. In terms of related work, for an academic treatment
of the instrumentalist approach to the DJ set (also known as turntablism),
the reader is referred to Falkenberg Hansen (2010, [32]) (or for an alternative
perspective, [39]); and while the step sequencer in newer academic literature
is typically taken as a pre-existing design metaphor [40] and used in novel
developments (e.g. [41, 42, 43]), its incarnation in classic drum machines can be
found discussed in literature e.g. by Russ (2012, [44]) or Vail (2014, [45]).

It is important to note that both of these systems originated as products, not
primarily intended as instruments for live performance of music: while a drum
machine sequencer can be seen as designed for non real-time composition of
music - a turntable would originally have been designed as a music reproduction

31

€TUo

Chapter 3. On live performance paradigms in looped electronic music

tool, unrelated to music composition as such. Therefore, it would be prudent
to specify what is meant by live musical performance in this context: it is
the act of the performer changing parameters of the sound produced by an
instrument, through real time interaction, such that musical meaning (melodic
or rthythmical) is conveyed to the audience; and where there is a possibility of the
performer committing an error in conveyance of musical meaning, detectable
by the audience in a negative sense. This broad definition thus demands from
the performer, a minimum of training and expertise with the instrument; and
while encompassing the traditional interaction with acoustic instruments, it
also dismisses acts in which there is no possibility of error in terms of realtime
reproduction of musical meaning (such as merely pressing a "play" button on
an audio player device).

By this definition, however, neither the classic drum machine sequencer,
nor the DJ set, are essentially live instruments — as both platforms can, and are
intended to, reproduce music independently (though in varying degrees) once
started. Hence, the definition of live performance can be extended to encom-
pass real-time modifications of the sound of an already pre-programmed (pre-
composed or pre-recorded) music — which, the possibility of error notwithstand-
ing, would result with conveyance of additional musical meaning, compared
to the machines playing standalone. A critical element in the establishment
of musical meaning in this scope, is the coupling between the instrumentalist
and the audience during a performance; namely, the actual intentions of the
performer ultimately do not matter as much, as what the audience interprets
to be the meaning conveyed by the performance. In this respect, the audience
relies as much on visual cues as on auditory ones, in evaluating a live perfor-
mance: thus, the broad spectrum of body motions of traditional musicians — a
drummer playing (for a formal inquiry, refer to Dahl (2005, [46])), or the gestures
of an orchestra conductor (for application in music technology, consider Fabiani
(2011, [47])) — are much more natural to interpret as a live musical performance,
than the minuscule motions involved with, say, pressing a keyboard button.

The distinction in perceiving body motions as live performance is, of course,
not an immutable discrete boundary, but rather a continuum - after all, inter-
action with diverse traditional musical instruments, such as the piano or the
trumpet, can be in a mechanical sense reduced to the act of pressing buttons.
However, if the evolution of live performance in the electronic dance and hip-
hop scenes is anything to go by, it shows that audiences can react quite well
to the motions stemming from manipulating linear faders and rotary knobs;
motions which are naturally emphasized when the performer is in a standing
pose on stage (e.g. twisting a rotary knob may involve not just the palm, but also
extend to the elbow of the performer as well, resulting in a more obvious body
motion from the audience’s perspective). On the other hand, the possibility
for performance error emerges from the fact that these devices would already
play a pre-programmed sound loop - and in that, at the least impose a rhythm
due to the time period of the loop; the performers’ challenge is then to stay

32

3.1. The classic rhythm/drum machine step sequencer

in takt with this underlying rhythm during their real-time modifications, as
audiences typically react negatively to obvious beat mismatching. Therefore,
the emphasis here is on the inquiry into the step sequencer and DJ set platforms
as tactile, or tangible, musical interfaces: i.e., that which can be achieved in
terms of real-time modification of sound, primarily through manual interaction
with rotary knobs and linear sliders (but also including buttons) as mechanical,
tactile user interface elements.

The text will also outline some specifics of the underlying audio engines,
and thus follow the following convention, due to the unfortunate dual meaning
of the word 'sample’ (noted also in e.g. [48]) in this context: in signal processing,
it refers to a single numeric value (obtained for instance as a result of ADC
conversion at a particular sampling rate), and the text will use "audio sample"
or "signal sample" to refer to this concept; in electronic music, it refers to a
short snippet (which is essentially a collection of multiple "signal samples")
of sound or music obtained from a recording, which the text will refer to as
a "sound sample" (or as per Puckette (2007, [49]), a "wavetable"). Even if the
terms "audio” and "sound" are essentially synonyms in everyday use in English,
there should be less ambiguation when contrasting "audio sample" and "sound
sample" in this purview.

3.1 The classicrhythm/drum machine step sequencer

While there are views, e.g. Arditi (2014, [50]), that the rhythm, or drum, ma-
chine historically evolved from a strictly utilitarian need (e.g. to replace studio
musicians), the need of musicians to exercise control over - in this case - sound,
may also play a large role in this development; otherwise, no one would even
want to compose music, having been satisfied with "mere" ecological sound [51]:
that which is heard randomly in everyday life. Even if the origins of the drum
machine lie earlier in history [52], this section takes four commercial drum ma-
chines as a starting point: Roland TR-808 (1980), E-mu SP-1200 (1987), Yamaha
RY30 (1991), and Akai MPC2000 (1997), shown on Fig. 3.1 - which have been,
and are still, recognized by generations of music producers. From both the
user interface and technological implementation perspectives, all of them have
certain specifics unique to each device; possibly the most pronounced char-
acteristic unifying them, being the feature of some form of a step sequencer
for programming rhythms - and the ability to play pre-programmed rhythms,
without human intervention, as standalone instruments.

Perhaps it is more straightforward to start with describing the specifics of
the audio engines of these machines, as per the electronic music view of the
distinction between audio control interface, and audio generating engine, in
an instrument. The Roland TR-808 uses analog electronics circuitry [54], such
as voltage controlled oscillators (VCOs), voltage controlled amplifiers (VCAs),
voltage controlled filters (VCFs) or noise circuits to produce its percussion
sounds. The rest of the machines on Fig. 3.1 all utilize sound sampling, but to a

33

143

«» [N OO T e

-

(- JesJenfoFoi] ot Joi Josefes | on oo el

Fig. 3.1: Some classic rthythm /drum machines, with key user interface components: a) Roland TR-808, with step sequencer indicated; b) E-mu SP 1200, ibid.;
¢) Yamaha RY30, with "pad bank" indicated; d) Akai MPC2000, ibid. (from ref. [53])

orsnw d1uoxa(d padoor ur swdrpered souewoyiad aatf uQ g 1e3dey)

3.2. The classic DJ set - two turntables and a mixer

different degree: the Yamaha RY30 offers a pre-composed set of 16 bit, 48 kHz
sound samples stored into read-only memorys (ROMs), which thus cannot be
changed by the user - but could be extended with the purchase of a ROM data
card; an approach that may have been known as "sampling & synthesis" or
S&S [55, 44] at the time. The E-mu SP 1200 and the Akai MPC2000 are, on the
other hand, de facto sound samplers, since they allow the users to record their
own sound samples for use as drum sounds: with digital sampling parameters
of 12bit, 26.04 kHz for the SP 1200, and 16 bit, 44.1 kHz with stereo capability
for the MPC2000. This difference in engines is, however, no obstacle to the
machines sharing user interaction techniques in common, such as those related
to the sequencer control interface.

The facilities found in these machines for programming rhythms, can be
said to be based in Western musical composition tradition. A discussion on this
relationship, from a basic perspective, is provided in appendix A — which is
then used to formulate the unique facilities these devices afford, in terms of live
musical performance interaction. These unique facilities, otherwise desirable
on a generic sequencer interface, are noted as: a button row step sequence
controller (as on a TR-808), with a choice of a "note lane" (the step sequencer
applies to) through a rotary control wheel (as on a RY30), with individual
drum sound "note lane" volumes controllable through a set of mixer faders
(as on a SP 1200), and drum pads for real-time playback and sequencing (as
on an MPC2000, RY30). Some of these facilities are illustrated in a part of the
demo, related to this thesis, released as seqinterface_s.pd [38] (graphical
user interface (GUI) elements shown also on Fig. 3.5; note that its GUI doesn't
reconstruct these particular machines’ interfaces, but instead uses a standard
2D piano roll grid, as in typical MIDI editor software).

3.2 The classic DJ set - two turntables and a mixer

The specific affordances for real-time performance in the DJ set stem mainly
from the turntable (gramophone, phonograph) device. Some turntables have
properties, like heavy weight (increased stability), direct drive (faster reaching
of rotation speeds), or pitch control, which makes them especially suitable for
DJ tasks - such as the classic SL series of turntables of the Technics brand, that
ceased production in 2010 [56]; one example is the Technics SL-1200, shown on
Fig. 3.2 left. The DJ set typically consists of two such turntables connected to a
DJ mixer, shown on Fig. 3.3.

In terms of audio generating capabilities, the turntable depends on a vinyl
record medium, whose content the turntable reproduces. An important consid-
eration here is that the vinyl is engraved with the analog signal representation
of the sound, shown on Fig. 3.2 right: commonly, for monaural reproduction,
the groove modulation is lateral (also called radial); while for stereo records,
the groove cut encodes one channel as radial displacement of, and the other as
the width of, the groove [58] (there are also quadraphonic formats, but are not

35

Chapter 3. On live performance paradigms in looped electronic music

Fig. 3.2: Left: a turntable historically considered appropriate for DJ sets, Technics SL-1200 (ref. [53]);
right: electron micrograph of phonograph vinyl record grooves (ref. [57])

commonly used). That means that a song must be mixed (or downmixed) from
multiple individual instrument (or track) channels, to one (for mono) or two
(for stereo) audio signal channels. And this, in turn, means that once the song
is downmixed, it is impossible to perfectly recover the individual instruments
back into separate audio channels. Essentially, the process of mixing is the pro-
cess of signal addition (summing) in the time domain; if i1 (¢) and i (t) are two
instrument (or simply sound) track mono signals (representing a multi-track
mix), then their mono mix a,,, (t) can be described with Eq. 3.2.1 (where k;
and ky are mixing coefficient constants).

ky-ip(t) + ko -in(t) = i ky - ix(t) = amm(t) (3.2.1)

x=1

Even if we simplify, and know a priori how many instrument tracks there are
in the mix, and that the instrument signals are in the range of values from 0
to 1, and that the coefficients kq s, are set to 1.0 — we cannot really say what the
instrument signals would be, having just the measurement of the mixed signal:
if at some moment t; we measured a,,, (t1) to be 0.5, we cannot really say if
i1(t1) was 0.1 and iy (#1) was 0.4, or if i1 (1) was 0.3 and ip(#1) was 0.2 (and for
real numbers, there is an infinite amount of combinations). Thus, the recovery
of the separate instrument signals from the mixed signal, is undefined even in
this simplified mono case:

Ay (£) 25 11.(£) + in (1) (3.2.2)

While there is research into algorithms for mix decomposition (i.e. audio
source separation) into instrument source signals — both non-informed (i.e.
blind source separation [59]), and with prior knowledge (e.g. informed by the
notation score [60]), of the characteristics of the mixed signal — such algorithms
cannot recover the source instrument signals ideally; are not guaranteed to
work in real-time; and their performance may depend on the musical content of

36

3.2. The classic DJ set - two turntables and a mixer

mixed signal itself. As such, they usually can not afford the same convenience
as e.g. the SP 1200 interface on Fig. 3.1b does, in terms of real-time control of
individual instruments in the mix.

Likewise, the turntable doesn’t afford for changing of the tempo of a music
composition recorded on vinyl. However, vinyl records are cut at a prede-
termined disc rotation speed, and their audio content is reproduced in the
original manner only when the record disk spins at the exact same speed on
the turntable. Several recording speeds have emerged as standard in the in-
dustry [58], expressed in units of rounds per minute (RPM), such as 45 RPM
and 331/3RPM (usually referred to as 33 RPM). By analogy with physics, the
symbol for angular velocity w can be used to denote rotational speed; note
that in physics, w is expressed in units of radians per second [%], which has a
direct relationship to the (temporal) frequency f in units of [Hz]:

w=2-7-f (3.2.3)

If one "round" is equivalent to the angle of one revolution, 27t radians,
then the conversion factor between rotational speed in RPMs wrpym, and the
rotational speed in radians per second wrps, can be found through dimensional
analysis as in Eq. 3.2.4:

1 [round] 27t [radians] 7 .rad
1|RPM| = = = — |— 24
[) 1 [minute] 60 [seconds] 30 [s } (3.24)
And the relationship between wrpm and wrps can be expressed as:
T
Wrps = 30 * WRPM (3.2.5)

Regardless of the unit, the rotational speed can be considered as a continuous,
"analog" function of time, w(t). This is of importance, because the rotational
speed of the vinyl disc, relative to the turntable stylus, is what determines
the reproduction speed of the audio encoded in the vinyl grooves; and thus
brings about the most distinctive feature of the turntable (although shared with
other analog media, such as the magnetic tape) - the ability to continuously
slow down, speed up, or reverse audio playback. Notably, the reverse playback
occurs when w(t) < 0 - that is, when the rotational speed is negative (in the
sense of being opposite from the default direction of turntable rotation, which
is clockwise). This phenomenon is what gives rise to the technique of DJ vinyl
scratching [32], as the users can manipulate the surface of the spinning vinyl
on a turntable directly with their hands, and thereby directly change w(t) (and
thus change the audio reproduction speed in real-time). Its artistic potential has
been recognized by e.g. Schaeffer (2004, [61]), one of the pioneers of turntable
instrument use: “Assuming that we limit ourselves to a single recording, we
can still read the latter more or less quickly, more or less loudly, or even cut it
into pieces, thereby presenting the listener with several versions of what was
originally a unique event” [61].

37

Chapter 3. On live performance paradigms in looped electronic music

Notably, changing the reproduction speed of audio, changes both the per-
ceived pitch, and the perceived tempo (if the recording is rhythmical to begin
with), simultaneously. This effect is especially apparent if the record is manually
spun back and forth continuously; and is so distinctive, it may have influenced
the introduction of scratching in the hip-hop genre (refer to the D] Grand Wizard
Theodore anecdote [62], via [32]). The same effect is also present in the domain
of digital audio sampling; in e.g. [49] it might be referred to as transposing a
(sound) sample, or the "chipmunk"” effect. Note that with digital sampling, it
is possible to process audio to change these parameters separately: changing
the pitch while leaving the tempo (or the sound sample duration) unchanged
is commonly known as "pitch shifting" or "pitch transposition” (e.g. [63]), while
the changing the tempo (or the sound sample duration) while leaving the pitch
unchanged may be known as "time scaling”, "time stretching" or "time com-
pression/expansion” (e.g. [64]); both of these can be addressed by the phase
vocoder technique [65].

In spite of the distinctive sound, scratching — as manual transposition of the
sound of a vinyl record on a turntable, by changing its relative rotational speed
w(t) —is usually not musically interesting for long on its own (for instance, as
performed on a single turntable). That is why the typical DJ set employs (at
least) two turntables and a DJ mixer, as on Fig. 3.3. In the most basic exercise,
the DJ set allows for scratching on one turntable, while the other turntable plays
a musical recording, most often containing a rhythmical beat. In this sense,
live performance on a DJ set can again be seen as rhythmical interventions into
a pre-programmed piece of music, thus not unlike the case discussed in the
previous subsection 3.1. In fact, in genres like EDM and hip-hop, the beat of
the pre-programmed music is very likely to have been produced on machines
like those addressed in subsection 3.1 to begin with.

While the individual instrument source signals cannot be recovered from the
mixed signal once the vinyl record is cut, the main output from each turntable
(usually stereo) in a DJ set can be considered a (meta) instrument signal of its
own; and the DJ mixer in the set is intended to address their mixing. Because
of that, the DJ mixer usually has some specific characteristics: for instance,
a single channel fader usually handles two analog audio signals at the same
time: the left and right signal of a stereo mix. Formally, this operation can be
described as on Eq. 3.2.6; where Fpj (x) is the fader value, in the range from 0 to
1 ratiometrically related to the fader head displacement x (or more accurately
x(t), as the displacement can change in time); I(t) and r(f) are the left and
right audio signals, where PF1 and RA1 refer to "post fader" (output) and "raw
audio" (input) respectively; and where the index 1 refers to the channel (as seen
from the DJ mixer’s perspective).

{lpm(f) = Fp1(x) - Ira1(t)

3.2.6
rpr1(t) = Fpi(x) - rra1(t) (320

Another distinctive feature of the D] mixer is the presence of a crossfader,

38

3.2. The classic DJ set - two turntables and a mixer

typically identified by its horizontal orientation (Fig. 3.3), as opposed to the
vertical one of the channel sliders. The role of the crossfader is to ensure a
smooth transition from the music playing on one turntable to the other. Its
operation can be formally described as on Eq. 3.2.7; where the signals Icr, rcr
refer to output from the cross fader.

{ZCF(t) = CF(x) - Ipr1(t) + CF(1 = x) - Ippa(t) (32.7)

rce(t) = CF(x) -rpp1(t) + CF(1 —x) - rppa(t)

Note that in CF(x) in Eq. 3.2.7 should be seen as a function of the crossfader
displacement, which may be linear, but most commonly represents a logarithmic
curve known as "crossfader curve", which in some mixers is tunable [66] (main
channel faders also typically have logarithmic responses). Furthermore, the
displacement x is taken to be relative: with 0 describing one end of the fader;
and 1 describing the other - and corresponding to the physical run (length)
of the fader. If it is additionally specified in Eq. 3.2.7 that CF(0) = 0 and
CF(1) =1, then: for crossfader displacement x = 0 only the second channel is
on the output; for x = 1 only the first channel; — and for x = 0.5 (midway), it is
often desired that both channels are present on the output with equal volume
(e.g. CF(0.5) = 0.5). Finally, DJ mixers typically include a set of rotary knobs
associated to each channel (forming a vertical "channel strip" with the main
channel fader), which represent bands in an audio frequency response equalizer
(EQ); these are used to great effect in live performance, to rhythmically either
amplify or attenuate the "bass", "treble" and "high" range in the audio spectrum.

Thus, the main features of the DJ set in respect to live performance, beyond
the real-time possibility to start and stop music, are: the possibility to change
sound transposition (pitch and tempo/speed) manually, by manipulating the
rotation of the vinyl record played on a turntable; and the possibility to rhyth-
mically intervene into the volume and spectrum of individual songs in the
mix through the associated sliders (both channel faders and crossfader) and
rotary knobs (mainly for EQ) on a D] mixer. This represents only the basic, most
commonly used facilities; techniques integrating other user interface elements
(e.g. "needle drop", manipulating the pitch slider on a turntable) can also be
integrated in a live DJ performance.

Some of these facilities are illustrated in a part of the demo, related to
this thesis, released as turntable_audioloop_dbl_s.pd [38] (GUI elements
shown also on Fig. 3.5). The demo features two real-time turntable simulators
drawn on the GUI, along with a set of sliders representing main faders and
crossfader of a mixer. While capable of loading arbitrary song audio, this
demo initially plays through one-measure loops of mixed sound of sequences,
implemented in the demo of the previous subsection 3.1 — in order to emphasize
the difference in affordances for live performance between the two classic cases.

39

Chapter 3. On live performance paradigms in looped electronic music

Fig. 3.3: A DJ set of two turntables and a mixer (ref. [53]).

€ Pugy LOBOSONG DENGm
e | S04 - Iy =

oq | Load seng. pattem
1 So - - BPM:
P

tempa

RPM

Trkl TAZ

33

Forwnra Faoreard
Not anim'd Notaninrd
Shoppad

Sopped

f] Erunstadss
I —

Fig. 3.5: A screenshot of the GUI of the turntable_seqinterface_dbl part of the demo
associated to this thesis.

40

3.3. Proposals for user interface facilities merging

3.3 Proposals for user interface facilities merging

The previous subsections on classic sequencers and the classic DJ set, allow
for a comparison of their distinctive user interface facilities under a common
purview — which may promote a later derivation of a unified user interface,
that supports the affordances of both. In general terms, the classic sequencers
allow for control of a composition, in granularity from the level of a note, up
to (and including) the level of a song; conversely, the classic D] set allows for a
treatment where the lowest level of granularity is a song (and the high level
would commonly be called a "mix").

In more specific user interface terms, the classic sequencers allow for change
of song elements through buttons, sliders, and rotary knobs, of which the most
distinct in terms of live performance are: drum/instrument pads (as special case
of buttons, for real-time recording of sequences), step sequencer buttons (for
step entry of sequences), and faders for volume control of individual instrument
audio channels. Similarly, the classic DJ sets base their affordances on buttons,
sliders, and rotary knobs; however, they allow for changes at the level of entire
songs, and their most distinctive features are: the turntable as a rotary controller
of the sound transposition (pitch and tempo) of a song, and the use of song
channel faders and crossfader to rhythmically control the volume - as well as
the use of rotary knobs to rhythmically control the EQ - of a song in the mix.

The most obvious point of similarity between these two platforms is the
requirement for a discrete user action to start or stop the automatic, standalone
reproduction of sound. As the turntable record starts (and keeps on) spinning
in order to reproduce sound, especially in cases of rhythmical music, another
obvious relationship emerges: that the rotational speed of the record w is
directly related to - and controls - the tempo of the musical composition being
reproduced. Noting that as per Desain and Honing (1993, [68]) it is not always
accepted that tempo is a continuous quantity, this mapping can be expressed
as on Eq. 3.3.1.

w(t) — Mr(t) (3.3.1)

In Eq. 3.3.1, the turntable rotational speed w(t) can initially be considered
to be in units of RPM, while Mr is again a symbol for the metronome tempo
in beats per minute (BPM). At this point, some proposals can be considered
on how to implement this kind of relationship, which crosses the classical
turntable/sequencer boundary.

3.3.1 A trivial mapping from rotational speed to tempo

Since the notion of tempo is considered here in the domain of sequencers, it is
possible to reduce it to the value of some memory register in case of a digital
sequencer (and the same metaphor can be stretched to include e.g. circuits
based on potentiometers in case of analog sequencers). Thus, the conceptually
simplest approach would be to track or acquire the turntable vinyl rotation

41

Chapter 3. On live performance paradigms in looped electronic music

speed as a signal, and after ADC (if the signal is analog) and appropriate
numeric scaling, simply storing the value of this signal in the tempo register.
Acquiring the rotation speed from a turntable as a digital signal (in which case
it is considered a turntable controller [32]) can be done in different ways, e.g.
through: commercial vinyl emulation systems, that utilize special time-encoded
vinyls, like Final Scratch (whose development history seems to have ended with
legal disputes [69]); commercial sensor based systems such as Tascam TT-M1
(which uses encoder wheels that rotate with the record, similar to an optical
mouse [70]); or by mounting potentiometers or rotary encoders on the turntable
vinyl surface [32].

Even if a turntable controller is in place, and its rotational speed is propa-
gated as a digital value to the presumed tempo register of the sequencer - as long
as the underlying audio engine of the sequencer conforms strictly to the model
on Fig. AA.3, a complete simulation of the turntable operation will not be possi-
ble. The reason for this is that a classic sequencer typically merely triggers its
audio engine; and from that point on, the audio engine reproduces sound "for-
ward" in time, regardless if it is an analog oscillator, or a digital sound sampler.
In case of an analog oscillator, it is in principle impossible to make it oscillate
"backwards" in time, although certain effects can be achieved by reversing the
transient times of applied attack, decay, sustain, release (ADSR) envelopes [71].
While a digital sampler in theory is more versatile, those found in classic se-
quencers would typically be capable of sound sample transposition (changing
both pitch and tempo/duration) - but only in the range of reproducing MIDI
pitch, which is encoded as a 7-bit unsigned integer (i.e. as non-negative values
0 to 127). Thus, even if the mapping of w(t) when the turntable spins in reverse,
is made to result with a tempo My (t) which is negative, it cannot be applied to
individual sounds as negative pitch - as the underlying audio engines would
not be able to interpret it correctly.

A consequence of this is that even if the turntable controller is spun back-
wards, the best one can do in this context is to play back a sequence pattern
backwards - while the individual sounds still play forward. While this could be
an interesting effect, it doesn’t emulate correctly the sonic behavior of turntable
vinyl sound when playing backwards. On the other hand, this kind of mapping
preserves the original meaning of tempo - as the turntable controller is spun
faster or slower than its default speed (e.g. 331/3 RPM), the sequence itself would
play at faster or slower tempo, while the instrument sounds stay unchanged
in pitch when triggered. This behavior is illustrated in a part of the demo, re-
lated to this thesis, released as turntable_seqinterface_s.pd [38]; its GUI
elements form a half of the GUI shown on Fig. 3.5. The demo also illustrates
another potentially interesting possibility for live interaction in this context: the
sequence step indicators are clickable, and allow the user to instantly skip and
set the "phase" of the sequence at a particular step, with subsequent steps occur-
ring at times set by the master tempo, as per the spinning turntable controller —
allowing for limited real-time control of rhythmical transitions.

42

3.3. Proposals for user interface facilities merging

3.3.2 A sequence-rendering, double-buffered, mapping from
rotational speed to tempo

It is not necessary to remain at the trivial form of mapping of w(t) to Mr(t),
considering that the domain under consideration contains the sequencer — and
thus the note-level description of music. If the concept of a song (which has a
limited duration) is approximated to a repeating sound loop (which in principle
can repeat endlessly, thus having unlimited duration), then there may be some
opportunities for a different mapping implementation. Namely, the duration
of the sound loop can be determined by the metronome tempo Mr(t) in BPM,
and the number of measures it encompasses; and it determines the time period
at which the loop repeats. For the simplest case of a 4 loop a single measure
in length, the loop duration in seconds d;, can be calculated as four times the
duration of a quarter note d; as per Eq. AA.1 - which is summarized in Eq. 3.3.2.

60 240

dlf4~dqf4-MT =My (3.3.2)

A known loop duration in seconds, also determines the size of the loop’s

digital representation in bytes, at a known audio sampling frequency, resolution

and number of channels — and thus determines the size (or, in terms of arrays,

the length) of the buffer memory required to store the digital representation.

The buffer length Lp in bytes can be calculated using Eq. 3.3.3, where f; is

the sampling frequency in [Hz], Sg is the sample size in bytes, and N¢ is the
number of channels.

Lp=d;-f-Ss- Nc (3.3.3)

Thus, a single 2 measure at 120 BPM has a duration d; of 2 seconds; and with
mono (single channel) sampling parameters of 8 bit, 44.1 kHz would require
88200 bytes of memory.

For a digital sampling sequencer, the participating instrument sounds are
digital samples, also limited in duration - and known a priori, in the sense
of them having to be stored in some form of memory in order to be used.
In this context, it is possible to move away from the model of polyphony in
classic sequencers, where multiple note lanes in real-time drive multiple audio
generators as on Fig. AA.3, in parallel. Instead, faster than real-time mixing of
the instrument sounds can be attempted, where the MIDI note pattern of the
loop sequence is used as input to an algorithm, which then accesses the stored
digital sound samples, and mixes them as appropriate (per sequence data such
as velocities or pitch) into a final mono (or stereo) digital audio representation
with the duration of the loop, stored in a memory buffer. This process (and its
result) can be called audio rendering, by analogy with the term commonly used
in computer graphics (e.g. [72]). A simplified model of the audio rendering
process is shown on Fig. 3.6.

The simplified audio rendering model on Fig. 3.6 shows only a single mea-
sure of a single note lane (which implies a single MIDI track), which defines

43

Chapter 3. On live performance paradigms in looped electronic music

0 d Ny N, N NyNLy)=4
NL,

IS,

RB AT AT Ak

Fig. 3.6: A simple audio rendering model for a single note lane sequence and single associated
instrument sound sample.

the sound loop. The measure is quantized in 16" notes, which determines the
duration of a quantum as per quantization settings, dgs; note that the tempo
may still be defined in terms of quarter notes, whose duration is d;. The note
lane NL; has four notes, Nj to Ny; a function 7() can be assumed, which returns
the number of notes for a particular note lane (e.g. n(NL;) = 4). Three more
functions can be defined with a note as argument, so: v(Nj) would return the
velocity, here in the range 0 to 1; d(Nj) would return the duration; and s(Nj)
would return the start of note k in a given note lane sequence. The start and
duration can be assumed in units of seconds for the notes on note lane NL;.
Corresponding to this note lane, is an instrument sound, on Fig. 3.6 shown
as a sound sample ISy; it is an array of audio signal samples (for simplicity,
here assumed to be equivalent to a byte), stored in a form of memory. Because
of this, the duration of this sound sample d(IS;) is best expressed in units of
samples (which is linearly scalable to seconds).

The output rendering buffer RB is an amount of samples in size, which
corresponds to the duration of the measure at a given tempo and sampling
frequency (the sound sample IS; is assumed to have been acquired at the same
sampling frequency). The reference point for time t = 0 is the left edge of
Fig. 3.6; and in the context of the measure, the time t can be considered in
seconds — while in the context of the rendering buffer, time maps to the index
pointer i in samples. One way to describe the rendering process in these terms
is shown on Eq. 3.3.4.

RB[i] = (3.3.4)

0 otherwise

n(NL1) {v(Nk) 18y [ig, [i] 10 < g, [i] < min(d(N),d(ISy))
k=1

The buffer RB here is considered as a discrete function of the signal sample
index i, RB[i]. Note that Eq. 3.3.4 assumes that notes cannot overlap in a note
lane; thus, as i (or t) traverses from 0 to end of the measure, it is either within a
bounds of some single note, or not (therefore, the sum in Eq. 3.3.4 is used simply
as an iteral [73] for k as iterator with explicit bounds; the sum will otherwise

44

3.3. Proposals for user interface facilities merging

either have only one term non-zero, or all terms zero). The function i, [i] then
returns the index relative to the instrument sample buffer - that is, the difference
between the current position and the last crossed start (or trigger) of a note
(and has the same meaning as fig, (t) on Fig. 3.6). This also means that upon
each trigger, the sound sample phase is reset in this rendering model. The
formulation on Eq. 3.3.4 limits iig, [i] to be smaller than the duration of either
the given note, or the instrument sound sample; when notes are longer than the
instrument sample, Eq. 3.3.4 writes zeroes in the rendering (as Fig. 3.6 implies
for Ny). Additionally, the algorithm doesn’t perform any additional shaping
(e.g. as through an ADSR envelope) of the note events. The buffer-relative index
function can be written as on Eq. 3.3.5, where the start and duration functions
are assumed to return values in units of signal samples.

0, if i <s(Nyp)
its, [1] = § 1= s(Ng), if s(Ni) < i < s(Ng) +d(Ny) (3.3.5)
0, otherwise k=1,...,n(NLy)

In order to render the audio of an entire sequencer track, understood as
a stack of note lanes related to individual instrument sound (or pitches), let
j represent a particular pitch in the track, IS; the corresponding instrument
sound array, and Nji the k™ note in the corresponding note lane NL;. The audio
rendering process in Eq. 3.3.4 can now be performed over all j, as on Eq. 3.3.6,
in order to obtain a representation of the entire track.

(3.3.6)

0 otherwise

n(NL;) - . o .
RBi] = XP: Z; {Z}(Njk) -1S; [zlsj [z]] if 0<irg, 1] <min(d(Nje) (1))
=1 \ k=1

Unlike the case in Eq. 3.3.4, here the summation will result with more than one
non-zero terms for a particular (time) index i — and as such, the algorithm on
Eq. 3.3.6 implicitly performs mixing of all the note lanes’ content in the track,
limited in volume only by the particular note velocity v(Nj). The symbol P
is used in Eq. 3.3.6 to represent the total number of pitches (note lanes) in the
track; in the case of MID], this number would be 128, as pitch is encoded with
7 bits. However, in practice, iterations need only be performed over note lanes
that actually have notes at a given time into the measure, which can be seen as
one optimization strategy when implementing this algorithm in software (on
Eq. 3.3.6, this approach can be emphasized if the two sums switch places).
Ultimately, this process can be extended to arbitrary levels of hierarchy
nesting; but here, only one more level is relevant: the level of a (MIDI) song,
as a collection of (MIDI) tracks. If TR is the iterator over the tracks in a given
song, let MC(TR) return the MIDI channel associated to the track; since the
MIDI channel also specifies a set of instrument samples, a particular instrument
sample (i.e. its buffer) would then be indexed as ISyic(rg);- Additionally, each
track may have an associated volume setting (or even a signal, changing in time),
which would figure as an additional multiplier in the algorithm equation.

45

Chapter 3. On live performance paradigms in looped electronic music

The key result of such processing, however, is the (here, mono) audio ren-
dering present in a single buffer, capturing a measure of the complete sound
loop, as described by individual track note-level events. As such, it can be
reproduced by only a single audio engine of the kind depicted on Fig. AA.3.
And that, in turn, means that an available rotational speed signal w(t) from a
turntable controller, may be applied directly as the playback speed through the
render buffer — thus simulating the proper sound transposition (simultaneous
change of tempo and pitch) that a vinyl record on a turntable exhibits. The
standard playback from an audio sampling generator can be conceptualized
through a sawtooth (or piecewise linear ramp) function [49], shown on Fig. 3.7.

i

A(RB) —1

6 y—'_'_'_'_'_' t[s]

0 TrB

Fig. 3.7: A representation of a "sawtooth" signal, generating the indexes for signal sample playback
for a sampler

The sawtooth function on Fig. 3.7 has to traverse all samples in the rendering
array, whose amount here is returned by the duration of the buffer d(RB)
expressed in signal samples; and has to traverse them in a time period, e.g.
Trp, which is associated to the rendering buffer. This sawtooth function can be
formally written as on Eq. 3.3.7.

—— . mo
i(t) = {ATRB Tsd(t’ TRB)J

(3.3.7)

In Eq. 3.3.7, A stands for the amplitude, which here is the total length in samples
of the RB rendering buffer array, d(RB); Tgp is the duration of the buffer array,
same as d(RB) but in seconds; mod is the modulus (modulo) function; Ts = 1/,
is the sampling period; the independent time variable ¢ can be assumed to
increase continuously; however the output i(t) — which is in the same domain
as index i used in Eq. 3.3.4 and subsequent — still changes discretely. Thus, if
the sampling frequency is f; = 44.1kHz, at which RB contains 2 seconds of
audio, then for an identical reproduction, the sawtooth function has to traverse
all A = 88200 sample indices in Trp = 2s. If the sawtooth function traverses
the same indices in a time period which is smaller or larger than Tgp, the
playback speed will be faster or slower accordingly, and sound transposition
will occur (pitch and tempo will change); note that in such cases, there are

46

3.3. Proposals for user interface facilities merging

generally either more or less samples than one per sampling period, and thus
some form of linear interpolation between the sample values may be required.
Note that Eq. 3.3.7 specifies an "endlessly" repeating sawtooth waveform in
time; which as a playback control, in principle, turns a digital audio sampler
into a wavetable oscillator [49] — however, here it also ensures that the audio
rendering is constantly looped; conversely, if the sawtooth signal doesn’t repeat
after the first period of Trp expires, it would have been a one-shot sampler.

At this point, a relative rotational speed, w,(t) can be defined as on Eq. 3.3.8.

w(t)
w(t) = = (3.3.8)
The relative rotation speed w;, () has a value of 1 when the actual rotation speed
w(t) is at some predefined default value wp (say, 33 RPM); and is otherwise
ratiometrically related to it: an w,(t) value of two, means that w(t) is at a value
twice bigger than wp. This allows the insertion of w, () directly as a divisor in
Eq. 3.3.7: when the record spins twice as fast as the default speed, the audio
rendering in RB should be reproduced in half the time period Tgp. This is
also valid for negative wy(t), whose influence would invert the phase of the
sawtooth waveform on Fig. 3.7, which corresponds to reverse playback at the
granularity of a signal sample (even if additional scaling may be needed in that
case to maintain the proper range). Finally, the turntable rotation speed, in its
relative variant w;(t), can be integrated into the audio playback engine of the
rendering buffer, which is shown on Eq. 3.3.9.

d(RB)) . mod (t, -L&.)
i(t) = Tes T wr() (3.3.9)

Thus, the rendering process as on Eq. 3.3.6, which fills (or records) the render
buffer RB; and the process on Eq. 3.3.9, which plays back (or reproduces)
the same render buffer RB — establishes the real-time mapping between the
rotational speed of a turntable controller w(t), and the reproduction of a step
sequencer pattern at tempo Mrt; however, in a manner analogous to the behavior
of a vinyl record with a classic turntable.

The playback aspect of this concept can be relatively straightforwardly
implemented with modern consumer PC technology, as e.g. the demo referred
in subsection 3.2 illustrates. However, insistence on real-time behavior as that
of the classic sequencers described in subsection 3.1, essentially means that for
every action the user undertakes, that changes the sequence pattern (adding
or deleting a note, or changing its pitch or velocity) — requires that the entire
rendering process runs again, for all tracks and all notes in the song, to generate
the newest up-to-date audio rendering of the looped sequence. As Eq. 3.3.6
hints, this is not a trivial process, at least in the sense of it requiring time to do its
task, which increases with the amount of notes (or generally, event attributes) in
the sequence, and the duration of the sequence loop (which increases with the

47

Chapter 3. On live performance paradigms in looped electronic music

decrease of metronome tempo). This is especially visible in more elementary
implementation approaches of these algorithms in consumer PC software, when
a full-duplex operation is required: that is, when recording into and playback
from the rendering buffer should occur in the same time. Namely, depending
on the application programming interface (API) and the OS, sometimes writing
into a buffer may completely stop the playback from it for the duration of the
write; other times the algorithm can end up being so demanding that the OS
may start swapping memory from RAM to hard disk or vice-versa, which can
also interrupt a playback operation. At the very least, an implementation of
an algorithm that causes loss of audio playback in random intervals, makes it
unsuitable for live musician interaction.

This is where the dual or double buffering concept comes in, traditionally
a concept used in computer graphics [74]. Essentially, that means that in the
context on Fig. 3.6, instead of one rendering buffer RB, there will be two such
buffers, RB1 and RBy. In this context, while one of the buffers (say, RB1) is in
the role of a front buffer, i.e. has its data read and used by the playback process
— the other, the back buffer, would wait until a the user effects a change in the
sequence data, that requires the rendering process to run again. The rendering
would then proceed to fill the back buffer RB; in the background, while the front
buffer RB; is still playing; and once the rendering process completes, the buffers
switch their roles: RB, becomes the front buffer, and the source of playback data,
while RB; becomes the new back buffer. Since the playback process reproduces
only one sample at a time, conceptually this process could occur with only
a single buffer, without deleterious effects to playback quality - however, the
double buffering strategy would provide a workaround for possible mutually
exclusive locks on read and write operations in a single buffer (here as memory
location), which might be enforced by PC software APIs. Switching from
one to another buffer as source of playback, may result with reproduction of
consecutive signal samples that differ in value in unrelated manner, and thus
might cause an audible pop or click, degrading the playback quality; this can be
addressed in different ways, for instance by allowing such transitions to occur
only at the start, or at only at each quantization step, of the loop measure — or by
implementing a short (few milliseconds) crossfading transition between the two
buffers, while allowing the transitions to occur anywhere in the measure (down
to the granularity of the sampling period). Ultimately, techniques like these
would allow for, roughly speaking, the possibility for a musician to modify or
program a loop sequence, and then "scratch" it immediately afterwards through
a turntable controller, in near real-time — which represents a live performance
action, that merges the affordances of both classic drum machine sequencers
and classic DJ sets.

Note that the entire discussion so far is for a percussive, "non-pitched"
operation: pitch (or its note lane) has been considered an index into a set of
instrument samples, which are copied by the rendering process as-is. For a
pitched operation, where note lane events utilize one and the same instrument
sample but at different pitches, note first the formula [49] for conversion of

48

3.3. Proposals for user interface facilities merging

MIDI pitch m to (fundamental) frequency f in [Hz], shown on Eq.3.3.10; where
a MIDI pitch number of 69 corresponds to the note A above middle C (A4,
which is standardized to a frequency of 440 Hz).

f =440 . 2(m—69)/12 (3.3.10)

In more general form, Eq. 3.3.10 can be rewritten [48] as Eq. 3.3.11, where g is a
known frequency of a reference note (say A4’s 440 Hz), and a is the (positive or
negative) number of equal-tempered semitones away from the reference note.

f=g-2v/12 (3.3.11)

Since time period is inversely proportional to frequency, the duration of a
pitched sample would also inherit the same logarithmic relationship as on
Eq. 3.3.11. That is, for pitched operation, an instrument sound sample would
have to be played faster or slower by the corresponding factor than its original
duration - or, its array would have to be resized, "compressed" or "stretched" in
total size in samples accordingly (requiring linear signal sample interpolation),
before the rendering process (as on Eq. 3.3.6) can correctly place it (as transposed)
in the final audio rendering. Also, the discussion so far covered only mono
operation; for stereo (or multiple audio channel) operation, there should be a
separate double buffer for each output audio channel, and the algorithm needs
to operate synchronously on these buffers in parallel.

These facilities are illustrated in a part of the demo, related to this thesis, re-
leased as turntable_seqinterface_dbl_s.pd [38], whose screenshot shown
on Fig. 3.5. The GUI contains two "decks" — each of which consists of a turntable
controller and an associated sequencer with own set of instrument samples —
whose final output can be controlled by main faders (ChA, ChB) and a cross-
fader, thus simulating the affordances of the classic DJ set. The demo operates
in stereo, 16 bit, 44.1 kHz; and each sequencer contains two tracks of five note
lanes, one percussive (non-pitched) and one pitched. Each of these tracks has
their own dedicated stereo rendering double buffer (i.e. four buffers in all), in
order to allow for smoother response to change of track volume through the
track sliders (TrA1, TrA2, TrB1, TrB2). Each change of sequencer data (changes
to note, pattern, song, or BPM tempo) cause the affected track buffers to be
re-rendered and switched. The turntable controller drives the front buffer play-
back for each track individually; thus the engine could handle "scratching" on
the turntable while at the same time "cutting" the volume of individual tracks
through the track faders (even if that is impossible to perform with a mouse on
this GUI). Since the engine for turntable control is already in place, the wave-
form images in Fig. 3.5 also serve as a controller alternative to the turntable: as
they should in principle visualize the waveform of the final rendered loop, by
clicking and dragging in them, the relative horizontal position could be mapped
to a position into the loop sequence; thus a linear audio "scrubbing" live action
is implemented, as alternative to the rotary "scratching" one (alternatively, a

49

Chapter 3. On live performance paradigms in looped electronic music

quick press/release on the image can be used to quickly seek into the respective
position in the loop).

The rendering algorithm in the demo is implemented in the Python script-
ing language, as a compromise between performance and ease of rapid de-
velopment, using the py/pyext [75] extension objects for Pure Data. As such,
optimizations like use of the Python package numpy’s vectorization techniques,
were required to obtain a relatively stable performance on a modest recent PC
hardware as development environment (see paper 1I-G). Among other opti-
mizations, the rendering process doesn't resize the pitched instrument sound
samples in their entire duration, as this may take prohibitively long time for
long sound samples, especially in the context of chords; instead, the algorithm
first attempts to find the minimal amount of note events per quantization step
in a track, then iterates through each step, and determines the corresponding
range in the source instrument sample, before resizing that snippet only. Even
with optimizations like these, the demo (within the constraints of the devel-
opment environment), can only perform seamlessly under some conditions:
e.g. modifying notes in a pattern with few notes present. Changing a sequence
pattern may introduce audible, but tolerable silence clicks in the loop playback
audio; while changing the tempo (which requires a resize, then re-rendering, of
all buffers for all tracks in a song), and changing a song (which implies loading
of both a new sequence pattern, and a new set of instrument sound samples,
possibly from hard disk) typically cause intolerable silence interruptions of
playback.

3.4 Discussion

This section contrasted the affordances of the classic drum machine sequencers
and the classic DJ set, in terms of musical live performance, both from an inter-
active and a technical viewpoint; and proposed methods for their merging - the
allowance for their simultaneous manipulation on a digital instrument platform.
While the ideas outlined herein might have been novel at the turn of the 21% cen-
tury, it is difficult to assess a remaining novelty factor a decade and a half later;
related though not identical academic approaches can be found in prototypes
like e.g.: Andersen (2003, [76]), whose Mixxx software accepts MIDI events from
augmented hardware, and assists DJ navigation by visualizing audio; possibly
the closest in intention is Lippit (2004, [77]), which submits a system of turntable
controller (further elaborated in [70]), foot pedal, custom commercial drum pad-
based (16padjoystickcontroller) and joystick based (Lupa) controllers to control
audio loops in software, but disregards composition-level events; Pashenkov
(2004, [78]), whose Diskotron is an optical turntable controller fed with paper
disks, printed with alphanumeric commands, which are interpreted and output
as MIDI events; Fukuchi (2007, [79]), which explores multi-track, multi-touch
scratching, but does not treat these tracks as commonly bound by a composition
parameter such as tempo. Evaluations contrasting the usability of different

50

3.4. Discussion

approaches of this kind have been performed in e.g. Lopez et al. (2011, [80]).

Ultimately, in the system proposed herein, the turntables can be considered
as external controllers, and even replaced with different but related controllers
(e.g. based on a repurposed hard disk as in Yerkes et al. (2010, [81])). The system
here relies more on the user interface affordances of not just buttons (also in
the form of pads), but also rotary knobs and linear sliders (an evaluation of
which can be found in [82]). By now, it would be nearly a standard practice
to proceed with e.g. the code already implemented in the presented demos,
and otherwise develop a standalone user interface with these tactile elements,
packaged in a standalone unit (not unlike the classic drum machines on Fig. 3.1,
or the preliminary Fig. 2.7). An initial design layout of such a user interface is
shown on Fig. 3.8, which features the controls mentioned as relevant so far: the
16-step sequencer button row with a rotary wheel controller, instrument/drum
pads, both individual track and main channel strips (with volume faders and
EQ rotary knobs), and a crossfader. Such an interface could provide digital
control signals from the user elements to a PC, which would propagate these
signals as inputs to the audio engine software, and possibly render a GUI based
on them. With a prototype of this kind in place, testing with expert (musician)
users could be conducted, to determine the relevance of the approach. In recent
years, a usability and experience evaluation methodology, that includes body
movement, has evolved for evaluating audio interface devices — both in the
domain of digital music instruments, and for other devices like game controllers
(consider e.g. Gelineck (2012, [83]) or Béttcher (2014, [84])) — which can serve as
basis for the user testing procedure.

The reasons for the categorization of this platform as a DAW, even in
this kind of a prototype, are that the algorithms perform real-time mixing
of audio in the digital domain, originally found in digital audio mixers like
Yamaha 01V (1998); while preserving a separation of track (instrument) au-
dio in the digital domain, originally found in digital audio multi-track mixers
and hard-disk recorders like Roland VS880 (1996), to which the term "digital
workstation" was originally applied. Furthermore, the algorithms operate in
both composition (i.e. note or MIDI level domain) and the digitally sampled
audio domain, which is also found in commercial studio software capable of
recording digital multitrack audio - to which the term DAW is, and may have
been originally, applied to [45]. In fact, it seems that a dedicated approach
to multi-track digital audio recording, aside from general studio equipment
compatibility, is the only aspect that would separate such a prototype from the
concept of a DAW proper (although, as the track renderings are kept separate,
the necessary basis for implementing this approach is already in place).

However, the major problem from such a prototype, as the demos clearly
demonstrate, would be the issue of performance: musicians would certainly
have difficulties relating to an instrument, in which perceivable audio corrup-
tion occurs randomly upon (the more technically demanding) user actions. On
one hand, for anyone familiar with the studio environment from the turn of the
century, when personal computers and digital studio equipment represented

51

49

Main info display

Fig. 3.8: A user interface layout design proposal, with dual ‘decks’, each of which contain a 16-step sequencer row, 4 track channel strips, drum pads,
sequence and waveform feedback screens, along with main mixers and crossfader

orsnw d1uoxa(d padoor ur swdrpered souewoyiad aatf uQ g 1e3dey)

3.4. Discussion

related, but distinct, domains — where the studio equipment was more limited
in what it can do, but more reliable in what it did, than PC software — the idea
of implementing the audio engine in hardware would naturally occur. On the
other hand, the recent advances and availability of computing power, raise
a question in terms of level of detail at which this hardware implementation
should be attempted: if the system, say, depends on external storage for saving
and loading sound sample data, why go through the trouble of implementing
a hardware controller for a 1.44 MB floppy disk - when for relatively modest
means it would be possible to integrate a small-factor laptop PC, with built-in
hard disk on the order of gigabytes, inside the physical prototype itself?

Thus, if a hardware implementation approach is required, the question is
not if, but to what extent - and more importantly, how - could the eventual
hardware implementation be integrated with a computer. Or more generally,
what does hardware implementation mean in this context? While a "grounds-
up" or "first-principles” perspective is necessary in the scope of this proposed
system, it is hardly sufficient in the depths of the hardware design domain: for
instance, conceptually it is clear that on this level, the issue of ADC and DAC
converters should be considered; yet, introductory engineering literature will
most often discuss the devices themselves, without extending to use cases (see
paper II-F): thus, for instance in digital audio, it is rarely made apparent that
besides ADC and DAC, also a power supply, clock signal (setting the sampling
frequency), some form of (e.g. RAM) memory, and circuitry for traversing the
memory locations index (e.g. a counter) is required to even start considering
the basic audio reproduction or recording operations. Experienced engineers
might claim that "it follows" from theory, however, not everyone has access
to the kind of culture where work is done on the specific level to make that
apparent (even if the growth of the Internet might make this distinction less
important).

In terms of audio, an obvious way to approach this would be to go through
a reproducible exercise, or set of exercises, where a practical hardware imple-
mentation of circuits is undertaken, which would illustrate both the basic user
operations like reproducing high fidelity digital audio, and aspects of inter-
facing with a consumer PC. Maybe not surprisingly, there are currently very
few, if any, examples in literature of projects that aim to be hardware exercises
for this particular domain (again, more in paper II-F); one reason for that may
be that real world electronics, at least in the consumer area, rarely deals with
implementing generic designs — but instead markets proprietary, customized
components. And knowing exactly which components would be compatible
enough with each other, to implement a particular operation reliably, can be
seen as a part of a culture rarely present outside the manufacturing business
world - where these kinds of choices could be expected to be part of everyday
work.

Thus, the lack of practical electronics hardware exercises at the time this
project started, that could illustrate generic digital audio issues, either stan-
dalone or within the domain of personal computers — and thus serve as a basis

53

Chapter 3. On live performance paradigms in looped electronic music

for hardware implementation of the live performance DAW proposed herein, -
forced the reduction of this project’s scope to identifying, implementing and
documenting such examples. When considering digital audio in the context of
PCs, there is in reality only one type of a device that immediately stands out as
a candidate for study — the soundcard. The work involved with the study of the
soundcard, the results of which are the papers in part II, is discussed in more
detail in the next chapter.

Otherwise, if an engine was in place, that reliably performs audio rendering,
by splitting it between dedicated hardware and a computer with plenty of
processing power remaining for other tasks, — it would not have been difficult to
imagine future perspectives for development of the proposed live performance
DAW: interfacing with embedded analog devices like oscillators; haptic feed-
back for the main and track faders (similar to the D’Groove haptic turntable [85],
but utilizing a processed form of the audio that each fader is individually "play-
ing" as the signal source for haptic actuation); usage of networking and related
protocols like OSC [86] to allow for collaborative or group performance (e.g.
by choosing one of the performers’ machines to be a tempo master, to which
the others would synchronize); or extensions with further tactile user inter-
face elements relevant to live performance, such as linear "scrubbers" (that can
be implemented either through touchscreens, touchpads, or flat membrane
potentiometers). The problem of scalability is likely to persist, however: not
only in terms of technical solutions, which will naturally impose a limit to,
say, how many tracks can the engine process reliably, which the user might
want to extend at a later date — but also in terms of user interface. The optimal
placement of tactile elements is likely to be different depending on both the
capabilities of the system and the individual user preferences; yet, the platform
cannot emulate systems for arbitrary placement of tactile Ul elements like Villar
et al. (2005, [87]), because the intended live concert use requires a degree of
mechanical sturdiness, and the thus required encasing of the device would
"freeze" the tactile Ul features for each individual prototype implementation.

54

Chapter 4

Contributions of the present work:
the open soundcard in focus

The previous, chapter 3, illustrates that modern developments in digital elec-
tronics and computing had brought about a condition, where ideas in the
domain of digital music instrument design are possible to implement as proto-
types in consumer technology, that is not only widely available, but is also of
the kind that is free and open-source in nature; this is qualitatively different
from the conditions historically present at the turn of the century and earlier.
However, chapter 3 also illustrates that for some (if not most) such ideas, a de-
velopment bottleneck may occur at issues of technological performance quality
— traditionally, a problem domain in electronics and computer science (software)
engineering. Thus, digital lutherie can be seen as a domain, that includes a
cross-disciplinary intersection between these two fields. The basis of this inter-
section — the area of low-level interfacing between software and hardware — is,
however, not widely present in the digital lutherie discourse; at least, not in the
sense of providing a foundation to the wider researcher community, where a
common background is often assumed, but where individuals may otherwise
have widely differing experience in either of the engineering fields.

The soundcard, as an ingrained part of now ubiquitous personal computing
systems (whatever form they may take), has been identified as a suitable model
for study — in particular, practical study as a laboratory exercise — which might
address this situation: by demystifying full-duplex, high-fidelity, multi-channel
digital audio reproduction and capture, as one of the more involved topics.
But what would a practical laboratory study in this context mean? Simply
speaking, it means that: in terms of hardware, it would be possible to build
device hardware from as generic parts as possible, with clearly identifiable
points of measurement of both digital and analog electric signals (which also
implies understanding of the measurement tools, e.g. oscilloscopes, and their
limits of applicability to this task); in terms of software, code would be written

55

40)

Chapter 4. Contributions of the present work: the open soundcard in focus

that interfaces with such device hardware — which implies understanding of
the possible interactions of such code, with other constituent software of the
operating system it runs on — and measurement of its effects in the functioning
of hardware.

This represents the educational perspective on the soundcard, covered by
the papers submitted in part II, summarized in the next section 4.1. These
papers can be seen as a series of practical tutorials, starting from a virtual,
software-only soundcard driver; and progressively covering software and hard-
ware implementation issues for up to high-fidelity - stereo, 16 bit, 44.1 kHz -
soundcards. As such, while these papers do not necessarily bring about gener-
ation of essentially new knowledge (at least not in the engineering fields), they
serve a purpose in possibly the next most fundamental academic endeavor:
dissemination of existing knowledge. An underlying thesis here is that such
efforts would benefit the digital music instrument research community - and
eventually bring about better understanding of, and more creative solutions
in, this problem domain; whether this turns out to be the case, can only be
confirmed by following the developments in the community in the future.

The insistence on an open development approach to soundcards, even if
being motivated by economic factors, however also brings about possible new
applications in the research perspective on the soundcard. The current ubiquity
and reliability of the device makes it an often employed part in implementation
of prototypes in both media technology research, and in other fields as well,
often implicitly (e.g. sonification of physics data or simulations [88]). In media
technology research in particular, besides the implicit use of a soundcard to play
or record sound, it is often used as a generic data acquisition device, capturing
signals from diverse signals and delivering them to software applications —or, as
a driver of actuators other than loudspeakers. This perspective is covered by the
papers submitted in part III, summarized in section 4.2. These papers represent
a sample of diverse areas in media research, with main topics generally within
the context of either digital music instruments, or virtual reality. Most of the
projects described therein either use commercial soundcards, however with
additional workarounds to make them suitable for a data acquisition tasks; or
use data acquisition hardware that might have been replaced with high-fidelity
soundcards with superior performance, had there not been for incompatibilities
typically found in consumer units. An underlying thesis here is that an open
soundcard platform would have allowed for cheaper hardware interventions
than by modifying consumer soundcards, thus improving research efforts by
delivering higher quality data; this is, however, subject to availability of such a
platform — open to modifications — to begin with.

These two perspectives, and the respective papers they encompass, are
summarized in the subsequent text.

56

4.1. The soundcard as a didactic model for laboratory exercises in digital audio

4.1 The soundcard as a didactic model for labora-
tory exercises in digital audio

In everyday use terms, it is easy even for a lay person to define what a soundcard
is: it is a device meant to allow a computer to play or record sound. In more
specific terms, it is a device that is meant to allow reproduction or capture of
digital audio, as opposed to "just” digital music: a computer capable of MIDI
interfacing can play or record music digitally (through external instruments),
but that doesn’t mean capability of reproducing generic audio, which also
includes speech, or any type of noise (ecological, as in field recordings, or not).
This straightforward definition is, in fact, a didactic advantage: at least, it allows
potential students to easily conceptualize what the end result of the exercise
should be, which is not always the case with hardware or software exercises: and
thatis to hear audio being reproduced by the computer. Furthermore, to confirm
the end result, no specialized tool or process other than one’s moderately healthy
hearing is required.

While conceptually simple, embodying this concept as a laboratory exercise
is complicated. Unfortunately, one cannot simply go out, and carve a working
soundcard out of any rock lying on the street; the soundcard evolved from a
utilitarian need to provide personal computers with the ability to reproduce
digital audio - and in that, the soundcard also follows the evolution of PCs.
Therefore, any actual implementation will first demand a choice of particular
commercial hardware and software (or technology in general) with which to
build; and as such would necessarily enforce a degree of vendor lock-in [89] upon
both potential students, and institutions facilitating the laboratory exercises.

Ideally - at least for a software OS - siding with the market share leader, in
this case Microsoft Windows, would be an obvious, no-brainer choice. While
vendor lock-in doesn’t necessarily have to be a problem [90], this market leader
has long been known for its proprietary governance of its operating systems’
source code, as well as requiring entering into non-disclosure agreements
(NDAs) with partners - often with an unsavoury business practice slant, that
has triggered interventions of the legal system in the past [91]. Considering that
in a soundcard exercise, the binding at the lowest levels of operating system
software vis-a-vis hardware will be in focus, it is not difficult to predict problems
occurring at that level, whose troubleshooting would require consultation of
the internals of the operating system. Microsoft, through its Shared Source [92]
initiative, makes the OS source code available, but only to “qualified customers”
[93]; and these qualifications, apart from being a Government or an Enterprise,
seem to be for an individual to be recognized as a Microsoft MVP (most valued
professional) — or in other words, to be a certified member of the guild [94]. A
company that goes through all this trouble in protecting their profits, is not
likely to look keenly upon the prospect of their operating system internals being
publicly revealed, even if it is done under the auspices of education. Thus, the
choice of an open operating system — with unfettered access to its source code

57

Chapter 4. Contributions of the present work: the open soundcard in focus

— for implementing soundcards as laboratory exercises, seems to be the more
reasonable choice; not the least, in order to avoid potential legal entanglements
upon publishing details of the same exercises.

In terms of free & open operating systems, it is important to note that
the domain of interaction between hardware and software is reserved for the
inner core of the OS, known as a kernel. There are currently two major open
source kernels [95]: the Berkeley Software Distribution (BSD) derived ones
(such as OpenBSD or FreeBSD); and Linux. Due to the larger amount of written
resources on the Internet in relation to Linux, and especially its audio subsystem,
Advanced Linux Sound Architecture (ALSA), the Linux kernel ended up as the
choice for implementation base of most of the soundcard exercises. The kernel
was utilized as a part of the Ubuntu GNU/Linux distribution, specifically the
Desktop edition of versions 10.04 (Lucid Lynx) and 11.04 (Natty Narwhal) —
both of which are built on 2.6.x Linux kernel version series. Apart from paper II-
A, all papers in part II are set in this operating system environment — and an
overview of the technologies studied therein is given on table 4.1.

Project Hardware Software PC bus Audio
interface quality

Extending... Custom board User-space C ISA (parallel) 8bit/12.7kHz

paper 1I-A mono

Minivosc (none) OS driver (none/virtual) 8bit/8kHz

paper 1I-B mono

AudioArduino Arduino board OS driver USB/serial 8bit/44.1kHz

paper 1I-C mono

AudioArduino Custom board OS driver USB/serial 8bit/44.1kHz

analog board (+ Arduino (AudioArduino) (AudioArduino) mono

paper II-D board)

Audio bare- Custom board OS driver USB/parallel ~ 8bit/44.1kHz

bones FPGA mono

paper 1I-E

Open s.card N/A N/A N/A N/A

as lab platform

paper 1I-F

Comparing CD (none), OS drivers (none/virtual), 16bit/44.1kHz

timing... Arduino board, USB/serial, stereo

paper 1I-G Intel HDA PCI

Table 4.1: Comparison of technologies used in the open soundcard papers in part II

As table 4.1 outlines, the papers in part Il can generally be seen as a series
(albeit not chronological, see table 1.1) of tutorials, discussing different aspects
of software and hardware of digital audio in increasing quality (and thus perfor-
mance demands): from mono/8bit/8 kHz, to CD quality - stereo/16 bit/44.1 kHz.
Note that paper II-F is an overview of papers II-A to II-E with an emphasis on

58

4.1. The soundcard as a didactic model for laboratory exercises in digital audio

their educational perspective, and as such does not deal directly with techno-
logical issues as the others on table 4.1.

Operation at CD quality is considered an important goalpost for two reasons:
first, because the introduction of consumer soundcards (e.g. Sound Blaster 16)
capable of operation at that quality, was the key event changing the public
perception of desktop computers into devices capable of hi-fi (high-fidelity)
audio reproduction, both music and speech; second, because it represents a
minimal implementation of both a multichannel (carrying only two channels,
the left and the right, in parallel) and a full-duplex (simultaneous playback
and recording) audio system. As such, it is worth noting that the specific CD
quality sampling parameters, 16 bit/44.1 kHz, are de facto standards as per
the "Red Book’ specification for Compact Disc Digital Audio (CD-DA) by the
companies Phillips and Sony, later ratified as IEC 60908; note that this standard
is not freely available, as it requires licensing against a payment and signing
of a confidentiality agreement [96] - however, it is also mostly concerned with
parameters of physical manufacture of compact discs. Otherwise, these specific
parameters have been inherited from properties of home video tapes used
historically as media for digital audio [97, 98], and have emerged [99] based on
physiological studies into human audible bandwidth, that agreed on an upper
cut-off frequency at 20 kHz (thereafter, the Nyquist theorem would demand
sampling at a frequency of minimum twice the upper boundary of the signal
spectrum, in order to have a chance at ideally reconstructing the analog signal
in the time domain).

Since a more technical outline of the first five papers is provided in paper II-F,
here the main contributions can generally be summarized as:

e A webpage, associated to each paper, on the project website [38]; serving
as an online appendix with:

- Additional building instructions and errata
— Released source code and schematics files
— Media (images, videos) and data (e.g. oscilloscope captures) files

e Focus on a free and open toolchain for reproducible building of the ex-
amples:

— Schematics and printed circuit board (PCB) layouts for boards (re-
leased for papers II-A, II-D and II-E) have been implemented in the
free, open-source and cross-platform KiCad EDA software suite

— Most of the hardware discussed - both the released designs, and
the Arduino Duemilanove board used in papers II-B, II-G - can be
rebuilt with hobbyist means (i.e. cheaply and individually)

— All of the software released - driver or user-space code - can be
compiled and executed in a free, open-source GNU/Linux operating
system; and is released under the same terms

— All of the software has been developed, tested and described in
respect to "vanilla" (official) distributor releases of the kernels used;

59

Chapter 4. Contributions of the present work: the open soundcard in focus

thus specialized (e.g. "realtime") kernels are not required

— Some of the released software represents independent tools, meant
to facilitate inspection of different aspects of the soundcard system
operation (e.g. the numStepCsvLogVis software in paper II-G)

* Practical and contextual illustration of hardware and software computing
issues:

— The distinctions between parallel (ISA, PCI; papers II-A, II-G) and se-
rial (USB, RS232; papers II-A to II-G) data communication protocols

— The specifics of digital to analog conversion of audio signals, and
use of PWM in this context (papers 1I-C, 1I-D)

- The differences between a microcontroller-based (paper II-C) and
raw digital logic based (paper 1I-E) approaches to full-duplex sound-
card hardware design and implementation

— The influence of details like: the phase between the playback and
capture periodic kernel callback functions; or, the technique of direct
memory access (DMA); on the full-duplex performance of an ALSA
driver (paper II-G)

All of the papers and related implementations consider only exchange of un-
compressed pulse-code modulation (PCM) audio data; with that baseline, it
would be relatively straightforward to extend the exercises with data compres-
sion, or real-time audio processing, schemes - on either OS driver, or hardware,
level. This development approach allows, for instance, a generic conceptual
model of a soundcard to be recognized, shown on Fig. 4.1, consisting of a: bus
interface, through which streams of audio data are exchanged with a PC; a
binary (crystal oscillator) clock, which ideally would provide both a rate for
digital logic (i.e. computing) functions, and the audio rate for handling ADC
and DAC conversion; on-board memory, capable of buffering potential bursts
in the streams exchanged with the PC; and channel demultiplexer, propagating
data between the on-board memory and the respective ADC or DAC units.
Most of these units might be physically housed in the same IC chip (as in both
paper II-C and II-E); but their implementation details will differ significantly
depending on the technology (microcontroller and field-programmable gate
array (FPGA), respectively).

Interestingly, this kind of architecture allowed the project to steer clear of deeper
involvement with OS kernel issues, until the quality demands reached CD qual-
ity —simply because at lower performance rates, deviations from perfect periodic
operations on the OS level, are masked by the presence of the on-board buffer
memory and an independent audio rate clock. At CD quality, this is no longer
the case, and the details behind this behavior, are investigated in paper II-G. Pa-
per II-G notes an unobvious behavior: even when there is USB serial bandwidth
of say 200kB/s, a transfer of CD quality stream which requires 176.4 kB /s may
still result with errors: essentially random delays due to kernel pre-emption
may influence the queuing of data, resulting with buffer overflows on the sound-
card buffer as per Fig. 4.1 - even if the OS doesn’t detect an error in that case.

60

4.1. The soundcard as a didactic model for laboratory exercises in digital audio

wn —_—
9]
g £ Buffer memory (RAM)
%‘3 &) HNEEEEEEEEEEEEEN
= N
jou (© I I e [e i B \
3 i A !
&) [—
& L E PCbus| |, g | CliCE(I—XO) - % ADC
§ .S EE’ § é % DAC
- k= &3
O g
o)
PC Soundcard A

Fig. 4.1: Generic model of a soundcard. On the Soundcard block, thick lines indicate audio data
paths, dashed lines indicate different clock domains’ signals (additional circuitry performing the
control logic based on clock signals is not shown; neither is power supply). A pair of ADC and
DAC can be considered as a single mono full-duplex channel.

Paper II-G doesn’t provide a solution to this, just states it as a reproducible
problem; one approach would be to "shape" the traffic speed according to the
actual buffer pointers —but in this case, those buffers are on the FTDI USB-serial
chip, and it seems the information on whether such pointers are readable by
the PC (and how) is covered by an NDA. Otherwise, another approach would
be to implement a compressing coder-decoder (codec); the papers in part II
deal strictly with uncompressed audio, since more straightforward schemes
like DPCM (differential pulse-code modulation) can be left as exercise to the
reader, while other approaches (e.g. MP3 [100]) may be patent encumbered.
Still, note that the FTDI USB-serial chip is not capable of isochronous data
transfer type, which is otherwise used for audio streaming — and it can only
function in bulk data USB transfer mode, which carries no timing guarantees
(and may retransmit erroneous data, which is not done when streaming). In
this respect, the work in part II demonstrates that even when working with
bulk USB transfer, at 200 kB/s bandwidth it is possible to obtain reliable audio
streaming of up to and including one-quarter of CD-quality bandwidth.

Of the papers in part II, the first, paper 1I-A, is somewhat distinct: it is a
reimplementation of an older project, for which the code is archaic enough
that its easiest to compile and run it under a single-user, single-task context
in an OS such as FreeDOS or MS-DOS (and as such, there is no kernel driver,
even in the Linux version, running on a 2.4 single-floppy disk distribution
called nanobox [101]); additionally, the hardware requires the long obsolete
ISA bus, and features neither an on-board clock nor buffer memory (and as
such, the PC software is in control of the audio sampling rate). While the
software functions merely as a signal generator, in principle it is possible to
modify it so audio samples are reproduced through the card — and thereby,
this system can be seen as a sufficient model of a soundcard. This model

61

Chapter 4. Contributions of the present work: the open soundcard in focus

conception is important, because paper II-A proposes and demonstrates a
specific hardware intervention, applicable to soundcards generally. Namely, all
consumer soundcards feature so-called "coupling capacitors" on their analog
inputs and outputs: they function as high-pass filters, and thus eliminate the
constant, a.k.a. direct current (DC), component of the signal. This is done
mainly to protect electromagnetic loudspeakers; but at the same time, it makes
consumer soundcards unsuitable for generic data acquisition — given that in
many sensors, useful information might be encoded in their constant, or slow
changing, DC component. Paper II-A proposes use of digital switches, to allow
for bypassing of the coupling capacitor filters altogether, controllable from
software; and this kind of intervention would allow use of a soundcard as a
generic sensor and actuator interface, which could be particularly useful for
research. This perspective is the background motive for the summary of papers
related to media technology research, presented in the next section.

4.2 The soundcard as a research tool in media tech-
nology

Development efforts in the area of electronic music instruments, just like those
in the area of audio recording and reproduction equipment, can be considered
to belong to a wider area of media technology research. All the subfields herein
can be seen to share some common properties: for instance, the dependence on
advances in materials science, electronics engineering and computing science;
which can be seen as a base for applied research in media technology. The
papers in part III can be recognized as a small sample of the volume of work in
this wider research field, where the soundcard is either implicitly used (i.e. it is
used a commodity tool, while not being the focus of the research), or where
soundcard technology is applicable. In part III generally, papers III-I and III-
J discuss electronic music interfaces, while papers III-K, III-L and III-M are
concerned with the use of audio and haptics as an immersion factor in virtual
reality technology. The work in part III is briefly summarized in the following
text.

Paper III-H is slightly different from the others, and it is a sort of a precursor
to the tutorial aspect of papers in part IL. It explores wireless multi-channel
sensor connectivity to the commercial application Max/MSP, running in a
Windows XP OS. The problem is addressed by submitting a pair of PCB designs,
one performing the role of sampling and transmission of data from sensors;
and the other as receiver of data and converter to the RS-232 serial format,
that ultimately interfaces to the PC application. The boards utilize a pair of
frequency modulation (FM) transmitter /receiver modules to establish a wireless
link, through which RS-232 formatted serial data is transmitted. The data
formatting is performed on the transmitter board, with software running on a
Microchip PIC microcontroller; the receiver board merely performs electronic
signal scaling of the received data (using a signal level converter IC), so it can

62

4.2. The soundcard as a research tool in media technology

be interfaced to a RS-232 serial port on a PC. While the educational intention is
present in this work, it is hardly useful from an open-source perspective (even
though there is a focus on freeware approaches): schematics and PCB layouts
(which include a hardware programmer for the PIC microcontroller, usable
through a parallel port of a PC) are shared! merely as bitmap images, not in
source file format; Max/MSP patches are provided, and so is the code for the
microcontroller written in the BASIC language - but its instructions refer to use
of freeware (and non-open source) tools for its compiling and "burning”. Open-
source compatibility (and the fact that the word "driver" is used in a mechanical
sense, not in the sense of a specific hardware-related program running in the
context of an OS kernel) aside, the project described in paper III-H advertises
an 8-channel, 8 bit sampling rate of only about 11 Hz (limited by the serial
link speed of 9600 baud and inefficient data encoding). An availability of open
soundcard projects at the time, that could have served as a inspiration base or
precursor to this project, might have resulted with more informed development
- and devices with far superior sampling parameters, that might have been
usable in research as tools, beyond the role of a mere exercise.

Paper III-I belongs to the domain of electronic music instrument research;
in particular, it summarizes results of two short-term research visits, where
audio physical models were driven by DJ gestural control. The experiments in
this study were performed using Skipproof, a virtual turntable DJ application
implemented in Pure Data; a prototype of a Reactable digital instrument, also
with a software portion running on a PC; and a code implementation of a
friction-based model of a violin. In all cases, a soundcard was implicitly used to
generate the audio playback output. While the Reactable prototype is a tactile
interface in its own right, but one where data is acquired by a video camera
(and thus with an effective sampling rate limited by the camera frame rate and
video processing speed) — the Skipproof program is controlled mainly through
a GUI using a mouse; which affords possibly a greater sensor sampling rate, but
also a reduced convenience in terms of musical tactile interaction. This limits
the sampling rate of the sensor signals for interaction input at around 25 Hz
(and up to the order of some 100 Hz) for a standard video camera based input;
while mouse signals are delivered within Pure Data with a minimum period
of 1ms, which results with a 1kHz effective sampling rate. A pre-existing
open soundcard platform with better sampling characteristics would have
been difficult to integrate with the Reactable prototype’s video based input
processing. However, Skipproof has been used with sensor-equipped turntable
controllers, where it is possible that a soundcard based data acquisition could
have delivered input to Pure Data in the audio domain, thus potentially at CD
quality - which would have improved the quality of DJ gesture captures used
in this application.

Paper I11-J also deals with electronic music instrument research, in the same
context as paper III-I: it is a report on a short-term research visit; and discusses

Thttp:/ /smilen.net/wdaq/

63

Chapter 4. Contributions of the present work: the open soundcard in focus

the development of Reactable objects specifically intended for a violin physical
audio model (of which those related to DJ gestures are only a subset). An
overview of an expert user evaluation is also given in this paper. Since the
technology used in this inquiry is the same as the one used in the previous
paper, the applicability of an open soundcard platform in this scope is likewise
the same.

Paper ITI-K is a description of a system, which in subsequent papers is used
in the context of virtual reality research. The system is intended to simulate
the walking experience on different surfaces, and consists of a pair of shoes
equipped with sensors (a pair of FSRs for each shoe) and actuators (a pair of
electromagnetic recoil-type actuators for each shoe), connected to PC software
implemented in Max/MSP as a development environment. The shoes allow
that a real-time signal can be acquired from the walking action of a user that
wears them, which is then processed by software; and upon predefined condi-
tions - when the user makes a step motion with the toe or the heel - appropriate
audio signal is generated that drives the actuators, which would thus simulate
the impact between the shoe and the surface of the floor as a tactile haptic feed-
back. Therefore, the use of a soundcard is explicit - here, a high-end, 8-channel
Fireface 800 soundcard is used to generate 4 individual audio channels at CD
quality, that drive the total of four actuators in the shoes. On the input side,
the FSRs essentially measure the force applied to either a toe or a heel region
of a shoe, and thus provide a signal from which it can be deduced whether
a step has been made. However, the FSRs provide the measurement of the
applied force as a DC voltage level - which would get filtered /distorted by
the input coupling capacitors of the soundcard, if an attempt was made to
use it to additionally sample these sensor signals. Therefore, in spite of the
availability of a high-end, multi-channel soundcard, a secondary system is used
here for sensor acquisition, consisting of an Arduino Diecimila board - which
can capture the unfiltered DC levels of a signal, however at inferior sampling
parameters than the soundcard; and deliver them to a PC via USB/serial con-
nection. Clearly, an existence of an open soundcard platform - especially one
where the input coupling capacitors can be bypassed at will from software, as
paper II-A suggests - would be particularly applicable to this kind of a device:
as it would have allowed both multi-channel sensor sampling, and actuation,
from a single platform, which would have dealt with all signals as CD quality
audio signals. From a perspective of a researcher, this might have reduced the
software implementation complexity as well (e.g. as all signals would be audio
signals, work specifically on interleaving serial and audio data in software
would be unnecessary).

Paper III-L describes a preliminary experiment on audiotactile cues in vir-
tual environments using the system described in the previous, paper III-K. A
group of 45 volunteer users - wearing the augmented shoes, and headphones for
audio feedback - were tested on their ability to discriminate between different
floor surfaces (such as wood, metal etc.) reproduced through the system, while
passively sitting in a chair. Within this experiment, the coupling between the

64

4.2. The soundcard as a research tool in media technology

haptic and the audio feedback was also explored. As the system used here is the
same one as described in the previous paper, the same conclusions regarding
the possible use of an open soundcard would hold.

Paper III-M is similar to the previous, paper III-L, in that it describes an
experiment with the augmented shoes system, described in paper III-K. The
difference is that this time there are 30 participants in total, and they are asked
to walk during the evaluation procedure. Thus, the audio (and haptics) syn-
thesis engine has to perform in real-time, in response to the sensor signals
obtained from the augmented shoes. The laboratory walking area was limited
to some 18 m?, and the wires necessary for input and output for each shoe were
collected in cables up to 5 m long, connected through DB9 connectors; this does
present a degree of hindrance to the free walking of test participants. Also here,
the coupling between the haptic and the audio feedback was explored; and
the participants were asked to identify the material of the floor surface they
experienced to have been reproduced by the system. Since the system used is
the same as in paper III-K, the same technical conclusions about applicability of
a possible open soundcard platform would apply. However, since here walking
is in focus, and cables mounted on shoes do represent a hindrance to unre-
stricted walking, also the approach of paper III-H is applicable, in the sense that
wireless data acquisition would have provided for a freer walking experience
during testing (and this was indeed attempted later in the laboratory, among
other things by using so-called wireless "shields" for the Arduino board, such
as the Watterott RedFly.

This overview of work in part III outlined efforts with diverse research foci
within media technology, however all closely coupled with both sound, and use
of sensors for interaction. As such, the potential benefits from an existence of an
open soundcard platform — one with a level of hardware and software design
openness of the kind promoted by the papers in part II, but with a reliable
CD quality operation; allowing hardware implementations of algorithms as
described in chapter 3, and modifications like e.g. the bypass of input capacitors
as in paper II-A or extension with wireless operation as in paper III-H; but
above all with a clear scalability plan, with known limitations to extending the
platform with additional number of channels in terms of both hardware and
software — have also been identified. The fact that such a "dream" platform was
not available - and not even identifiable - at the start of this PhD project, was
one of the main motivators of the research conducted in part II. This thesis,
unfortunately, cannot claim that it brings about an open soundcard platform
sufficiently embodying these specifications - however, it is implied that a study
of the kind as in part Il in a necessary step towards such a platform, should it
ever emerge. The emergence of such a platform may, in fact, be determined by
factors outside of the scope of user requirements and technical analysis - some
of these are briefly touched upon in the next subsection.

65

Chapter 4. Contributions of the present work: the open soundcard in focus

4.3 Open development perspectives

The papers, summarized in the previous sections, illustrated the open approach
to the soundcard —in the role both of a subject of research, and as a potential tool
inbroader media technology research. As a subject of research, an effort is made
to consider the soundcard as a reliably reproducible laboratory exercise: first,
by considering the soundcard as a generic device, and further, by identifying
actual hardware and software systems that demonstrate soundcard operation.
This assumes that the development of technology has progressed to a point,
where means to reconstruct operation of hi-fi soundcards which first emerged
commercially in the 1990s, are available to an average hobbyist today; if such
means are identified, they can thus be advertised as a basis for laboratory
exercises in educational institutions. Thus a degree of openness is already
predicated upon research of this character: without full disclosure of hardware
and software details, it would be difficult for others to reconstruct the exercises
—and it would be difficult to exercise the freedom to modify the designs to suit
one’s needs.

One of the most apparent limitations in an undertaking of this kind is
economic cost. In this context, "hobbyist means" would describe, as a rule of
thumb, an allowance of about €30 to €50 a month, with occasional purchases
€100 and above (which start triggering the pain threshold); this, along with
an access to electronics shopping opportunities, could allow for amassing
the equivalent of a personal low-cost lab bench (tools like soldering iron or
multimeter and perishables like PCBs or soldering tin) over a course of a year
or more through unrelated, smaller projects. Additionally, ownership of a PC,
as well as paid access to appropriate space, the electric grid and Internet is
assumed; thus "hobbyist means" could probably be within the financial reach
of the majority of the individuals in the developed world. Similarly, institutions
are assumed to already possess lab facilities of equivalent character, available
for student use. Clearly, this kind of a dependency represents an a priori
expense; and a conduction of the soundcard exercises can only increase the
cost. If limiting the expenses is the only criteria, then by using free & open-
source software which can be legally obtained and used essentially gratis (more
precisely, for the cost of Internet traffic); and hardware, like the Arduino board
or the Xilinx FPGA chip, that individually lie within the hobbyist means — the
papers in part II could already be declared a success. That, however, must be
seen in the context of current technological progress — where more aspects of
free & open-source approaches become relevant (and not only to financial cost),
than just the possibility for gratis software downloads.

Note first that from a lab exercise perspective, where generic concepts would
be demonstrated, there is not much use in claiming originality or novelty; as
such the development process would benefit from maximum reuse: there is
no need to waste time on developing a PCB design, or an programming an
entire operating system, if such designs are already available. Let’s recognize
that the extent to which this is possible, is influenced by the intertwining of

66

4.3. Open development perspectives

technological and legal developments, - and the resulting change in social
outlook and business climate, - historically originating mostly from the United
States of America. Additionally, in this specific context, there is an implicit
chicken-and-egg conundrum: computing hardware, even if powered, on its own
is useless without a software program specifying what it should do; a source
code of a program is likewise useless without computer hardware to run on, or
without tools to compile the source code into executable machine instructions
appropriate for the given computer hardware architecture — and this extends
to any subsystems that may be integrated as a part of a computer, such as the
soundcard. Therefore, software code originally was open-source: in the past,
computer hardware was so big and expensive, only institutional customers
could afford it; as this also resulted with a scarce amount of programmers,
manufacturers were forced to bundle source code of programs along with the
hardware — lest the customers find the big, expensive, hardware useless.

All of this changed in 1969: this year, anxious of the significant market share
bordering on monopolization, the U.S. government raised an antitrust lawsuit
against the IBM company; in response, IBM decided to unbundle software
product sales from hardware [102] — this event is believed to represent a crucial
point in the growth of the business software market. Thus software, that
hitherto had been perceived as gratis by customers, now incurred a monetary
cost. The effects of this, however, were not instant - allowing a culture of hacker
ethics to develop throughout the 1970s [103] among research departments and
hobbyist communities alike, where software code was freely exchanged and
modified. Meanwhile, businesses started realizing that by not providing the
source code, but instead only the executable format of software, they both
spared the customer of the time and labor involved with compiling a program -
and increased the dependency of the customer on support from the company,
which is a clear opportunity to increase the extortion of profits on an already
made sale — while simultaneously making it more difficult for the competition to
merely copy that software in competing products and profit from it. Imaginably,
the contact between these two ideologies was not a happy one; for instance,
in 1976, Bill Gates, the co-founder of Microsoft, published the “Open Letter
to Hobbyists”, accusing the hobbyists of thievery due to their copying of the
BASIC interpreter software for the Altair computer [103]. Another oft-cited
episode is the arrival of a Xerox printer as a gift at the MIT Artificial Intelligence
Lab around 1977; whereas the previous model driven by open-source software
allowed the researchers to add relevant functionality, the new model using
closed, proprietary software disallowed that - even if in principle the researchers
were perfectly capable of implementing the functionality, if provided with the
source code. Unsurprisingly by today’s standards, the Xerox company was
entirely uninterested in doing any modifications on the behalf of the researchers
as users.

It is episodes like these, which exemplify the frustration of being capable of
implementing a relatively straightforward modification on a technology, but
unable due to unavailability of a sufficient basis - not because of natural, but

67

Chapter 4. Contributions of the present work: the open soundcard in focus

because of strategic and legal limitations - may have been the motivating factor
behind the emergence of the Free Software Foundation and the corresponding
movement and philosophy, described in more detail by its founder Stallman
(2010, [104]). Similarly, the frustration due to lack of a soundcard platform,
open enough to allow for generic understanding of hardware that implements
real-time algorithms as in chapter 3, or for hardware modifications as in paper II-
A, can be seen as the motivating factor for the open soundcard development
carried out in part II. This frustration can be said to be borne out of a desire
for efficiency - at least in the sense of not having to duplicate already existing
work, that is, not having to reinvent the wheel; this possibility is in a sense
native to software, and as a development approach can be called, as per [104],
"standing on the shoulders of giants". This is clearly seen in the context of reuse
of software: if one has access to the source code, one can modify the software
instead of rewriting it from scratch, and thus avoid waste of time and labor;
there are nuances, however, in how this can be addressed.

In a sense, these issues can be reduced to the question of who owns the
control of a product of labor in a producer-consumer relationship. In other
words, it is the question of who is a thief, or worse, a freeloader or a parasite - a
term of endearment spanning both left-wing (e.g. “the rentier state is a state
of parasitic, decaying capitalism [...]"” [105]) and right-wing (e.g. “[...] if they
don’t want to take menial or low paying jobs; arrogant parasites like that should
starve to death [...]” [106]) political and economic views. From a more menial
perspective, these relations may be easier to understand: if I as a peasant plant,
tend and harvest my own food, it is mine by virtue of my labor on it: I should
be able to consume it any time I want; if I as a blacksmith mine my own ore,
smelt it, and forge it into a hammer head, and chop my own wood fashioning a
handle, assembling the whole as a hammer, it is likewise mine by virtue of my
labor: I should be able to use it anytime I want.

However, while nature may seem sympathetic to life in general locally (after
all, we're here), it also seems hostile to individuals - not the least, due to the
requirement of nutrition for sustenance, and the corresponding existence of
a food chain. Additionally, there is only a limited window of opportunity to
consume food before it spoils, and once it is consumed, it’s gone - for continued
life sustenance, fresh food material must be repeatedly obtained and consumed.
Thus, I as a peasant might be called self-sufficient (as long as there are conditions
that allow my labor to result with continuous resupply of food) —but I as a
blacksmith am not, considering that the time required for the required job
operations will preclude me from simultaneously laboring on a garden. Because
of this, I as a blacksmith am forced to depend on the labor of the peasant, and I
might as well trade my hammer for some quantity of carrots. But, I wouldn't
be able to survive on carrots alone, forcing me to trade with other peasants, too;
and it doesn’t take long for the idea to abstract the value of a product into a
token, - whether shells, precious metal nuggets, paper money, or bits of data
(stored possibly as a magnetic pattern on a disk), - that can be used to trade for
products. The problem is that as an abstraction, there is no a priori physical

68

4.3. Open development perspectives

determination of what is the value the token represents; in reality, its value is
negotiated between the participants in the economy of the given token - or in
other words, all money is fiat (which in recent thought, starts getting addressed
by applying the oil industry’s concept of energy return on energy invested
(EROEI) to the notion of currency, e.g. [107]). And once there is an environment
where trade is viable (meaning that there is already some excess of production
that can be traded), it doesn’t take long for one to get the idea that one’s labor
can be avoided, if those laboring are compelled to part with their produce as a
tribute; for instance by - in the best racketeering tradition - offering protection
to the peasants from harm; harm which, in lack of external enemies, may just as
well be inflicted by oneself to begin with. No more than an image of the ancient
Spartan institution of xpunteia (Krypteia, see e.g. [108]) - where youthful secret
officers terrorize a peasant Helot population as a rite of passage - needs to be
conjured, to recognize that the origins of civilization are rooted in the monopoly
of an élite on exerting violent force on a mass of peasants; from a Machiavellian
perspective, one’s feelings on the matter wouldn’t matter: might de facto is
right, and thus cruelty is apparently a virtue.

Especially as the civilized state comes to accept - and indeed, demand -
its tributes paid in currency as tax, it is not difficult to imagine how most
individuals in this social context would naturally come to perceive money itself
as value, rather than as as a mere token of value. With that, come the inevitable
attempts to hoard or manipulate currency, possibly causing an even greater
disconnect between the perceived and actual (if such can be defined, provided
it is an abstraction to begin with) value of currency - resulting occasionally
with catastrophic inflation, examples of which are known for millenia (at least
since the Roman Emperor Diocletian’s coin debasement [109]). This disconnect
can become exacerbated when technology is introduced, where assembly-line
industrial processes can bring about previously unachievable propositions: if a
manually copied book used to cost me 100 tokens, and a newly printed one costs
me 29 tokens, it clearly costs me less as a consumer — but does that correspond
the actual overall cost, if the existence of the printed book product is predicated
on an industrial level investment in a print shop, say of a million tokens?

And this disconnect is possibly most obvious in the production of items
that are the physical carriers of information directly decodable by humans, in
modern terms - media; and the notion of copying. In ancient terms, if I have
already procured parchment, quills and ink (all of which have a "hard cost",
as they need to be processed from animal carcasses), I borrow a book from
you, and I proceed with using my own labor to copy its contents manually,
returning the book to you once I'm done - I may have inconvenienced you a
bit, but I'm hardly a long-term parasite; in turn, I should own my copy of the
book, by the virtue of investing my labor and resources in it. In that regard, if
someone else permanently takes away my copy of the book without consent, so
I cannot read it any time I please, it would represent theft from me - not from
you as the owner of the source of the copy, which would still remain in your
possession regardless. Or at least, it might be a reasonable position to assume

69

Chapter 4. Contributions of the present work: the open soundcard in focus

today; Irish myth preserves the story of the battle of Ctl Dreimhne [110] around
560 CE, which is fought in response to a ruling that proclaimed: "To each cow
its calf; to each book its copy". Note that the concept of copying cannot be
applied to other types of physical products; one needs to invoke the notion of a
molecular assembler (e.g. [111]) — but one that would allow me to put in any
cheap rock as source material, and get an edible "copy" of an apple owned by
you as output; so that both you keep your original, and I also own my copy (in
full analogy to the concept of copying information in media) — something that
might bring about an economy that could be described as "post-scarcity"; but
clearly something that is currently also a science-fictional [112] proposal, still.

Now, consider what happens when a technology allowing mass reproduc-
tion and economy of scale, starting from the Gutenberg press (and onwards to
assembly line presses), is introduced to the concept of book copying: suddenly,
volumes that might have required thousands of manual laborers, can now be
produced by possibly tens of employees in the same time span - but only if the
investment is made in the building of a press to begin with. Surely, the print
shop stands to profit from this - at least as long as the consumers still have an
active memory of the comparatively higher cost of the previous technology,
and before diminishing returns take their course; and indeed, historically they
did - "... without the Consent of the Authors or Proprietors of such Books and
Writings, to their very great Detriment, and too often to the Ruin of them and
their Families ...", as one of the first legal copyright acts in Great Britain, the
Statute of Anne from 1710, notes. As such, with the emergence of copyright,
the author becomes vested with a power inapplicable to, say, producers of
agricultural produce: the temporary exclusive right to collect royalties on copies
of a product. Note that in this period, copyright is considered a time-limited
right granted by the state, for the benefit of society, as the wording "An Act
for the Encouragement of Learning..." of the Statute of Anne, or "To promote
the Progress of Science and useful Arts ..." of the Copyright Clause of the U.S.
Constitution (1787), indicates.

With the development of industry, technology and law, this concept has
evolved to the notion of intellectual property, resting essentially on three pillars:
copyright (where a unique expression of an idea, but not the idea itself, is
governed); trademark (where a unique identification of an entity’s product
or service is governed) and patent (where an novel idea, or an improvement
of an existing one, is governed) — and additionally, has extended beyond the
domain of literature into music, film, industrial (e.g. electronic circuit) design,
and computer software. All these legal concepts might otherwise indicate that
the author is indiscriminately privileged (at least temporarily), but that is not
exactly the case in reality: since ownership of intellectual property titles is
considered property, it can be legally traded - bought and sold; and as such, it
is not the author which is irrevocably privileged, but the owner of the title. Even
leaving aside the fact that in the concept of "work for hire", it is not the author
of the work, but the employer paying for it, that owns e.g. the title to copyright -
a lot of individual authors, especially in the domain of artistic expression, have

70

4.3. Open development perspectives

no other option but to cede their copyrights to a publisher in hopes of achieving
success; from this point on, the publisher legally owns the copyright and can
profit from it, which is not synonymous with corresponding profit of the author
- for examples from the popular music industry, consider Love (2000, [113]).
Eventually, this results with an ecosystem of claimants to financial royalties
feeding from the actual purchases made, which is hard not to observe generally
both as social Darwinist in nature, and as susceptible to inflation.

Ultimately, the mass market penetration of digitalization of information and
its network exchange, has made a shift in perception of intellectual property law
as well: while, arguably, intended originally to regulate the relations between
(industrial) producers of media — in recent times, consumer users have increas-
ing means to be producers of media as well, at least in terms of high-fidelity
copying. The key issue is that with the development of this technology, the
cost of making an identical copy for a typical consumer becomes vanishingly
small (though never zero). This makes the boundary between the consumers
and producers of media ever more blurred, thereby turning the consumers
into occasional targets of copyright law: e.g., even if I alone invested in a com-
puter, CD-burner hardware and software, and paid legally for an original CD —
should I produce a copy with the intent to share, even without any expectation
of financial profit, I am liable for prosecution; consider [114] for an overview
of recent cases, some involving prison, or as in a case of a Minnesota mother,
fines to the tune of millions of US$. If I have saved money to buy a computer -
for nearly all cases, other than a custom built desktop or a Macintosh brand, I
will get a Windows OS pre-installed (that is, bundled); should I ask the shop
to remove the OS, if I intend to use a free alternative, I will not get a refund,
effectively placing me in a position to pay a "Microsoft tax" [115]. Even if I
go through with that, I would not be able to watch my own legally bought
DVDs on a free and open source OS: even if I programmed such a software
player myself, making software that bypasses DVD copy protection publicly
accessible is enough of a reason for a court litigation [116], and usage of such
existing open-source software is seen by the U.S.A. as a violation of the Digital
Millennium Copyright Act (DMCA) [117].

Somewhat ironically, this could be seen as an example of the free market
ultimately resulting with monopolies, that can afford to claim payment from
a minority of consumers that don’t want the product, but don't really have
another choice either - as long as the vast majority of consumers don't other-
wise complain. Complementarily, such a situation changes the perspective on
ownership altogether: if I buy a smartphone, and I can never be sure whether I
have turned it off or not [118] - do I really own this device? If I buy a computer
with a pre-installed closed source OS, which I cannot change without reverse
engineering efforts, but which "phones home" letting the producer know of
every program I intend to run [119] - is this computer really mine? If I buy a
song or a film in digital format, and I'm prevented of transferring it from the
computer to the smartphone and vice-versa — both platforms that contain both
hardware and software for reproduction of such files, but otherwise incompati-

71

Chapter 4. Contributions of the present work: the open soundcard in focus

ble between each other — am I really the owner of this copy? These concerns
may be more than just a cynic’s rhetoric; recent developments indicate that
copyright ownership ideals seem to be spreading to less abstract industries — for
instance in the automotive industry, “GM owns the copyright on that code and
that software ... a modern car cannot run without that software; ... therefore,
the purchase or use of that car is a licensing agreement” [120].

It is this kind of intertwining of the art and technology industries, that -
beyond companies that patent trivialities like rounded corners, and sue each
other over that to the tune of billions of US$ [121]; and companies that as non-
practicing entities (a.k.a "patent trolls") exist solely to profit through patent
litigation [122] - ultimately results with restrictions for the user, which the
free & open source software approaches attempt to partially address. Note
that "free & open-source" is a sort of a blanket term, which may encompass
diverse approaches: the licenses involved could be seen to form a spectrum
(see e.g. [123]), containing several distinct points:

¢ A '"public domain" license imposes no restrictions; anyone is free to modify
the work and restrict others” access to the modification by covering it with
a proprietary copyright;

* Free software, exemplified by the GPL (General Public License) and re-
lated licenses (promoted in e.g. Stallman (2010, [104])), emphasizes the
freedom of the users (anyone) to copy and modify the software, by im-
posing the restriction that all modifications to the work must be released
in like, free manner;

* Open source software, exemplified by BSD and related licenses (promoted
in e.g. Raymond (2001, [124])), emphasizes the freedom of developers to
relicense modifications under more restrictive, proprietary licenses, as
long as the original work is credited.

In other words, even if the deliverables related to the papers in part I have been
released under the GPL simply as credit to the license, under which the vast
majority of the operating system and tools used have been originally released -
the choice of a given license carries specific legal implications; which in this case,
however, happens to align with the educational intent of exercises described
therein. Under all of these licenses, anyone is allowed to package the work and
sell it for financial profit; at the same time, the licenses do not restrict anyone
else to package the work and share it with peers, which on the Internet can
be conducted nearly gratis — which, along with the requirement for license
attribution in free & open-source software, may severely limit the potential
for profit on sales of copies of the work alone in this context (similar but not
identical to the experience the music and other publishing industries with
illegal copying).

This turns into one of the major points of contention when discussing free
& open-source approaches in terms of economy: if the author cannot profit

72

4.3. Open development perspectives

from sales of copies of a work, how could even the basic expenses, such as
food and lodging, going into the production of a work be covered? A typical
response in this debate revolves around suggestions of alternatives, which at
least in the domain of music and software are straightforward: rather than
relying on profits from sales of copies, a music author might mainly subside on
concerts/live performances, while a software author might subside on selling
support for software — although, this approach is not so clear elsewhere, e.g. in
traditional literature (while selling hard paper copies is undisputed, offering the
same content as a gratis digital download in parallel might clearly harm sales).
However, recall that even before digital information technology disrupted the
traditional hard copy publishing, it was a business with very few guarantees
for authors: there may have been few top sellers like the Beatles or the Rolling
Stones bands, but they are certainly outliers; there may have been more that
managed to make a living continuously from authorship royalties, but hardly
in the numbers to make it a stable profession; and what remains is essentially a
sea of commercial failure. And even when discussing commercial successes
in this scope, recall that it is generally the owner of the copyright that profits,
for instance the publishing company - not necessarily the authors. Thus, any
implied guarantees for financial profit just on the basis of copyright, from an
authors perspective should be seen as illusion; instead of a guarantee, success
for a particular author may just as well be a question of statistical chance - or in
plain terms, luck.

At least in the context of this project, however, the issue of economics might
be more straight-forward: the deliverables from part II can be perceived as tools,
developed in the course of research, funded by a state-run university - and thus
ultimately by the tax payers. As such, the development of the software has
already been paid for; at least in principle, offering unrestrained public access to
it should be one of the default positions regarding its use - although, note that
a possible point of contention is that the result of free & open-source licensing
is access for anyone, not necessarily just the tax payers that actually paid for
it. However, the author decision to open-source material should be individual
and conscious, a matter of personal freedom; enforcing open-sourcing as a
large-scale policy, not the least in academic environments, would be under
risk of severely negative reactions. Otherwise, should the legal privilege for
a restrictive copyright be preferred, the employer would clearly have to be
considered as claimant to a share in the profits, the arrangement of which might
have to involve legal counsel. In this project, the decision to open-source was
possibly made easier by the fact that there is nothing to sell per se: the performing
of the exercises is predicated on already made third-party purchases, and the
generic nature of the demonstrations leaves little room for profitable market
differentiation, whether in terms of hardware or in software.

On one hand, the free & open-source development model is decentralized;
on the other hand, developers typically focus on free alternatives to, not nec-
essarily free clones of, proprietary software. Since anyone can freely propose
and contribute software in this ecosystem, this results with a great diversity

73

Chapter 4. Contributions of the present work: the open soundcard in focus

of tools, not always compatible between each other - which is often known as
fragmentation. Thus, for anyone transitioning from a proprietary to a free OS,
there is a cost involved: there is a cognitive strain related to both the choice
of particular OS components, and the steep learning curve, which ultimately
results with at least a cost in time. Furthermore, there is the issue of having
to learn to live with software bugs. But in this respect, there is after all not
much difference from proprietary OSs: there is cognitive strain involved in
choosing and learning tools on proprietary OSs as well, and both proprietary
and open development teams are likely to ignore or refuse to fix bugs. From a
user perspective, then, what matters in this: with proprietary systems, above
all this, there is both a financial expense, and no recourse for the user since the
source code is closed and thus unavailable; in free & open OSs, the financial
expense can be reduced to essentially gratis - and if a bug is otherwise unfixable,
the users at least have the option to learn enough programming to fix the bug
themselves, given that the source code is available. Note that the free software
approach is, in this respect, predicated on post-scarcity (which is acknowledged
in Stallman (2010, [104])): it assumes that computers (and electric power) are
abundant and cheap enough, that anyone could afford to learn programming
languages, in sufficient degree to maintain their OSs - and should this be ex-
pected on a mass scale, comparable to native human languages, then the issues
in free software can be reduced to a right to read [104], and the right to free
speech.

Regardless, it is difficult for average consumers to transition to free operating
systems, judging by the relatively insignificant market share they have on
desktop PCs. Beyond the general reasons above, there historically was another
critical reason for low adoption: operating system driver software, that enables
a PC to operate with external/add-on input-output (I/O) hardware boards. In
fact, "Linux does not have drivers" has long been an argument against adoption,
and even as late as 2010, drivers have been considered a serious issue [125].
For the market leader, the Windows OSs, Microsoft typically outsources the
driver development to the original equipment manufacturers (OEMs) of the
add-on hardware; which, in turn, may outsource the driver development task
to offshore developers [126]. In this context, OEMs may not find the additional
expense to develop free OS drivers worthy, provided they already invested in
development for drivers for the dominant market leader; this can be seen as a
feedback loop that results with even less drivers for Linux - often forcing Linux
developers to reverse-engineer the Windows drivers [127]. In fact, this project
did release open-source software called attenload [128], which in order to
allow a GNU/Linux software to fetch data from oscilloscopes of the brand
Atten (and possibly others), required reverse engineering of the Windows USB
driver for this device, and reimplementing it as (user-space) USB driver in
Linux; this experience confirms that reverse engineering can be, and is, a rather
significant waste of time - and ultimately, a wasteful duplication of efforts.

The exercises in part Il address precisely this problem area, at least in the
domain of audio; and while from an engineering theoretical perspective, the

74

4.3. Open development perspectives

novelty factor is nothing special — consider that the work in part II, took around
7 years to compile; but as defended in paper II-F, this work should be distilled
enough to be reasonably presented in at least a week of intensive exercises,
and at most several months at a leisurely pace. Allowing students, whether
hobbyist or academic, to achieve a basic, yet practical understanding of the
interplay - between user-space software, OS kernel driver software, and ac-
tual hardware for digital audio - in months instead of years (which would be
likely for anyone attempting to do the same "from scratch”, i.e. from a point of
ignorance about particularities in open source development), is the primary
contribution intended from this part of the project. Covering both software and
hardware issues, this work is slightly slanted towards electronics - meaning
that it assumes a somewhat stronger background in electronics, while taking
a position of greater ignorance in terms of computer science. While related
documentation certainly existed previously, it often suffered from the chicken-
and-egg problem (e.g. the ALSA driver documentation explained software
concepts in terms of hypothetical hardware; other resources might use actual,
but undisclosed, hardware), and as such was difficult to use as introductory
material; the possibly original contribution of the work in part Il is the iden-
tification of both software and hardware that illustrate a complete soundcard
operation, followed by a level of discussion in the papers, that is hopefully
more accessible to a novice student. But ultimately, the work in part II is in
itself a proof that already in the period 2007-2010, there existed open-source
technologies - including a relatively stable OS that can be used for develop-
ment (in other words, an OS that can be downloaded, and offers development
tools such as text editors and compilation software nearly out of the box, that
allow a relatively bug-free development user experience) - that could be used
for technical exercises and demonstrations in streaming digital audio. Thus,
the user - the potential student, or lab administrator - besides the hardware
considerations, could be expected to, simply: download an official, "vanilla"
free & open-source operating system; run it on a PC through a "live CD" or
"live USB", which would leave any previous installs of possibly proprietary OSs
on the PC unchanged; and install likewise free development tools in the OS; in
order to do the exercises in part II.

Consider that one of the most popular proprietary OSs, Windows XP, reached
its end of sales in 2008, and end of extended support - which marks its end of
life (EOL) - in 2014. This essentially means that the users of this OS, after this
date, are left to their own devices; given that malicious software (like viruses)
that exploits vulnerabilities in the OS is developed constantly, and the source
code is closed, there is in fact little that users can do but eventually be pressured
into upgrading — also because software developers, in particular antivirus and
hardware driver vendors, can be expected to phase out support for this OS as
time passes. There could be an economical incentive for a monopolist to em-
brace this strategy of planned obsolescence, beyond just technical reasons [129]
- however, in the case of Windows, upgrading the OS may also enforce hard-
ware upgrades, which on one hand increases the cost of upgrades, and on the

75

Chapter 4. Contributions of the present work: the open soundcard in focus

other hand also pushes old computing hardware into obsolescence, possibly
with an ecological impact [130]. One could surmise, that by staying generic
and open, this project would spare the users (including education institutions)
from both excessive legal considerations, and costs of upgrade due to planned
obsolescence; and would remain technologically relevant, at least in the narrow
scope of illustrating soundcard operation of up to CD quality. That is, however,
not entirely true — even in the context of free & open-source development.

From a legal perspective, it is noted by Stallman (2010, [104]) that free soft-
ware approaches are a "hack" of copyright law as permitted by the U.S. Consti-
tution (a "hack" since a free license is used to promote free copying, whereas
copyright otherwise is intended to do the opposite: to suppress copying). As
such, this is something enforceable primarily in the U.S.A.; while other coun-
tries may have related legal mechanisms, these can be expected to be most
similar in the sphere of influence of the U.S.A. (or more broadly, the Anglo-
American hegemony), so in general these mechanisms are not guaranteed to
be tolerant of free & open-source approaches. Ultimately, however, not even
the subjects of the U.S.A. can be certain that the tolerance will continue in-
definitely: consider that in the case of Wickard v. Filburn from 1942, the U.S.
Supreme Court decided that a farmer, by growing additional wheat, harmed
interstate commerce - even if that wheat was intended for personal use, and not
for sale (and thus would never have entered the market anyway). It doesn’t take
much fantasy to imagine the same argument applied to free software, which
encourages copying and may therefore harm commerce - and if the U.S.A. itself
is susceptible to this argument, it is hard to imagine the other world powers
being any more lenient. But beyond this currently hypothetical threat, there
are more immediate threats. Namely, one could, in all honesty, perform one’s
own reverse engineering and write one’s own code for a program (e.g. a driver)
without external consultation: while this code would represent a unique ex-
pression entitling one to a copyright - it may still simultaneously infringe on a
software patent. This might make distribution of such software illegal, unless
royalties are paid to the patent owner; this is however more of a danger to big
companies, given that patent trolls would likely wait before initiating litigation
(both to accumulate evidence, and to be sure that there is actual profit to be
made), which may cause companies to form patent pools [100]. Additionally,
the mentioned case for DVD playback on GNU/Linux may be illegal beyond
patent issues - as it involves a breach of a legal state act (the DMCA). However,
in general, the current legal attitude does seem to be tolerant enough of free &
open-source software, especially taking the success of Google’s Android OS for
smartphones into account, which uses Linux as its kernel (even if this success
isn’t without challenges [131]); as well as the fact that for instance in the EU,
software as such is, so far, not patentable.

However, for a project of this kind, it is maybe more important to recognize
that obsolescence is also a major factor in free & open-source development -
even if not motivated exclusively by profit. In fact, in just the 7 years the project
took to complete, a major share of the technologies used were made obsolete,

76

4.3. Open development perspectives

even if at the start they were contemporary:

* The used Arduino Duemilanove board is not produced anymore; the
driver in e.g. paper II-C is written in respect to the FTDI USB chip on
this board, which is not present on the current generation of boards (e.g.
Arduino Uno). As such, the driver is not compatible with current Arduino
boards

e The Linux kernel made the transition to version series 3.x; there are
changes in the driver programming model, which makes the drivers
released via e.g. paper 1I-B or II-C, written for series 2.6.x, not compile
"out of the box" on contemporary kernels

* The Python programming language made the transition from version
2.7.x to 3.x; there are sufficient changes in the language, so that some
scripts released along with papers in part II, written exclusively in 2.7.x
syntax, will fail if ran by a 3.x interpreter without a rewrite

¢ The Gnome desktop environment made the transition from version 2.x
to 3.x; besides setting additional requirements on video hardware, there
are also sufficient changes in the API - so that, say, Python scripts that
exclusively use its 2.x toolkit to provide a GUI, will not work on a 3.x
environment

These are the most relevant developments in terms of the work in part II, how-
ever, there are more - often bringing contention in the respective communities
to the point of a split: e.g. as a sign of dissatisfaction with the direction of
Gnome 3 development, the Gnome 2 codebase was forked as the foundation for
the MATE desktop project; the decision of major distributions like Debian to
adopt systemd as the user-space startup process instead of the traditional init
daemon, led to a fork of the Debian distribution called Devuan; not being satis-
fied with the development of Wayland (the replacement of X Window System,
a crucial graphics component in open source OSs), Canonical (the company
packaging Ubuntu) developers started developing the alternative Mir, which
had caused friction with Intel developers. In a sense, this fragmentation into
incompatible diversity is maybe the cost of freedom - or alternatively, progress:
thus, in spite of intentions to the contrary, the work in part II will not run on
contemporary free & open-source systems out of the box; and labor would be
required from any potential user wanting to reconstruct the exercises on mod-
ern systems - labor to port or translate code to ever-changing API specifications;
or in other words, software maintenance.

With this is mind, a reasonable overall recommendation might be to use
the specific versions of the OS (Ubuntu 10.04 Lucid and 11.04 Natty), most
conveniently through booting into a "live" CD or USB flash drive; however, not
even this approach is straightforward anymore. Namely, PCs from 2010 on-
wards typically ship with Unified Extensible Firmware Interface (UEFI) Secure
Boot [132], which checks for a bootloader signature, and refuses to boot the

77

Chapter 4. Contributions of the present work: the open soundcard in focus

system if this check fails. While this feature can be turned off in order to boot
legacy systems that do not support it (such as the cited Ubuntu versions), it
is likely to cause additional inconvenience to users, forcing them to take the
booting process into account as well. Thus, a resolve for free & open-source de-
velopment is in itself hardly future-proof, and just as (if not more) susceptible to
fragmentation and obsolescence as proprietary systems can be — and moreover,
to underdevelopment: “[...] it isn’t in any one particular company’s interest to
dump a pile of their own resources into fixing even one of the problems [...]
because they’d be handing Facebook and LinkedIn and Amazon a pile of free
money in unspent remediation costs” [133]. In other words, every technology is
generational [134] - and any individual may encounter a point, where the cost of
upgrading may become excessive: in terms of cognitive strain, if not financially.
This is probably one of the most fundamental things to keep in mind for anyone
aiming to do work in the similar scope to part II: things always change, but
not necessarily for the better for you. The most fundamental benefit, in this
context, seems to be the freedom to use outside an official approval, and in spite
of the fact that websites disappear: even when Ubuntu stops offering these
versions of their operating systems as official downloads, anyone could legally
upload their copy of the OS images on, say, a sharing service; the code related
to part Il is primarily released through the SourceForge website - and similarly,
even if the company stops offering this service, anyone with a copy can upload
it elsewhere. This would also allow use of older (from today’s perspective)
computers, for the purpose of conducting the exercises in part I

Ultimately, one would be well advised to take heed of the GPL license, which
has the words "NO WARRANTY" in large, friendly letters on the cover. Indeed,
there is no warranty, ever - not just in respect to a particular program, but in
terms of development, economy and life altogether; no warranty, but for failure
and death. Consider that, in spite of the often impressive achievements of
computer technology, it also brought us cryptocurrencies such as Bitcoin [135],
concepts like electronic high-frequency trading [136] where only those traders
with access to the fastest systems benefit, and ultimately a global financial
crisis that is still unresolved even in the developed world [137]. Is this not
but a more sophisticated and inflated form of financial parasitism upon the
peasants? And is this not made more ironic, by the ever fewer number of actual
peasants, replaced by a ever more consolidated (and of course, patented) ge-
netically modified organism and biotech industry; and even more emphasized
by increased use of automation, causing unemployment to the degree where
jobs are not a guaranteed means of survival anymore? And wouldn't even this
project also support these tendencies, at least in the sense of slightly promoting
the further glut of STEM (science, technology, engineering, mathematics) ma-
jors? It would be hard not to interpret this from the overall perspective of that
“perhaps the most pessimistic and amoral formulation in all human thought”
[138] — the notion of ever increasing entropy as per the laws of thermodynamics.
In terms of ecological economy, it has already been recognized that waste is
thermodynamically unavoidable [139]; in more personal terms, one can always

78

4.3. Open development perspectives

recall the reformulation of the thermodynamics laws known as the Ginsberg
Theorem [140], attributed to the poet Allen Ginsberg:

1. You can’t win.
2. You can’t break even.

3. You can’t even quit the game.

Free & open-source approaches are likely to remain a contentious issue:
in spite of the proliferation of free software, it continues to uneasily coexist
with proprietary software - just as it did before; arguably, this is driven by
the dominance of proprietary hardware on the market. Note that with the
emergence of crowdfunding and popularity of startups, there are attempts
at open computers, for instance the Novena and Librem 15 laptops; however,
considering the capitalist life-cycle of hardware startups [141], which, for the
few that succeed, would end with an initial public offering (IPO) or a different
type of sale, by which the ownership of the company is changed - and thus,
there is no guarantee whatsoever that this kind of technology will be in any
way persistent. And after all, it is possibly not everywhere, where free &
open-source approaches might be desired, either: as one example, free & open-
source nuclear bombs may carry ethical issues beyond freedom of speech.
Sometimes the personal context is not permissive to open-sourcing, either (see
e.g. [142]). However, there is at least one criterion which might clarify where
free & open source alternatives may be desired - and that is when a technology
has penetrated lives of people, to the degree where it is required for daily
activity. Thus, operating systems in general, along with text processors, web
browsers, email clients etc. are prime - and indeed, achieved - candidates for
open sourcing. In this context, consider that the proprietary Skype VOIP (voice-
over-IP) application, recognized in the past as a disruptive technology [143]
especially in respect to fixed-line telephony, changed hands multiple times - and
since 2011 is owned by Microsoft. The operation of such software is dependent
on the operation of a full-duplex soundcard at the endpoints; and thus, the
open study of a soundcard systems becomes relevant not only as a backbone
for applications in music and sensor technology, but also for one of the (still)
most socially valued aspects of telecommunications - telephony.

79

Chapter 4. Contributions of the present work: the open soundcard in focus

Fig. 4.2: Hearkening back to simpler times, when bare rock and metal were enough to form a
relevant electronic device (here a negative resistance tunnel diode; ref. [144]).

Fig. 4.3: Ancient depiction of wax tablet usage (c-ca. 500 BCE), that can easily be interpreted as
remarkably precognitive of recent modern times (ref. [53])

8o

Chapter 5

Conclusion

This thesis commenced with the search for a technique, that would integrate
the live musical performance affordances of both traditional drum-machine
sequencers, and traditional turntable-based DJ sets — along with an outline
of the specific motivations and cultural background behind the emergence
of this concept, which is otherwise potentially applicable to a wide range
of modern popular music genres. It proposed the technique of faster-than-
realtime double-buffered rendering of sequenced audio loops, which could
allow near-simultaneous live experience — of both sequencing (composing),
and DJ-scratching, of a piece of rhythmical music loop — to a musician. This
technique would be implemented as a digital music instrument platform, which
demands multi-channel and realtime manipulation of digital audio, especially
in terms of playback and recording; the thesis defended that such a platform
could be categorized as a digital audio workstation. As such, this research
segment contributes to the domain of digital lutherie - that is, digital music
instrument design and construction - as a distinct area of media technology
research.

The viability of the double-buffering audio rendering technique for the inte-
gration of the two live performance styles, has been demonstrated through a
released software prototype implementation. This prototype, while performing
well under some conditions, clearly encounters limits where its computing
performance degrades to a point, that would be intolerable to musicians for a
high-fidelity, live performance application. The thesis defended that the proper
way to address this would be to seek the implementation of the algorithms
in hardware. There is a practical problem with this, however - hardware im-
plementation demands both acquaintance with the applicability of diverse
market hardware offerings to digital audio, and cross-disciplinary knowledge
of the interface between computer science and electronics engineering. Didac-
tically, the existence of practical exercises, that would illustrate the operation
of digital audio in both hardware and software, would certainly represent a
stepping stone towards an engineering of a dedicated DAW platform. This

81

STUo

Chapter 5. Conclusion

thesis emphasized the suitability of the soundcard, as a generic concept, for
such an exercise - not the least, because of its presence in the current ubiquity
of personal computing devices.

Since no direct precursors of the kind were identified, the project resulting
with the papers in part II undertook the identification, design, implementation
and documentation of technologies that demonstrably behave as a soundcard of
a personal computer. The thesis defended the free & open-source development
approach in this context: at the least, the entire operation of the operating
system has to be known, in order to debug and troubleshoot problems on
a hardware level. Furthermore, manually implementable hardware designs
would facilitate experimenting with incremental improvements, which could
extend the concept of a soundcard into a generic sensor/actuator processor
- and thereby, bring it further towards a functioning part or basis of a DAW
platform as described previously. The applicability of such a platform to a
wider area of media technology is illustrated through the papers submitted in
part III - all of which use a soundcard or a similar system, while not focusing
on it as such.

The main contribution of the work in part II, which took up the major
share of the resources in the development of this thesis, is as a time-saving
compendium; one which clearly identifies both hardware and software com-
ponents, and reproducibly illustrates both proper operation and problems,
in the reproduction and capture of digital audio from/to a PC. Thereby, the
intended target user group (consisting of individual hobbyists or students,
or possibly academic laboratory administrators) is offered a price-conscious
study package, that could reduce the time required for practical acquaintance
with high-fidelity, full-duplex and multi-channel digital audio to months or
even weeks - as opposed to years, that were required for the compilation of
the works in this project. This work illustrates proper soundcard operation
with uncompressed digital audio, on a variety of technologies, with gradually
increasing performance qualities: from from mono/8bit/8 kHz, up to - but in
the current state, not including - CD quality (stereo/16 bit/44.1 kHz); as well
as the limits to proper operation in CD quality context, which emerge despite
of the apparent availability of streaming bandwidth, due to the scheduling and
preemptive nature of contemporary operating systems and the specifics of the
I/0 bus protocol. Practical acquaintance with these issues is a necessary - but
possibly not sufficient - condition, for any prospective development of a system
with a scope of a DAW platform.

Reducing PC-based digital audio to a set of exercises within the means of
an average hobbyist, may have been an impossibly expencive endeavor - rife
with proprietary technology lock-ins - at the turn of the 21% century, when
digital audio was at an earlier stage of its takeover of the mass markets. In that
regard, this thesis is a testament that already in the period 2007-2010, the overall
technology growth in fact did bring about products, that allow implementation
of exercises of this nature with a nearly free & open-source toolchain; this

82

5.1. Future perspectives

process being additionally assisted by a growth of online fora through which
peer-to-peer and self- support can function. However, at the same time, this
thesis is also an exemplification of technology being generational: the pace
of technological development was fast enough, that most of the technology
outlined in part II is already obsolete - even if it wasn't at the start of the project.
This also impedes academic dissemination of practical studies - as publishers’
response, review and publication processing times can be slow enough, to
sometimes approach the duration of the market lifetime of a given product.
In that sense, the work presented can be regarded as emerging "too late"; but
alternately, it can also be said to have been done too early: realistically, the
consideration of the soundcard as a generic technology would only be possible
within a stable understanding of what a generic personal computer is. And
while that outlook might be possible, once there is a historical backlog of, say,
several centuries worth of output of the computing hardware industry — it is
clear that in this era, constant adaptation of one’s conceptual and practical
understanding to ever changing technological developments, is still required.
However, it should be clear that the challenges to this updating process are
not only of the physical nature (concerning e.g. the underlying mechanisms of
processes), but are also influenced by strategic, economic and political decisions
of key market - ultimately, human - players.

Ultimately, the work in part I does not result with a DAW platform, versatile
enough to allow cheap and straightforward repurposing to implementation of
the algorithms in chapter 3 in hardware, or as a generic processor applicable
to research in part III. And even if it did, its continued maintenance - and rele-
vance - in the face of ever changing technology would have been a considerable
challenge; and the same holds when considering the reduced scope of sound-
card exercises. However, it does provide a basis, that could facilitate easier
reimplementation and decentralized sharing of soundcard exercises in newer,
contemporary technology - which might, eventually, lead to an emergence of
more advanced, yet still free & open-source, digital audio platforms.

5.1 Future perspectives

People have, possibly, always had the desire to immerse themselves in a world
of their thoughts; as evidence, consider how easily can the art on Fig. 4.3,
several millenia old, be anachronistically (and even, uncannily) interpreted
from today’s perspective, as a person immersing themselves in interaction with
a laptop computer. Possibly, this may be one of the drivers behind the existence
of culture - here seen as a transmission of learned information in diverse forms
- in general. Music certainly has always represented an integral part of culture;
and even beyond its intellectual scope, its social impact (e.g. through concerts)
makes it a fundamental cornerstone of the "circenses" part of panem et circenses,
a seemingly unavoidable occurrence in governing civilized societies. Within
this context, musical instrument - and herein, digital lutherie - research will

83

Chapter 5. Conclusion

clearly remain relevant. What extent will this relevance have, however, is more
difficult to state: this very project was driven by what were once underground
fashions, partially based around use of instruments not originally meant to be
musical; while some of these styles (e.g. hip-hop) came to dominate the current
popular music business, the fashions are likely to change, just as they have
always done before.

Therefore, while this thesis facilitates a potential development of a DAW, that
could be freely modified by the user to achieve various modes of live interaction
- there is no guarantee that such a platform would ever emerge. From a wider
perspective, however, it is clear that technology in general changes rapidly,
and becomes more and more unavoidable in daily life. As such, it should be
of interest to society that technology is in general known, and that it can be
learned in practical terms. This implies a degree of "tinkering" - and this thesis
defends, that even when this tinkering is concerned with technology that is not
necessarily state of the art (when the overall market is taken into account), it can
become academically relevant in the context of free & open-source development:
because then it can be used as basis for laboratory exercises that can be freely
exchanged and modified, wherefrom an educational value emerges.

Electronics technology also tends to become ever so smaller; modern hard-
ware has strongly been moving away from designs that can be manually im-
plemented cheaply (e.g. with a soldering iron on a through-hole PCB), and
this may have the effect of discouraging tinkering somewhat. However, anno
2015, there are still many ways in which the basis provided by this thesis can be
adapted - and this is probably the main future perspective of this work: a decen-
tralized development process, generating soundcard or digital audio exercises,
that keep pace with ever-changing new technology. For instance, the current
Arduino generation (Uno) has an openly programmable USB-serial chip - this
chip can be programmed to implement a USB audio class, for which generic
drivers already exist for major operating systems, thus re-implementing this
board as a soundcard; this will likely need to be repeated as e.g. USB version 3
starts overtaking the market - or in general, as new OS versions emerge. This
kind of process, when supported by a free exchange of designs, is certainly
one of the ways in which academia - as the main disseminator of knowledge -
can seek to remain relevant even with the rapid developments of technology;
technology, on which society is increasingly dependent. And this increased
dependence of ours, should possibly be a motive enough to support efforts
in demystifying technology — at least in those areas where it is, still, nearly
indistinguishable from magic — to as wide of a public as possible.

84

5.2. Acknowledgements

5.2 Acknowledgements

There are many, many people to whom I owe a thanks for helping or inspiring
various aspects of this Ph.D. project — and my life in general; while I will not
be able to do justice to all, I may as well try in this section (in no particular
order). Greetings to families, where applicable, are assumed - and apologies in
advance to anyone I may have forgotten :)

First, maybe, the most unlikely: I owe my thanks to the responses (some-
times amazingly fast) and the tutelage, of the anonymous, unsung heroes of
many a Internet fora — without whom a large portion of this project would not
even have reached the current state. In particular, thanks to the communities of
stackoverflow.com, tex.stackexchange.com, unix.stackexchange. com,
superuser. com, and many other Q & A sites on the Stack Exchange network.
Thanks to sourceforge.net, as the open-source publishing website through
which this project’s associated code was initially released (and from where, sup-
port from other projects was sometimes obtained). Additionally, many a thanks
to the support of the mailing lists alsa-devel, portaudio, audacity-devel,
libusb-devel, comp.arch.FPGA; as well as forums at: arduino.cc, xi-
linx.com, latex-community.org, ubuntuforums.org, fpgarelated.com,
fpgacentral.com - and many, many others.

Beyond my mother and father, I owe thanks to my wider family: aunts,
uncles and cousins, for their support of my studies in Denmark. Thanks go
out, not only to Stefania, Rolf, Erik Granum, Lise Kofoed, Hans Jorgen Ander-
sen and Michael Mullins - but to everyone I've had the pleasure to work with
at Aalborg University Copenhagen (AAUC) [Aalborg Universitet Kebenhavn
(AAUK)], dept. of Medialogy/Media Technology; starting with the amazingly
supportive (past and present) secretaries, Ulla Hoeberg Hansen, Ulla Schou
Jensen, Marianne Kieer Schwaner, Gitte Kjeer Christiansen, Judi Steerk Poulsen,
Lisbeth Kirstine Nykjeer, Lisbeth Schou Andersen, and Lene Rasmussen. Many
thanks to IT (especially for coping with my demands and experiments regard-
ing the Linux servers :)) and support personnel at AAUK, past and present:
Lars Frekjeer Knudsen, Mikael "Mikki’ Kroyer, Seren Filtenborg Jensen, Michal
Dobroczynski, Jesper Michael Alsted Greve, Alex Elvekjeer, Sigurd Kristensen,
Michael Ammekilde, Frank Petersen, Kadir Ates, Stig Mellenberg and others.
Thanks also to the staff of the electronics laboratories at what used to be In-
genigrhejskolen i Kebenhavn (IHK) in Ballerup (now part of DTU), among
others Ivan Gyllich Stauning and Heinz-Dieter Surkau.

Thanks to peers, as well as professors/teaching staff (later colleagues), and
pretty much anyone I've met during my M.Sc. and Ph.D. studies at AAU: Vincent
Agerbech, Brian & Allan Engqvist Johansen, Nick Strange Thye, Prostur Bra-
gason, Norbert Kriiger, Volker Kriiger, Luis Emilio Bruni, Florian Pilz, Amalia
De Goetzen, Viggo Holm Jensen, Stefano Papetti, Lars Reng, Henrik Schenau
Fog, Thomas Bjorner, Iver Molgaard Ottosen, Steven Gelineck, Niels Bottcher,
Niels Christian Nilsson, Jon Ram Bruun-Pedersen, Bob L. & Carla Sturm, Olga
Timcenko, Juraj Kojs, Daniel Overholt, Sofia Dahl, Shawn Trail, Dannie Michael

85

Chapter 5. Conclusion

Korsgaard, Erik Sikstrom, Francesco Grani, Stefano Trento, Cumhur Erkut,
Kristina Daniliauskaite, Eva Sjuve, Esthir Lemi, ... and many, many others. Not
the least, thanks to the generations of undergraduate students I've had in my
AAUK courses, for being generally very nice to me (aside from the occasional
complaint :)). Special thanks go out to the hosts of, and everyone I met at, my
two study visits, for their kind welcome; among others, at KTH in Stockholm:
Roberto Bresin, Kjetil Falkenberg Hansen, Marco Fabiani, ... and at UPF in
Barcelona: Sergi Jorda, Marcos Alonso, Martin Kaltenbrunner, Carles Lopez ...
Greetings to everyone I've bumped into at a conference somewhere for a chat,
as well :)

Special thanks to Ingrid Skovgaard, as well as Biljana Tanurovska-Kjulavkov-
ski (Bparie), and to BB&S ApS: Peter Plesner, Thomas Brockmann, Christian
Poulsen, Jan Bryld, Claus Jespersen, and everyone else I've met at the company,
for the amazing internship projects and all the good times. A big thanks also
to everyone I've met during my stay at Aarhus tekniske Skole (now rebranded
Aarhus Tech), both teaching staff and peers, including but not limited to: Jonna
Zeuthen Bach, Lars Gregersen, Anne Gerd Hultberg, Birgitte Dahl Hansen,
Fariborz Sahaf, Helene Rodian, Julie Andersen, Louise Bro, Ditte Dickenson,
Dui Rébertsson, and many others. I feel I should also thank all I've had the
pleasure to meet from the U.S.A. — in particular, everyone I've met during my
year in Maine, especially my host family: Lou, Kathy and Crystal Young; and
all artists I've met while doing promotions in Skopije, like Derrick May, Kevin
Saunderson, Gene Farris, Das EFX ...

By this point in time, I'd probably also have to write a thanks to the entirety
of Skopje and Macedonia :) But to keep it short — beyond the people directly
mentioned in chapter 2, big thanks go out to the professors and peers at the
Electrotechnic Faculty (ETF) in Skopje during my bachelor studies, especially
those koneru (colleagues) I've ended up in study groups with; and a special
thanks to all I've hung out with in any musical subculture scene through the
years - especially those people I've composed, produced or promoted music
with. Also, a shout out goes out to all those, that have had the misfortune of
ending up as fans of some of the productions I've contributed to :)

Thank You! oo Bu Bbmaromapam! oo Tak skal I have!

86

Bibliography

[1a]

[2a]

[3a]

[4a]

[5a]

[6a]

[7a]

Smilen Dimitrov, “Extending the soundcard for use with generic DC sensors”, in
Proceedings of the International Conference on New Interfaces for Musical Expression
(NIME 2010), Sydney, Australia, Jun. 2010, pp. 303-308, 1ssn: 2220-4792, 1sBN:
978-0-646-53482-4. URL: http://imi.aau.dk/~sd/phd/index.php?title=
ExtendingISASoundcard.

Smilen Dimitrov and Stefania Serafin, “Minivosc - a minimal virtual oscillator
driver for ALSA (Advanced Linux Sound Architecture)”, in Proceedings of the
Linux Audio Conference (LAC 2012), Stanford, California, USA, Apr. 2012, pp. 175-
182, 1sBN: 978-1-105-62546-6. URL: http://imi.aau.dk/~sd/phd/index.php?
title=Minivosc.

——, “Audio Arduino - an ALSA (Advanced Linux Sound Architecture) audio
driver for FTDI-based Arduinos”, in Proceedings of the International Conference
on New Interfaces for Musical Expression (NIME 2011), Oslo, Norway, May 2011,
pp- 211-216, 1ssn: 2220-4792, 1sBN: 978-82-991841-7-5. URL: http://imi.aau.
dk/~sd/phd/index.php?title=AudioArduino.

——, “An analog I/0 interface board for Audio Arduino open soundcard
system”, in Proceedings of the 8th Sound and Music Computing Conference (SMC
2011), Padova, Italy: Padova University Press, Jul. 2011, pp. 290-297, 1sBN: 978-
8-897-38503-5. URL: http://imi . aau.dk/~sd/phd/index . php?title=
AudioArduino-AnalogBoard.

——, “Towards an open sound card — a bare-bones FPGA board in context of
PC-based digital audio”, in Proceedings of Audio Mostly 2011 - 6th Conference on
Interaction with Sound, Coimbra, Portugal, Sep. 2011, pp. 47-54, 1sBN: 978-1-4503-
1081-9. por: 10.1145/2095667 .2095674. URL: http://imi.aau.dk/~sd/phd/
index.php?title=AudioBareBonesFPGA.

, “Open soundcard as a platform for practical, laboratory study of digital
audio: a proposal”, International Journal of Innovation and Learning, vol. 15, no. 1,
pp- 1-27, Jan. 2014, 1ssn: 1471-8197. por: 10.1504/IJIL.2014.058865.

——, “Comparing the CD-quality, full-duplex timing behavior of a virtual
(dummy), hda-intel, and FTDI-based AudioArduino soundcard drivers for
Advanced Linux Sound Architecture”, Linux Journal, 2015, Manuscript sub-
mitted /in review.

Olivia Mattis and Robert Moog, “Leon Theremin; Pulling Music out of Thin
Air”, Keyboard, vol. 18, no. 2, pp. 46-54, 1992.

87

http://imi.aau.dk/~sd/phd/index.php?title=ExtendingISASoundcard
http://imi.aau.dk/~sd/phd/index.php?title=ExtendingISASoundcard
http://imi.aau.dk/~sd/phd/index.php?title=Minivosc
http://imi.aau.dk/~sd/phd/index.php?title=Minivosc
http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino
http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino
http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino-AnalogBoard
http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino-AnalogBoard
http://dx.doi.org/10.1145/2095667.2095674
http://imi.aau.dk/~sd/phd/index.php?title=AudioBareBonesFPGA
http://imi.aau.dk/~sd/phd/index.php?title=AudioBareBonesFPGA
http://dx.doi.org/10.1504/IJIL.2014.058865

[10]

(11]

(12]

(13]

(14]

[15]

[16]

Bibliography

Margaret Schedel, “Anticipating interactivity: Henry Cowell and the Rhythmi-
con”, Organised Sound, vol. 7, no. 03, pp. 247-254, 2002.

Marcelo Mortensen Wanderley, “Gestural control of music”, in International
Workshop Human Supervision and Control in Engineering and Music, 2001, pp. 632—
644.

Sergi Jorda, “Digital Lutherie: Crafting musical computers for new musics’
performance and improvisation”, PhD thesis, Universitat Pompeu Fabra, Depar-
tament de Tecnologia, 2005.

Stephen R Wilson, “Music Sampling Lawsuits: Does Looping Music Samples
Defeat the De Minimis Defense?”, Journal of High Technology Law, vol. 1, pp. 179-
193, 2002.

The Inflation Calculator, “What cost $29000 in 1979...”, Webpage, (uses the
annual Statistical Abstracts of the United States), Nov. 14, 2014. URL: http:
//www . westegg . com/inflation/infl . cgi ?money =29000& first=1979&
final=2013 (visited on 11/14/2014).

Gordon Earle Moore, “Cramming more components onto integrated circuits”,
Electronics Magazine, Apr. 19, 1965.

Andrew Huang, Hacking the Xbox: An introduction to reverse engineering. No Starch
Press, 2003.

Curtis Roads and Max Mathews, “Interview with Max Mathews”, Computer
Music Journal, vol. 4, no. 4, pp. 15-22, 1980.

Kevin W Leary, “The personal sound system”, in Electro/94 International. Confer-
ence Proceedings. Combined Volumes., IEEE, 1994, pp. 299-303.

Nils Dittbrenner, Soundchip-Musik: Computer-und Videospielmusik von 1977-1994.
Osnabriick, Germany: epOs Music, 2007, 1sBN: 978-3-923486-94-6.

Morten Sieker Andreasen, Henrik Villemann Nielsen, Simon Ormholt Schreder,
and Jan Stage, “Usability in open source software development: opinions and
practice”, Information technology and control, vol. 35, no. 3A, pp. 303-312, 2006,
1ssN: 1392-124X.

Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey, “How do pro-
grammers ask and answer questions on the web? (NIER track)”, in Software
Engineering (ICSE), 2011 33rd International Conference on, IEEE, 2011, pp. 804-807.

Kawin Ngamkajornwiwat, Dongsong Zhang, Akif Giines Koru, Lina Zhou,
and Robert Nolker, “An exploratory study on the evolution of OSS developer
communities”, in Hawaii International Conference on System Sciences, Proceedings
of the 41st Annual, IEEE, 2008, pp. 305-305.

Andrew Begel, Jan Bosch, and Margaret-Anne Storey, “Social networking meets
software development: Perspectives from GitHub, MSDN, Stack Exchange, and
TopCoder”, Software, IEEE, vol. 30, no. 1, pp. 52-66, 2013.

Steven Harris, Steven Green, and Ka Leung, “Techniques to Measure and Max-
imize the Performance of a 120 dB, 24-Bit, 96-kHz A /D Converter Integrated
Circuit”, in Audio Engineering Society Convention 103, Audio Engineering Society,
Sep. 1997. URL: http://www.cirrus.com/en/pubs/whitePaper/aes04.pdf.

88

http://www.westegg.com/inflation/infl.cgi?money=29000&first=1979&final=2013
http://www.westegg.com/inflation/infl.cgi?money=29000&first=1979&final=2013
http://www.westegg.com/inflation/infl.cgi?money=29000&first=1979&final=2013
http://www.cirrus.com/en/pubs/whitePaper/aes04.pdf

Bibliography

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]
[29]

[30]

[31]

Dr. Steven Harris and Clif Sanchez, “Personal Computer Audio Quality Mea-
surements”, Cirrus Logic, white paper, Mar. 1999. URL: http://www.cirrus.
com/en/pubs/whitePaper/meas100.pdf.

Stevan Harnad, Tim Brody, Frangois Vallieres, Les Carr, Steve Hitchcock, Yves
Gingras, Charles Oppenheim, Heinrich Stamerjohanns, and Eberhard R Hilf,
“The access/impact problem and the green and gold roads to open access”,
Serials review, vol. 30, no. 4, pp. 310-314, 2004.

Scott F Aikin, “Poe’s Law, Group Polarization, and the Epistemology of Online
Religious Discourse”, ser. Working papers, Social Science Research Network,
Jan. 23, 2009. por: 10.2139/ssrn. 1332169.

Carlo Nardi, “Performing electronic dance music: mimesis, reflexivity and the
commodification of listening”, Contemporanea - Revista de Comunicagio e Cultura,
vol. 10, no. 1, pp. 80-98, 2012.

Michael Kanellos, “Moore’s Law to Conk in 10, 15 Years, Says Moore”, CNET
News, vol. 18, Sep. 18, 2007. URL: http://www.cnet . com/news/moores-law-
to-conk-in-10-15-years-says-moore/ (visited on 11/21/2014).

Ed Montano, “"How do you know he’s not playing Pac-Man while he’s supposed
to be DJing?”: technology, formats and the digital future of DJ culture”, Popular
Music, vol. 29, no. 03, pp. 397-416, 2010.

Jim Highsmith and Alistair Cockburn, “Agile software development: The busi-
ness of innovation”, Computer, vol. 34, no. 9, pp. 120-127, 2001.

Gary Sperrazza, “Looka Here! It's Sam & Dave!”, Time Barrier Express, vol. 3, no.
26, pp. 18-31, Sep. 1979.

Arthur Charles Clarke, “Hazards of prophecy: the failure of imagination”, in
Profiles of the future: An inquiry into the limits of the possible. Rev. ed, Harper & Row,
1973.

Julijana Zabeva Papazova, “Alternative Rock Music in Yugoslavia in the Period
Between 1980-1991 and its Influence on the Present Musical and Cultural Life
in Macedonia, Serbia and Croatia”, IASPM@ Journal, vol. 4, no. 1, pp. 117-119,
2014.

Biljana Stojanovi¢, “Exchange Rate Regimes of the Dinar 1945-1990: An As-
sessment of Appropriateness and Efficiency”, in Proceedings of OeNB Workshops:
The Experience of Exchange Rate Regimes in Southeastern Europe in a Historical and
Comparative Perspective, Oesterreichische Nationalbank, Apr. 13, 2007.

CIA, The world factbook 1995. Washington D.C.: Central Intelligence Agency, 1995.

filtrov, “Dead Cops Rock@CODEX (Skopje, 1992) - YouTube”, video, Oct. 24,
2008. URL: https: //www . youtube . com/watch?v=a60bLRZLqGY (visited on
12/02/2014).

John WC Van Bogart, “Magnetic tape storage and handling”, A Guide for Libraries
and Archives, National Media Laboratory, 1995.

Ljupco Jolevski, “Ritmistica”, Baecok - aumepamypa u opy2u ymemuocmu (Shine
- literature & other arts), no. 17, 2000.

89

http://www.cirrus.com/en/pubs/whitePaper/meas100.pdf
http://www.cirrus.com/en/pubs/whitePaper/meas100.pdf
http://dx.doi.org/10.2139/ssrn.1332169
http://www.cnet.com/news/moores-law-to-conk-in-10-15-years-says-moore/
http://www.cnet.com/news/moores-law-to-conk-in-10-15-years-says-moore/
https://www.youtube.com/watch?v=a6obLRZLqGY

[32]

(33]

[34]

(35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

(43]

[44]

[45]

[46]

Bibliography

Kjetil Falkenberg Hansen, “The acoustics and performance of DJ scratching,
Analysis and modelling”, PhD thesis, KTH, Music Acoustics, 2010, pp. xii, 74,
15BN: 978-91-7415-541-9.

Bill Werde, “The DJ’s new mix: Digital files and a turntable”, The New York Times,
2001.

Smilen Dimitrov, “"DMX Director" - Architecture of a 3D light-programming
application, in a multi-user Internet environment”, Aalborg University Copen-
hagen, Copenhagen, Denmark, Final report (M.Sc. thesis equivalent), May 2006,
p- 113.

Ableton, “Ableton homepage”, webpage. URL: https: //www.ableton. com/
(visited on 02/05/2015).

Miller Puckette, “Pure Data: another integrated computer music environment”,
in Proceedings of the Second Intercollege Computer Music Concerts, Tachikawa, Japan,
1996, pp. 37-41.

Joseph A Sarlo, “GrIPD: A Graphical Interface Editing Tool and Run-time En-
vironment for Pure Data”, in Proceedings of the International Computer Music
Conference, International Computer Music Association, 2003, p. 305.

Smilen Dimitrov, “PhD thesis website”, 2007. URL: http://imi.aau.dk/~sd/
phd (visited on 2015).

Vangel Nonevski, Ipamogorom kako memauncmpymenm: 00 MeXaHuuka penpo-
dykyuja do pemuxc kyamypa. The Turntable as a metainstrument: From mechanical
reproduction to remix culture, Macedonian and English. Skopje, Macedonia: Ak-
cuoma (Aksioma), 2014, p. 215, 1sen: 978-608-65729-0-7.

Dan Stowell and Alex McLean, “Live music-making: A rich open task requires
a rich open interface”, in Music and human-computer interaction, Springer, 2013,
pp. 139-152.

Jamie Zigelbaum, Amon Millner, Bella Desai, and Hiroshi Ishii, “BodyBeats:
whole-body, musical interfaces for children”, in CHI'06 Extended Abstracts on
Human Factors in Computing Systems, ACM, 2006, pp. 1595-1600.

Matthew John Yee-King, “The evolving drum machine”, in Music-AL workshop,
ECAL conference, vol. 2007, 2007.

Yee Chieh Denise Chew and Eric Caspary, “MusEEGk: a brain computer musical
interface”, in CHI'11 Extended Abstracts on Human Factors in Computing Systems,
ACM, 2011, pp. 1417-1422.

Martin Russ, Sound Synthesis and Sampling. Taylor & Francis, 2012, 1sBN: 978-1-
136-12214-9.

Mark Vail, The Synthesizer: A Comprehensive Guide to Understanding, Programming,
Playing, and Recording the Ultimate Electronic Music Instrument. Oxford University
Press, USA, 2014, 1sBN: 978-0-19-539489-4.

Sofia Dahl, “On the beat : human movement and timing in the production
and perception of music”, QC 20101004, PhD thesis, KTH, Speech, Music and
Hearing, TMH, 2005, pp. x, 77.

90

https://www.ableton.com/
http://imi.aau.dk/~sd/phd
http://imi.aau.dk/~sd/phd

Bibliography

[47]

(48]

[49]

(50]

[51]

(52]

(53]

[54]

[55]

[56]

(57]

(58]

[59]

[60]

[61]

[62]

Marco Fabiani, “Interactive computer-aided expressive music performance:
Analysis, control, modification and synthesis”, PhD thesis, KTH, Music Acous-
tics, 2011, p. 69, 1sBN: 978-91-7501-031-1.

Johannes Kreidler, Loadbang : Programming electronic music in Pd. Hofheim: Wolke,
2009, 1sBN: 978-3-936000-57-3.

Miller Puckette, The Theory and Technique of Electronic Music. Singapore: World
Scientific Publishing Company, 2007, 1sBN: 978-981-270-077-3.

David Arditi, “Digital Downsizing: The Effects of Digital Music Production on
Labor”, Journal of Popular Music Studies, vol. 26, no. 4, pp. 503-520, 2014, 1ssn:
1533-1598. por: 10.1111/ jpms.12095.

William W Gaver, “What in the world do we hear?: An ecological approach to
auditory event perception”, Ecological psychology, vol. 5, no. 1, pp. 1-29, 1993.

Simon Crab, “120 Years of Electronic Music”, 1996. URL: http://120years.net/
(visited on 02/10/2015).

Various authors, “Wikimedia Commons”, used files: Roland_TR-808_drum_
machine.jpg, 111607sp1200.jpg, YAMAHA_RY30.JPG, Akai_MPC2000XL_front.-
jpg, Technics_SL-1200MK2-2 jpg, Turntables_and_mixer.jpg, Douris_Man_with_
wax_tablet.jpg. URL: http : // commons . wikimedia . org/wiki/ (visited on
02/09/2015).

Gordon Reid, “Practical Snare Drum Synthesis”, Sound On Sound Magazine,
Synth Secrets, Apr. 2002.

“Synth School, Part 5: The Origins Of S&S”, Sound On Sound Magazine, Synth
School, Dec. 1997.

dmecdjchamps.com, “Technics SL Series... RLP.”, Nov. 1, 2010. URL: http://
www.dmcd jchamps . com/news-view.php?n=Mjk5 (visited on 02/16/2015).

Chris Supranowitz, “General Topics in Electron Microscopy: Micrograph Acqui-
sition, Post-Processing, Special Techniques (OPT307)”, Jan. 24, 2013. URL: http:
//www . optics . rochester . edu/workgroups/cml/opt307 /spr05/chris/
(visited on 02/16/2015).

Sylvain Stotzer, “Phonographic record sound extraction by image processing”,
PhD thesis, Faculty of Science, University of Fribourg (Switzerland, 2006.

Beiming Wang and Mark D Plumbley, “Musical audio stream separation by
non-negative matrix factorization”, in Proceedings of the Digital Music Research
Network (DMRN) Summer Conference, 2005, pp. 23-24.

Romain Hennequin, Bertrand David, and Roland Badeau, “Score informed audio
source separation using a parametric model of non-negative spectrogram”, in
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2011.

Pierre Schaeffer, “ Acousmatics”, Audio culture: Readings in modern music, pp. 76—
81, 2004.

Kurt B Reighley, Looking for the Perfect Beat: The Art and Culture of the D]. MTV
Books, 2000, 1seN: 978-0-671-03869-4.

91

http://dx.doi.org/10.1111/jpms.12095
http://120years.net/
http://commons.wikimedia.org/wiki/
http://www.dmcdjchamps.com/news-view.php?n=Mjk5
http://www.dmcdjchamps.com/news-view.php?n=Mjk5
http://www.optics.rochester.edu/workgroups/cml/opt307/spr05/chris/
http://www.optics.rochester.edu/workgroups/cml/opt307/spr05/chris/

[63]

[64]

[65]

[66]

[67]
[68]

[69]

[70]

[71]
[72]
(73]
[74]
[75]

[76]

[77]

(78]

Bibliography

Jean Laroche and Mark Dolson, “New phase-vocoder techniques for real-time
pitch shifting, chorusing, harmonizing, and other exotic audio modifications”,
Journal of the Audio Engineering Society, vol. 47, no. 11, pp. 928-936, 1999.

Jordi Bonada, “Automatic technique in frequency domain for near-lossless time-
scale modification of audio”, in Proceedings of International Computer Music Con-
ference, 2000, pp. 396-399.

Mark Dolson, “The phase vocoder: A tutorial”, Computer Music Journal, pp. 14—
27,1986.

Kjetil Falkenberg Hansen, Marco Fabiani, and Roberto Bresin, “Analysis of the
acoustics and playing strategies of turntable scratching”, Acta Acustica united
with Acustica, vol. 97, no. 2, pp. 303-314, 2011.

Jean-Claude Chuzeville (Director), “Bruit est Musique”, Video documentary,
JPL Productions and TL7, France, 2010.

Peter Desain and Henkjan Honing, “Tempo curves considered harmful”, Con-
temporary Music Review, vol. 7, no. 2, pp. 123138, 1993.

Peter Kirn, “NI Ends Legal Dispute Over Traktor Scratch; Digital Vinyl’s Twisty,
Turny History”, Apr. 28, 2008. URL: http://createdigitalmusic.com/2008/
04/ni-ends-1legal-dispute-over-traktor-scratch-digital-vinyls-
twisty-turny-history/ (visited on 02/18/2015).

Takuro Mizuta Lippit, “Turntable Music in the Digital Era: Designing Alternative
Tools for New Turntable Expression”, in Proceedings of the International Conference
on New Interfaces for Musical Expression, Norbert Schnell, Frédéric Bevilacqua,
Michael Lyons, and Atau Tanaka, Eds., Paris, France, 2006, pp. 71-74.

William M Hartmann, “The electronic music synthesizer and the physics of
music”, Am. J. Phys, vol. 43, p. 755, 1975.

James T Kajiya, “The rendering equation”, in ACM Siggraph Computer Graphics,
ACM, vol. 20, 1986, pp. 143-150.

Valerii Salov, “Notation for Iteration of Functions, Iteral”, ArXiv preprint, arXiv:
1207.0152, 2012.

Mike] Potel, “Real-time playback in animation systems”, in ACM SIGGRAPH
Computer Graphics, ACM, vol. 11, 1977, pp. 72-77.

Thomas Grill, “py/pyext — Python scripting objects for Pure Data and Max”.
URL: http://grrrr.org/research/software/py/ (visited on 02/22/2015).

Tue H. Andersen, “Mixxx : Towards Novel DJ Interfaces”, in Proceedings of
the International Conference on New Interfaces for Musical Expression, Marcelo M.
Wanderley, Richard McKenzie, and Louise Ostiguy, Eds., Montreal, 2003, pp. 30—
35.

Takuro M. Lippit, “Realtime Sampling System for the Turntablist, Version 2:
16padjoystickcontroller”, in Proceedings of the International Conference on New
Interfaces for Musical Expression, Yoichi Nagashima, Yasuo Ito, and Yuji Furuta,
Eds., Hamamatsu, Japan, 2004, pp. 211-212.

Nikita Pashenkov, “A New Mix of Forgotten Technology: Sound Generation,
Sequencing and Performance Using an Optical Turntable”, in Proceedings of the
International Conference on New Interfaces for Musical Expression, Yoichi Nagashima,
Yasuo Ito, and Yuji Furuta, Eds., Hamamatsu, Japan, 2004, pp. 64-67.

92

http://createdigitalmusic.com/2008/04/ni-ends-legal-dispute-over-traktor-scratch-digital-vinyls-twisty-turny-history/
http://createdigitalmusic.com/2008/04/ni-ends-legal-dispute-over-traktor-scratch-digital-vinyls-twisty-turny-history/
http://createdigitalmusic.com/2008/04/ni-ends-legal-dispute-over-traktor-scratch-digital-vinyls-twisty-turny-history/
http://grrrr.org/research/software/py/

Bibliography

[79]

(80]

[81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

Kentaro Fukuchi, “Multi-track scratch player on a multi-touch sensing device”,
in Entertainment Computing—ICEC 2007, Springer, 2007, pp. 211-218.

Pedro Lopez, Alfredo Ferreira, and J. A. Madeiras Pereira, “Battle of the DJs:
an HCI Perspective of Traditional, Virtual, Hybrid and Multitouch DJing”, in
Proceedings of the International Conference on New Interfaces for Musical Expression,
Alexander R. Jensenius, Anders Tveit, Rolf I. Godoy, and Dan Overholt, Eds.,
Oslo, Norway, 2011, pp. 367-372.

Karl Yerkes, Greg Shear, and Matthew Wright, “Disky : a DIY Rotational Interface
with Inherent Dynamics”, in Proceedings of the International Conference on New
Interfaces for Musical Expression, Kirsty Beilharz, Bert Bongers, Andrew Johnston,
and Sam Ferguson, Eds., Sydney, Australia, 2010, pp. 150-155.

Steven Gelineck and Stefania Serafin, “A quantitative evaluation of the differ-
ences between knobs and sliders”, in New Interfaces for Musical Expression, 2009.

Steven Gelineck, “Exploratory and Creative Properties of Physical-Modeling-
based Musical Instruments: Developing a framework for the development of
physical modeling based digital musical instruments, which encourage explo-
ration and creativity”, PhD thesis, Department of Architecture, Design & Media
Technology, Aalborg University, 2012.

Niels Bottcher, “Procedural audio for computer games with motion controllers —
Evaluating the design approach and investigating the player’s perception of the
sound and possible influences on the motor behaviour”, PhD thesis, Department
of Architecture, Design & Media Technology, Aalborg University, 2014.

Timothy Beamish, Kees Van Den Doel, Karon MacLean, Sidney Fels, et al.,
“D’groove: A haptic turntable for digital audio control”, in Proc. of the Inter-
national Conference on Auditory Display, Boston, MA, 2003.

Matthew Wright, “Open sound control: an enabling technology for musical
networking”, Organised Sound, vol. 10, no. 03, pp. 193-200, 2005.

Nicolas Villar, Adam T. Lindsay, and Hans Gellersen, “Pin & Play & Perform:
A rearrangeable interface for musical composition and performance”, in Pro-
ceedings of the International Conference on New Interfaces for Musical Expression,
Sidney S. Fels, Tina Blaine, Andy Schloss, and Sergi Jord’a, Eds., Vancouver, BC,
Canada, 2005, pp. 188-191.

Katharina Vogt, “Sonification of simulations in computational physics”, PhD
thesis, Institute for Electronic Music, Acoustics, University of Music, and Per-
forming Arts, Graz, Austria, 2010.

Kevin Xiaoguo Zhu and Zach Zhizhong Zhou, “Lock-In Strategy in Software
Competition: Open-Source Software vs. Proprietary Software”, Information Sys-
tems Research, vol. 23, no. 2, pp. 536-545, 2012.

Amy Kucharik, “Vendor lock-in, part 1: Proprietary and lock-in not neces-
sarily synonymous”, Jul. 10, 2003. URL: http : / / searchenterpriselinux .
techtarget.com/news/913129/Vendor-lock-in-part-1Proprietary-and-
lock-in-not-necessarily-synonymous (visited on 02/25/2015).

Richard] Gilbert, “Networks, Standards, and the Use of Market Dominance:
Microsoft (1995)”, The Antitrust Revolution: The Role of Economics, vol. 3, 1998.

93

http://searchenterpriselinux.techtarget.com/news/913129/Vendor-lock-in-part-1Proprietary-and-lock-in-not-necessarily-synonymous
http://searchenterpriselinux.techtarget.com/news/913129/Vendor-lock-in-part-1Proprietary-and-lock-in-not-necessarily-synonymous
http://searchenterpriselinux.techtarget.com/news/913129/Vendor-lock-in-part-1Proprietary-and-lock-in-not-necessarily-synonymous

[92]

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

Bibliography

Anne-Kathrin Kuehnel, “Microsoft, Open Source and the software ecosystem:
of predators and prey—the leopard can change its spots”, Information & Com-
munications Technology Law, vol. 17, no. 2, pp. 107-124, 2008. por: 10 . 1080/
13600830802204229.

Microsoft Corporation, “Shared Source Initiative”, 2015. URL: http: //www .
microsoft.com/en-us/sharedsource/default.aspx (visited on 02/25/2015).

Clifford Adelman, “A parallel universe: Certification in the information tech-
nology guild”, Change: The Magazine of Higher Learning, vol. 32, no. 3, pp. 20-29,
2000.

Joel West, “How open is open enough?: Melding proprietary and open source
platform strategies”, Research policy, vol. 32, no. 7, pp. 1259-1285, 2003.

Chip Chapin, “CD-DA (Digital Audio) 1”7, Apr. 16, 2005. URL: http: //www.
chipchapin.com/CDMedia/cddal.php3 (visited on 02/24/2015).

Ken C. Pohlmann, The Compact Disc: A Handbook of Theory and Use, ser. Computer
Music and Digital Audio Series. A-R Editions, 1989, 1sen: 978-0-89579-228-0.

John Watkinson, The Art of Digital Audio, 3rd ed. Focal Press, Taylor & Francis
Group, 2001, 1sBN: 978-0-240-51587-8.

Teruo Muraoka, Yoshihiko Yamada, and Masami Yamazaki, “Sampling-frequency
considerations in digital audio”, Journal of the Audio Engineering Society, vol. 26,
no. 4, p. 252, 1978.

Knut Blind, “Patent pools-a solution to patent conflicts in standardisation and
an instrument of technology transfer: the MP3 case”, in Standardization and
Innovation in Information Technology, 2003. The 3rd Conference on, IEEE, Oct. 2003,
pp- 27-35. por: 10.1109/SIIT.2003.1251192.

Chris Bryden, “nanobox linux: nanobox-smb - Single Disk Windows Networking
Client”, Apr. 10, 2010. URL: http://web.archive.org/web/20100410143654/
http://www.neonbox.org/nanobox/index.html (visited on 03/03/2015).

Burton Grad, “A personal recollection: IBM’s unbundling of software and ser-
vices”, Annals of the History of Computing, IEEE, vol. 24, no. 1, pp. 64-71, Jan. 2002,
1ssN: 1058-6180. por: 10.1109/85.988583.

Steven Levy, Hackers: Heroes of the Computer Revolution, 1sted. New York, NY,
USA: Doubleday, 1984, 1sBN: 0-385-19195-2.

Richard M. Stallman, Free Software, Free Society: Selected Essays of Richard M.
Stallman, 2nd ed. Joshua Gay, Ed., revisor Free Software Foundation (Cambridge,
Mass.), with a forew. by Lawrence Lessig. Boston, MA, USA: GNU Press, 2010,
1SBN: 978-0-9831592-0-9.

Vladimir Ilyich Lenin, Mimnepuanusm kax ésicwas cmadus kanumanusma. Impe-
rialism : The last stage of capitalism, Russian and English. London: Communist
Party of Great Britain, 1917, p. 159.

Donald Joy, “Unemployment Checks Forever: Politicians Pandering To Para-
sites”, Jan. 8, 2014. URL: http://clashdaily.com/2014/01/unemployment -
checks-forever-politicians-pandering-parasites/ (visited on03/13/2015).

94

http://dx.doi.org/10.1080/13600830802204229
http://dx.doi.org/10.1080/13600830802204229
http://www.microsoft.com/en-us/sharedsource/default.aspx
http://www.microsoft.com/en-us/sharedsource/default.aspx
http://www.chipchapin.com/CDMedia/cdda1.php3
http://www.chipchapin.com/CDMedia/cdda1.php3
http://dx.doi.org/10.1109/SIIT.2003.1251192
http://web.archive.org/web/20100410143654/http://www.neonbox.org/nanobox/index.html
http://web.archive.org/web/20100410143654/http://www.neonbox.org/nanobox/index.html
http://dx.doi.org/10.1109/85.988583
http://clashdaily.com/2014/01/unemployment-checks-forever-politicians-pandering-parasites/
http://clashdaily.com/2014/01/unemployment-checks-forever-politicians-pandering-parasites/

Bibliography

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

Sgouris Sgouridis, “Defusing the energy trap: the potential of energy-denominated
currencies to facilitate a sustainable energy transition”, Frontiers in Energy Re-
search, vol. 2,no. 8, p. 12, 2014, 1ssN: 2296-598X. por: 10.3389/fenrg.2014.00008.

Joseph Roisman, Ancient Greece from Homer to Alexander: The Evidence, trans. by
John C. Yardley, ser. Blackwell Sourcebooks in Ancient History. John Wiley &
Sons, 2011, 1sBN: 978-1-4051-2775-2. URL: https://books.google.dk/books?
id=krnWim-kpvoC.

Alfred Wassink, “Inflation and Financial Policy under the Roman Empire to
the Price Edict of 301 A.D.”, Historia: Zeitschrift fiir Alte Geschichte, vol. 40, no. 4,
pp- 465-493, 1991, 1ssn: 00182311.

Andrew O Baoill, “The Significance of the World’s First Copyright Ruling for
Contemporary Debate on Intellectual Property”, Paper presented at the annual
meeting of the International Communication Association, Dresden International
Congress Centre, Dresden, Germany, Jun. 16, 2006.

K. Eric Drexler and Richard E. Smalley, “Drexler and Smalley make the case for
and against ‘molecular assemblers’”, with an intro. by Rudy Baum, Chemical &
Engineering News, vol. 81, no. 48, p. 1, 2003.

José Lopez, “Bridging the gaps: science fiction in nanotechnology”, HYLE —
International Journal for Philosophy of Chemistry, vol. 10, no. 2, pp. 129-152, 2004.

Courtney Love, “Courtney Love does the math”, Salon.com, vol. 14, Jun. 14, 2000.
URL: http://www.salon.com/2000/06/14/1love_7/ (visited on 03/19/2015).

Philip Cregan, “What Are the Effects Of Illegal Downloading On The Music
Industry?”, B.A. Thesis, Dublin, National College of Ireland, 2011.

Lincoln D Durey, “EOF: dear laptop vendor”, Linux Journal, vol. 2004, no. 126,
p- 13,2004.

Thomas Andersen, “The Norwegian DeCSS Litigation—A DVD Piracy Trial”,
Business Law Review, vol. 25, no. 7, pp. 187-189, 2004.

Chris Hoffman, “Why Watching DVDs on Linux is Illegal in the USA”, Mar. 1,
2013. URL: http://wuw.howtogeek . com/ 138969 /why-watching-dvds-on-
linux-is-illegal-in-the-usa/ (visited on 03/19/2015).

CNNMoney (New York), “How the NSA can "turn on’ your cell phone re-
motely”, Jun. 6, 2014. URL: http://money.cnn.com/2014/06/06/technology/
security/nsa-turn-on-phone/ (visited on 03/19/2015).

Joel Hruska, “Windows 8 phones home, tells Microsoft every time you install
a program”, Aug. 24, 2012. URL: http://www.extremetech.com/computing/
135010 - windows - 8 - phones —home - tells -microsoft - every - time - you-—
install-a-program (visited on 03/19/2015).

Cory Doctorow, “GM says you don’t own your car, you just license it”, May 21,
2015. URL: http://boingboing.net/2015/05/21/gn-says-you-dont-own-
your-ca.html (visited on 05/27/2015).

Joan Archer, Morgan Chu, Karen Robinson, and Hon James S Ware, “Apple v.
Samsung Design Patents Take Center Stage?”, in ABA Section of Litigation, ABA
Annual Meeting, American Bar Association, San Francisco, CA, Aug. 2013.

95

http://dx.doi.org/10.3389/fenrg.2014.00008
https://books.google.dk/books?id=krnW1m-kpvoC
https://books.google.dk/books?id=krnW1m-kpvoC
http://www.salon.com/2000/06/14/love_7/
http://www.howtogeek.com/138969/why-watching-dvds-on-linux-is-illegal-in-the-usa/
http://www.howtogeek.com/138969/why-watching-dvds-on-linux-is-illegal-in-the-usa/
http://money.cnn.com/2014/06/06/technology/security/nsa-turn-on-phone/
http://money.cnn.com/2014/06/06/technology/security/nsa-turn-on-phone/
http://www.extremetech.com/computing/135010-windows-8-phones-home-tells-microsoft-every-time-you-install-a-program
http://www.extremetech.com/computing/135010-windows-8-phones-home-tells-microsoft-every-time-you-install-a-program
http://www.extremetech.com/computing/135010-windows-8-phones-home-tells-microsoft-every-time-you-install-a-program
http://boingboing.net/2015/05/21/gm-says-you-dont-own-your-ca.html
http://boingboing.net/2015/05/21/gm-says-you-dont-own-your-ca.html

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

Bibliography

James E Bessen, Michael] Meurer, and Jennifer Laurissa Ford, “The private
and social costs of patent trolls”, Boston Univ. School of Law, Law and Economics
Research Paper, no. 11-45, 2011.

Maria Kechagia, Diomidis Spinellis, and Stephanos Androutsellis-Theotokis,
“Open Source Licensing Across Package Dependencies”, in Informatics (PCI),
2010 14th Panhellenic Conference on, Sep. 2010, pp. 27-32. por: 10.1109/PCI.2010.
28.

Eric S. Raymond, The Cathedral & the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary. O’Reilly Media, 2001, 1sBN: 978-0-596-55396-8.

Nick Valery, “The Difference Engine: Linux’s Achilles heel”, Nov. 12, 2010. URL:
http://www.economist.com/blogs/babbage/2010/11/operating_systems
(visited on 03/21/2015).

Volodymyr Kuznetsov, Vitaly Chipounov, and George Candea, “Testing Closed-
Source Binary Device Drivers with DDT”, in USENIX Annual Technical Conference,
2010.

Vitaly Chipounov and George Candea, “Reverse-Engineering Drivers for Safety
and Portability.”, in HotDep 08 - Fourth Workshop on Hot Topics in System Depend-
ability, San Diego, CA, Dec. 7, 2008.

Smilen Dimitrov, “attenload - fetch data from Atten oscilloscopes - README”,
Feb. 16,2013. URL: http://sdaaubckp.sourceforge.net/attenload/ (visited
on 03/21/2015).

Chun-Hui Miao, “Tying, Compatibility and Planned Obsolescence”, The Journal
of Industrial Economics, vol. 58, no. 3, pp. 579-606, 2010.

Dejan Viduka and Ana Basi¢, “Impact of Open Source software on the environ-
mental protection”, Computational Ecology & Software, vol. 5, no. 1, 2015.

Ron Amadeo, “Google’s iron grip on Android: Controlling open source by any
means necessary”, Ars Tecnica, vol. 21, 2013.

Mark Doran, “The growing role of UEFI secure boot in Linux distributions”,
Linux Journal, vol. 2014, no. 239, p. 3, 2014.

Meredith L. Patterson, “How I Explained Heartbleed To My Therapist — Riding
Open Source’s Race to the Bottom”, Sep. 25, 2014. URL: https://medium. com/

message/how-i-explained-heartbleed-to-my-therapist-4cldbcbel099
(visited on 03/17/2015).

Susan A. McDaniel and Zachary Zimmer, Global Ageing in the Twenty-First Cen-
tury: Challenges, Opportunities and Implications. Ashgate Publishing Limited, 2013,
1sBN: 978-1-4724-0005-5.

Satoshi Nakamoto (pseudonym), “Bitcoin: A peer-to-peer electronic cash sys-
tem”, p. 9, 2008. URL: https : // bitcoin . org/bitcoin . pdf (visited on
03/21/2015).

R. T. Leuchtkafer (pseudonym), “High Frequency Trading: A bibliography of
evidence-based research”, Mar. 2015.

Thomas Bourke, “Bibliography of the Global Financial / Economic Crisis”, Jan.
2015.

96

http://dx.doi.org/10.1109/PCI.2010.28
http://dx.doi.org/10.1109/PCI.2010.28
http://www.economist.com/blogs/babbage/2010/11/operating_systems
http://sdaaubckp.sourceforge.net/attenload/
https://medium.com/message/how-i-explained-heartbleed-to-my-therapist-4c1dbcbe1099
https://medium.com/message/how-i-explained-heartbleed-to-my-therapist-4c1dbcbe1099
https://bitcoin.org/bitcoin.pdf

Bibliography

[138]

[139]

[140]
[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]
[151]

[152]

[153]

[154]

[155]

Greg Hill and Kerry Wendell Thornley, Principia Discordia. Loompanics Unlim-
ited, 1979.

Stefan Baumgartner, “Thermodynamics of waste generation”, Waste in Ecological
Economics, Edward Elgar, Cheltenham, Northampton, 2002.

Arthur Bloch, Murphy’s Law. Perigee, 2003, 1sBN: 978-0-399-52930-6.

Ben Einstein, “Hardware by the Numbers (Part 1: Team + Prototyping)”, Oct. 31,
2014. URL: https://medium. com/@BoltVC/hardware-by-the-numbers-part-
1-team-prototyping-b225a33£f55bf (visited on 03/25/2015).

Kevin Menard, “Open Sourcing a Failed Startup”, Nov. 20, 2014. URL: http:
//nirvdrum.com/2014/11/20/open-sourcing-mogotest . html (visited on
03/25/2015).

Bharat Rao, Bojan Angelov, and Oded Nov, “Fusion of Disruptive Technologies:
Lessons from the Skype Case”, European Management Journal, vol. 24, no. 2,
pp- 174-188, 2006.

Nyle Steiner (K7NS), “Iron Pyrites Negative Resistance (RF) Oscillator”, Feb. 22,
2001. URL: http://www. sparkbangbuzz.com/els/iposc-el.htm (visited on
02/24/2015).

Hermann Ludwig Ferdinand von Helmholtz, Die Lehre von den Tonempfindungen
als physiologische Grundlage fiir die Theorie der Musik. On the Sensations of Tone
as a Physiological Basis for the Theory of Music, German and English, trans. by
Alexander John Ellis. London: Longmans, Green and Co., 1875.

Gareth Loy, “Musicians make a standard: the MIDI phenomenon”, Computer
Music Journal, vol. 9, no. 4, pp. 8-26, 1985.

Erich Neuwirth, “Musical abstractions and programming paradigms”, in Pro-
ceedings of the 11th European Logo Conference, Bratislava, Slovakia, 2007, 1sBN:
978-80-89186-20-4.

Roger B. Dannenberg, “The Interpretation of MIDI Velocity”, in Proceedings
of the International Computer Music Conference (ICMC), San Francisco, CA: The
International Computer Music Association, 2006, pp. 193-196.

, “Music Representation Issues, Techniques, and Systems”, Computer Music
Journal, vol. 17, no. 3, pp. 20-30, 1993.

Curtis Roads, Microsound. MIT Press, 2004, 1sBN: 978-0-262-68154-4.

Barbara Bryner, “The Piano Roll: A Valuable Recording Medium of the Twentieth
Century”, Master’s thesis, Department of Music, University of Utah, 2002.

Lisa Gitelman, “Media, Materiality, and the Measure of the Digital; or, the Case
of Sheet Music and the Problem of Piano Rolls”, Memory bytes: History, technology,
and digital culture, pp. 199-217, 2004.

Peter Manning, Electronic and Computer Music. Oxford University Press, USA,
2013, 1sBN: 978-0-19-991259-9.

Stefania Serafin, “The sound of friction: real-time models, playability and musical
applications”, PhD thesis, Stanford University, CCRMA, 2004.

Karlheinz Stockhausen and Elaine Barkin, “The concept of unity in electronic
music”, Perspectives of New Music, vol. 1, no. 1, pp. 39-48, 1962.

97

https://medium.com/@BoltVC/hardware-by-the-numbers-part-1-team-prototyping-b225a33f55bf
https://medium.com/@BoltVC/hardware-by-the-numbers-part-1-team-prototyping-b225a33f55bf
http://nirvdrum.com/2014/11/20/open-sourcing-mogotest.html
http://nirvdrum.com/2014/11/20/open-sourcing-mogotest.html
http://www.sparkbangbuzz.com/els/iposc-el.htm

Appendix A

Basic theoretical aspects of the
classic rhythm/drum machine
step sequencer

Here, the classic rhythm /drum machines (as exemplified by Roland TR-
808 (1980), E-mu SP-1200 (1987), Yamaha RY30 (1991), and Akai MPC2000 (1997),
shown on Fig. 3.1 in section 3.1) are in focus. In particular, the formulation of
the unique live interaction characteristics of these machines will be undertaken,
by establishing some elementary relationships between the operation of these
machines - and concepts in basic music theory and music technology.

The facilities found in these machines for programming rhythms, can be
said to be based in Western musical composition tradition — and in the con-
cept of a musical note, the tonal aspect of which has been formally described
mathematically since at least Helmholtz (1875, [145]). The musical note, as a
sign, records the pitch and the duration of a sound in a single symbol; a simple
sequence of notes can thus transcribe a monophonic melody, as played for
instance on a flute. The MIDI specification [146] implements this abstraction
as a part of an electronic control protocol; however, the note’s duration, and
thus the note, is not encoded as a single event [147], but as two - through the
commands/messages note on and note off. On the other hand, for both
note messages, MIDI specifies a velocity argument, whose meaning refers to
the speed of a piano keyboard key press (reaching from depressed to pressed
position) - but whose actual implementation is not specified [148], and is most
often mapped to a note’s loudness/volume; something which in traditional
score notation is not a property of a note, but is instead indicated by words
or alphabetic symbols such as p (piano) or f (forte), as dynamics directives. In
spite of this and other confusions regarding MIDI as a music representation
tool [149], some of the terminology that evolved around related hardware and
software can be used to discuss the affordances of the drum machines.

99

VIXV

Appendix A. Basic theoretical aspects (step seq.)

Note that for pure (sinusoidal) tones, the frequency of the sinusoid gives
rise to the sensation of pitch; Roads (2004, [150]) notes a perceptual threshold
for metered rhythm as frequencies 8 Hz and below, for classical pitch sensation
as frequencies above 40 Hz, and a “zone of ambiguity” of a continuous tone
perception in-between. For complex sounds, pitch may be determined by the
fundamental and overtone frequencies of the sound — or in general, its spectrum.
In essence, both classical notation and MIDI tools preserve: the perspective
on music composition as a two-dimensional layout, where the horizontal ab-
scissa represents time and the vertical ordinate represents pitch/frequency;
and the approach to generally quantizing the pitch at semitones of the twelve-
tone, equal temperament, scale — however, as shown on Fig. AA.1, the visual
correspondence between the two may not be exact.

I

f mg ™ P A
= | EEEEEEET e

Fig. AA.1: Visual comparison between classical notation score, and software (here Rosegarden) in-
terpretation and rendering as "piano roll" MIDI notes (velocities shown separately on the rightmost
part, otherwise indicated by shading)

A Moderato (J =120)

This is the case, at least because of the use of accidental notes in classical
notation: modifiers like § (sharp, diése) orb (flat, bemolle) change the pitch of
the note written thereafter, causing different pitches to be notated at the same
vertical coordinate on the staff; conversely, the MIDI event notation is explicit
in allocating an exclusive vertical coordinate to each semitone pitch.

In terms of playback speed or tempo, for a great part of history classical nota-
tion used descriptive words (e.g. Moderato) to denote the speed at which a com-
position should be played. Only after the increased popularity of metronomes,
a convention arose where a type of a note (e.g. a quarter note J a.k.a. crotchet)
is declared to represent one beat, and its duration is expressed in terms of BPM
- inscribed, as a metronomic indication, in parentheses (4 = 120) next to the
traditional tempo description. MIDI inherits this tradition, in that it defines a
MIDI meta event message - one that may exist in files, but is not transmitted to
devices - called set tempo, which encodes the duration of a quarter note in
microseconds (but which is displayed as BPM in MIDI editors). If d; denotes the
duration of a quarter note (a beat) in seconds, and Mt denotes the metronome
tempo in BPM, then the relation between two can be formally expressed with

100

Eq. AA1.
1 1 [min] 60 | sec

= My 'beat!

dq - MT[beats] = MT [beats]

min
Thus per Eq. AA.1, a metronome tempo of 120 BPM indicates a beat duration
of 0.5 seconds, or 500 s; if [beat] is accepted as a dimensionless unit, then BPM
as a physical unit — as [1/time] — would be equivalent to the unit of frequency,
Hertz [Hz] (albeit with different numeric values). Generally, Eq. AA.1 specifies
the duration of a beat (d}), which most commonly is the duration of a quarter
note (d;), but depending on the tempo definition, could be set to other note
types, like half or 16 note.

When we talk about loops in context of classic sequencers, it should be noted
that by default, we refer to loops of duration of a single measure (or bar) as a
discrete unit of time. In classical music notation, the duration of a measure is
expressed through the time signature: for instance, the time signature £ refers
to the duration of four (4) quarter (1/4) notes as the duration of a measure in that
composition; Fig. AA.1 depicts one such measure. Therefore, as per Eq. AA.1, a
single # measure at 120 BPM would last for two seconds — and this is the general
order of magnitude of time periods considered, when talking about repetition
of audio loops in this scope.

It might be useful at this point, to introduce a term that may aid the formal-
ization efforts here: let a note lane represent a collection (a sequence) of notes, all
at the same pitch. While useless in terms of melodic, even monophonic, music -
it can be used to refer to a thythm played by a single percussive instrument, an
example of which is shown on Fig. AA.2.

(AA.1)

Moderato (J = 120)

q D¢ X X X X

1] & & 1) & & 1]] 1] & &

1 | 4 YV o | v & | | | Y o |
r 1 r 1] | r 1

mf
—m=S===s=s==——moc
I 1 I I

Fig. AA.2: Visual comparison between classical percussion score (using a hi-hat symbol), and
software (here Rosegarden) interpretation and rendering as "piano roll" MIDI percussion (note the
duration is only shown through the velocities, shown below)

The MIDI visualization shown on Figs. AA.1, AA.2 bottom is known as a
"piano roll", stemming from the recording medium of the early reproducing
or player piano technology [151, 152]. In both classical notation and piano-roll
visualization, in context of percussion, the vertical coordinate stops being a
notation for pitch, and instead is treated as an index into a set (or table) of
percussive instrument sounds. This is appropriate for percussion instruments,
as often they are perceived as non-pitched, and are incapable of producing

101

Appendix A. Basic theoretical aspects (step seq.)

chords (that is, can only reproduce one sound event at a time); correspondingly,
in electronic synthesis, sounds for snare drums and hi-hat have long been
modelled by inclusion of noise generators [54] in the audio generating circuits.
Classical notation, as on Fig. AA.2, may emphasize this with a special symbol
standing in for the note head; while MIDI arrangement software may offer a
"percussion” view into a sequence. In the MIDI percussion view, instead of with
arectangle with width indicating the note duration, the event may be visualized
with a different symbol (a rhombic or "diamond" shape) only at the start (i.e. the
trigger) point; while the duration might only be shown otherwise, for instance
through the width of the velocities (e.g. as in the Rosegarden software). So, in
cases of notation where we can consider the pitch information to be a general
index into a set of instruments (wherein a single pitch corresponds to a single
instrument sound) — a note lane would represent a sequence played by a single
instrument (visually, it would be what is left of the piano roll on Fig. AA.2
bottom, if all space apart from the one corresponding to one key, say C4, is
covered). A note lane could control a very simple electronic instrument engine,
a model of which is shown on Fig. AA.3.

S e - - o
gate/volume 1
control trigger 1
Trigger signal Envelope
(trigger extractor | Generator
contro)| T _ 1 phase envelope-
Winput shaped
raw sound Volume) sound
Audio output Multiplier | Output
generator ® i
pitch/ fre(c]gﬁzco}i frequency
input

Fig. AA.3: A simple model of a basic electronic instrument sound generator.

The model on Fig. AA.3 is based on models, often considered basic in
electronic music (cf. Fig. 1 in [71], Fig. 1.5 in [49], Fig. 32 in [153]). The control
signals on Fig. AA.3 could be considered either as analog electronic signals
(e.g. an electric voltage changing in time), or as digital signals (e.g. a stream
of numbers, whose sequential order implies timing information). The audio
generator could be either an analog electronic oscillator, a digital sound sampler,
or embody any other synthesis method, e.g. based on physical modelling (refer
to Serafin (2004, [154])). Note that analog oscillators, in principle, start oscillating
as soon as, and for as long as, the circuit is powered; so instead of turning the
oscillator on and off each time a note is played, the signal is typically ran through
a device that functions as a multiplier (a.k.a. VCA), whose control input signal
determines the volume of the final sound output. In principle, the "gate/volume
control" signal can be conceptually considered as a rectangular function of

102

time in the range from 0 to 1, whose duration specifies the duration of a note
event: multiplication with 0 then results with no sound on the output; and
multiplication with 1 with the original, raw generator sound on the output. As
such, a "gate/volume control" signal could be directly applied to the multiplier
to control the final sound output (although, note that in MIDI, additional though
straightforward processing is required, to obtain such a signal from note on
andnote off messages). However, considering that analog oscillators produce
sound at a fixed volume, in analog electronics instruments the oscillator sound
is typically shaped with an ADSR envelope — a piecewise linear signal generator.
The envelope needs a starting signal, called the "trigger signal" on the Fig. AA.3,
which in principle is synonymous with the start of the "gate/volume control"
signal. As such, in can be derived from "gate/volume control" signal: if the
"gate/volume control" rectangular signal is mathematically considered as a
composition of two Heaviside step functions, then its differentiation in time
would result with two Dirac function pulses é(t); the positive pulse at the start
of the "gate/volume control” would represent the "trigger control" signal. In
analog electronics, this trigger extraction can be achieved with generic rising
edge detector circuits, such as a linear phase comparator, or a (positive) edge-
triggered one-shot (monostable multivibrator); in digital signal processing,
it can be found simply by calculating the differential signal x[t] — x[t — 1] of
successive values in time. However, the "trigger control" signal does not have
to be derived from the "gate/volume control" signal - it can also be supplied
independently.

If the audio generator on the model on Fig. AA.3 represents an analog
oscillator, then the pitch control signal sets the frequency of oscillation of the
circuit; however, if the audio generator is a digital sampler, then the pitch control
would set the playback speed of the sound sample (through which the sensation
of different pitches can be achieved with sound samples). The issue of phase is
different: in an analog oscillator, the oscillation frequency f in Hertz, is related
to the period T in seconds as per:

1

f= T (AA2)
Thus, a sinusoidal oscillator reproducing middle A (A4) at 440 Hz, has a period
of 2.27 ms; since the start of the note is likely to be "covered" by the attack of the
ADSR envelope lasting at least tens of milliseconds, in a monophonic context
the phase (if the oscillation started relatively earlier or later in the range of the
period +2.27 ms) won't matter much to a listener. On the other hand, if the
audio generator is a sampler, reproducing sound samples with durations in
range of seconds (e.g. timpani, cymbals, even whole rhythmic loops), it matters
very much if the start of the note corresponds to the start, or say the middle, of
the sound sample (which how phase expresses itself in this context). Thus, if
the audio generating engine should reproduce sound samples of percussion, as
a starting point we’d want the sound sample phase to be reset at each new start
of a note — which is why the trigger signal is shown routed to the phase input

103

Appendix A. Basic theoretical aspects (step seq.)

of the audio generator on Fig. AA.3. Finally, it should be noted that the model
on Fig. AA.3 is applicable only to strictly monophonic operations: subsequent
notes start by terminating the previous ones if they would otherwise still last,
both in terms of pitch and in terms of duration (both with ADSR envelope and
without); much like a flute or a single string on a violin. Thus, if we’d want two
or more notes reproduced at the same time, as in a piano chord (i.e. polyphony)
- we would, in principle, have to employ two or more generators as on Fig. AA.3,
tuned to reproduce the same timbre.

Returning to the classic sequencers on Fig. 3.1, it is notable that all of them
have interfaces quite rich with elements such as buttons; however, only some of
those are of interest here. Let’s first mention that step sequencing is defined
as opposed to live, real-time sequencing: instead of recording the sequence
by "drumming" it real-time on particular interface keys or pads, the user is
expected to toggle (or choose) whether a note on a particular step in the measure
sequence is playing or not. The most basic measure quantization setting on
such drum machines is in 16" notes (} or semiquaver); that would imply a
measure in ¢ time signature. Note however that the duration of a }¢ measure is
mathematically equal to the duration of a 4 one; and in classical notation, the
choice of time signature depends on the interpretation of accents in the work
generally, not the smallest note duration as per the quantization of a measure
(e.g. if the accent falls on each fourth 16 note, that measure would be signed
as i). Thus, it can be stated that:

* A note lane is a sequence of single-pitch notes at the quantization resolution
of a measure, able to drive a single monophonic generator

* A pattern or segment is a stack of note lanes, attributed to either different
pitches of a single instrument or different instrument sounds, with the
length of at least a measure (can be equivocated to "piano roll" display);
able to represent polyphony

* A track is a sequence of patterns, associated to a single instrument defini-
tion (either as a pitched instrument, or a collection of sounds such as a
"drum bank" - which would correspond to the notion of a MIDI channel)

* A song is a stack of tracks with pre-programmed pattern sequences and
predefined sound sets (or banks); able to represent multi-timbrality

In fact, this kind of hierarchical perception of sonic events has been noticed
in electronic music theory at the least since Stockhausen et al. (1962, [155]), who
noted that “... a musical composition is no more than a temporal ordering of
sound events, just as each sound event in a composition is a temporal ordering
of pulses. It is only a question of the point at which composition begins ...” [155].
Also, this terminology is close to the one used in the classic drum machines, as
well as MIDI editors. Thus, the distinct features of the classic drum machines
can be described as follows:

104

e TR-808: Fig. 3.1 a) indicates a row of 16 step buttons, representing a note
lane of a measure quantized in 16" notes; the user can press these to toggle
the playback of a sound on a particular step while the sequence is playing,
and thus change the sequence "live" (even if that sound will first be heard
next time the sequence loops at that position). It is imaginable that a
press slide across multiple buttons would result with a sort of a drum roll,
and that it would be possible to toggle that roll from one measure to the
other, allowing for real-time programming of some rhythmic transitions.
Changing which sound the step buttons’ row applies to, is achievable
through other elements on the interface.

e SP-1200: Fig. 3.1 b) indicates a section that includes a row of 8 buttons;
these however do not represent a note lane, or an interface for a step
sequencer — rather, they can be approximated to a piano keyboard, except
they trigger individual (typically drum) sound samples, and are intended
for real-time programming of a drum sequence. A step sequencer is ac-
cessible by other means (left/right arrow buttons). Additionally, volume
faders are associated with each button in the row, allowing for real-time
control of the volume of each individual drum sound sequence.

* RY30: Fig. 3.1 c) indicates the instrument pads” area. A pad in this context
is an elastic button made of rubber, typically larger than regular buttons.
Pads require less precision from, and thus allow greater freedom to, the
user — basically allowing the user to "whack" them, without too great of
an effort in being spatially precise; approximating the feeling a drummer
might have with respectively larger drum surfaces. A step sequencer is
accessible by other means (left/right arrow buttons), and likewise for
the individual sounds volume control. The pads are able to capture the
applied force during the press as a velocity parameter. Additionally, it
features a rotary control wheel, which is very convenient for either fast or
precise entry of data, unlike a rotary knob (which in small editions can
be difficult to set precisely manually).

e MPC2000: Fig. 3.1 d) indicates the drum pads’ area; due to the machine’s
nature as a sound sampler, these pads are freely assignable to any sound.
Just like with the RY30, a step sequencer is accessible by other means
(left/right arrow buttons), and likewise for the individual sounds volume
control; its pads are also able to capture the applied force during the press
as a velocity parameter.

All of these rhythm machines have facilities in common, that can be (and
have been) used in context of live performance, and are achieved by pressing a
button, or a chorded sequence of buttons (akin to pressing SHIFT along with a
different key on a text keyboard) - such as: starting and stopping a sequence,
transitioning from one pattern to another, or transitioning from one song to
another. Some other common facilities are setting of the master volume, or

105

Appendix A. Basic theoretical aspects (step seq.)

setting of the tempo, for which typically (but not necessarily) rotary knob type
of controllers might be allocated. However, the unique facilities, otherwise
desirable on a generic sequencer interface, might be identified as:

* A button row step sequence controller (as on a TR-808),

¢ A choice of a "note lane" (the step sequencer applies to) through a rotary
control wheel (as on a RY30),

¢ Individual drum sound "note lane" volumes controllable through a set of
mixer faders (as on a SP 1200),

* Drum pads for real-time playback and sequencing (as on an MPC2000,
RY30).

This would encompass a basic set of facilities, that are unique to the classic
drum machines, but also generically usable in terms of live performance.

106

Part 11

Papers on open soundcard
development

107

Paper A

Extending the soundcard for use with generic DC
SEeNsors

Smilen Dimitrov

Refereed article published in the
Proceedings of the International Conference on New Interfaces for Musical
Ezpression (NIME 2010), pp. 303-308, Sydney, Australia, June 2010.

© 2010 Smilen Dimitrov
The layout has been revised.

A.1. Introduction

Abstract

The sound card anno 2010, is an ubiquitous part of almost any personal com-
puting system; what was once considered a high-end, CD-quality audio fidelity,
is today found in most common sound cards. The increased presence of multi-
channel devices, along with the high sampling frequency, makes the sound card
desirable as a generic interface for acquisition of analog signals in prototyping
of sensor-based music interfaces. However, due to the need for coupling capaci-
tors at a sound card’s inputs and outputs, the use as a generic signal interface
of a sound card is limited to signals not carrying information in a constant DC
component. Through a revisit of a card design for the (now defunct) ISA bus,
this paper proposes use of analog gates for bypassing the DC filtering input sec-
tions, controllable from software - thereby allowing for arbitrary choice by the
user, if a soundcard input channel is to be used as a generic analog-to-digital
sensor interface. Issues regarding use of obsolete technology and educational
aspects are discussed as well.

Keywords: Soundcard, Sensors, ISA, DC

A.1 Introduction

The "humble" beginnings of the soundcard! as a dedicated part of a PC sys-
tem intended to produce audible sound, could be seen in the use of a timer
circuit Intel 8253, to generate pulses in the audible frequency range and drive
a speaker, thereby producing audible sound [1]. Since then, the PC soundcard
has become a multichannel A/D interfacing device, able to work at CD quality
(16 bits / 44.1 kHz) rates and above. Devices offering more than two output
channels are commonly used to drive multiple speakers as part of surround
sound home entertainment systems. Specialized soundcards with multiple in-
puts and outputs, and full duplex (playback while recording) capabilities, have
found use in music recording in professional and home studios. Soundcards
interface as add-ins to PCs through several busses, serial (USB, FireWire) or
parallel (ISA, PCI)? in nature; although they are increasingly found integrated
in PC motherboards.

A slightly different type of devices become increasingly popular with the aca-
demic and do-it-yourself community as A/D interfaces for utilization of sensor
signals. Programmable, micro-controller based devices such as the open-source
Arpuivo [2], that offer both A/D conversion and PC connectivity (through,
for instance, USB), provide a relatively easy way to interface with a variety of
off-the-shelf sensors, from popular software development environments such as

HMgnoring earlier occurrences, such as the STD sound chip on a Commodore 64 (whose
sound was provided as part of a TV output signal) and similar

2USB: Universal Serial Bus; ISA: Industry Standard Architecture; PCI: Peripheral Com-
ponent Interconnect

A1—111

Paper A.

PD [3], Max/MSP [4], or Processing [5]. However, these devices are also more
limited in regard to sampling quality: for instance, the Arbuivo offers 6 mul-
tiplexed channels of 10 bit resolution, and the maximum serial transfer speed
via USB is limited to 115200 bps - which puts a theoretical best-case upper
limit of 1800 Hz3 on the sampling rate for all channels.

Because of these limitations, a lot of prototypers and designers opt for a
sound-card as a sensor A/D interface instead. This also relieves the designer
of worrying about specifics of low level communication, and up-sampling the
signals so they match the audio domain processing rate, when sensor signals are
to be applied to audio in software. However, since a typical soundcard filters
out frequencies outside of the audible 20Hz - 20kHz range, both on the input
and the output, its use is limited with those sensing devices that produce output
in this range. A soundcard has been in use by Leroy et al for capturing optical
pickups [7], or as physical computing interface in context of artwork production
[8]; but its use can go beyond musical applications - such as chemical analysis
[9] or medicine [10].

The DC* bias filtering problem is most apparent with sensors that encode
some useful information in the DC level®. A common way to circumvent this
limitation is to use the DC signal to modulate a sinusoidal carrier in the au-
dio range (usually using amplitude modulation); capture the modulated signal
using a soundcard; and then demodulate in software [11]. In case of resistive
voltage dividers, they can be driven directly by an AC? signal (conveniently, a
sound-card can generate a sinusoidal signal for the purpose), in which case the
output will conform to the soundcard input limitations. Arguably, there would
be some loss of information when using this method - especially if the mod-
ulating signal has a spectrum extending above half the the carrier frequency;
also, software resources are spent in demodulating a high-speed audio signal,
in addition to applying the demodulated signal as a control signal in the appli-
cation.

On the other hand, direct modifications to commercial sound cards - in-
tended to bypass input sections and allow sampling of DC signals - have
also been proposed [12]. In similar fashion, this paper proposes that by us-
ing software-controlled analog gates, filtering sections at soundcard inputs can
be bypassed - thereby allowing for user-configurable possibility of designating
chosen inputs as "sensor' inputs. This relatively simple architectural change,
would allow for both high-fidelity acquisition of DC signals, and reuse of com-
mon software tools made to interface with soundcards. To test this assumption,
a vintage ISA design has been implemented, along with a corresponding C pro-
gram - discussed further on in this paper.

3«For communicating with the computer, use one of these rates: 300, 1200, ... or
115200.[6]” Given a 64 bit frame is used to transfer analog data of six channels @ 10 bits,
we have best-case period (ignoring start/stop bits) T = 64[b]/115200[bps] ~ 555us; and
frequency f = 1/T =~ 1801.8 Hz; a single 8-bit channel would transfer at 14.4KHz

4DC: Direct current; AC: Alternating current

5such as a force-sensitive voltage divider, which would provide pressure (or an accelerom-
eter, which would show the influence of gravity) as change of DC level

A2—112

A.1. Introduction

Therefore, this project aims to demonstrate a simple implementation of PC
controlled bypass switches in a soundcard (as an extension to allow interfacing
with generic DC sensors), by first implementing and documenting a hardware
platform — that can, to some extent, be considered a soundcard.

A.1.1 Approach

The DC bias filtering problem outlined in the Introduction is, in essence, a
problem of A/D data acquisition — and thus, an engineering problem — how-
ever, one that, arguably, influences a lot of research within electronic music
instruments. While custom and suitable A/D hardware may be available on
the market, it is often expensive — the cost not scaling with the budget of de-
partments that deal with electronic music. Current affordable A/D hardware
(such as ArRDUINO), on the other hand, rarely provides audio-quality sampling
rates. The technical specs (audio sampling rate) and ubiquity (low price) of a
typical soundcard, then, would make it an ideal "middle-way" choice of A/D
platform for electronic music instrument research.

Thus, even though we are talking of, in principle, a relatively simple engi-
neering problem - it is difficult to demonstrate a simple (first-iteration) solution
to it, as it is difficult to find an accessible platform to implement the solution
on: this platform needs to behave sufficiently as a soundcard (can interface to
a PC, and can perform A/D and D/A conversions at audio rates), and needs
to allow space for hardware modifications which is not prohibitively costly.

However, a typical soundcard is an industrial product, aiming to turn a
profit by satisfying a range of mass-market needs - and as such, electronic
music instrument researchers are unlikely to influence industrial-level modifica-
tions to a soundcard product, useful specifically for them. Many soundcards
today are single ICs integrated on a PC motherboard, making manual hard-
ware modifications near impossible; and while standalone soundcards may still
offer designs based on individual dedicated ICs (allowing more space for tinker-
ing), they will also incur not only greater financial cost, but also a cost involved
with understanding the low-level work-flow of the device (which will, most likely,
have to be obtained through reverse-engineering, as soundcard manufacturers
are unlikely to publish such details publicly).

In such a market environment, researchers are likely to start thinking about
handicraft custom-made soundcard implementations. As the typical entry-level
research electronics lab, can be likened to a lab accessible for the enthusiast
electronics instrument maker, the handicraft approach also shows a promise of
direct applicability of results outside of academic circles. Unfortunately, at the
end of the (first decade of 20)00’s, it is rather difficult to find a starting point
for such handicraft development: there are no open public projects dedicated to
hardware soundcard implementations, and while there are resources discussing
different aspects relevant to development, their discussion level often requires
more advanced engineering experience.

In documenting the development process of a soundcard-like hardware, this

A3—113

Paper A.

project could then also be used in further open discussions of handicraft im-
plementations of soundcard and AD/DA hardware. The starting point for
this hardware platform is the only easily readable resource at the time of de-
velopment, [13], which discusses both hardware and software entry-level issues.
Although this design, based on the ISA bus, is old and in market terms obsolete,
it has the benefit of using discrete ICs for A/D and D/A converters, as well as
for logic signalling. This is, arguably, closer in principle to engineering textbook
material, and thus has the educational benefit of facilitating easier understand-
ing of architectural issues surrounding soundcard-like hardware. Additionally,
dealing with obsolete technology provides a historical archiving aspect to the
project.

This project provides a preliminary general conclusion on the suitability of
use of analog switches for interfacing DC sensors, by providing measurements
of a generic input signal with a DC component from a signal generator. For
educational purposes, the key issues (among them, quantifying the sampling
rate of the device) in the process of obtaining these measurements will be
outlined in this paper. For more details, as well as source code, consult the
webpage [14] - which contains an extended version of this paper, with additional
introductory material and implementation details.

A.2 Problem outline

A simplified input channel section of a sound card is shown in Fig. A.1:

oo]
o I I . &
| 11 i
Input | C
|
: R | ADC
| Filter |
e e |
) S
I Soundcard

Fig. A.1: Simplified diagram of a sound-card input channel.

In Fig.A.1, a basic CR (capacitor-resistor) high-pass filter schematic is taken
to represent a simplification of input filters usually found in soundcards, in order
to emphasize the filtering of DC signals. To illustrate this influence, a simple
experiment can be performed: a stereo mini TRS (tip-ring-sleeve) connector
can be plugged in a microphone (or line-in) input of a soundcard, and the
ground and a channel wire can be used to connect to a 1.5V battery. If we

Ag4—114

A.3. Soundcard platform

try to capture the resulting input data using audio recording software (such as
Audacity [15]), we would obtain a capture like the one shown on Fig. A.2.

leaﬂe! sci ¥| 1.0

Mono, 44100Hz
32-bit float 05
Mute | Soko
i + | 0.0
N = W

L R
T s RO 0.5

Y

-1.0

-1.0 1*@ 1.0 20 3.0 4.0 5.0

Fig. A.2: Capture of a battery being connected (at 1.5s) and disconnected (at 4.5s) to a sound
card microphone input in Audacity software.

Instead of obtaining a constant (DC) level in the time period between ap-
prox 1.3s and 4.5s on Fig. A.2, what is shown is a typical signature of a high-pass
filter in the time domain - a positive spike at the moment when the battery is
connected, and a negative one when it is disconnected. This paper proposes
that obtaining DC signals could be achieved by implementing a voltage con-
trolled switch (analog a.k.a. bilateral switches [gates]), ultimately controlled by
software, that bypasses the entire input filter section, as shown on Fig. A.3:

| o Control
o
S
[—————————— -
| [
1, I || i
Input | C
| ADC
| R |
| Filter |
e e e N
l Soundcard

Fig. A.3: Simplified diagram of a sound-card input channel, with a controllable switch by-
passing the input filter.

A.3 Soundcard platform

In order to test the assumption given in the problem outline, a hardware plat-
form needs to be chosen, that behaves essentially like a sound-card - but also

As5—115

Paper A.

allows for demonstration of activating added analog gates via software. Primar-
ily because reverse-engineering an off-the-shelf soundcard device to behave as
imagined would have been problematic, but also due to potential educational
benefits - a do-it-yourself implementation of a soundcard design was sought
instead.

Although the Internet does offer some information and tutorials on building
basic extension cards for a PC - interfaced through either USB, ISA or PCI
buses - it is difficult to find an available design, which is specifically intended
to represent a sound card (or even a high-speed A/D converter). The only one
found appropriate for the purpose, is the design for a ISA extension card by Joe
D. Reeder [13] - a now abandoned product, that was intended for learning the
essentials of software-controlled hardware. Since the schematic and the basic
software code, related to this card, are still available on the website associated
with this product (www.learn-c.com), it was this design that was taken as a
starting point for development.

The schematic for this “Learn-C” ISA card was reimplemented as a double-
sided printed circuit board (PCB), with an added CD4066 [16] CMOS quad
bilateral switch. Since the ISA bus is now obsolete and cannot be found in
modern PC systems, an older PC based on an ErLiTEGROUP ECS P6VAP-A+
(or P6VAP-AP) motherboard, with a single ISA slot, was obtained. Code
in C language from [13] was used to implement test software, and AGILENT
54621A oscilloscope was used to capture signals on board - using the open-
source agiload [17] package for transferring oscilloscope traces to a PC as
raw data. The experiment finally consisted of using a vintage WAVETEK MODEL
145 signal generator to produce an approx. 440 Hz sinusoid voltage with a
DC offset level, and capturing this voltage with the “Learn-C” card and test
software on disk. As the test software allowed for user-controlled activation of
the bilateral switches, these were alternately turned on and off during capture
- and the captured signal was observed in the open-source Audacity software.

A.3.1 ISA hardware implementation

The original schematics for the “Learn-C” ISA card found in [13] was rebuilt
using open-source KiCad [18] software (Fig. A.4); the same software was also
used to produce the PCB layout. The design relies only on the ISA bus power
supply pins 1, 3, 5, 77 9, 10, 29, 31 (GND, +5V, -5V, -12V, +12V, GND, VCC, GND) as well as
ISA 10 pins 2, 13, 14, 207 33—40, 42, 53-62 (RESET¢ IOW, IOR, OSC, D0-D7, AEN, A9-A0)7 for
power supply and PC connectivity.

In simple terms, whenever a I/O command like outportb(_port, _data
) is executed from software, a binary representation of the _port address is
set up as respective high or low voltages on the address pins of the ISA bus;
the “Learn-C” design then employs standard 74xx TTL logic ICs to implement
an address decoder that will interface with the bus, and provide appropriate
trigger signals for the rest of the hardware, when the card is addressed from
software.

A6—116

A.3. Soundcard platform

+5V
pmm—————il - > 1910 g
PAT7 8. 1 1 U14A :
4066 1
1
-5V :
-12V :
+5V]
R2 1
3.9M —_—2 :
C1 Ri1 - [ay 1
& {——— . R5 |~ R6 :
22 uF 39K 0 — — 1
Hgg 470 R 470 :
R4) N 0\~ !
= oM S !
10 uF :

Fig. A.4: Part of schematic of the ISA card; emphasized dashed lines indicate connections of
bipolar switch (see [14] for a complete schematic).

Most of the original design of the “Learn-C” ISA card has been reproduced,
although with some differences. For instance, a socket for the CD4066 analog
switch was added, and not all wired connections were implemented on the PCB
(for instance, headers were left unconnected, as well as most of the I/O port
pins of the 8255 [19] PPI chip). On the other hand, both DAC0832 [20] digital-
to-analog converters (DAC) were implemented®. The implementation of the
card is shown on Fig. A.5.

Fig. A.5: Left: image of the wired card; right: card in ISA slot of motherboard of test PC.

Salthough only a single one was actually tested; and none are needed for the input filter
switching experiment.

Ay—117

Paper A.

A.3.2 Software

As mentioned previously, the source code for the “Learn-C” ISA card given
in [13] is C code, originally intended to run under MS-DOS; as part of this
project, portions of that code were ported to Linux as well. The “Learn-C”
example programs can also run in the command prompt shell of Windows XP -
however, they cannot be directly compiled with modern Windows C compilers.
The reason for this is that the code relies on C commands like inportb and
outportb (or inp and outp), which represent direct I/O port access; however
direct I/O port access is disabled for Windows architectures newer than NT
[21] (and can be achieved only through programming a device driver). This
demanded use of vintage C compilers (DJGPP for DOS) under Windows; on the
other hand, programming direct I/O port access in C under Linux is relatively
straightforward.

A.4 Testing procedure

The testing procedure consisted of two distinct steps. The first was to use a
known signal to determine the sampling rate of the analog-to-digital converter
(ADC); and to check whether this rate is correct (by auditorily comparing a
capture from the ISA card’s ADC to the known signal). The second step (the
actual experiment) consisted of sampling and capturing a known, DC-biased,
sinusoidal signal; turning the analog switch on and off during capture; and
looking for presence of a DC level recording when the switch was active in
observations of captured data.

[mpl(_l): 432V J Max(1): 4. 'Ampl(]_): 432V J Max(1): 4.

Fig. A.6: Oscilloscope screen captures of card signals EOC (top) vs I0W (bottom). Left: 50 us
of non-periodic behavior; right: 0.5 ms of periodic behaviour.

A8—118

A.4. Testing procedure

A.4.1 Determining the ISA card sampling rate

The ISA card sampling rate was determined to be around 12725 Hz (the sam-
pling resolution is limited at 8 bit by choice of ADC0809 [22] chip). However,
this could be reached only after dealing with an apparent timing problem.

Figure A.6 (left) shows that EOC (signal produced by the ADC chip on the
card at end of each sample conversion) is not periodic. Eventually, it turns out
that this can be resolved by introducing a short delay between the outport
and the first inport command in the reading loop, as shown in Listing A.1:
unsigned base; unsigned adcport; base = adcport = 0x200; //1000000000

if ((fp = fopen(FILENAME,"w+b")) != NULL) {
while(!'kbhit())

{
outp(adcport, 0); //start channel 0 conversion , by writing whatever value to address
adcport
iz = del; while (iz > 0) iz--; // fake delay, 'del ' increments
while(! (inp(adcport+0x18) & 0x80)); // wait for EOC ready: 0x18 = 000011000, 0x80 =
010000000

x = inp(adcport); // read ADC value into variable x
fputc((char)x,fp); // since value is 8—bit anyways, just cast to char and save to
disk

Listing A.1: ADC reading loop code

As Listing A.1 indicates, the recorded file is simply a stream of 8-bit char-
acters. This file can be imported in Audacity as raw data, and the sampling
frequency is set upon import. The multi-track capabilities of Audacity also
allow both the original 440 Hz source signal, and its ADC capture from the
ISA card, to be played simultaneously in spite of differing sampling rates (44.1
KHz vs. 12.7 KHz); their respective pitches can be heard as audibly close —
which is a confirmation that the measurement of the sampling rate is correct.

A.4.2 Test of analog switch functionality

As mentioned previously, a CD4066 was used to implement an analog switch,
which bypasses the input preamp/filter section of the ISA card. This chip
offers four analog switches - only a single one was used, defined by pins 1 and
2 as switch connectors (connected as on Fig. A.4), and pin 13 (CD4066/p13)
as voltage control. To control CD4066/pl13, the 8255 PPI on the ISA card
was used, as it offers three ports (A, B and C) of 8 pins each, which can be
configured to act as either digital inputs, or digital outputs. Just a single
output pin is needed from a single (configured as output) port, in order to
control the analog switch; pin 37 (or pin 7 of port A) of 8255 (8255/p37) was
picked for the purpose, and was connected to CD4066/p13. The 8255 offers
three different modes of configuration of its three ports; here any mode that
configures port A as output will do, and the function set_up_ppi from [13]
was used to quickly configure the ports.

Ag—119

Paper A.

A.5 Results

The procedure described in section A.4.1 was used to capture a DC offset si-
nusoidal signal. This signal was generated by a vintage WAVETEK MODEL 145
signal generator, which doesn’t provide for fine-tuning control of the AC ampli-
tude and the DC offset separately. Eventually, a signal spanning between 0.5V
and 1.66V, set at approximately 450 Hz, was used as the input signal for ADC
capture. The signal arriving at the input pin ADC0809/p26 (INO), without
and with the influence of the switch, is shown on Fig. A.7.

Ampli]3: 114V Maxi]): GlOmMY Ming13: -530mY | L Ampl©] 0 100V WiMaxt13: 1.45Y JUMing 13: 450mY

Fig. A.7: Oscilloscope screen captures of the input signal brought to ADC0809 INO (left)
without the influence of analog switch; (right) while analog switch turned on

This input signal was captured on a disk file using the procedure given
in section A.4.1, as the analog switch was turned on and off during capture
using keyboard key presses. The data captured by the ISA card can be verified
through an import in Audacity, depicted in Fig. A.8.

As it is obvious from Fig. A.8, activating the switch allows the DC level
of the signal to be captured by the card’s ADC; and the waveforms obtained
in Audacity remain relatively faithful to the original input signal shown in
Fig. A.7 (ignoring the clipping of the negative semiperiod of the original signal).

A.6 Discussion

As we have shown that, with this platform, we can arbitrarily choose to capture
the DC level of a signal from a signal generator — we can conclude that the same
behavior can be expected for signals derived from sensor circuits (for instance,
a FSR-based voltage divider) as well. Thus, this paper indicates that analog
switches bypassing the input preamplifier section of soundcard inputs, would be
a relatively simple change to perform on existing soundcard designs, thereby ex-
panding their purpose to high speed A/D interfaces for generic sensors. Similar
change could be implemented for output sections, thereby allowing soundcards
to be used as generic signal generators. The DC blocking capacitors are present
in a sound-card, of course, for a purpose - primarily to protect speakers from
constant DC biasing, and thereby prolong their lifetime [23]. The design change
proposed here, would ideally leave that regime unchanged for audio purposes -

A10—120

A.6. Discussion

ﬁ 1.0 20 3.0 40 50 6.0

1.0
05
0.0
-0.5 m
1.0
2-5?40 ?_5?511 25?90 2.5?70 2.5?30 2.5?90 2.5?00 5.4!30 5.4|19ll
1.0
05
0.0
e M
40| Vm/w\"hJ\J\J\JL

Fig. A.8: Top: Six second capture of an input signal with DC, with the switch activated in
mid-capture; Bottom: temporal zoom at moments of activating (left) and deactivating (right)
the switch.

and simply introduce a different one, more suitable for sensor data acquisition,
when the user requires it.

A.6.1 The soundcard platform

This project started by looking for a hardware platform, that behaves essen-
tially like a soundcard. Arguably, the ISA platform used here cannot be even
considered a sound card, until it can be used by typical audio software (like
players or editors) from the application level in an operating system. Although
this ISA card could be extended to play back audio (encoded for the measured
DAC frequency) - at the state presented here, it behaves more like a generic sig-
nal generator and sampler, than a modern soundcard. Finding a modern open
hardware platform, that allows for the type of research as in this project, is still
problematic; although FPGA” based designs, such as the ones described in [24],
are very promising as a base for multichannel, high-speed, hybrid audio/sensor
interfaces.

Whereas it is utopistic to expect that this paper could significantly influence
industry in such a manner, that similar modifications become a standard for
future sound-cards - it certainly aims to inspire designers working in the elec-
tronic music instrument field, to focus at the intricacies of digital interfacing
with analog signals; and to consider using older, historic designs for appropriate
purposes - while being aware of potential obstacles. Mostly, one has to deal
with hardware availability, although software can be an issue as well. However,
in the case of ISA, this project shows that currently there is still a palette of
tools that can target such machines and corresponding functionality, many of

"FPGA: Field-programmable gate array

A11—121

Paper A.

them free and open-source; yet, one has to be prepared for a time investment
for straightening out potential glitches.

Hardware Arguably, the ISA design used as a test platform here, doesn’t even
come close to issues in contemporary sound-card production — to begin with,
negative voltage values of the input signal are clipped, as the ADC chip by de-
fault can sample only positive voltages. However, it is a good educational tool
to introduce general issues related to design of soundcards and corresponding
software. Namely, it is often difficult for beginner engineers to come to a prac-
tical example, which is both relatively simple to understand as introductory
material (and thus easy to relate to theory) - and can be practically imple-
mented to serve a purpose, already known from a user perspective. So in spite
of the obsolescence of ISA, this design can still be useful educationally. One
positive point of using discrete components in this card implementation, is the
possibility to measure their signals individually with an oscilloscope and thus
observe the interdependence of different signals on the physical, electric level -
something that becomes arguably difficult, if the components are integrated as
part of a single chip.

Software Finally, if there is a single thing this project points out, it is that
one cannot perceive the soundcard as a system separate from its host PC; that
is, a soundcard-like hardware is genuinely bound to the intricacies of the host
operating system. In other words, even if the hardware is theoretically capable
of achieving greater sampling speeds, the effective achieved sampling rate will
be limited by the method of accessing the device from software. In this project,
a steady 12.7 KHz sampling rate was achieved through a program in C, only
after implementing delays in the reading loop. The cause of this need for
delay is, likely, that outportb in Listing A.1 returns, before the corresponding
I0W signal (which triggers each start of conversion) has been set electrically.
Hence we need to wait, so we're sure conversion has started — before reading
the EOC signal to see if a value is ready. However, due to operating system
overhead, the actual sampling period is probably more indicative of the time
it takes for the operating system to complete a single iteration of the main
while loop in Listing A.1, than it is of the limits of the hardware itself. Thus,
entering development of soundcard hardware, necessarily implies involvement
with issues in the inherent unpredictability of instruction execution times, OS
scheduler granularity and latency [25] and development of device drivers [27],
[26] — with a particular focus on the flow of time [28] — before coming close to
a platform able to interface with an operating system, in a manner expected
of a soundcard. In other words, here the hardware acquisition of each sample
is initiated and transferred by C software on the PC — with a proper driver
approach, the hardware acquisition process could run independently on the
card hardware at high rates; and batches of sampled data could be transferred
as arrays to the PC at longer intervals (i.e. "buffered reads"; see also Direct
Memory Access/DMA [29]). Note, however, that in spite of the shortcomings of

A12—122

A.7. Conclusion

this projects’ naive approach, it still managed to obtain 12.7 KHz effective end-
to-end sampling rate, which is close to the 14.4 KHz USB-limited maximum
for a single channel, 8-bit Arpuino transfer (but is still below the CD-quality
44.1 KHz expected of a typical soundcard).

A.7 Conclusion

In conclusion, the project managed to demonstrate the possibility to use analog
switches, for software controlled bypass of input filters of a sound-card device;
thereby, in principle, allowing it to interface with generic sensor circuits that
produce DC-offset voltages. However, claims cannot be made on the feasibility
of implementing such a change in an existing commercial sound-card design.
The project also illustrated the specific problems encountered with usage of a
card design for the now obsolete ISA bus; while demonstrating how it can be
used to emulate modern hardware (at least to a degree, sufficient to expose
the problem at hand). Additionally, the simplified analysis of particular issues,
aims to serve as an educational introductory example for designers starting with
digital hardware design; in line with this aspect, the source files for schematics
and code, as well as the full list of online references (too numerous to include
here) relevant to the topic discussed in this paper, are provided on the project
webpage [14]. The educational and the historical perspective of this project,
both aim to contribute to furthering the discussion of A/D and D/A hardware
in the context of electronic music instruments development.

References

[1] T.C. Savell, “23.3 Digital Audio Processors for Personal Computer Systems”,
Linear Algebra and Ordinary Differential Equations, 1993.

[2] arduino.cc, “Arduino homepage”, http://www.arduino.cc/, web page.

[3] puredata.info, “Puredata homepage”, web page. URL: http://puredata .
info/.

[4] Cycling 74, “Max/MSP homepage”, web page. URL: http://cycling74.com/
products/maxmspjitter/.

[6] processing.org, “Processing homepage”, web page. URL: http://processing.
org/.

[6] Arduino, “Arduino - Begin”, web page, 2010. URL: http://www.arduino.cc/
en/Serial/Begin.

[7] N. Leroy, E. Fléty, and F. Bevilacqua, “Reflective optical pickup for violin”, in
Proceedings of the 2006 conference on New interfaces for musical expression,
IRCAM-Centre Pompidou Paris, France, France, 2006, pp. 204-207.

A13—123

http://www.arduino.cc/
http://puredata.info/
http://puredata.info/
http://cycling74.com/products/maxmspjitter/
http://cycling74.com/products/maxmspjitter/
http://processing.org/
http://processing.org/
http://www.arduino.cc/en/Serial/Begin
http://www.arduino.cc/en/Serial/Begin

(8]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]
[19]
[20]

21]

22]

23]

References

Kazuhiro Jo, “Audio Interface as a Device for Physical Computing”, Proceed-
ings of Audio Mostly 2008 - a Conference on Interaction with Sound, pp. 123~
127, 2008. URL: http://www. jojporg .dreamhosters . com/public_dav/
paper/audiomostly08-audiointerface-jo.pdf.

D. Nacapricha, N. Amornthammarong, K. Sereenonchai, P. Anujarawat, and
P. Wilairat, “Low cost telemetry with PC sound card for chemical analysis
applications”; Talanta, vol. 71, no. 2, pp. 605-609, 2007.

K.A. Reddy, J.R. Bai, B. George, N.M. Mohan, and V.J. Kumar, “Virtual
Instrument for the Measurement of Haemo-dynamic Parameters Using Pho-
toplethysmograph”, Proc 23rd Int ConfIEEE, IMTC-2006, pp. 1167-1171,
2006.

M.J. H. Puts, J. Pokorny, J. Quinlan, and L. Glennie, “Audiophile hardware
in vision science; the soundcard as a digital to analog converter”, Journal of
Neuroscience Methods, vol. 142, no. 1, pp. 77-81, 2005.

Scott Molloy, “How to Modify a PC Sound Card to Allow D.C. Voltage Mea-
surements”, web page, Last Accessed: 7 April, 2009. URL: http://web.
archive . org/web/20080108175023 /http: //www . mandanet .net/adc/adc.
shtml.

Joe D. Reeder, “Tutorial - Controlling The Real World With Computers”,
web page, 2005. URL: http://learn-c.com/ (visited on 03/12/2009).

Smilen Dimitrov, “Extending ISA Soundcard webpage”, web page, Last Ac-
cessed: 20 March, 2009. URL: http://imi.aau.dk/~sd/phd/index.php?
title=ExtendingISASoundcard.

audacity.sourceforge.net, “Audacity homepage”, web page. URL: http://
audacity.sourceforge.net/.

Fairchild Semiconductor, CD4066 datasheet, 2005. URL: http://www.fairc
hildsemi.com/ds/CD/CD4066BC.pdf.

Jirgen Rinas, “agiload - fetch data and screenshots from Agilent 5462x oscil-
loscopes”, web page. URL: http://www.ant.uni-bremen.de/whomes/rinas/
agiload/.

Jean-Pierre Charras, “KiCad homepage”, web page, 2010. URL: http://www.
lis.inpg.fr/realise_au_lis/kicad/.

Intel Corporation, 8255 Programmable Peripheral Interface (PPI), 1995. URL:
http://jap.hu/electronic/8255.pdf.

National Semiconductor, DAC0830/DAC0832 datasheet, 2002. URL: http:
//www.national.com/ds/DA/DAC0830.pdf.

Dale Roberts, “Dr. Dobb’s - Direct Port I/O and Windows NT”, web page,
Last Accessed: 12 April, 2009. URL: http://www.ddj.com/1844098767pgno=
3.

National Semiconductor, ADC0808/ADC0809 datasheet, 2009. URL: http :
//www.national.com/ds/DC/ADCO808. pdf.

www.maxim-ic.com, “APPLICATION NOTE 3979 - Overview of DirectDrive®
Technology”, web page, Last Accessed: 12 April, 2009. URL: http://wuw.
maxim-ic.com/appnotes.cfm/an_pk/3979/.

A14—124

http://www.jojporg.dreamhosters.com/public_dav/paper/audiomostly08-audiointerface-jo.pdf
http://www.jojporg.dreamhosters.com/public_dav/paper/audiomostly08-audiointerface-jo.pdf
http://web.archive.org/web/20080108175023/http://www.mandanet.net/adc/adc.shtml
http://web.archive.org/web/20080108175023/http://www.mandanet.net/adc/adc.shtml
http://web.archive.org/web/20080108175023/http://www.mandanet.net/adc/adc.shtml
http://learn-c.com/
http://imi.aau.dk/~sd/phd/index.php?title=ExtendingISASoundcard
http://imi.aau.dk/~sd/phd/index.php?title=ExtendingISASoundcard
http://audacity.sourceforge.net/
http://audacity.sourceforge.net/
http://www.fairchildsemi.com/ds/CD/CD4066BC.pdf
http://www.fairchildsemi.com/ds/CD/CD4066BC.pdf
http://www.ant.uni-bremen.de/whomes/rinas/agiload/
http://www.ant.uni-bremen.de/whomes/rinas/agiload/
http://www.lis.inpg.fr/realise_au_lis/kicad/
http://www.lis.inpg.fr/realise_au_lis/kicad/
http://jap.hu/electronic/8255.pdf
http://www.national.com/ds/DA/DAC0830.pdf
http://www.national.com/ds/DA/DAC0830.pdf
http://www.ddj.com/184409876?pgno=3
http://www.ddj.com/184409876?pgno=3
http://www.national.com/ds/DC/ADC0808.pdf
http://www.national.com/ds/DC/ADC0808.pdf
http://www.maxim-ic.com/appnotes.cfm/an_pk/3979/
http://www.maxim-ic.com/appnotes.cfm/an_pk/3979/

References

[24]

[25]

[26]
27]

28]

29]

S. Kartadinata, “The Gluion advantages of an FPGA-based sensor interface”,
in Proceedings of the 2006 conference on New interfaces for musical expression,
TRCAM-Centre Pompidou Paris, France, France, 2006, pp. 93-96. URL: http:
//www.glui.de/gluion/gluion.pdf.

Theodore P. Baker, An-i Andy Wang, and Mark J. Stanovich, “Fitting linux
device drivers into an analyzable scheduling framework”, in Proceedings of
the 3rd Workshop on Operating Systems Platforms for Embedded Real-Time
Applications, 2007.

C. Williams, “Linux scheduler latency”, Red Hat Inc, vol. 3, 2002.

Michael K. Johnson, “Device Driver Basics”, web page, 2010. URL: http:
//users.evtek.fi/~tk/rt_html/ASICS.HTM.

Alessandro Rubini and Jonathan Corbet, “Flow of Time”, in Linux device
drivers, Second, O'Reilly Media, Inc., 2001, ch. 6.

——, “mmap and DMA”, in Linuz device drivers, Second, O’Reilly Media,
Inc., 2001, ch. 13.

A15—125

http://www.glui.de/gluion/gluion.pdf
http://www.glui.de/gluion/gluion.pdf
http://users.evtek.fi/~tk/rt_html/ASICS.HTM
http://users.evtek.fi/~tk/rt_html/ASICS.HTM

Paper B

Minivosc - a minimal virtual oscillator driver for ALSA
(Advanced Linux Sound Architecture)

Smilen Dimitrov and Stefania Serafin

Refereed article published in the
Proceedings of the Linux Audio Conference (LAC 2012), pp. 175-182,
Stanford, California, USA, April 2012.

© 2012 Smilen Dimitrov and Stefania Serafin
The layout has been revised.

B.1. Introduction

Abstract

Understanding the construction and implementation of sound cards (as exam-
ples of digital audio hardware) can be a demanding task, requiring insight into
both hardware and software issues. An important step towards this goal, is the
understanding of audio drivers - and how they fit in the flow of execution of
software instructions of the entire operating system.

The contribution of this project is in providing sample open-source code,
and an online tutorial [1] for a mono, capture-only, audio driver - which is
completely virtual; and as such, does not require any soundcard hardware. Thus,
it may represent the simplest form of an audio driver under ALSA, available
for introductory study; which can hopefully assist with a gradual, systematic
understanding of ALSA drivers’ architecture - and audio drivers in general.

Keywords: Sound card, audio, driver, ALSA, Linux

B.1 Introduction

Prospective students of digital audio hardware, could choose the sound card as
a topic of study: on one hand, it has a clear, singular task of managing the PC’s
analog interface for playback and capture of digital audio data - as well as well-
established expectations by consumer users in terms of its role; on the other
hand, its understanding can be said to be cross-disciplinary, as it encompasses
several (not necessarily overlapping) areas of design: analog and digital elec-
tronics related to soundcard hardware and PC bus interface implementation;
PC operating system drivers; and high-level PC audio software.

Gaining a sufficient understanding of the interplay between these different
domains in a working implementation can be an overwhelming task; thus, not
surprisingly, the area of digital audio hardware design and implementation (in-
cluding soundcards) is currently dominated by industry. Recent developments
in open source software and hardware may lower the bar for entry of newcomer
DIY enthusiast - however, the existence of many open source drivers for com-
mercial cards doesn’t necessarily ease the introductory study of a potential
student.

In essence, an implementation of a soundcard will eventually demand deal-
ing with the issue of an operating system driver. In the current situation, a
prospective student is then faced with a 'chicken-and-egg’ problem: proper un-
derstanding of drivers requires knowledge of the hardware (which the drivers
were written for); and yet understanding the hardware, involves understanding
of how the drivers are supposed to interface with it'. A straightforward way
out, would be to study a ’virtual’ driver - that is, a driver not related to an
actual hardware; in that case, a student would be able to focus solely on the

Tand the lack of open card hardware designs for study makes this problem more difficult

Bi1—129

Paper B.

software interaction between the driver, and the high-level audio program that
calls it. Unfortunately, in the case of the ALSA driver architecture for Linux,
pre-existing examples of virtual drivers are in fact not trivial? - and, just as
existing ALSA driver tutorials, assume previous knowledge of bus interfaces (and
thus hardware).

The minivosc driver source code with the corresponding tutorial (on the
ALSA website [1]) represents the simplest possible virtual ALSA driver, that does
not require additional hardware. It has already led to the development of the
driver used in the (possibly first) demonstration of an open soundcard system in
AudioArduino [3a] (and further used in [5al) - and as it limits the discussion to
only the software interaction between driver and high-level software, disregard-
ing issues in bus interfacing and hardware - it would represent a conceptually
simpler entry level for a prospective student of sound card drivers.

B.2 Premise

Personal computer users working with audio typically rely on high-level audio
software (from media players such as VLC, to more specialized software like
Pure Data, or the wave editor Audacity®) to perform their needed tasks — and
the sound card (as hardware) to provide an analog interface to and from au-
dio equipment. This necessarily puts demands on the operating system of the
PC, to provide a standardized way to access (what could be different types
of) audio hardware. An operating system, in turn, would provide an audio
or soundcard driver API (application programming interface), which should
allow for programming of a driver that: abstracts some of the ’inner details’
of the soundcard implementation; and exposes a standardized interface to the
high-level audio software (that may want to utilize this driver). This, in prin-
ciple, allows interfacing between software and hardware released by different
vendors/publishers.

Earlier work like [la] attempts to provide a systematic approach to sound-
card implementation; however, one clear conclusion from such a naive approach
is that: regardless of the capabilities of the hardware - one cannot achieve a
fine control of timing required for audio, by using what corresponds to a sim-
ple ’user space’ C program. Problems like these are typically solved within
the driver programming framework of a given operating system - and as such,
acquaintance with driver programming becomes a necessity for anyone aiming
to understand development of digital audio hardware for personal computers.
In terms of FLOSS?* GNU/Linux- based operating systems, the current driver

2and may require existence of real soundcards on the system

3Note that software like JACK - while it can be considered more "low-level’ than consumer
audio software - is still intended to route data between ’devices’. Since it is the driver that
provides this 'device’ (as a OS construct that software can interface with) in the first place
- drivers lay in a lower architectural layer than even software like JACK, and so involve
different development considerations.

“4free/libre/open source software

B2—130

B.3. Architectural overview of PC audio

programming framework - as it relates to soundcards and audio - is provided by
the Advanced Linux Sound Architecture (ALSA). ALSA supersedes the previous
OSS (Open Sound System) as the default audio/soundcard driver framework
for Linux (since version 2.6 of the kernel [2]), and it is the focus of this paper,
and the eponymous minivosc driver (and tutorial). The minivosc driver was
developed on Ubuntu 10.04 (Lucid), utilizing the 2.6.32 version of the Linux
kernel; the code has been released as open source on Sourceforge, and it can
be found by referring to the tutorial page [1].

B.2.1 Initial project issues

The minivosc project starts from the few readily available (and "human-reada-
ble’) resources related to introductory ALSA driver development: [3], [4], [5], and
[6]. Most of these resources base their discussions on conceptual or undisclosed
hardware, making them difficult to read for novices. On the other hand, there
are few examples of virtual soundcard drivers, such as the driver source files
dummy . ¢ (in the Linux kernel source tree [7]) and aloop-kernel.c (in the ALSA
source tree [8]); however, these drivers don’t have much documentation, and
can present a challenge for novices®. All these resources [5], [3], [4], [6]-[8] have
been used as a basis here, to develop an example of a minimal virtual oscillator
(minivosc) driver.

B.3 Architectural overview of PC audio

Even if the minivosc driver is a virtual one, one still needs an overview of the
corresponding hardware architecture - also for understanding in what sense is
this driver 'virtual’. As a simplified illustration, consider Fig. B.1.

A driver will typically control transfers of data between the soundcard and
the PC, based on instructions from high-level software. The direction from
the soundcard to the PC is the capture direction; the opposite direction (from
the PC to the soundcard) is the playback direction; a soundcard capable of
delivering both data transfer directions simultaneously can be said to be a
full-duplex device.

While Fig. B.1 shows the hard disk as (ultimately) both the source for the
playback direction, and the destination for the capture direction - within this
process, the CPU may use RAM memory at its discretion. In fact, the driver
is typically exposed to pointers to byte arrays (buffers) in memory (in ALSA
known as PCM (sub)streams [9, "PCM (digital audio) interface’], and named
dma_area), that represent streams in each direction.

5the ’dummy’ driver doesn’t actually perform any memory transfers (which is, arguably,
a key task for a driver), so it cannot be used as a basis for study — the ’loopback’ driver
is somewhat more complex than a basic introductory example, as it is intended to redirect
streams between devices, and as such assumes some preexisting acquaintance with the ALSA
architecture

B3—131

Paper B.

] Soundcard
— High-level

Software

I
(& %)
b J])

|

aoBpaIU| SNg

snd

Audio /: @4 Disk

IN 7 BUS
o))})) | aDC MIDI RAN
o PC

Fig. B.1: Simplified overview of the context of a PC soundcard driver (portions used from
Open Clip Art library).

Sn4

In terms of audio streams, Fig. B.1 demonstrates a device capable of two
mono (or one stereo) inputs, and two mono (or one stereo) outputs. Since
audio devices like microphones (or amplifiers for speakers) typically interface
through analog electronic signals - this implies that for each ’digital’ input [or
output] audio stream, a corresponding analog-to-digital (ADC) [or digital-to-
analog (DAC)] converter hardware needs to be present on the soundcard®.

As the main role of the soundcard is to provide an analog electronic audio
interface to the PC - the role of the ADC and DAC hardware is, of course,
central. However, the PC will typically interface to external hardware through
a dedicated bus for this purpose’. This means, that some bus interfacing
electronics - that will decode the signals from the PC, and provide signals that
will drive (at the very least) the ADC/DAC converters - needs to be present
on the soundcard as well®.

An ALSA driver uses a particular terminology when addressing these archi-
tectural surroundings. The ’soundcard’ on Fig. B.1 will be considered to be a
card by the driver?. One level deeper, things can get a bit more complicated:

SNote, however, that this correspondence could, in principle, be solved by a single ADC
or DAC element - along with a (de)multiplexer which would implement time-sharing of the
element (for multiple channels)

"noting that, in principle, the buses used for hard-disks (such as Integrated Drive Elec-
tronics (IDE)) or RAM (known as 'Memory Interconnect’) can be distinct

8TFor example, [la] describes a device that interfaces through the Industry Standard Archi-
tecture (ISA) bus - and uses standard TTL components (such as 7T4LS08, 74LS688, 7415244,
etc) to implement a bus interface; [3a] describes a device that interfaces through the Universal
Serial Bus (USB) - and uses the FT232 chip by FT'DI to implement a bus interface

9noting that, in principle, the driver should be able to handle multiple cards; and be able

B4—132

B.3. Architectural overview of PC audio

assuming that Fig. B.1 represents a stereo soundcard, it would have one input
stereo connector (attached to two ADCs), and one output stereo connector
(attached to two DACSs); an ALSA driver would correspondingly be informed
about a card, that has one stereo input device (consisting of two subdevices)
- and one stereo output device (consisting, likewise, of two subdevices). Note
that: “..we use subdevices mainly for hardware which can mix several streams
together [10]” and “typically, specifying a sound card and device will be suffi-
cient to determine on which connector or set of connectors your audio signal
will come out, or from which it is read... Subdevices are the most fine-grained
objects ALSA can distinguish. The most frequently encountered cases are that
a device has a separate subdevice for each channel or that there is only one
subdevice altogether [11]7

The ALSA driver is informed about such a hierarchical relationship (between
card, devices and subdevices) through structures (C structs, written by the
driver author in the driver source files) - defined mostly through use of other
structures, predefined by the ALSA framework (alias the ALSA 'middle layer’).
The driver code, additionally, establishes a relationship between these structs,
and the PCM stream data that will be assigned to each in memory; and con-
nects these to predefined ALSA framework driver functions, which define the
driver (and the corresponding hardware) behavior at runtime. Finally, Fig. B.1
shows that other types of devices, such as a MIDI interface, can also be present
on the soundcard. The ALSA framework has facilities to address such needs too
- as well as having a so-called mizer interface!? - which will not be discussed
here.

Application level From the PC perspective, a high-level audio software (audio
application) is used, in first instance, to issue start and stop of audio playback
or capture. When such a high-level command is issued by the user, the audio
application communicates to the driver through the application-level API and:
obtains a handle to the relevant structures; initializes and allocates variables;
opens the PCM device; specifies hardware parameters'! and type of access
(interleaved or not) - and then starts with reading from (for capture) or writing
to (for playback) the PCM device, by using ALSA API functions (such as snd
_pcm_writei/snd_pcm_writen or snd_pcm_readi/snd_pcm_readn) [12]. The
PCM device is representation of a source (or destination) of an audio stream?!2.
The kernel responds to the application API calls by calling the respective code
in the kernel driver, implemented using the kernel (ALSA driver) API [3].13
to individually address each one

Owhich allows for, say, individual volume control directly from the main OS volume applet

1access type, sample format, sample rate, number of channels, number of periods and
period size

12and it can have: "plughw" or "hw" interface; playback or capture direction; and stan-
dard (blocking), non-blocking and asynchronous modes (see also [9, 'PCM (digital audio)
interface’])

13Note that the application doesn’t have to talk to the driver directly; there could be
intermediate layers, forming a Linux audio software stack (see [13]). However, in this paper,

B5—133

Paper B.

B.4 Concept of minivosc

A user would, arguably, expect to hear actual reproduced sound upon clicking
'play’; while recording, in principle, doesn’t involve user sensations other than
indication by the audio software (e.g. rendering of captured audio waveform).
Taking this into account, it becomes clear that the stated purpose of minivosc
- to be a ’virtual’ driver (independent of any actual additional soundcard hard-
ware) - can only be demonstrated in the capture direction'?: as the driver
simply has references to data arrays in memory, the effect of playing back (i.e.,
copying) data to non-existing hardware will be pretty much undetectable!.
However, even with non-existing hardware, we can always write some sort of
predefined or random data to the capture buffers in memory - which would
result with visible incoming data in the high-level audio software (like when
performing ’record’ in Audacity).

To avoid the conceptualization problems of ALSA devices vs. subdevices, the
minivosc driver is deliberately defined as a mono, 8-bit, capture-only driver,
working at 8 kHz (the next-lowest'6 rate ALSA supports). The 8-bit resolution
allows also for direct correspondence between: the digital representation of a
single analog sample; and the storage unit of the corresponding arrays (buffers)
in memory, which are defined as char*. Hence, one byte in memory buffer
represents one analog sample, the next byte represents the next analog sample,
etc. This allows for simplification of the process of wrapping data in a ring
buffer, and thus easier grasping of the remaining key issues in ALSA driver
implementation.

B.5 Driver structures

The minivosc driver contains four key structures - three of which are required
by (and based on predefined types in) the ALSA framework:

e struct variable of type snd_pcm_hardware (required) - sets the allowed sample
formats, sampling rates, number of channels, and buffering properties

e struct variable of type snd_pcm_ops (required) - assigns the actual functions,
that should respond to predefined ALSA callbacks

we focus solely on the perspective of the ALSA kernel driver.

Mhowever, note that aloop-kernel.c[8], is also a ’virtual’ driver, and yet works in both
directions; however, since it is intended to ’loop back’ audio data between applications and
devices[14], the virtual setups possible can be reduced to the case when the ’loopback’ driver
routes one audio application’s data written to its playback interface, back to its capture
interface; and another audio application grabs data from the ’loopback’ capture interface
and writes it to disk.

15similar to, in Linux parlance, ’piping’ data to /dev/null. While a specific consumer of
such data could be programmed, that alone complicates the understanding of interaction
between typical audio software and drivers

16The lowest ALSA rate being 5512 Hz, see include/sound/pcm.h in Linux source [15]

B6—134

B.5. Driver structures

o struct variable of type platform_driver (required) - named minivosc_driver
, it describes the driver, and at the same time, determines the bus interface type

e struct variable of type minivosc_device - custom structure that contains all
other parameters related to the soundcard, as well as pointers to the digital audio
(PCM) data in memory

The minivosc_driver struct variable defines the _probe and _remove func-
tions, required for any Linux driver; however, by choosing the struct type, we
also determine the type of bus this driver is supposed to interface through.
For instance, a PCI soundcard driver would be of type struct pci_driver;
whereas a USB soundcard driver would be of type struct usb_driver (see
[1]). However, minivosc is defined as platform_driver, where “platform de-
vices are devices that typically appear as autonomous entities in the system [16,
‘platform.txt’]” - and as such, it will not need actual hardware present on any
bus on the PC, in order for the driver to be loaded completely!”.

The snd_pcm_ops type variable simply points to the actual functions that
are to be executed as the predefined ALSA callbacks, which are discussed in
the next section. The different fields in snd_pcm_hardware allow the device
capabilities in terms of sampling resolution (i.e., analog sample format) and
sampling rate to be specified. For this purpose, there are predefined bit-masks
in ALSA’s pem.h [15], such as SNDRV_PCM_RATE_8000 or SNDRV_PCM_FMTBIT_
U8 (for 8 kHz rate, or for sample format of 8-bit treated as unsigned byte,
respectively). One should be aware that audio software may treat these speci-
fications differently: for instance, having arecord capture from the minivosc
driver, will result with an 8-bit, 8 kHz audio file - simply because that is the
default format for arecord. On the other hand, Audacity in the same situa-
tion - while acknowledging the driver specifications - will also internally convert
all captures to the default 'project settings’, for which the minimum possible

values are 8000 Hz and 16-bit [17].'8
One of the most important structures is what we could call the 'main’ device

structure, here minivosc_device. It can also be a bit difficult to understand,
especially since it is - in large part - up to the driver authors themselves to
set up the structure, and its relationships to built-in ALSA structures. These
relationships are of central interest, because a driver author must know the
location of memory representing the digital audio streams (snd_pcm_runtime
->dma_area in Fig. B.2), in order to implement any digital audio functionality
of the driver. And finding this memory location is not trivial - which is maybe
best presented in graphical manner, as in Fig. B.2, which shows a partial scope

of the 'main’ structure minivosc_device and its relationships.
On Fig. B.2, only minivosc_device has been written as part of the driver

code - all other structs (with darker backgrounds) are built-ins, provided by
ALSA. Pointers are shown on left edge of boxes; self-contained struct variables

7which is not the default behavior for actual hardware drivers - they will simply not run
some of their predefined callbacks, if the hardware is not present on the bus

18While these captures can be exported from Audacity as 8-bit, 8 kHz audio files - that
process implies an additional conversion from the internal 16-bit format.

B7—135

Paper B.

snd_pem_runtime $ina srea

snd_pcm_substream gt

Fig. B.2: Partial ’structure relationship map’ of the minivosc driver.

are on the bottom edge!. Some relationships (such as
snd_pcm_substream->runtime to snd_pcm_runtime pointing) are set up in-
ternally by ALSA; the relationships to the 'main device’ structure (minivosc_
device) have to be coded by the driver author. Further complication is that
the authored relationships can not be established at the same spot in the driver
code - as some structures become available only in specific ALSA callbacks.

This is a conceptual departure from the typical basic understanding of pro-
gram execution - where a predetermined sequential execution of commands
is assumed. Instead, driver programming may conceptually be closer to GUI
programming, where the author typically writes callback functions that run
whenever a user performs some action. Additionally, we can expect to en-
counter different amount of instances of some of these structs! For example,
snd_pcm_substream can carry data for a given output connector, which could
be stereo. So, if a stereo file is loaded in audio software, and ’play’ is clicked
- we could expect ALSA to pass a single snd_pcm_substream, carrying data for
both channels, to our driver. However, if we are trying to play a 5.1 surround
file, which employs 2 stereo and one mono connector - we should expect three
snd_pcm_substreams to be passed to our driver. This could further confuse
high-level programmer newcomers, that might expect to receive something like
an array of substreams in such a case: instead, ALSA may call certain callbacks
multiple times - and it is up to the driver author to store references to these
substreams.

minivosc avoids these problems as a mono-only driver - thus within the
code, we can expect only one instance of each struct shown on Fig. B.2; and
the reference to the only snd_pcm_substream can be found directly on the main
"device’ struct, minivosc_device. This allows us easier focus on another im-
portant aspect of ALSA - the timing of execution of callbacks, which is necessary
for understanding the driver initialization process in general.

19Note, the ALSA struct boxes show only a small selection of the structs’ actual members;
while the ’main device’ struct still contains some unused variables, leftover from starting
example code. Connections are colored for legibility.

Unlike a more detailed UML diagram, a map like Fig. B.2 helps only in a specific context:
e.g., the driver is supposed to write to the dma_area when the _timer_function runs, however
this function provides a reference to minivosc_device; the map then allows for a quick
overview of structure field relationship, so a direct pointer to the dma_area can be obtained
for use within the function.

B8—136

B.6. Execution flow and driver functions

B.6 Execution flow and driver functions

The device driver architecture of Linux specifies a driver model [16], and
within that, certain callback functions that a driver should expose. In the
case of minivosc, first the __init and __exit macros ([18, Chapter 2.4]) are
implemented, as functions named alsa_card_minivosc_init and alsa_card
_minivosc_exit. These functions run when a driver module is loaded and
unloaded: the kernel will automatically load modules, built in the kernel, at
boot time - while modules built 'out of tree’ have to be loaded manually by
the user, through the use of the insmod program. The _init function in
minivosc registers the driver, and attempts to iterate through the attached
soundcards. As minivosc is a ’platform’ driver, and there is no actual hard-
ware - the _init, in this case, is made to always result with detecting a single
(virtual) ’card’. Next in line of predefined callbacks are _probe and _remove
[16, *driver.txt’], in minivosc implemented as minivosc_probe and minivosc
_remove. In principle, they would run when a (soundcard) hardware device
is attached to/disconnected from the PC bus: for instance, _probe would run
when the user connects a USB soundcard to the PC by inserting the USB con-
nector - if the driver is already loaded in memory. For permanently attached
devices (think PCI soundcards), _probe would run immediately after _init
detects the cards; thus, in the case of minivosc, _probe will run immediately
after _init, at the moment when the driver is loaded (by using insmod).

The minivosc driver code informs the system about which are its init/exit
functions, by use of module_init/module_exit facility (see [19, ’Chapter 27]);
while it specifies which are its probe/remove functions through use of the
platform_driver structure. Finally, last in line of predefined callbacks are
the ALSA specific callbacks; the driver code tells the system which are these
functions, through the predefined ALSA struct snd_pcm_ops.2’

While ALSA may define more snd_pcm_ops callbacks [4], there are 8 of them
being used in minivosc, by assigning them to functions: one, snd_pcm_lib_
ioctl, being defined by ALSA — and seven snd_pcm_ops functions written as
part of minivosc: minivosc_pcm_open, minivosc_hw_params, minivosc_pcm
_prepare, minivosc_pcm_trigger, minivosc_hw_free, minivosc_pcm_close
, minivosc_pcm_pointer. As clarification - here is the order of execution of
above callbacks for the minivosc driver, for some common events:

e driver loading: _init, then _probe

e start of recording: _open, then _hw_params, then _prepare, then _trigger
e end of recording: _trigger, then _hw_free, then _close

e driver unloading: _exit, then _remove

We already mentioned that for the minivosc driver, loading/unloading
events happen when the insmod/rmmod commands are executed. ’Start of

20Note that the term "PCM’ is used in ALSA to refer generally to aspects related to digital
audio - and not to the particular "Pulse Code Modulation’ method as known from electronics
(although that is where the term derives from [9, 'PCM (digital audio) interface’]).

Bo—137

Paper B.

recording’ event would be the moment when the ’'record’ button has been
pressed in Audacity; or the moment when we run arecord from the com-
mand line — correspondingly, ’end of recording’ event is when we hit the ’stop’
button in Audacity; or when arecord exits (if, for instance, it has been set to
capture for only a certain amount of time). However, note that — even with
all of this in place — the actual performance of the driver in respect to digital
audio is still not defined; memory buffer handling is also needed.

B.6.1 Audio data in memory (buffers) and related execution flow

As noted in Sec. B.5 'Driver structures’, one of the central issues in ALSA driver
programming is the location in memory, where audio PCM data for each sub-
stream is kept - the dma_area field being a pointer to it. In principle, each
substream can carry multi-channel data: for instance, a 16-bit sample would
be represented as two consecutive bytes in the dma_area; while stereo samples
could be interleaved [20]. Thus ALSA introduces the concept of frames [21],
where a frame represents the size of one analog sample for all channels carried
by a substream. As minivosc is specified as a mono 8-bit driver, we can be
certain that each byte in its dma_area will represent a single sample - and that
one frame will correspond to exactly one byte.

The approach to implementing the sampling rate that minivosc has (taken
from [8]), is to use the Linux system timer ([22, 'Kernel Mechanisms’], [19,
"Chapter 6’]). Note that standard Linux system timers are “only supported at
a resolution of 1 jiffy. The length of a jiffy is dependent on the value of HZ in
the Linuz kernel, and is 1 millisecond on 1386 [23]”. However, there also exist
so-called high-resolution timers [24] (for their basic use in ALSA, see [7]).

B.6.2 The sound of minivosc - Driver execution modes

The driver writes in the dma_area capture buffer repeatedly (as controlled by
timers), within the _xfer_buf function - or more precisely, within the minivosc
_fill_capture_buf function called by it. In the minivosc code, three different
variants can be chosen (at compile time), for copying a small predefined ’wave-
form grain’ array repeatedly in the capture buffer, which results in an audible
oscillation when the capture is played back (hence oscillator in the name).
Note the need to 'wrap’ the writing to the capture buffer array, since in ALSA,
it is defined as a circular or ring buffer [20]. Finally, all of the three ’audio
generation’ algorithms can be commented, in which case the minivosc driver
will simply write a constant value in the buffer. There is an additional facility,
called 'buffermarks’, which indicate the start and end of the current chunk, as
well as the start and end of the dma_area - which can be used to visualize
buffer sizes.

Bio—138

B.7. Conclusions

B.7 Conclusions

The main intent of minivosc is to serve as a basic introduction to one of
the most difficult issues in soundcard driver programming: handling of digital
audio. Given that many newcomers may have previous acquaintance with
‘userland’ programming, the conceptual differences from user-space to kernel
programming (including debugging [1]) can be a major stumbling block. While
a focus on capture only, 8-bit / 8 kHz mono driver leaves out many of the
issues that are encountered in working with real soundcards, it can also be
seen as a basis for discussion of [3a], which demonstrates full-duplex mono @
8-bit / 44.1 kHz (and can interface with stereo, 16-bit playback). Thus, the
main contribution of this paper, driver code and tutorial would be in easing the
learning curve of newcomers, interested in ALSA soundcard drivers, and digital
audio in general.

B.8 Acknowledgments

The authors would like to thank the Medialogy department at Aalborg Uni-
versity in Copenhagen, for the support of this work as a part of a currently
ongoing PhD project.

References

[la] Smilen Dimitrov, “Extending the soundcard for use with generic DC sensors”,
in Proceedings of the International Conference on New Interfaces for Musical
Expression (NIME 2010), Sydney, Australia, Jun. 2010, pp. 303-308, ISSN:
2220-4792, 1SBN: 978-0-646-53482-4. URL: http://imi.aau.dk/~sd/phd/
index.php?title=ExtendingISASoundcard.

[3a] Smilen Dimitrov and Stefania Serafin, “Audio Arduino - an ALSA (Advanced
Linux Sound Architecture) audio driver for FTDI-based Arduinos”, in Pro-
ceedings of the International Conference on New Interfaces for Musical Ex-
pression (NIME 2011), Oslo, Norway, May 2011, pp. 211-216, 1SSN: 2220-4792,
ISBN: 978-82-991841-7-5. URL: http://imi.aau.dk/~sd/phd/index.php?
title=AudioArduino.

[ba] ——, “Towards an open sound card — a bare-bones FPGA board in context of
PC-based digital audio”, in Proceedings of Audio Mostly 2011 - 6th Conference
on Interaction with Sound, Coimbra, Portugal, Sep. 2011, pp. 47-54, ISBN: 978-
1-4503-1081-9. DOI: 10.1145/2095667 .2095674. URL: http://imi.aau.dk/
~sd/phd/index.php?title=AudioBareBonesFPGA.

[1] Smilen Dimitrov, “Minivosc homepage”, WWW: http://www.alsa-project.
org/main/index.php/Minivosc / http://imi.aau.dk/~sd/phd/index.php?
title=Minivosc, web page, Last Accessed: 21 December, 2010.

[2] Dave Phillips, “A User’s Guide to ALSA | Linux Journal”, WWW: http:
//www.linuxjournal.com/node/8234/print, web page, 2005.

Bi1—139

http://imi.aau.dk/~sd/phd/index.php?title=ExtendingISASoundcard
http://imi.aau.dk/~sd/phd/index.php?title=ExtendingISASoundcard
http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino
http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino
http://dx.doi.org/10.1145/2095667.2095674
http://imi.aau.dk/~sd/phd/index.php?title=AudioBareBonesFPGA
http://imi.aau.dk/~sd/phd/index.php?title=AudioBareBonesFPGA
http://www.alsa-project.org/main/index.php/Minivosc
http://www.alsa-project.org/main/index.php/Minivosc
http://imi.aau.dk/~sd/phd/index.php?title=Minivosc
http://imi.aau.dk/~sd/phd/index.php?title=Minivosc
http://www.linuxjournal.com/node/8234/print
http://www.linuxjournal.com/node/8234/print

[10]

[11]

[12]

[13]

[14]

[15]

[16]

References

Takashi Iwai, “The ALSA Driver API”, WWW: http://www.alsa-project.
org/~tiwai/alsa-driver-api/index.html, web page, Last Accessed: 21
December, 2010.

——, “Writing an ALSA Driver”, WWW: http://www.alsa-project.org/
~tiwai/writing-an-alsa-driver/, web page, Last Accessed: 21 December,
2010.

Ben Collins, “Writing an ALSA driver”, WWW: http://ben- collins .
blogspot .com/2010/04/writing-alsa-driver . html, web page, Last Ac-
cessed: 21 December, 2010.

Stéphan K., “HowTo Asynchronous Playback - ALSA wiki”, WWW: http:
//alsa.opensrc.org/index.php/HowTo_Asynchronous_Playback, web page,
Last Accessed: 21 December, 2010.

Jaroslav Kysela, “sound/drivers/dummy.c”, WWW: http://git .kernel.
org/7p=linux/kernel/git/stable/linux-2.6.32.y.git;a=blob;f=sound/
drivers/dummy.c, web page, Last Accessed: 22 December, 2010.

Jaroslav Kysela, Ahmet Inan, and Takashi Iwai, “drivers/aloop-kernel.c”,
WWW: http://git.alsa-project.org/?p=alsa-driver.git;a=blob_
plain; f=drivers/aloop-kernel.c;hb=e0570c46e3c4563f38e44a25cfaclf
07ff5a02a8, web page, Last Accessed: 22 December, 2010.

Jaroslav Kysela, Abramo Bagnara, Takashi Iwai, and Frank van de Pol, “ALSA
project - the C library reference”, WWW: http://www.alsa-project.org/
alsa-doc/alsa-1lib/index.html, web page, Last Accessed: 22 December,
2010.

www.alsa-project.org, “Asoundrc - AlsaProject”, WWW: http://wuw.alsa-
project.org/main/index . php/Asoundrc, web page, Last Accessed: 22 De-
cember, 2010.

Volker Schatz, “A close look at ALSA”, WWW: http://www.volkerschatz.
com/noise/alsa.html, web page, Last Accessed: 22 December, 2010.

Matthias Nagorni, “ALSA Programming HOWTO v.0.0.8”, WWW: http:
//www . suse .de/~mana/alsa090_howto.html, web page, Last Accessed: 15
May, 2011.

Graham Morrison, “Linux audio uncovered”, Linux Format magazine, no. 130,
pp- 52-55, Apr. 2010, URL: http://www. tuxradar.com/content/how-it-
works-linux-audio-explained.

Jaroslav Kysela, “snd-aloop and alsaloop notes”, WWW: http://people.
redhat . com/ ~jkysela/RHEL5/1loop/BACKGROUND, web page, Last Accessed:
22 December, 2010.

Jaroslav Kysela and Abramo Bagnara, “git.kernel.org - include/sound/pcm.h”,
WWW: http://git.kernel.org/?p=1linux/kernel/git/stable/linux-
2.6.32.y.git;a=blob;f=include/sound/pcm.h;, web page, Last Accessed:
22 December, 2010.

git.kernel.org, “Documentation/driver-model”, WWW: http://git.kernel.
org/?p=1linux/kernel/git/stable/linux-2.6.32.y.git;a=tree;f=
Documentation/driver-model, web page, Last Accessed: 22 December, 2010.

Bi2—140

http://www.alsa-project.org/~tiwai/alsa-driver-api/index.html
http://www.alsa-project.org/~tiwai/alsa-driver-api/index.html
http://www.alsa-project.org/~tiwai/writing-an-alsa-driver/
http://www.alsa-project.org/~tiwai/writing-an-alsa-driver/
http://ben-collins.blogspot.com/2010/04/writing-alsa-driver.html
http://ben-collins.blogspot.com/2010/04/writing-alsa-driver.html
http://alsa.opensrc.org/index.php/HowTo_Asynchronous_Playback
http://alsa.opensrc.org/index.php/HowTo_Asynchronous_Playback
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=blob;f=sound/drivers/dummy.c
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=blob;f=sound/drivers/dummy.c
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=blob;f=sound/drivers/dummy.c
http://git.alsa-project.org/?p=alsa-driver.git;a=blob_plain;f=drivers/aloop-kernel.c;hb=e0570c46e3c4563f38e44a25cfac1f07ff5a02a8
http://git.alsa-project.org/?p=alsa-driver.git;a=blob_plain;f=drivers/aloop-kernel.c;hb=e0570c46e3c4563f38e44a25cfac1f07ff5a02a8
http://git.alsa-project.org/?p=alsa-driver.git;a=blob_plain;f=drivers/aloop-kernel.c;hb=e0570c46e3c4563f38e44a25cfac1f07ff5a02a8
http://www.alsa-project.org/alsa-doc/alsa-lib/index.html
http://www.alsa-project.org/alsa-doc/alsa-lib/index.html
http://www.alsa-project.org/main/index.php/Asoundrc
http://www.alsa-project.org/main/index.php/Asoundrc
http://www.volkerschatz.com/noise/alsa.html
http://www.volkerschatz.com/noise/alsa.html
http://www.suse.de/~mana/alsa090_howto.html
http://www.suse.de/~mana/alsa090_howto.html
http://www.tuxradar.com/content/how-it-works-linux-audio-explained
http://www.tuxradar.com/content/how-it-works-linux-audio-explained
http://people.redhat.com/~jkysela/RHEL5/loop/BACKGROUND
http://people.redhat.com/~jkysela/RHEL5/loop/BACKGROUND
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=blob;f=include/sound/pcm.h;
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=blob;f=include/sound/pcm.h;
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=tree;f=Documentation/driver-model
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=tree;f=Documentation/driver-model
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=tree;f=Documentation/driver-model

References

[17]

18]

[19]

[20]

21]

22]
23]

24]

wiki.audacityteam.org, “Bit Depth - Audacity Wiki”, WWW: http://wiki.
audacityteam.org/wiki/Bit_Depth, web page, Last Accessed: 22 December,
2010.

Peter Jay Salzman, Michael Burian, and Ori Pomerantz, The Linux Kernel
Module Programming Guide. CreateSpace, 2009, URL: http://linux.die.
net/lkmpg, ISBN: 1441418865.

A. Rubini and J. Corbet, Linux device drivers. O’Reilly Media, 2001, URL:
http://www.xml.com/1dd/chapter/book, ISBN: 0596000081.

Jeff Tranter, “Introduction to Sound Programming with ALSA | Linux Jour-
nal”, WWW: http://www.linuxjournal.com/article/6735%7page=0, 1, web
page, 2004.

www.alsa-project.org, “FramesPeriods - AlsaProject”, WWW: http://wuw.
alsa-project .org/main/index . php/FramesPeriods, web page, Last Ac-
cessed: 28 December, 2010.

D.A. Rusling, “The linux kernel”, The Linux Documentation Project, 1996,
URL: http://www.tldp.org/LDP/t1lk/.

elinux.org, “High Resolution Timers - eLinux.org”, WWW: http://elinux.
org/High_Resolution_Timers, web page, Last Accessed: 28 December, 2010.

T. Gleixner and D. Niehaus, “Hrtimers and beyond: Transforming the linux
time subsystems”, in Proceedings of the Ottawa Linuz Symposium, Ottawa,
Ontario, Canada, URL: http://wuw.kernel.org/doc/ols/2006/01s2006v1-
pages-333-346.pdf, 2006.

B13—141

http://wiki.audacityteam.org/wiki/Bit_Depth
http://wiki.audacityteam.org/wiki/Bit_Depth
http://linux.die.net/lkmpg
http://linux.die.net/lkmpg
http://www.xml.com/ldd/chapter/book
http://www.linuxjournal.com/article/6735?page=0,1
http://www.alsa-project.org/main/index.php/FramesPeriods
http://www.alsa-project.org/main/index.php/FramesPeriods
http://www.tldp.org/LDP/tlk/
http://elinux.org/High_Resolution_Timers
http://elinux.org/High_Resolution_Timers
http://www.kernel.org/doc/ols/2006/ols2006v1-pages-333-346.pdf
http://www.kernel.org/doc/ols/2006/ols2006v1-pages-333-346.pdf

Paper C

Audio Arduino - an ALSA (Advanced Linux Sound
Architecture) audio driver for FTDI-based Arduinos

Smilen Dimitrov and Stefania Serafin

Refereed article published in the
Proceedings of the International Conference on New Interfaces for Musical
Expression (NIME 2011), pp. 211-216, Oslo, Norway, May 2011.

© 2011 Smilen Dimitrov and Stefania Serafin
The layout has been revised.

C.1. Introduction

Abstract

A contemporary PC user, typically expects a sound card to be a piece of hard-
ware, that: can be manipulated by ’audio’ software (most typically exemplified
by 'media players’); and allows interfacing of the PC to audio reproduction
and/or recording equipment. As such, a ’sound card’ can be considered to be a
system, that encompasses design decisions on both hardware and software levels
- that also demand a certain understanding of the architecture of the target PC
operating system.

This project outlines how an ARDUINO DUEMILLANOVE board (containing a
USB interface chip, manufactured by FUTURE TECHNOLOGY DEVICES INTERNA-
TIONAL Ltp [FTDI] company) can be demonstrated to behave as a full-duplez,
mono, 8-bit 44.1 kHz soundcard, through an implementation of: a PC audio
driver for ALSA (Advanced Linux Sound Architecture); a matching program for
the ArDUINO’s ATMEGA microcontroller - and mothing more than headphones
(and a couple of capacitors). The main contribution of this paper is to bring a
holistic aspect to the discussion on the topic of implementation of soundcards -
also by referring to open-source driver, microcontroller code and test methods;
and outline a complete implementation of an open - yet functional - soundcard
system.

Keywords: Sound card, Arduino, audio, driver, ALSA, Linux

C.1 Introduction

A sound card, being a product originally conceived in industry, can be said
to have had a development path, where user demands interacted with indus-
try competition, in order to produce the next generation of soundcard devices.
As such, the soundcard has evolved to a product, that most of today’s con-
sumer PC users have very specific demands from: they expect to control the
soundcard using their favorite ‘'media player’ or 'recorder’ audio software from
the PC; while the soundcard interfaces with audio equipment like speakers or
amplifiers. For professional users, the character of ’audio software’ and 'audio
equipment’ may encompass far more specialized and complex systems — how-
ever, the expectations of the users in respect to basic interaction with this part
of the system is still the same: high-level, PC software control of the audio
reproduced or captured on the hardware.

A development of a soundcard thus requires, to some extent, an interdis-
ciplinary approach - requiring knowledge of both electronics and software en-
gineering, along with operating system architecture. But, even with a more
intimate understanding of this architecture, a potential designer of a new sound-
card may still experience a ’chicken-and-egg’ problem: understanding drivers
requires understanding of their target hardware - and vice versa. As such,
considering this product’s origins in industry, it is no wonder that literature

C1—145

Paper C.

discussing implementations of complete ’soundcards’ is rare - both hardware
and software designs would have to be disclosed, for the discussion to be rele-
vant.

An open soundcard Businesses are, understandably, not likely to disclose
hardware designs and driver code publicly; this may explain the difficulty in
tracking down prior open devices. It is here that the Arpumwo [1] platform
comes into play. Marketed and sold as an open-source product, it is essentially
a board which represents a connection between a USB interface chip, and a
microcontroller. As the schematics are available, an ArbpuiNo board can, in
principle, be assembled by hand - however, a factory production has both a low,
popular price; and brings in a level of expected performance, which allows for
easier elimination of problems of electrical nature during development. Thus,
on one hand, an ArRDUINO board represents known hardware - one we could
write an ALSA driver for; both in principle, and - as this project demonstrates -
in reality. On the other hand, the ArpuNO is typically marketed as supporting
communication speeds of up to 115200 bps (an impression also stated in [1a]) -
which result with data rates, insufficient to demonstrate streaming audio close
to the contemporary CD-quality standard (stereo, 16-bit, 44.1 kHz). Yet, the
major individual components: FTDI USB interface chip, and ATMEGA micro-
controller - are both individually marketed to support up to 2 Mbps: a data
rate that can certainly sustain a CD-quality signal. Thus, in spite of being
known hardware, the ARDUINO may have ’officially unsupported’ modes of op-
eration, that would allow it to perform as a soundcard - modes that, however,
still need to be quantified in the same sense, as if we were starting to design
a board from scratch (with this particular microcontroller, and USB interface
chip).

Application example An open soundcard may bring actual benefits to elec-
tronic instrument designers, beyond the opportunity for technical study: con-
sider a system where a vibrating surface (cymbal) is captured using a sensor
and ARDUINO into PD software, where it is used to modulate a digital audio
signal in realtime. Usual approach would be to read the ArbpuiNO as a serial
port at 115200 bps; this limits the analog bandwidth (~ 5kHz) and forces the
user to code a conversion to PD’s audio signal domain; with AudioArduino the
sensor data could be received directly as a 44.1 kHz audio signal in PD - full
audio analog bandwidth, no need for signal conversions.

C.2 Previous work

Previous attempts to discuss open soundcard implementations couldn’t provide
a basis for the development here: the Linux kernel contains many open sound-
card drivers, but written for commercial (typically undisclosed) hardware. The
now defunct german magazine Elrad may have had a series on implementation

Ca—146

C.3. Degrees of freedom

of a PCI card in 1997, but the remaining reference! doesn’t contain any useful
information. The Arpuino has previously been used for audio: in [2] as a stan-
dalone player; [3] as a standalone DSP - but not specifically as a PC-interfaced
soundcard. Thus, this project’s basis is mostly in own previous work: [la]
demonstrates legacy hardware controlled by PC software; and identifies data
throughput control as the main problem in that naive approach. Modern op-
erating systems address this issue by providing a driver architecture; where,
in programming a driver, the programmer gains a more fine-grained temporal
control. In the context of the open GNU/Linux operating system(s), acquain-
tance with its current low-level audio library - ALSA - is thus necessary for
implementation of soundcard drivers. This project has produced the tutorial
driver minivosc [2a] as an introductory overview of ALSA architecture - also
used as a starting point of the work in this paper.

C.3 Degrees of freedom

It would be interesting to qualify to what extent can AudioArduino - a system
of ArbuiNno Duemillanove, microcontroller code, and matching ALSA soundcard
driver - be considered to be an ’open’ ’soundcard system’ To begin with,
hardware production necessarily involves mineral extraction and processing,
manufacturing, and distribution - stages that require considerable economic
infrastructure; and therefore, there will always be a 'hard’ price attributed to it.
On the other hand software, in essence, represents the instructions - information
- for what we can do with this hardware. With the increasing affordability
causing mass penetration of computing technology, fewer 'hard’ investments
need to be made to start with software development; and in principle, the
pursuit of software development could thereafter involve only investment of the
time of the developer. While developer time also carries inherent cost with it,
there are circumstances where sharing the outcome - the source code - becomes
preferable, for academic, business or altruistic reasons; especially since, with
the expansion of the Internet, the physical cost of sharing information can be
considered negligible.

Thus, it is in context of software that the term(s) ’free’ or ’open’ will be
applied in this project (as in FLOSS?). To begin with, the driver is developed on
Ubuntu - a FLOSS GNU/Linux operating system; with the main corresponding
tool for development, gcc, being likewise open. The audio framework for Linux,
ALSA, follows the same license - and the main high-level, user audio programs
used, Audacity and arecord, are likewise open. The ArbuiNo as a platform is
known to be open, by making the schematic files available, as well as offering
an integrated development environment (IDE) for Linux, which is also open
[1]. The microcontrollers used in the platform are typically ATMEGA’S, part of
the ArMEL AVR family, which (given the tolerance of Atmel to open source, see

'http://wuw.xs4all.nl/~fjkraan/digaud/elrad/pcirec.html
2free/libre/open source software

C3—147

http://www.xs4all.nl/~fjkraan/digaud/elrad/pcirec.html

Paper C.

Atmel Application note AVRI11, also [4]) has long had an open toolchain for
programiming, avr-gcc.

At this point, let’s note that Arbuivo in 2010 released the Arbuino UNO
board, which is taken to be the 'reference version’ for the platform. The reason
for this is that the USB interface chip used on the UNO is ATMECcA8U2, and the
USB interface functionality is provided by the open-source LUFA (Lightweight
USB Framework for AVR) firmware. In contrast, earlier versions of USB Ar-
puiNos, like the DUEMILLANOVE, feature a FTDI FT232RL USB interface chip.
FTDI offers two drivers, VCP (Virtual COM Port, offering a standard serial
port emulation) and D2XX (direct access) [5, 'Drivers’]. Both of these are
provided free of charge - however, source code is not available. Also, VCP
may offer data transfer rates up to 300 kilobyte/second, while D2XX up to
1 Megabyte/second ([5, 'Products/ICs/FT245R’]). Nonetheless, there exists a
third-party open-source driver for FTDI in the Linux kernel, which corresponds
to VCP, named ftdi-sio [6] - in fact, ftdi-sio forms the basis of the Audio-
Arduino driver. With this, the following parts of the AudioArduino system
can be considered open: microcontroller code, and tools to implement/debug
it; audio driver, and tools to implement/debug it; operating system, hosting
the development tools, the driver and high-level software; and high-level audio
software, needed to demonstrate actual functionality — i.e., the bulk of the soft-
ware domain. The driver was developed on Ubuntu 10.04 (Lucid), utilizing the
2.6.32 version of the Linux kernel; the code has been released as open source,
and it can be found by referring to the home page [7].

C.4 Concept of AudioArduino

Given that the ATMEGA328 features both ADC, and DAC (in form of PWM),
converters - using the ArbpuiNo as a soundcard hardware is a feasible idea, as
long as one trusts that the data transfer between the PC and the ATMEGA328
can occur without errors at audio rates. Developing a USB driver for such data
transfer would, essentially, require a good working knowledge of the USB bus
and its specifications. However, that is a daunting task for any developer - the
USB 2.0 Specification [8] alone is 650 pages long; with actual implementation,
in a form of a driver for a given OS, requiring additional effort. Therefore, the
starting point of this project is to abstract the USB transport to the greatest
extent possible, and avoid dealing with particular details of the USB protocol.
This is possible because of the particular architecture of the ArpuiNo board,
rendered on Fig. C.1.

As Fig. C.1 shows, the ftdi-sio driver makes the FT232 device appear as
a ’serial port’ in the PC OS, that the user can write arbitrary data to. The
driver will format this data as necessary for USB transport, and send it on
wire; the FT232 will then accept this data and convert it to TTL-level (0-5V)
RS-232 signal (and the same happens for the reverse direction, when reading).
Given that RS-232 is conceptually much easier to understand (e.g., [9]); we can

Cq4—148

C.4. Concept of AudioArduino

1
I
I
1

e I B e » Serial

i{ n [1YSB {(TTL RS232)

K FT232R ! ATMega328
, !

[elas

oyl

r
I
I
L

PC Arduino

Fig. C.1: Simplified context of an ARDUINO, connected to a PC.

"black box’ (abstract) the unknown (USB) part in the data transfer - and focus
on the known (RS-232) part.

In order to specify what sampling rates, in terms of digital audio, would this
hardware support - the most important factor to consider is the data transfer
rate, that can be achieved between the ATMEGA328 and the FT232 over the
serial link. As far as this serial link goes, the ATMEGA328 states maximum rate
of 2.5 Mbps [10, pg.199]; while the FT232 states up to 3 Mbaud [11, pg.16]. As
the ftdi-sio driver supports 2 Mbps® by default, this is the "theoretical’ speed
that should be possible to achieve all the way through to the ATMEGA328. A
speed of 2 Mbaud translates to 200000 Bps®, which would be enough to carry
200000/44100 = 4.5 mono/8-bit/44.1 kHz channels; or two mono/16-bit/44.1
kHz channels; or one CD quality stereo/16-bit/44.1 kHz channel. However,
one still needs to determine what actual data transfer rates can be achieved,
and under which conditions (such as different software). Beyond this, it is the
response times of the ATMEGA328 (including DAC and ADC elements), that
would limit the use as full-duplex device. The final issue is the analog I1/O
interface, discussed further in this paper.

Building and running Both the source code, and instructions for building and
running, can be found in [7] (and they are similar to those given in [2a]). The
source code consists of a modified version of [6], ftdi_sio-audard.c; the ALSA-
specific part in snd_ftdi_audard.h; associated headers and a Makefile; and
microcontroller code, duplexAudard_an8m.pde. The .pde code can be built
and uploaded to the ArpuiNO using the Arduino IDE.

With this in place, high-level audio software (like Audacity) will be able
to address the Arpuino, and play back and capture audio data through it.
ArpuUINO’s analog input 0 (AINO) is treated as a soundcard input; sensors (like
potentiometers) connected to this input can have their signal captured at 44.1
kHz in audio software. Arpuino’s digital pin 6 (D6) is soundcard output; on

3Note that in 8-N-1 RS232 transfer, there are 8 data bits, 1 start and 1 stop bit;
so 8-bit data is carried by 10-bit packet. Usually, ’baud’ means ’signal transitions
per second’ and refers to all 10 bits, while ’bps’ as ’bits per second’ should refer to
the 8 data bits only; but they can be often used interchangeably - ’Bps’ as ’bytes per
second’ refers strictly to data payload (see also [12]).

C5—149

Paper C.

which, when audio software plays back audio data, (analog) PWM output is
generated (audible).

C.5 Quantifying throughput rate - duplex loopback

As mentioned, one of the biggest issues in estimating if the Arbuino board can
behave as a soundcard, is in measuring the actual data transfer rate that can be
achieved. The initial question is what tools can be used for that: the ftdi-sio
driver will make a connected ARDUINO appear as a special file in the Linux
system (/dev/ttyUSBO), representing a serial port. The serial port settings,
such as speed, can be changed by using the stty program. Thereafter writing
character data to the ArRDUINO can be performed by writing to the associated
file, say, by using echo ’some text’ > /dev/ttyUSBO - and reading by, say,
cat /dev/ttyUSBO.

However, finding the actual data rate in either direction is not the only thing
which is interesting; another interesting point is to what extent can the Ar-
puiNo board be considered a full-duplex device; i.e., whether the device can both
receive and send data simultaneously (which, in terms of soundcards, is a stan-
dard expected behaviour). To assess both points, we suggest the ATMEGA328
is programmed as a ’digital loopback’: to listen for incoming serial data; and
send back the received byte through serial, as soon as it has been received.
Then for the PC side, we propose a simple threaded program, writeread.c
[12]: it accepts an input file; initiates write and read operations on a serial
port in separate threads, so they can run concurrently; writes the input file,
and saves the received data in another; and times these operations, so that the
throughput rate can be determined.

What this experiment shows, is that the usual C commands for reading
and writing from a serial port (and by extension, user programs like cat or
echo) do not carry the concept of a data rate - they simply try to transfer
data as fast as possible; and even for 2 Mbps communication, these commands
push data faster than the USB chip can handle, which results with kernel
warnings. Therefore, it is up to the program author to implement some sort
of buffering, that would provide an effective throughput rate. Yet even with
this in place, limiting rate to 2 Mbps within writeread.c would still cause
throttling warnings; but, limiting it to slightly below 2 Mbps allows for a error-
less demonstration. The reason for this is likely in the asynchronous nature of
the serial RS232 protocol: in not sharing a single clock; the PC, the FT232
and the ATMEGA328 each have a slightly different concept of what the basic
time unit (clock tick) duration would be - and thus a different concept of what
2 Mbps’ is. By lowering the data rate from writeread.c, we likely account
for these differences, which allows for error-free transmission; and from the PC,
we can typically measure around 98% of 2 Mbps achieved for error-free duplex
transmission.

Moreover, during this digital loopback experiment, the signals of the TX and

C6—150

C.5. Quantifying throughput rate - duplex loopback

RX connections (between the FT232 and the ATMEGA328) were measured with
an AGILENT 54621A% oscilloscope; captured with the open-source agiload for
Linux; and analysed using a script produced by this project, written in python
(utilizing matplotlib) that features a serial decoder, called mwfview-ser.py
[7]. These measurements show that the time for the ATMEGA328 to receive a
byte and send it back - the minimal 'quantum’ of action, relevant for a ’digital
duplex’ - is around 6.940 us (Fig. C.2), which is approx. 31% of the 22.6 us
analog sample period (for 44.1 kHz rate); which specifies the latency bottleneck
expected from the Arpuino in ’digital loopback’ mode.

pimuE

- X1 O Xz |
i 0.000s) ~5.940us |

Fig. C.2: Oscilloscope capture of RX (top) and TX (bottom) serial lines at the ATMega328,
indicating latency between received and sent byte.

Note that, the ATmEcA328’s UART produces a signal with considerably
more jitter than the FT232%; and there can be gaps in the otherwise sustained
rate of serial transmission between the two - but none of this seems to harm
error-free transmission at 2 Mbps. Finally, writeread.c works both with the
'vanilla’ ftdi-sio driver, and the AudioArduino driver. Also, the same ARr-
puiNo code used to demonstrate digital loobpack with writeread.c, can be
used with the AudioArduino driver - allowing for demonstration of a digital
audio loopback: one can load a file in Audacity; play it back through the Au-
dioArduino card; and by recording at the same time from the same card, one
should capture the very same audio being played back (latency notwithstand-

ing).

4The AGILENT 54621A claims 60 MHz bandwidth, which is sufficient for capture of a 2
Mbps digital signal

5A crude measurement of jitter spans around 0.26 ps, which is about 52% of the 0.5 us
period for a bit transition at 2 Mbps, see [12]

Cy—151

Paper C.

C.6 Microcontroller code

There are two distinct versions of microcontroller code for the ATMEGA328 used
in this project, both in a form of a C language .pde file (the default format
compilable in the Arpuwo IDE). The first is the mentioned ’digital duplex’
code, which simply sends back any byte received through serial, posted in [12].
The main issues here are: the setup of the ATMEGA328’s UART to support 2
Mbps (which is not supported in the default Arpuino API); removing all over-
head due to API function calls, by using the function source code directly; and
disabling all irrelevant interrupts - before the ArbuiNo can start showing 98%
of 2 Mbps with writeread.c. Beyond this, the code can be implemented either
as a single loop, or with interrupts on incoming serial data; with no significant
difference in respect to performance. This is the same microcontroller code
used as basis for development of the AudioArduino driver.

Once the AudioArduino driver was confirmed to be working with the ’digital
duplex’ code - a new, second ’analog I/0O’ version was written, which also em-
ploys the ADC and PWM (as DAC) facilities of the ATMEcA328. This version,
as it is supposed to support audio playback and recording, requires deeper in-
volvement with the ATMEGA328 datasheet [10]. In essence, the problem is that
ALSA will send (mono) data at rate of 44100 Bps, which will appear as chunks
of bytes on the 200000 Bps serial ArpuiNO line; these bytes need to be stored
as soon as possible by the ATMEGA328 in memory (buffer). On the other hand,
at a rate of 44100 Hz, the ATMEGA328 should read one byte from the buffer
and write it to PWM (the DAC) - and at the same time, read a byte from the
ADC, and send it via serial. As we would expect an 8-bit interface (where each
byte represents an analog sample) at the driver side, no further digital sample
processing needs to be done in either direction. This is solved by code that
employs an interrupt on incoming data, where the data is stored in a circular
buffer - and a (16-bit) timer interrupt to handle the analog I/O at the 44100
Hz analog rate [7]. Note that this ’analog I/O’ version seems to only perform
well when implemented with incoming data handled on interrupt; trying to do
the same handling in a single loop reveals problems with determining when an
incoming byte is ready to be read from ATMEcA’s UART ([7].

C.7 Driver architecture

The AudioArduino driver is not only based on ftdi-sio - ftdi_sio-audard.c
is a renamed version of [6], with several changes: first, it includes snd_ftdi_au
dard.h, which here is not used in the standard sense of a C header, but simply as
a container for ALSA relevant code (which would, otherwise, have to be written
into the already complex [6]). Other changes include calling ALSA relevant
functions from the default ftdi-sio functions: audard_probe from ftdi_sio
_probe; audard_probe_fpriv from ftdi_sio_port_probe; audard_remove

from ftdi_sio_port_remove; and audard_xfer_buf from ftdi_process_

C8—152

C.7. Driver architecture

private data

L{»snd_pcm_subst reameéen i

guntine]

rivate data

snd_pcm runti me §marea

8
I

SFo[alz[=[5 [s 7 [e[o]]

Fig. C.3: Partial ’structure relationship map’ of the AudioArduino driver.

packet - which connects the soundcard ALSA interface to USB events.

Otherwise, the main ALSA functionality is contained in snd_ftdi_audard.h,
whose development is based on minivosc.c [2a]. Thus, it contains the same
type of ALSA related structures, but the structure map (shown on Fig. C.3) is
slightly more complex than in [2a]: the main ’device struct’, audard_device,
contains an array holding references to both the playback and the capture
substream; the substreams are encapsulated in snd_audard_pcm structures,
that hold individual buffer position counters. There are separate snd_pcm_
hardware and snd_pcm_ops variables - yet a single snd_card_audard_pcm_
timer_function - to handle the playback and capture substreams.

In essence, the AudioArduino driver leaves, for the most part, the func-
tionality of ftdi-sio as is; with several additions. When ftdi_sio_probe
runs (i.e., when the ArRbuINo is connected to PC via USB), the ALSA interface
is additionally setup, enumerating the Arbuino as a soundcard. With this in
place, on one hand, the driver keeps the serial interface (such as the creation of
the /dev/ttyUSBO) file. On the other hand, the driver will also react on ’start’
or ’stop’ commands from high-level audio software as usual: e.g., on ’start’
_trigger will run, which will start the timer, and thus the periodic calls to
_timer_function. The _timer_function, then, needs to handle the playback
direction by copying the respective part of its dma_area to USB - which it does
by calling ftdi_write. For the capture direction, incoming USB data triggers
ftdi_process_packet, which additionally calls audard_xfer_buf; here USB
data is copied to a dynamically sized ’intermediate’ buffer, audard_device->
IMRX — and _timer_function will thereafter copy the data from the interme-
diate buffer to the capture substream’s dma_area, the next time it runs.

The AudioArduino driver additionally exposes CD quality, stereo/16-bit/
44.1kHz capability - to allow for direct playback interface with Audacity (and
most media player software). However, since the microcontroller code expects

C9—153

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

cho2 [ehoz
o iLsa) P

B o

T e e T

choz | choz | chor
Lse | mss [s8 |,

Fig. C.4: Visualisation of driver’s playback buffer boundaries, and CD to mono/8-bit conver-
sion.

a sequence of 8-bit values, we must convert the stereo 16-bit stream to a mono
8-bit one - this opens a whole new set of problems related to wrapping, which
is illustrated on Fig. C.4. By declaring the driver capable of 16-bit stereo,
we have not changed the number of substreams (which would correspond to
connectors on the soundcard); however, Fig. C.4 shows that we would have
changed the data format carried in the substream’s dma_area - the stream is
now interleaved: consecutive bytes carry a pattern of left channel’s 2 bytes,
followed by right channel’s 2 bytes. Thus an ALSA frame (size of analog sample
in all channels) is now 4 bytes; and the problem becomes how to represent this
ALSA frame with a single byte. The approach in the AudioArduino driver is to
simply extract the most significant byte of the left channel, according to the
formula (C code): (char) (lefti6bitsample >> 8 & Ob11111111) ~ 0b10000000

However, as Fig. C.4 shows, a bigger problem is that the wrapping bound-
aries (at the size of the chunk handled at each _timer_function, and at the
size of dma_area) can now occur in the middle of a frame (and correspond-
ingly, middle of an 8-bit sample) - which is a situation that doesn’t occur for
8-bit streams (where each single byte corresponds to one analog sample). To
address this, the AudioArduino driver employs yet another intermediate buffer
(audard_device->tempbuf8b). With this in place, the driver will automati-
cally convert a 16-bit stereo stream from Audacity to an 8-bit one, preserving
the 44100 Bps rate, before it sends it to USB - and thus, an audio ’digital
loopback’ can be demonstrated on this driver directly from Audacity.

Finally, note that 'DMA’ in ’dma_area’ stands for 'Direct Memory Access’,
which “allows devices, with the help of the Northbridge, to store and receive
data in RAM directly without the intervention of the CPU (and its inherent
performance cost) [13]”. Interestingly, in this case: while the transfer of incom-
ing USB data to PC memory (as part of ftdi-sio); as well as the transfer of
data from dma_area to user memory of high-level audio software (as part of
the ALSA ’middle layer’); likely involves DMA — the transfer of memory that is
performed as part of AudioArduino’s _timer_function definitely doesn’t; as
we use the memcpy command to transfer data (which does involve the CPU).

Cio0—154

C.8. Analog I/O

C.8 Analog I/O

The ALSA driver can be developed in its entirety with the 'digital duplex’ ARr-
puiNo code; if thereafter the ’analog I/O’ microcontroller code is "burned’ on
the Arpuino - the driver will, effectively, utilize analog input pin 0 as analog
input connector, and digital pin 6 as analog output connector. However, both
the analog input range, and the output PWM signal, span the voltage range
from 0 to 5V - while a typical off-the shelf soundcard typically contains ’line’
input and output connectors, as well as 'mic in’ and ’speaker out’ connectors,
which follow a different analog standard. These topics are discussed in more
detail in an associated paper, [4a].

The use of analog pins on the ArRDUINO to read sensors is standard practice,
and plenty of examples can be found on the web [1]; thus an arbitrary sensor
signal can be captured through high-level audio software at 8-bit, 44.1kHz
quality (in the same spirit of [la]). Note that the analog input voltage range,
0-5V, will be represented with the span of 8-bit values from 0 to 255 - which
within Audacity may be treated as floating point values -1 and 1, respectively.

The use of PWM to deliver an analog audio signal is based on the premise
that the highest PWM frequency obtainable from the Arpuino, 62500 Hz [4a],
will be sufficient to reproduce a 44100 Hz digital (22.05 kHz analog) audio
signal. To a novice, used to analog voltage waveforms, this can be problematic
to assess - as the binary nature of PWM makes it seem inherently ’distorted’
in the time domain. However, industry insiders are well aware of the practice
of using PWM for audio, e.g., in the mobile or automotive industry [14], and
often to drive speakers directly [15]. This project demonstrates that as well:
upon playback of audio from high-level software, one can simply connect the
output pin 6 to a channel on headphone jack, and connect the ground of the
headphone jack to Arbpuino’s ground - and audible sound would be perceived
from the headphones’ speaker (but use of a capacitor will result with a louder,
clearer sound [7]). Note that there are inherent jitter problems in reproducing
HF tones with this technique, while mid-range music can be reproduced with
acceptable quality [4a], [7].

C.9 Conclusions

As this paper outlines, development of a soundcard can be a complex and
involved issue. The particular approach used here, avoids many electronic engi-
neering issues by choosing the ARDUINO DUEMILLANOVE as soundcard hardware;
and avoids deeper involvement with the USB protocol by the specific use of the
ftdi-sio driver as a basis. In doing that, the overview of the ALSA architec-
ture, started in [2a], is finalized - as ALSA is discussed in its full intended scope:
in relation to a given soundcard hardware, and given interface bus. This allows
for focus on issues in soundcard implementation that are close to 'first princi-
ples’, and as such could serve in educational context, as a basic introduction

Ci1—155

References

to newcomers to the field - which is the main contribution of this paper and
source code.

Beyond (hopefully) furthering the discussion on DIY implementations of
PC interfaced digital audio hardware, this project may have a practical impact
as well - as there are research projects in the computer audio community and
related fields (such as haptics [16]), which use the ARDUINO to capture sensor
data; and as such, could benefit from the audio-rate capture quality, and the
possibility to leverage the real-time performance of applicable high-level audio
software, such as PureData.

C.10 Future work

The current AudioArduino code could, in principle, easily be modified to
demonstrate stereo 8-bit performance, or even 16-bit mono (say, by using sep-
arate PWM for LSB and MSB, and mixing them in the analog domain). A
more involved work would be to port the concept to the reference Arbpuino
UNO - as that will require work on the LUFA firmware, which doesn’t currently
support 2 Mbps[12]; on the other hand, the LUFA could allow the ArbuINO to be
recognized as a 'USB audio’ class device, instead of a "USB serial’ one. Finally,
as in [2a], it would be interesting to see to what degree could AudioArduino
be ported to the major proprietary PC operating systems.

C.11 Acknowledgments

The authors would like to thank the Medialogy department at Aalborg Uni-
versity in Copenhagen, for the support of this work as a part of a currently
ongoing PhD project.

References

[la] Smilen Dimitrov, “Extending the soundcard for use with generic DC sensors”,
in Proceedings of the International Conference on New Interfaces for Musical
Expression (NIME 2010), Sydney, Australia, Jun. 2010, pp. 303-308, ISSN:
2220-4792, 1SBN: 978-0-646-53482-4. URL: http://imi.aau.dk/~sd/phd/
index.php?title=ExtendingISASoundcard.

[2a] Smilen Dimitrov and Stefania Serafin, “Minivosc - a minimal virtual oscillator
driver for ALSA (Advanced Linux Sound Architecture)”, in Proceedings of the
Linuz Audio Conference (LAC 2012), Stanford, California, USA, Apr. 2012,
pp. 175-182, 1SBN: 978-1-105-62546-6. URL: http://imi.aau.dk/~sd/phd/
index.php?title=Minivosc.

C12—156

http://imi.aau.dk/~sd/phd/index.php?title=ExtendingISASoundcard
http://imi.aau.dk/~sd/phd/index.php?title=ExtendingISASoundcard
http://imi.aau.dk/~sd/phd/index.php?title=Minivosc
http://imi.aau.dk/~sd/phd/index.php?title=Minivosc

References

[4a] ——, “An analog I/O interface board for Audio Arduino open soundcard
system”, in Proceedings of the 8th Sound and Music Computing Conference
(SMC 2011), Padova, Italy: Padova University Press, Jul. 2011, pp. 290-297,
ISBN: 978-8-897-38503-5. URL: http://imi.aau.dk/~sd/phd/index.php?
title=AudioArduino-AnalogBoard.

[1] arduino.cc, “Arduino homepage”, http://www.arduino.cc/, web page.

[2] Limor Fried, “ladyada.net Wave Shield - Audio Shield for Arduino”, WWW:
http://www.ladyada.net/make/waveshield/, web page, Last Accessed: 29
December, 2010.

[3] Martin Nawrath, “Arduino Realtime Audio Processing”, WWW: http://
interface . khm . de / index . php / 1lab/ experiments / arduino - realtime -
audio-processing/, web page, Last Accessed: 29 December, 2010.

[4] S. Wilson, M. Gurevich, B. Verplank, and P. Stang, “Microcontrollers in music
HCI instruction: reflections on our switch to the Atmel AVR platform”, in
Proceedings of the 2003 conference on New interfaces for musical expression,
Citeseer, 2003, pp. 24-29.

[6] www.ftdichip.com, “FTDI Homepage”, WWW: http://wuw.ftdichip.com/,
web page, Last Accessed: 29 December, 2010.

[6] Greg Kroah-Hartman, Bill Ryder, and Kuba Ober, “drivers/usb/serial /ftdi
sio.c”, WWW: http://git.kernel.org/?p=1inux/kernel/git/stable/
linux-2.6.32.y.git;a=blob;f=drivers/usb/serial/ftdi_sio.c, web
page, Last Accessed: 29 December, 2010.

[7] Smilen Dimitrov, “AudioArduino homepage”, web page, Last Accessed: 21
December, 2010. URL: http://imi.aau.dk/~sd/phd/index.php?title=
AudioArduino.

[8] www.usb.org, “USB.org - Documents [Specifications home]”, WWW: http:
//www .usb.org/developers/docs/, web page, Last Accessed: 29 December,
2010.

[9] Smilen Dimitrov and Stefania Serafin, “A simple practical approach to a wire-
less data acquisition board”, in Proceedings of the 2006 conference on New
interfaces for musical expression, IRCAM-Centre Pompidou, 2006, pp. 184—
187, 1SBN: 2844263143.

[10] www.atmel.com, “Atmel ATmega48A /48PA/88A /88PA/168A/168PA/328/
328P datasheet”, WWW: http://www.atmel.com/dyn/resources/prod_
documents/doc8271.pdf, web page, Last Accessed: 29 December, 2010.

[11] www.ftdichip.com, “FT232R USB UART IC Datasheet Version 2.07”, WWW:
http://www . ftdichip . com/ Support /Documents /DataSheets/ICs /DS _
FT232R.pdf, web page, Last Accessed: 29 December, 2010.

[12] www.arduino.cc, “Arduino Forum - Measuring Arduino’s FT232 throughput
rate 77, WWW: http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=
1281611592/0, web page, Last Accessed: 29 December, 2010.

[13] Ulrich Drepper, “What every programmer should know about memory”, Nov. 21,
2007. URL: http://people.redhat . com/drepper/cpumemory . pdf (visited
on 05/02/2014).

C13—157

http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino-AnalogBoard
http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino-AnalogBoard
http://www.arduino.cc/
http://www.ladyada.net/make/waveshield/
http://interface.khm.de/index.php/lab/experiments/arduino-realtime-audio-processing/
http://interface.khm.de/index.php/lab/experiments/arduino-realtime-audio-processing/
http://interface.khm.de/index.php/lab/experiments/arduino-realtime-audio-processing/
http://www.ftdichip.com/
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=blob;f=drivers/usb/serial/ftdi_sio.c
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=blob;f=drivers/usb/serial/ftdi_sio.c
http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino
http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino
http://www.usb.org/developers/docs/
http://www.usb.org/developers/docs/
http://www.atmel.com/dyn/resources/prod_documents/doc8271.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8271.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232R.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232R.pdf
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1281611592/0
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1281611592/0
http://people.redhat.com/drepper/cpumemory.pdf

[14]

[15]

[16]

References

Mikkel Christian Wendelboe Hgyerby, Michael Andreas E. Andersen, Dennis
R. Andersen, and Lars Petersen, “High Bandwidth Automotive Power Sup-
ply for Low-cost PWM Audio Amplifiers”, English, in NORPIE200/4, Trond-
heim, 2004. URL: http://server.oersted.dtu.dk/publications/views/
publication_details.php?id=1000.

Finn T. Agerkvist and Lars M. Fenger, “Subjective test of class D amplifiers
without output filter”, English, in 117th Audio Engineering Society Conven-
tion, 2004.

Luca Turchet, Rolf Nordahl, Stefania Serafin, Amir Berrezag, Smilen Dim-
itrov, and Vincent Hayward, “Audio-haptic physically-based simulation of
walking on different grounds”, in Proceedings IEEE Multimedia Signal Pro-
cessing Conference (MMSP’10), Stéphane Pateux, Ed. Saint Malo, France:
IEEE Press, 2010, pp. 269-273, 1SBN: 978-1-4244-8110-1. po1: 10.1109/MMSP.
2010.5662031.

C14—158

http://server.oersted.dtu.dk/publications/views/publication_details.php?id=1000
http://server.oersted.dtu.dk/publications/views/publication_details.php?id=1000
http://dx.doi.org/10.1109/MMSP.2010.5662031
http://dx.doi.org/10.1109/MMSP.2010.5662031

Paper G

Comparing the CD-quality, full-duplex timing behavior
of a virtual (dummy), hda-intel, and FTDI-based
AudioArduino soundcard drivers for Advanced Linux
Sound Architecture

Smilen Dimitrov and Stefania Serafin

Manuscript submitted to / in review for
Linux Journal, 2015.

© 2015 Smilen Dimitrov and Stefania Serafin
The layout has been revised.

G.1. Introduction

Abstract

Our previous work within soundcards in an open source context ([1a, 2a, 3a, 4a,
bal) deals primarily with low fidelity audio reproduction (up to 8bit, 44.1kHz,
mono). The next natural step would be to address high fidelity reproduction,
where we would primarily focus on Compact Disc quality (16bit, 44.1kHz,
stereo). However, looking on the PC operating system side, the transition from
our previous lo-fi drivers to CD-quality ones is challenging, as it requires an
understanding of the preemptive nature of the OS kernel, whose influence makes
especially full-duplex operation challenging. This lead us to a comparison, dis-
cussed in this paper, between the full-duplex, CD-quality operation of ALSA
drivers: a modified virtual ("dummy") driver, and a HDA Intel onboard sound-
card driver; for the 2.6.3% series of Linux kernels (same used as in our previous
work). In light of this, we also discuss the possibility of developing a full-duplez,
CD-quality version of our AudioArduino ALSA driver (intended for the older
FTDI-based Arduinos); as well as the software tools and debug analysis ap-
proaches used during development (some of them developed by ourselves, and
released as open-source [1]).

Keywords: audio systems, open systems, Linux kernel, computer science, driver,
ALSA

G.1 Introduction

In our previous work, we have explored the personal computer’s (PC) oper-
ating system (OS) perspective on the soundcard as a distinct peripheral de-
vice, by focusing on implementations of soundcard drivers for the Advanced
Linux Sound Architecture (ALSA): a virtual, capture-only, 8 bit/8kHz/mono
driver called minivosc in [2a]; and a Universal Serial Bus (USB), full-duplex,
8bit/44.1 kHz/mono driver called AudioArduino in [3a] (also reused in [5a]).
Since one of the main motivations behind this work, is the exploration of the
potential of open source soundcard hardware and software, as a basis for devel-
opment of undergraduate laboratory exercises in real-time streaming, on the
scale of a typical do-it-yourself (DIY) enthusiast [6a] — our approach was to
identify and discuss crucial points from the high-level software and hardware
development process, while attempting to abstract the low-level details (such
as the physical layer of USB communication, or the exact operation of the OS
kernel) as much as possible.

In retrospect, this choice of low fidelity audio transfer data rates (8000
and 44100 B/s, respectively) was the key aspect allowing us to focus on basics
such as the general layout of an ALSA driver, or the mechanics of the driver’s
circular buffer wrapping, while assuming that the rest of the system will simply
execute the timing right - and in that, having the freedom to ignore the details
of what goes on behind the scenes in the OS. On the other hand, we were also

G1—235

Paper G.

motivated to extend the exercise into what is known as the Red Book Compact
Disc Digital Audio (CD-DA) format [2]: 16 bit/44.1 kHz/stereo (or a data rate
of 176400 B/s), not only because it has been considered a standard for high-
quality audio in the past decades, but also because it introduces the concept of
multichannel audio (even if that multichannel operation is represented by only
two, the left and right, channels) - which we find to be a potentially exciting
laboratory exercise.

Our constraints were: to remain within the same kernel series as the rest of
our soundcard projects, which were developed on Ubuntu 10.04 Lucid (based
on Linux kernel version 2.6.32) and Ubuntu Natty (kernel 2.6.38) GNU /Linux
operating systems; to use relatively modern, but low-end development com-
puters (which in our case reduces to two netbooks, MSI Wind U135 and a
NetColors brand, both with dual Intel Atom N450 1.67 GHz processors; at
least 1 GB RAM; and hard disk drives, as opposed to SSD); and to eventually
come up with a driver product, that can demonstrate CD-quality full-duplex
operation with standard audio user software like Audacity. However, we quickly
found that within these constraints, this transition of a driver to higher data
rates is far from trivial, if one is not thoroughly acquainted with the poten-
tial obstacles. To begin with, both of our previous drivers are derived from
the dummy (or snd-dummy) virtual driver from ALSA, which uses the standard
Linux timer functions to handle capture and playback operations. These Linux
timer operations, however, have a resolution of a jiffy, which, depending on
the platform, can be up to several milliseconds in duration; and the OS kernel
can decide to reschedule a timer function at any time, by which audio drops
can be introduced in the audio streams. With a move to the high-resolution
timer application programming interface (APT) in Linux, we arrived at a virtual
driver that exhibited no problems with ALSA-only programs such as aplay or
arecord - but, when used with Audacity in full-duplex mode, it triggered a very
specific error in the underlying PortAudio user-space library. This lead us to
perform a comparison between the virtual driver, and a driver for an on-board
HDA Intel soundcard - and in that, recognize that ALSA, as a programming
interface, is primarily oriented towards card hardware that can utilize DMA
(direct memory access), and otherwise communicate to the PC host through
hardware interrupts. Note that the original dummy driver (unlike our minivosc
and AudioArduino ones) does not perform any memory copying operations,
and thus needs to spend no time on them; therefore the study of this driver
alone doesn’t suffice for analyzing streaming errors, as dummy cannot be made
to exhibit them (like the ones described later in this article).

Software timers (even high-resolution ones) add a layer of unreliability and
delays, and as such cannot ideally simulate the operation of a DMA interrupt
card. However, by attempting to simulate the operation of the HDA Intel
driver in our virtual driver with timer functions, we still managed to arrive at
a virtual driver called dummy-fix [1], that performs memory operations (writing
in the capture stream, like minivosc) and can demonstrate a full-duplex CD-
quality operation in Audacity, without problems and on the order of minutes.

G2—236

G.1. Introduction

Unfortunately, this alone is not readily transferable to our AudioArduino driver
for FTDI-based Arduino boards (like the Arduino Duemilanove): the kernel
functions for USB transfer, can have a timing as unreliable as software timers.
This, on one hand, can cause detection of missing bytes as over- or underruns
in e.g. the PortAudio user-space library (and subsequent stream restarts) - and
on the other hand, can cause an overrun error in the internal buffers of the
FTDI FT232 USB-serial chip, which is even harder to debug, due to the closed
and proprietary nature of the chip’s specifications.

In the scope of this article, we will only denote the base of decimal numbers
if needed to distinguish them from other notations; binary numbers (base 2)
will be indicated by a subscript suffix; while for hexadecimal numbers (base
16), instead of a subscript suffix, we will use the prefix "0x" (common in pro-
gramming languages like C); e.g. 107190 = 011010113 = 0x6B. We will use a
teletype font to indicate software related concepts like variables, kernel- and
user-space functions (which may occasionally be suffixed by a pair of parenthe-
ses, to emphasize their role as a function), files, libraries, packages, scripts and
programs — though typically not languages or applications commonly known
by their capitalized name. We will also use "OSs" as acronym for the plural
form of "Operating Systems"; and to keep it disambiguated from "Open Source
Software", we will refer to the that concept as free/libre/open-source software
(FLOSS) instead; conversely, we will denote non-free, gratis software as "free-
ware".

This article essentially details the development chronology outlined thus far,
and is organized as follows: the introduction continues with section G.2, which
provides a basic introduction to the issue of kernel preemption; followed by sec-
tion G.3, which discusses the behavior of timer functions in the Linux kernel.
This leads into section G.4, which argues the reasons why our previous work
didn’t show any problems, even in presence of timing function jitter. During
this phase, we developed a small Python-based application to facilitate brows-
ing of timestamped log files, discussed in subsection G.4.1. Section G.5, on the
whole, describes the development of a virtual, CD-quality, full-duplex driver for
ALSA; in more detail, subsection G.5.1 provides an overview of the different
components interacting through ALSA, emphasizing our development context.
The following subsection, G.5.2, reviews the concept of full-duplex, and related
ALSA concepts; while the next subsection G.5.3 first focuses on the concept
of DMA, and then discusses the procedure we used to compare the full-duplex
operation of the HDA Intel and dummy ALSA drivers. This is followed by
subsection G.5.4, where we note our use of the open source plotting applica-
tion gnuplot to visualize Linux kernel logs, and how the plot analysis led to a
solution for a virtual CD-quality full-duplex driver. The difficulty in applying
the fixes from our full-duplex virtual driver, to a driver for an FTDI-based
Arduino, is expounded on in section G.6. First, we take a closer look at the
mechanics of USB, and the concept of full-duplex therein, in subsection G.6.1.
Then, in subsection G.6.2, we provide an overview of our analysis, that lead us
to conclude that the source of the particular error is an overrun in the buffers

G3—237

Paper G.

on board the FT232 chip. Finally, we detail the inconclusive analysis efforts to
solve this error in subsection G.6.3, which also includes visualization aspects:
a special difficulty during the profiling of the FT232 chip, was the need to plot
multiple tracks of relatively fine-grained data with a relatively long duration
- we addressed this with a development of a small Python-based application,
also discussed in this subsection. We then provide an overview of some of the
debugging approaches we used in section G.7, followed by a general comment
on obsolescence in section G.8; and we finally wrap up with a conclusion in
section G.9. Most of the driver code and scripts developed by us, used for dis-
cussions in this article, have been released as free/libre/open-source software;
please see [1] for more.

This work was originally intended for the computer and electronic music
instrument community; the multidisciplinary research in this area usually ab-
stracts the technical operation of the soundcard without focusing on it. Thus,
arriving at a level allowing for design within digital audio hardware, would re-
quire consultation of literature that assumes acquaintance with concepts, not
central to this background. For this reason, we have tried to focus (as in
sect. G.2), on concepts that might be considered trivial from the perspective
of a computer or signal processing scientist; or detail debugging and analysis
approaches and tools (as in sect. G.7), that might be trivial to an experienced
engineer developer. We believe that one of the main issues in streaming digital
audio design is the ability to predict the possibility of errors (like overruns)
from the performance characteristics of participating devices, already in the
design stage. With the tutorial-like approach, which includes details on errors
we encountered in the development process, we hope to contribute with a ba-
sic reference - with reproducible, FLOSS, examples - that will support better
understanding of these issues, in a multidisciplinary context outside of their
native fields.

G.2 A basic understanding of Linux kernel operation
and preemption

On the simplest conceptual level, a software program can be understood as a
sequential, ordered list of software commands, as afforded by a particular pro-
gramming language. This implies that the commands the programmer writes,
are going to be executed in the same sequential order by the processor of a
computer. This general idea holds for both low-level (e.g. C) and high-level
(e.g. scripting, like JavaScript) languages, even if it is immediately rendered
inaccurate, at the least, by the very existence of facilities for unconditional
(e.g. jump) and conditional (e.g. if /else) branching in most programming lan-
guages. However, we can also consider that programs typically branch to a
group of sequential commands, which can be rudimentarily equated to the con-
cept of a subroutine (a.k.a. function); and for a sequence of non-branching
commands within any subroutine, we usually take for granted that they will

G4—238

G.2. A basic understanding of Linux kernel operation and preemption

be executed in that same order.

However, this simple conceptualization does not reveal exactly what is exe-
cuted by the computer processor when — that is, it doesn’t supply us with any
model for the timing of execution. The "what" part of the question is somewhat
easier to answer, since what a central processing unit (or CPU) executes is a
machine instruction: in essence, a sequence of integer numbers. While these
numbers are often written in hexadecimal notation, their bit pattern in binary
notation would, essentially, represent the voltage pattern enforced on the wires
(or lines) of the address and data busses connected to the CPU pins at a par-
ticular moment in time. As such, machine instructions are particular to each
CPU architecture, and its engine as implemented in silico - and the changes of
the voltage pattern they represent, in takt with the oscillator clock that drives
the CPU, would represent (a part of) the execution of software in the physical
world.

The difficulties of programming directly in machine language has under-
standably driven the development and increasing use of high-level programming
languages; however, an environment where high-level language development
dominates, can easily end up obscuring the link to machine language (even for
those of us, who in their childhood may have been introduced to the concept —
through computer platforms now long obsolete, such as Commodore 64 or ZX
Spectrum). The most straight-forward mapping from machine instructions to
a low-level language is preserved in assembly languages, where the portion of
machine instructions specifying the operation of the CPU (known as opcode)
is represented through alphabetic mnemonics, and the portion representing the
operand data is written in a more human-readable form. Even with these allevi-
ations, the tight binding to machine language makes assembly difficult to read
and program in. However, a relatively straight-forward mapping to machine in-
structions can be obtained from other, more intuitive low-level languages, such
as C.

A simple example of this can be seen on Fig. G.1 left (listing G.2:1a), which
is a listing of a trivially simple program written in the C language, min.c,
which adds two numbers and returns the result. Using a compiler (here, the
GNU Compiler Collection or gecc), we can convert a source code program in
C language to its executable, machine instruction, form — as an executable (or
colloquially, "binary") file. Then, by using a disassembler, we can obtain an
assembly language listing of the executable file; the disassembler used here
(objdump) can, under certain settings, interleave the original C source code
commands within the assembly listing. A portion of the assembly listing thus
generated from the min. ¢ executable is shown on Fig. G.1 right (listing G.2:1b);
the first column stands for the virtual address of the machine instruction in hex-
adecimal notation, the second column contains the actual machine instruction
rendered as hexadecimal bytes, and the third column shows the same machine
instruction in an assembly format with a mnemonic. The lines on Fig. G.1
relate the locations of C commands in the original source code, with their po-
sitions in the assembly listing of the executable; and they demonstrate that

G5—239

Paper G.

the sequential order of command execution as specified in the C code, has been
preserved in the executable machine instruction form as well.

We can note that besides translating our main function (the entirety of the
min.c code), the compiler has also automatically added sections related to ini-
tialization and termination of the program, which also link into the standard C
library (under Linux, known as 1ibc). It is also notable that we have to specify
to the gcc compiler not to optimize code (through the command line switch
-00), in order to get such an obvious correspondence between C and assembly
listings; otherwise (for optimization -03, for example), the compiler would have
detected that the two numbers being added, given they are hardcoded, will not
change across different runs of the program — and so, the compiler would decide
to simply return the value 5, as the entirety of the machine code translation of
the min.c program!

Awareness of, simply speaking, a linear translation of a programming lan-
guage to machine code (as shown on Fig. G.1), is not necessarily difficult for
a programmer to gain, even with little previous experience with assembly lan-
guage: essentially, it can be understood as sequential grouping of commands,
similar to the case of subroutines (or functions). However, such a model of the
translation process, may also imply that the machine instructions (and thus
the originating C commands) are executed immediately one after another in
time by the CPU — which turns out to be a gross approximation. Besides com-
piler optimization, which can significantly obscure the direct correspondence
between C and machine code, facilities like threads and asynchronous event
handling (available for the C language through libraries) introduce further dif-
ficulties in predicting the timing of execution of code: threads are supposed to
give the impression of running in parallel (meaning, at the same time) as other
function(s) on the same CPU; while asynchronous event handlers are functions
that respond to events that, in essence, are expected to happen unpredictably
randomly in time.

It becomes clear, then, that facilities which we’ve learned to expect on
modern OSs, such as multitasking in a graphical user interface (GUI) desktop
environment, would be difficult to implement - if different programs are to be
always executed machine instruction by instruction, without any interruption,
until they terminate. And indeed, that is why modern OSs make use of the
concept of time (division) multiplex. This term in telecommunication refers to
multiple signals transferred through a single channel by assigning them each
a slice of time, where a particular signal would be exclusively present on the
channel; similarly, in computing, it refers to an OS allocating each software
process (corresponding to one [of many| instantiation of a program) a slice
of time, where its machine instructions will be exclusively executed by the
CPU. This, in turn, implies that the OS will also be in charge of pausing a
process, once it has used up its time slice — and switching the execution to
a different process for the next time slice; which implies that this part of the
operating system must have a higher priority (or privilege) than any other
software running on the system. This part of the OS is typically known as

G6—240

G.2. A basic understanding of Linux kernel operation and preemption

Fig. G.1: Relating C and machine language code. Left: a simple program in C programming
language; right: listing (edited) of machine instructions and assembly of the corresponding
executable, generated by the compiler. The arrows indicate the translation of individual lines
of C code to machine code.

Listing G.2:1b: Machine instructions assembly of min.exe, ob-

tained using:

objdump -S min.exe

Disassembly of section .init:

08048324 <_init>:

8048324: 55 push %ebp
8048325: 89 eb mov %esp,’%ebp

Disassembly of section .text:

080483c0 <_start>:

80483c0: 31 ed xor %ebp,’%ebp
80483c2: be pop ‘%esi
80483c3: 89 el mov %esp,hecx
Listing G.2:1a: Source .
code of min.c, 80483d7: 68 c4 84 04 08 push $0x80484c4
compiled without 80483dc: e8 a3 ff ff ff call <__libc_start_main@plt>
- . . 80483el: f4 hlt
optimization, using: 8048362: 90 nop
gcc -g -00 min.c -o
min.exe
080484c4 <main>:
lint main(void) {|
‘ 80484c4: 55 push %ebp
. . . 80484c5: 89 e5 mov %esp,keb
‘1nt main(void) ‘ 80484c7: 83 ec 10 sub $0xI1)o,%e};p
‘ 80484ca: e8 db5 fe ff ff call 80483a4 <mcount@plt>
. F
int a = 2; | | 80484ct: <7 45 fc 02 00 00 00 movl $0x2,-0x4(%ebp)
int b = 3;
. " ‘ ‘ 80484d6: c7 45 £8 03 00 00 00 movl $0x3,-0x8(%ebp)
int C; !H!I!I
‘ ‘ c =a+ b;

_ N 80484dd: 8b 45 f8 mov -0x8(%ebp) ,%eax
c=a+hb; | 80484e0: 8b 55 fc mov -Ox4(Y%ebp) ,%edx
return c; 80484e3: 8d 04 02 lea (%edx,%eax,1),%eax

} - 80484e6: 89 45 f4 mov %eax,-Oxc(%ebp)
80484e9: 8b 45 f4 mov -Oxc(%ebp) ,%eax
}
80484ec: c9 leave
80484ed: c3 ret

Disassembly of section .fini:
080485cc <_fini>:

80485cc: 55 push %ebp

80485cd: 89 eb mov %esp,%ebp

80485cf: 53 push %ebx

80485d0: 83 ec 04 sub $0x4,%esp

80485d3: e8 00 00 00 00 call 80485d8 <_fini+0xc>
80485d8: 5b pop ‘%ebx

80485d9: 81 c3 1c 1a 00 00 add $0xlalc,%ebx
80485df: e8 5c fe ff ff call <__do_global_dtors_aux>
80485e4: 59 pop %hecx

80485e5: 5b pop %ebx

80485e6 c9 leave

80485e7 c3 ret

Gy—241

Paper G.

the kernel; and indeed, time multiplexing (i.e. process switching) is one of the
main tasks of the Linux kernel as well (among other tasks like memory and
device management).

Conceptualizing this part of computer operation is made easier, if we think
about what happens when one starts one too many programs on one’s PC; how-
ever, it can be much more difficult to observe directly. Thankfully, the Linux
kernel has a built-in debugging facility known as ftrace, allowing precisely
this; an example is shown on Fig. G.2.

The lines on Fig. G.2 relate the first two machine instructions of the assem-
bly listing from Fig. G.1, with their respective location in the logfile produced
by ftrace (listing G.2:2b) — which, being timestamped, also determines more
precisely when these instructions were executed. It is important to note that
this kind of a log, internally called function_graph, traces only the entries
and exits of Linux kernel functions; execution of user-space software, like the
min.c program, is essentially transparent to it - therefore, additional measures
have to be taken, so that execution of user-space instructions is also present in
this log. In any case, the combination of user-space instructions, and the de-
scriptive kernel function names (that may indicate the function’s purpose even
without a previous acquaintance with the kernel API) allow us to reconstruct
how did that particular execution proceed, on the particular development OS.

The ftrace documentation notes that the system allows for choosing the
source clock for timestamps: only local and global are present as choices on the
2.6.* series we used, although newer kernel releases offer more. The local clock
is the default choice, and the source for listing G.2:2b as well; it is notable
that the local clock, while fast, is not necessarily monotonic between CPUs.
For instance, note that listing G.2:2b shows that the timestamp 1.685222 is
reported twice: once for each CPU. In this case, it is impossible to determine
which instruction got executed first in terms of an independent observer clock,
even if the log formatting itself (as consecutive lines of text) automatically
imposes some ordering; in a sense, this represents a real world illustration
of the issues in distributed computing systems, discussed within the topic of
Lamport timestamps [3].

From listing G.2:2b, we can see that the kernel in charge of process (or task)
switching, indicated by functions like pick_next_task_fair() or finish_task
_switch(), and by the task switching notices (<idle> => min.exe, min.exe

=> kworker). But beyond task switching, the kernel also manages the CPU
migration: note that in this time slice, min. exe starts running on processor 1,
but ends running on processor 0. This is a feature present on modern notebooks
that use multiprocessor CPUs that address the same shared resources (like
memory), also known as symmetric multiprocessing (SMP).

Furthermore, listing G.2:2b implies that, from the perspective of the kernel,
the execution of a user-space software (like min.exe) simply consists of mov-
ing pages of memory (indicated by kernel functions like handle_pte_fault (),
do_wp_page () and vm_normal_page()) to a given CPU, which the CPU then
executes (without the kernel directly intervening in or "listening to" that). Ad-

G8—242

G.2. A basic understanding of Linux kernel operation and preemption

Fig. G.2: Identifying machine code in a kernel log printout Left: snippet (edited) of executable
machine instructions of min.exe (in mnemonic form only - same as in Fig. G.1 listing G.2:1b,
but with byte representation of machine code omitted). Right: a kernel trace (edited),
obtained during execution of min.exe. The columns on listing G.2:2b represent absolute
time; CPU number and process name; and the function (or its exit) that executed at that
point. The functions’ indendation is relative to the particular function call stack, for the
corresponding process and CPU.

Listing G.2:2b: A snippet of a function graph kernel trace,

during execution of min.exe

1.684497 | 1) <idle>-0 | native_load_tls();

1.684498 | 0) bash | kmap_atomic_prot() {

1.684499 | 0) bash | native_set_pte();

1) <idle>-0 => min.exe

1.684499 | 1) min.exe | schedule_tail() {

1.684500 | 1) min.exe | finish_task_switch();

1.684501 | 0) bash | arch_flush_lazy_mmu_mode();

1.684502 | 0) bash | }

1.684503 | 1) min.exe | _ cond_resched();

1.684503 | 0) bash |

1.684504 | 0) bash | _ raw_spin_lock();

1.685222 | 1) min.exe | handle_pte_fault() {

L. 1.685222 | 0) bash | __ slab_free();
Listing G.2:2a: Machine in- 1.685223 | 1) min.exe | raw_spin_lock();
. . 1.685224 | 0) bash |
structions of the main() func- 1.685225 | 1) min.exe | do_wp_page() {
tion of min.exe 1.685225 | 0) bash |

1.685226 | 1) min.exe | vm_normal_page() ;

1.685226 | 0) bash | file_free_rcu() {
080484c4 <main>: 1.696925 | 0) rs:main | jbd2_journal_add_journal
. . . 1.696925 | 1) min.exe | /* 80484c4: 55 push %ebp */|
int main(void) { 1.696927 | 0) rs:main | do_get_write_access() {
\80484c4: push %ebp‘ 1.696927 | 1) min.exe | }

‘80484c5: mov %esp,’/,ebp‘ 1.696928 | 0) rs:main | _ cond_resched() ;
. 1.696928 | 1) min.exe | native_set_debugreg();
80484c7: sub $0x10,%esp 1.696930 | 0) rs:main | unlock_buffer() {
80484ca: call 80483a4 <mco 1.696931 | 0) rs:main | wake_up_bit() {
. 1.696932 | 0) rs:main | bit_waitqueue();
1.696932 | 1) min.exe | native_get_debugreg();
80484cf: movl $0x2,-0x4 (%ebp 1.696934 | 0) rs:main | __ ¢ eree wake_up_bit();
) 1.696934 | 1) min.exe | native_set_debugreg();
80484d6: movl $0x3,-0x8(%ebp 1.696036 | 0) ra:main | ’
1.696936 | 1) min.exe | native_get_debugreg();
) 1.696937 | 0) rs:main |
80484dd: mov -0x8(%ebp),% 1.696938 | 0) rs:main | jbd2_journal_cancel_r
eax
. . 1.696938 | 1) min.exe | native_set_debugreg();
80484e0: mov -0x4(Jebp),% 1.696939 | 0) rs:main | ¥
edx 1.696940 | 1) min.exe | O {
80484e3: lea (%edx,%eax 1.696941 | 0) rs:main | jbd2_journal_put_journal
sl 1.696942 | 1) min.exe | /* 80484c5: 89 e5 mov %esp,%ebp */|
80484e6: mov %eax,-Oxc(%ebp 1.696943 | 0) rs:main | ¥
) 1.696943 | 1) min.exe | }
80484e9: mov -Oxc(%ebp),% eo00at 1 03 reimain | ’
eax
3} 1.708202 | 0) min.exe | pick_next_task_fair() {

1.708203 | 1) bash | nsecs_to_jiffies();

1.708203 | 0) min.exe | clear_buddies.clone.58() ;

1.708205 | 1) bash | }

1.708205 | 0) min.exe | update_stats_wait_end.clone.93Q);

1.708206 | 1) bash | _ raw_spin_lock_irq();

1.708207 | 0) min.exe | hrtick_start_fair();

1.708209 | 1) bash | _ cond_resched() ;

1.708209 | 0) min.exe | }

1.708212 | 1) bash | release_task() {

1.708212 | 0) min.exe | native_read_cr0(Q);

1.708213 | 1) bash | proc_flush_task() {

1.708214 | 1) bash | proc_flush_task_mnt.clone.5() {

1.708214 | 0) min.exe | native_write_cr0(Q);

1.708216 | 0) min.exe | native_load_sp0();

1.708218 | 0) min.exe | native_load_tls();

1.708219 | 1) bash | d_hash_and_lookup() {

0) min.exe => kworker-8516

G9—243

Paper G.

ditionally, the kernel always has the priority to interrupt execution of a user
program, even at the granularity level of a single machine instruction: as it
can be seen, our first two machine instructions are separated by kernel calls
to native_set_debugreg() within the same min.exe process. In this particu-
lar case, these calls are an artifact of our debugging setup; but the important
thing in general is that the kernel — at any time — can interrupt execution of
user-space programs. This shows that predicting the timing and order of exe-
cution of user (and kernel) programs, becomes increasingly difficult in an SMP
environment (see also [4]).

The ability of the kernel to control the execution timing of user-space pro-
cesses by switching them is known as process preemption, and it has been a
feature of the Linux kernel for a long time [5]. However, the 2.6 series of kernels
introduced the concept of kernel preemption - meaning that functions running
as part of the kernel become preemptible themselves [6], [7]. In other words,
with kernel preemption, the kernel can decide at any time to reschedule its own,
high- priority functions — and this has a specific influence on the performance of
kernel functions. In particular, here we’re interested in those kernel functions,
that we would expect would provide us with a consistently periodic clock tick,
known as timer functions — which have been essential in our previous driver
development work. This influence is the focus of the next section.

As a side note, let us mention that our example program, min. c, is so trivial,
it will not produce any visible output when the executable min.exe is ran (we
would have to separately print the return value from the terminal shell, after
the program has terminated and returned, to see it). Anything else would have
greatly increased the complexity of the example from the kernel perspective:
printing the output value through a C API function like printf () depends on
what the standard output is routed to; and in the most common use case of
terminal emulators, may involve character device and terminal emulator driver
calls to the kernel. On the other hand, writing that value to disk through a
C API function like write() may be even more complex, as it includes block
device, file system and hard disk driver calls to the kernel. The code used to
generate the snippets on Fig. G.1 and Fig. G.2, as well as the original debug
logs obtained for those figures, are available online via [1] under the name
trace-user-program.

G.3 Standard vs. high-resolution timers in the Linux
kernel

By programming a soundcard audio driver, we basically want to gain control,
from the PC OS environment, of the analog-to-digital (ADC) and digital-to-
analog (DAC) conversion processes occurring on the soundcard hardware. Since
both ADC and DAC are defined as repeatable (or periodic) processes in time,
driven by an oscillator clock - to address them, we similarly would need facilities
that allow periodic executions of subroutines from software. Both C and higher

G1o—244

G.3. Standard vs. high-resolution timers in the Linux kernel

level scripting languages (like Perl or Python) have libraries available, which
facilitate programming of functions that execute periodically in time.

It should be noted, that in general, we can think about periodically exe-
cuting software code in several ways. For one, we can think of it as a thread,
which executes its task code, and then sleeps for a specified interval of time,
before looping and executing again. This is relatively easy to implement in
the mentioned languages as user-space software; however, being aware of pro-
cess preemption, it is clear that we cannot expect periodicity at exactly the
sleep time: the kernel can (and will), at any time, reschedule the thread for
execution later, and thus the only guarantee we have is that we will obtain
periodicity with at least the sleep time as period, but most likely more by a
random amount of time. In other words, we cannot expect t, = Ts ; only that
ta > Ts , where t, is actual time of execution of a code loop, and T represents
the requested sleep time as a period.

In terms of hardware, this means that for: a hardware clock running on
the soundcard hardware; and a periodic PC software subroutine as described;
which are started at the same time - the periodic subroutine will necessar-
ily demonstrate clock drift in respect to the oscillator clock on the peripheral
hardware, as it runs later than it on average. Thus, even if a certain timing
uncertainty in the subroutine period would be introduced just by the very ex-
istence of conditional branching in the subroutine’s task code, it is reasonable
to attempt to minimize the effects of user-space process preemption when ad-
dressing hardware. Thus, soundcard (and other) device drivers would naturally
belong to kernel space, assuming the form of kernel modules - and it is here,
where our primary interest in an appropriate API for periodic subroutines lies.

Under Linux, the primary - or for the purposes of this document, stan-
dard - kernel C language API to allow for periodic subroutines, is formed by
the struct timer_list and the functions init_timer (), add_timer (), and
del_timer (), provided by the header <linux/time.h>. While this API re-
ceives but a skint mention in /Documentation/DocBook/kernel-locking.tmpl
and /Documentation/local ops.txt files of the documentation, that follows
with the kernel source code for this series — it is described in more detail in [8,
Chapter 7, "Time, Delays, and Deferred Work'] as "The Timer API". The same
APT is also used in our virtual minivosc [2a], as well as the AudioArduino [3a]
ALSA drivers. It is notable that in this API, the add_timer function is, effec-
tively, a one-shot: we specify a timer function to be executed, and time when it
should be executed, and then we call add_timer () to start the process; when
that time arrives, the function is executed - and will not be executed again,
unless we call add_timer (or alternatively, mod_timer) again from within the
function. Periodic repetition is thus achieved, through the timer function re-
peatedly scheduling itself, at a constant interval in the future — that is, at a
time which is a constant duration away in the future from the current one.

An important thing to realize about this API, is that within it, time is
expressed at a resolution of a jiffy. The duration of one jiffy is platform de-
pendent, and it depends on the kernel configuration variable HZ, which is set

G11—245

Paper G.

at kernel compile time. This HZ value is used to program the timing hardware
of a PC at kernel boot time, which will thereafter generate a timing interrupt,
that serves as the main system tick of the kernel. This tick “is the CPU’s cue
to reconsider which process should be running, catch up with read-copy-update
(RCU) callbacks, and generally handle any necessary housekeeping [9]”. At each
such tick, the internal kernel variable jiffies is increased, and as such “it rep-
resents the number of clock ticks since last boot [8]”. The duration of one jiffy

T;) would then be simply:
J

1
T = —
VA

The value of HZ is typically between 100 and 1000, and can be obtained by
printing it from a kernel module, or from the kernel build configuration file;
the kernel can make it available through the /proc filesystem, but it doesn’t
do so for our development platform. On our machines, the kernel configuration
is provided as a file named /boot/config-*, with the kernel release string
appended. The problem is that for our 2.6.38 machine, it reports both CONFIG
_HZ=250 and CONFIG_NO_HZ=y. The CONFIG_NO_HZ option implies a tickless
kernel, described in /Documentation/timers/NO__HZ.txt (in kernel sources):
essentially, it will turn off the system tick if the CPU is idle for a long period,
for power management purposes. The value can also be double-checked by
utilizing the kernel-managed file /proc/timer_list and for our 2.6.38 machine
it returns 250; thus the duration of a jiffy on this platform, as per Eq. G.3.1,
would be 4 ms.

The most straightforward way to debug the Linux kernel is by using the
printk() kernel function: it will output a supplied message to the system
log (on our platforms, represented by the file /var/log/syslog), prefixed by
a timestamp, formatted as a floating point number with 6 decimals (just like
the timestamps on the ftrace log in listing G.2:2b) which represents seconds.
While this may imply microsecond resolution of the printk() timestamp, as
a rule of thumb it should be assumed that there is no guarantee of that: the
timestamp obtained may have a larger granularity than 1 us. Thus, one way to
observe a periodic timer function with a period of one jiffy, is to write a kernel
module which starts a timer function with the standard Timer API, whose only
task would be to print a message to the log, and then reschedule itself to 1 jiffy
in the future. We have written a small kernel module named testjiffy, which
does exactly that - its timer function is started when the module is loaded, and
automatically stops after 10 iterations; timestamps from the messages can be
extracted by post-processing the log, and graphed using a plotting application
like gnuplot. We have written a small script to automate this process, and
result of one such run of the script is shown on Fig. G.3.

The sequence shown on Fig. G.3 left, does correspond to the expected be-
havior of this driver: all of the timestamps of the kernel log messages, produced
by the module’s timer function, indeed are about 4 ms — the duration of a jiffy
— apart, thus forming a periodic sequence. However, there is also jitter: small
enough that it is not visible on the time sequence plot, but visible both on the

(G.3.1)

G12—246

G.3. Standard vs. high-resolution timers in the Linux kernel

Fig. G.3: Expected behavior of the standard Linux timer in the testjiffy module. The
left-hand side plot is in the time-domain, and shows the positions of the timestamps (of
system log messages); the sequence is offset so the first timestamp (not plotted) starts at 0.
The right-hand side plot is an absolute count histogram of time intervals (deltas) between
consecutive timestamps, with bin width 0.05 ms; average (n=9) is 4004.200 ys (o = 18.407 yus)

N A

_testjiffy _00001.dat (timestamps) _testjiffy _00001.dat (delta histogram)

6 |

ot

consecutive timestamp delta histogram on Fig. G.3 right — and as a standard
deviation of 0=18.407 us. The interesting thing here is that we have obtained
time deltas that can be either larger or smaller than the reference jiffy period
of 4ms.

The larger deltas we could easily attribute to kernel preemption; however
the smaller ones are difficult to interpret otherwise, than as an existence of an
algorithm that attempts to minimize the effects of the overall clock drift. While
these reasons are simply a hypothesis (whose confirmation through a dedicated
debug procedure is outside the scope of this project), the existence of the jitter is
a clearly visible fact. It is notable that this jitter happens, because the kernel
“executes timers in bottom-half context, as softirgs, after the timer interrupt
completes [10]” — and a software interrupt (or softirq) represents the second
highest level of priority in the Linux kernel; right below hardware interrupts.
However, while the situation on Fig. G.3 reappears on most runs of the test on
our development platform, it does not occur always. In fact, relatively often,
a somewhat significant departure from the expected can occur; a log captured
from one such run is plotted on Fig. G.4.

This time, Fig. G.4 (left) quite explicitly shows that one of the expected im-
pulses is "dropped". A closer inspection reveals that it is not missing, but after
the gap, there are two impulses: logged as only 48 us apart, on the sequence
plot they appear to overlap (emphasized by the stronger pulse color, and the
axis labels overlap). Simultaneously, the histogram on Fig. G.4 right shows
occurrences of a delta, one close to 0, and another one close to twice the jiffy
period (while the others cluster around the jiffy period like on Fig. G.3). This
implies that the execution of the timer function was not only preempted, but

G13—247

Paper G.

Fig. G.4: Behavior of the standard Linux timer in the testjiffy module exhibiting a
rescheduling "drop". The left-hand side plot is in the time-domain, and shows the positions
of the timestamps (of system log messages); the sequence is offset so the first timestamp
(not plotted) starts at 0. The right-hand side plot is an absolute count histogram of time
intervals (deltas) between consecutive timestamps, with bin width 0.05 ms; average (n=9) is
4001.66 ps (o = 1.879ms)

_testjiffy00002.dat (timestamps) NA __testjiffy _00002.dat (delta histogram)
6
5
4
3
9]
1]
g, & 0 an 2 o 5 ot e e A
4%} 9. < (9(99 B (9%) Yogg 6')0%) 4 (9(99 0'0/@ (000.000 4000 4000 .000 .000 -000 4000 4000 .000 »000

also rescheduled: since the kernel has no smaller option for rescheduling in the
future, than increasing the expiration counter of the timer (expressed in jiffies)
by 1 — effectively, this would result with rescheduling the timer function at the
next system tick. However, at that time (say, at ¢ jiffies), the kernel would
also have scheduled the regular, "next expected" timer function iteration, to
occur at i+ 1 jiffies. Thus, both the re-scheduled, and the normally scheduled,
iterations of the timer function would be set to run at i+ 1 jiffies — which
would account for the "overlapping" impulses, which record the timer functions
running very shortly after each other in quick succession.

While confirming the exact sequence of events leading to the behavior shown
on Fig. G.4, is again a debugging effort beyond the scope of this project - the
important thing is that, in terms of periodic functions, this demonstrates jitter
(or in general, timing uncertainty) of up to the entire expected period duration,
if we aim at the smallest possible period with this API (the duration of a
jiffy). This is significantly higher than a case like on Fig. G.3, where the
uncertainty, expressed through standard deviation, is two orders of magnitude
smaller than the period duration itself. We should also note that quite often,
we have also obtained captures with a timing gap like on Fig. G.4, but without
two "overlapping" impulses — which would represent an actual case of a timer
function being "dropped" (with the meaning of "left out"), as the plot in that
case, contains one less impulse than the expected 9.

At this point, we should mention that due to the small number of iterations,
the statistics on Fig. G.3 and Fig. G.4 is not meant to be an indicator of general
behavior; instead, it demonstrates that kernel timer function uncertainty of up

G14—248

G.3. Standard vs. high-resolution timers in the Linux kernel

to a jiffy is relatively easy to stumble upon and record - even in circumstances
of otherwise no significant OS load. In all, this shows that the standard kernel
Timer API is unreliable as a clock mechanism, for a periodic function with the
minimum possible period of one jiffy — however, we should add that this is not
a problem if the repetition period increases: at a period of, say, 400 ms, an
uncertainty of 4ms already starts becoming insignificant, and grows more so
as the period increases.

Specifically, we can see this as a timing resolution problem: the standard
kernel Timer API simply does not have a mechanism, that can manage time
duration less than a a jiffy, and can only manage integer multiples of this
quantum. However, there exists a mechanism in this kernel release, which
addresses precisely that - known as the high-resolution kernel timer API, often
called "hrtimers". We have written a small kernel module named testjiffy_hr,
which uses this API to do exactly the same as testjiffy did previously: run a
timer function (which simply writes a timestamped message in the system log)
repeatedly with a period of one jiffy (4ms), and stop it after a certain amount
of repetitions (here 200). The analysis of the message timestamps is otherwise
the same: we plot the timestamps in the time domain, and their deltas as
histogram — and a capture of one such typical run is shown on Fig. G.5.

Fig. G.5: Behavior of the high-resolution Linux timer in the testjiffy_hr module. The left-
hand side plot is in the time-domain, and shows the positions of the timestamps (of system
log messages); the sequence is offset so the first timestamp (not plotted) starts at 0. Only
each 20th timestamp is emphasized, to give a sense of scale; the remaining timestamps are
represented by a thin line. The right-hand side plot is an absolute count histogram of time
intervals (deltas) between consecutive timestamps, with bin width 0.05 ms ; average (n=199)
is 4000.110 ps (o = 53.382 pis)

N &
80

_testjiffy_hr 00001.dat (timestamps)

_testjiffy_hr 00001.dat (delta histogram)

70
60

— [} w = o
o (=} (=] o (=}

t [ms]

<, 8 <& P Y Ko G O
%, %, %, %, 2, %, %, %, e, e,
VU Yy o Yy Y By % %,

While the hrtimers kernel API is not mentioned in, say, [8], its design is
addressed in both /Documentation/timers/hrtimers.txt and /Documentation/-
timers/highres.txt in the kernel source tree, as well as in [11]. Tt is a relatively
recent addition to the kernel, present since the 2.6.16 release [12]. Even if it is
difficult to observe the detail of time sequence on Fig. G.5 left, by subsampling

G15—249

Paper G.

at a regular interval (like emphasizing each 20th sample), we can perceive at
first glance a relatively stable period on this scale. The histogram on Fig. G.5
right reveals more detail: while the standard deviation is somewhat (nearly
3 times) larger than the one on Fig. G.3, the majority of the time deltas on
Fig. G.5 fall in the same two bins as on Fig. G.3. The histogram is also quite
symmetrically centered around the target period of 4 ms; we can again surmise
this as evidence of a kernel algorithm aiming to compensate errors that have
resulted with deltas longer than the period, by scheduling other timer function
calls at deltas shorter than the period. In other words, once a timer function
starts executing later than the expected period, is already too late to do any-
thing about it; we cannot go back in time, and force the kernel to execute the
timer function at the otherwise appropriate moment in the past. The kernel
can only try to compensate for the effects of this error, by scheduling the next
timer function a little early: if it executes as planned, it would then bring the
periodic execution back in sync, in principle at least.

We should note that in our experience with repeated test runs of testjiffy
_hr under conditions of no significant OS load, we have never observed a "drop"
or a reschedule on the order of the 4ms jiffy period as on Fig. G.4: most of
the time, the distribution of time deltas remains similar to Fig. G.5 (where
the span of active bins represents but 7.5% of the 4ms period); although,
the distribution is influenced by increasing OS load. As such, we find the
hrtimers API to be a reliable clock mechanism, for implementation of a periodic
function, with a period on the order of 4ms and longer (and as seen later in
subsection G.6.3, Fig. G.32, also shorter).

The high-resolution timers’ C language kernel API, allowing for periodic
subroutines, is formed by the struct hrtimer and the functions hrtimer_
init (), hrtimer_start(), and hrtimer_cancel(), provided by the header
<linux/hrtimer.h>. In contrast to the standard kernel Timer API, here we
don’t reschedule the timer function "from itself" anymore; instead, the period
duration and the HRTIMER_MODE_REL constant are supplied to the hrtimer_
start () call, and in return, the timer function is repeatedly rescheduled, as
long as it returns the constant HRTIMER_RESTART; the periodic behavior can
be terminated by returning the constant HRTIMER_NORESTART from the timer
function instead. This kind of organization seemingly allows for the hrtimers
API to be "informed" about the demand for periodic performance; and as such,
may have better opportunities to compensate for random preemption drift —
which might clarify why the histogram on Fig. G.5 right, seems rather balanced.

The code for the testjiffy and testjiffy_hr modules, as well as scripts
and original debug log data used to generate Fig. G.3, Fig. G.4, and Fig. G.5,
are available online via [1] under the name testjiffy. Developing these mod-
ules was impeded by our previous experience, as we have already used the stan-
dard Timer API, at a period of one jiffy, previously: both in a virtual [2a] and
a real [3a, 5a] soundcard driver context; and yet, we have never observed any
problems with their performance, that would point to periodic timer functions
being postponed for an entire period duration. And in light of the discussion

G16—250

G.4. The effect of period-long timer function jitter, with streaming data rates as
parameter

so far, it is difficult to accept that such delays or drops were not happening; it
is far more likely that they indeed were occurring, but their effects ended up
being masked by the specific operation regimes of those drivers. This kind of
outcome is examined in more detail in the next, section G.4.

G.4 The effect of period-long timer function jitter,
with streaming data rates as parameter

Let us first consider the context of Minivosc (with kernel module snd-minivosc
o [2a]) and AudioArduino (snd_ftdi_audard.ko [3a, 5a]) ALSA drivers,
shown on Fig. G.6.

Fig. G.6: A block diagram overview of the context of some of our development. The PC OS
block visualizes executable programs and shared libraries (.so) as part of the user space; and
specific kernel modules (.ko) as part of the kernel space. An Arduino board, representing a
soundcard peripheral device, is connected via USB to the PC; a USB/Serial chip on the board
converts the USB signal to RS232 serial signal (carried through by RX and TX [receive and
transmit, from perspective of the microcontroller] lines), which is what the microcontroller on
the Arduino communicates through. The microcontroller, as a soundcard in AudioArduino,
handles analog I/O through its analog (A0) and digital (D6) pins.

kernel space

s
snd-minivosc.ko
. Soundcore.ko
libasound.sofr == == :
g 11T v v T~
3B
Libportaudio.so

: "/\,/k*—,/"\,,'\\rr’iumx‘ i; d
Personal Computer; Linux Operating Systen IJ;

In user-space, ALSA is represented by the shared library object 1ibasound
.so; audio applications like aplay or audacity are ultimately linked against
this library, so they can use the ALSA API functions. However, note that
audacity uses the PortAudio library, which provides a consistent user-space
cross-platform API for soundcard operation; as such, audacity is actually pri-
marily linked against libportaudio.so; which then ensures proper hooking
into libasound.so. As such, PortAudio represents an extra layer of indirec-
tion into the audio subsystem of Linux. Note that on our development OSs,
there is an additional audio library, PulseAudio [13], [14], activated by default;
we keep it turned off, to avoid handling this additional layer of indirection
during debugging.

Depending on the choice of soundcard made in the application, 1ibasound.so
then utilizes the right soundcard driver, here either snd-minivosc.ko or snd_

Microcontroller

G1y7—251

Paper G.

ftdi_audard.ko. In kernel space, ALSA can be said to be a software solution
stack, because reusable parts of the functionality are organized in separate
kernel modules like soundcore.ko, snd-pcm.ko and others; thus the "sound-
card driver" is the kernel module that only deals with actions that are specific
to each soundcard hardware device. So, both of our drivers work in concert
with the rest of the ALSA modules, and this could be said to represent the
ALSA domain. Since snd-minivosc.ko is a virtual driver, it does not need
to interact with any other kernel subsystem; however, snd_ftdi_audard.ko,
as a re-implementation of the default ftdi_sio.ko, is also a USB driver —
and as such utilizes functions in other modules of the Linux USB stack, like
usbserial.ko and others.

When we have hardware operation through the snd_ftdi_audard.ko driver,
the PC communicates with the USB/Serial chip on board the Arduino through
a USB signal. The USB/Serial chip on our (now vintage) Arduino Duemilanove
is FT232RL from FTDI (which is no longer present on current editions of the
Arduino board). We usually try to abstract, to the greatest extent possible, fo-
cusing on the USB signal in our projects, because its analysis involves the use of
the still relatively expensive USB analyzer instruments. The USB/Serial chip
can be said to translate the USB signal to RS232 (TTL levels) serial signals,
which are used for communication with the Atmel ATmega328 microcontroller
(documented in the 660-page datasheet [15]) on board the Arduino. The serial
communication parameters are set to 8N1 (8 data bits, no parity, 1 stop bit)
at 2MBd (2 million Baud); and this serial traffic can be taken to represent the
bottleneck of the data transfer rate of the system in first approximation. The
RS232 signal voltage can be relatively easily observed on an oscilloscope with
the appropriate bandwidth; however, analysis in this context would require
that we can record longer snippets of multiple binary signal voltages, which is
the domain of digital logic analyzers. In recent times, relatively low-price logic
analyzers have appeared, that can capture and decode serial traffic with our
parameters; and for this project we used a Saleae Logic analyzer to capture RX
and TX signals’ data (see Fig. G.25). With analyzer captured data, we’d have
a measure of the data communication rate and behavior in hardware - inde-
pendent of the impression the software driver parameters (as well as software
measurements of driver performance at those parameters), on their own, would
give.

There exist contexts where 1 "Baud" [Bd] as a unit is equivalent to 1 "bit
per second" [bit/s]; however, that is not the case if we use 8N1 RS232 serial
communication. 8N1 imposes that transmitted data is formatted as 1 start bit,
followed by 8 data bits, followed by 1 stop bit; as such, there are a total of 10
signal (or symbol) transitions for each byte - for each 8 bits of actual data we
want to transmit. Let us parametrize this mathematically, with illustration of
some of these parameters on Figures G.7, G.8, and G.9. The baud rate (fpq),
in this case, more properly stands for "signal transitions per second" — and
based on it, we can derive a "baud period" (Tgg) as the duration of time each

G18—252

G.4. The effect of period-long timer function jitter

symbol is allocated on the line:

Tpy = —— (GA1)
[Bd
Let Ngp be the number of signal transitions per packet - in this case, the
packet is a byte, and Ngp is 10, counting the start and stop bits. Then, the
"byte period" (Tp) would be the time required to transmit 1 Byte (or 8 bits) of
information:
Tp = Ngp - Tha (G.4.2)

Let Ngpp be the number of actual data bits per packet - the packet here
being a byte, it is clear that Ng,p is 8. The effective "data bit period" (Tg,)
would then be obtained from the byte period T:

Tg

- 2 G.4.3
Napp ()

Tap

We can now express an effective serial byte rate fp from Eq. G.4.2, in "bytes
per second" [B/s], as:

1 IBd
= — = G.4.4
I Ts = Nup ()
. and an effective serial data bit rate fg from Eq. G.4.3, in [bit/s], as:
1 Navp
_ —_—— . G04l5
fav o fBd Nt ()

Thus, for our serial traffic specification of 8N1 at baud rate fgg; = 2MBd, we
have effective data bit rate of fg, = 8/10-2-105 = 1.6 Mbit/s, and an effective
data byte rate of fp = 1/10-2-10% = 200kB/s (with byte period T = 5 us).
This would be the ultimate (idealized) limitation of the data transfer rates in
this setup, per direction — in our experiments related to [3a], we have produced
code, that on our development platform can demonstrate typically around 98 %
of this maximum, in either direction in full-duplex mode (as measured solely
from the perspective of that user-space code.)

We have surmised that this maximum data rate is the primary means for de-
termining the viability of a soundcard driver on a given platform. For example,
the 8 bit/44.1 kHz/mono settings of our snd_ftdi_audard.ko driver impose an
audio byte rate f,p = 44.1kB/s; and a corresponding "audio byte period", as
the time duration required to transmit a byte, as Ty = 22.67 us:

1
faB

Since the audio data will eventually have to be formatted in serial 8N1
format, it has to be satisfied that f,p < fp: the audio byte rate has to be
smaller than the serial byte rate; which holds in this case. However, for more
accurate description of the behavior in the time domain, we have to take into

T, = (G.4.6)

G19—253

Paper G.

account the driver architecture. The snd_ftdi_audard.ko driver starts a timer
function from the kernel standard Timer API, at a period of one jiffy, T} =
4ms. The number of bytes that should be transmitted in that period of time,
as per the audio byte rate, would be Ngpp;:

T}

Top T - fan (G.4.7)

NaBpj =

In this case, Nypp; = 176.4 ; however, since we can only send an integer
amount of bytes through a function call, in practice this means that if we settle
for a rounded down value of N,pj,; = 176, we would be implementing a slightly
slower audio transfer byte rate (here, 44kB/s) than the required one. This
means that the timer function should check past performance, and increase
the number of bytes transmitted per call at opportune times, to compensate
for the rounding-off error; the snd_ftdi_audard.ko driver doesn’t do this -
but interestingly, we have not observed any problems in our tests of it. In
any case, each jiffy period 7} we transmit N,pp; bytes — however, these bytes
end up on wire in the serial domain, where each of them takes time Tp to
transmit. Therefore, the time it takes to transmit the entire packet of N,p);
bytes through serial would be:

Nop:
Tsppj = Nappj - Tp = 7‘}; : (G.4.8)

Fig. G.7: Idealized serial traffic response to a periodic timer function with period 7; = 4ms,
initiating transmission of N, pp; = 176 bytes per call (equivalent to fop = 44.1kB/s), over a
serial line with byte rate of fp = 200kB/s. The idle state between the packets is visualized
with a low logic level.

0 4 8 12 16

In this case, for Nopy; = 176, Tspp; is 880 ps - and it represents 22 % of the
jiffy period T} = 4ms. This is visualized on the Fig. G.7.

The response on Fig. G.7 is idealized, because it approximates away any
jitter that would be inherent in this setup. For the playback direction, the
timer function of snd_ftdi_audard.ko calls the function ftdi_write (), which
then schedules a request (a URB - USB Request Block, discussed further in
sect. G.6.1), and returns immediately — and it is up to the kernel to decide
when it will honor the request, and actually activate the sending through USB.
This is a layer of uncertainty, additional to the jitter inherent in the execution

G20—254

G.4. The effect of period-long timer function jitter

of timer functions, as seen through the time of entry into the timer function
itself. Furthermore, it assumes that when the USB signal from the PC gets
converted to serial, the bytes would be reproduced on the RX line "back to
back" — and while there is also jitter inherent in this stage, in our experience
that approximation is not too far off. With that in mind, let’s consider what
would happen on wire, when the kernel goes through a rescheduling "drop" of
the timer function on the order of a jiffy period, like on Fig. G.4.

One consequence of this behavior of ftdi_write(), is that the USB stack
acts like a first buffer for the data we write. Thus, when the timer function is
delayed like on Fig. G.4, and we get two quick consecutive runs of the timer
function a period later, this results simply with quick scheduling of more data
to send for the USB stack. Then, we can assume the USB stack will send the
data, honoring the data rate limitation set by the serial traffic parameters —
resulting with the situation shown on Fig. G.8.

Fig. G.8: Idealized serial traffic response to a periodic timer function, which exhibits a
rescheduling "drop". The timer function did not execute at time T}, being rescheduled for
2T; — at which time, it executes very close to the timer function already scheduled for that
time slot; this queues twice the expected amount of bytes for transmission.

RX TsBpstBpj
t [ms]
0 1 1 1 1 >
0 4 8 12 16

Recall that for the reschedule drop on Fig. G.4, we noted that the quick suc-
cession of the two timer functions are but 48 pus apart; here the timer function
is a bit bigger, but we could still take that as a rule of thumb, the combined
execution duration of the quick succession of timer functions will be on the
order of hundreds of microseconds. These will just schedule data for sending,
and assuming that the buffered data will be sent back to back, the time to
send all this data will now be 2Tp,; = 1.76ms. Since the timer functions
schedule data, thus filling the buffer, quickly; and it takes longer time than
that to empty the buffer, by sending the data on wire — this situation can be
seen as an example of the concept of leaky bucket in computing (see e.g. [16]).

Thus, even if the timer function experiences an error in terms of periodic
scheduling - Fig. G.8 shows us that, by the 4" call (packet at 12 ms), the stream
synchronization has recovered; and is back to having sent the same amount of
data, as in the reference case on Fig. G.7. It is clear from Fig. G.7 that such a
recovery is only possible as long as 2Tp,; < T}, or written otherwise:

1
TsBpj < 3 T; (G.4.9)

G21—255

Paper G.

Reformulating this expression (G.4.9) in terms of our a priori settings: the
audio byte rate targeted by the audio driver f,p; and the hardware serial byte
rate imposed by the serial traffic settings fg; we obtain:

fa < %'fB (G.4.10)

Interestingly, while we started by searching for a criteria, for a recoverable
rate in case of a jitter error (reschedule) on the order of the period of the timer
function T; — that parameter (and correspondingly, HZ) got cancelled out, and
we're left with expression (G.4.10), which simply states that the audio byte rate
should be less than half of the effective serial byte rate (which is the hardware
bottleneck here).

Now, let’s see what will happen if we simply change the original settings
of our snd_ftdi_audard.ko driver from 8bit/44.1kHz/mono to CD-quality
(16 bit/44.1 kHz/stereo). This increases the audio byte rate fourfold, so f,p =
176.4kB/s. Comparing it to the serial byte rate fg = 200kB/s, we can see
that inequality G.4.10 does not hold any more. Considering that in this case,
Nauppj as per Eq. G.4.7 would be 705.6 ~ 705, and as per Eq. G.4.8, Tsp,; ~
3.525ms, it is not difficult to see why on Fig. G.9:

Fig. G.9: Idealized serial traffic response to a periodic timer function with period T; = 4 ms
initiating transmission of N,pp; = 705 bytes per call (equivalent to f,p = 176.4kB/s), over
a serial line with byte rate of fg = 200kB/s.

RX TsBpj

1

t [ms]

0 4 8 12 16

Namely, we now have a leeway Tj — Tspy,; of only some 475 ys — only 11.8 %
of the timer function period — for jitter errors; any larger jitter than this,
and we start filling the leaky bucket faster that it can get emptied, which is
bound to eventually result with errors in operation. This could explain why
we never observed problems in operation with the 8 bit/44.1 kHz/mono version
of snd_ftdi_audard.ko, even if it is pretty certain that such reschedules were
happening — and why we immediately started perceiving problems like dropped
data, once we increased the data rate demands to 16 bit/44.1 kHz/stereo, while
leaving the rest of the standard Timer API usage in the driver unchanged.

But what about the high-resolution timer API? For the particular measure-
ment on Fig. G.5, we have a standard deviation of 53.382 us, and the covered
bins’ range implies a maximum deviation from the period no larger than 150
ps, which is about three times smaller than the leeway of 475 us. This would
imply, at first glance, that the high-resolution timer would be appropriate even

G22—256

G.4. The effect of period-long timer function jitter

for the higher, CD-quality data rate as on Fig. G.9. However, Fig. G.5 is but
one measurement, and the deviations from the timer period will also depend on
how many other applications are running at the time in the background — the
OS load. As such, it is not difficult to imagine that for increased OS load, the
deviations could easily break the leeway boundary, again resulting with prob-
lems due to the inability to exhaust the leaky bucket data. Finally, while the
kernel does attempt to compensate for late scheduling errors, it does not nec-
essarily succeed in doing so in equal measure; in which case, we should assume
that the jittering errors will be cumulative, causing clock drift that breaks the
audio rate synchronization of the data stream. So, while with the hrtimer API
(as opposed to the standard timer API) we can expect jitter less than a timer
period (or even less than the leeway boundary) under at least some conditions,
making it appropriate for higher data rates — we cannot expect that its usage
alone will address the entirety of the influences on the uncertainty, otherwise
present in a preemptive kernel system.

G.4.1 Visualizing and sonification of timestamped log files with
numStepCsvLogVis

At this point, let’s make a slight digression, and take a look at the process
that led us to the conclusions in Sect.G.2, Sect. G.3 and Sect.G.4. Not having
the understanding outlined in that discussion, we were led to inspecting other
reasons for the misbehavior of our drivers (that turned out to be unrelated),
among them the wrapping behavior of circular buffers. The primary tool for
inspection is printing debug messages in a log, timestamped similarly to list-
ing G.2:2b, from various points in user- or kernel-space code — except we also
print numeric values of specific variables (like the head or tail value of a circular
buffer). The problem is: not knowing a priori what one should look for, one
tends to arbitrarily add variables to a debug message; so in the end, we may
end up with something like on listing G.4.1:1.

Listing G.4.1:1: A snippet of syslog messages containing timestamps and numeric values of
variables

May 26 12:01:14 mypc testTimeSB[23879]: [134868.424837] start 8-3 end: 7,2 size: 11 ; value
18 3

May 26 12:01:14 mypc testTimeSB[23879]: [134868.425030] start 9-4 end: 8,3 size: 11 ; value
19 4
May 26 12:01:14 mypc testTimeSB[23879]: [134868.425216] start 10-0 end: 9,4 size: 11 ;
value 20 0
May 26 12:01:14 mypc testTimeSB[23879]: [134868.425403] start 0-0 end: 10,0 size: 11 ;
value 21 1
May 26 12:01:14 mypc testTimeSB[23879]: [134868.425591] start 1-1 end: 0,0 size: 11 ; value
22 2

Listing G.4.1:1 shows a typical snippet: there may be additional data, ir-
relevant for our analysis, representing local time, PC name, process name and

G23—257

Paper G.

id (added automatically to to /var/log/syslog printouts) - which is, however,
not a static prefix (e.g. the local time will change), and as such, requires a
regular expression to clean up. The actual (microsecond resolution) timestamp
we're interested in, is in the next column, surrounded by square brackets; fol-
lowed by the debug message, which is not consistently formatted at all: variable
names can be followed by one or two values; names and values are separated by
either whitespace or interpunction. Also, numeric values change the number
of decimals they are written with; which, viewed in fixed width / monospaced
/ typewriter font (as used by default in terminal emulator software), breaks
any implied column alignment. Additionally, at different points in the code,
different variables exist - so formatting consistency of debug messages, across
different points in the code, becomes a challenge as well.

It should be, therefore, no surprise, that any significant effort (beyond a cur-
sory glance) in reading the debug log directly, presents a significant cognitive
load: we might be interested in whether the transition of the first start value
from 10 to 0, and the first end value from 9 to 10, is expected for the transition
from time 134868.425216 to 134868.425403 on listing G.4.1:1; but that requires
not only doing three subtractions in one’s head — but also parsing the messages,
so superfluous words and possible in-between lines are ignored. Of course, it is
possible to take measures, and ensure greater formatting consistency of debug
log messages — however, that implies that one already knows what one looks for.
In a development context like ours, where debugging did not result with con-
clusive data in weeks, which caused changes to code and debug message format
by the day — the additional effort required for ensuring formatting consistency
of debug messages, quickly started to feel as an irrelevant and unacceptable
trade-off.

Thus, we abandoned efforts to format debug log messages for direct read-
ing, and opted instead for visualization, primarily with gnuplot. However,
we found it difficult to use when we wanted to "zoom into" and analyze a
small region of interest in a large dataset. To address this, we have pro-
duced a collection of Python scripts, called numStepCsvLogVis. Among them is
numLogfile2Csv.py, which represents a generic parser, which will attempt to
extract name/value data as on listing G.4.1:1, from differently formatted lines,
automatically — and then output all numeric values as a comma-separated val-
ues (CSV) formatted text file, where the first line contains the automatically
deduced variable names. Of course, there are limits to how general such a
parser can be - for instance, without further information, it is impossible to
tell if the "=" in "10-0" on listing G.4.1:1 should represent an algebraic "minus",
or merely a separator sign; but it was usable to us on several occasions. For
example, it turns listing G.4.1:1 into listing G.4.1:2.

The main part, and the namesake, of the collection is numStepCsvLogVis.py
— an interactive application, whose screenshot is shown on Fig. G.10.

The application can read CSV data from a file (or piped from the standard
input), and thereafter offers several modes of interaction, most of it happening
through the terminal; and as such, in this mode of usage, it doesn’t carry a

G24—258

G.4. The effect of period-long timer function jitter

Listing G.4.1:2: A snippet of syslog messages, converted to a .csv file by numLogfile2Csv.py

[,start,start2,end,end2,size,value,value2
134868.420862,0,0,0,0,11,0,0
134868.421314,0,0,1,1,11,1,1

134868.425030,9,4,8,3,11,19,4
134868.425216,10,0,9,4,11,20,0
134868.425403,0,0,10,0,11,21,1

c5Wlog file; /tmp/testTSE log.cov
ot row/fine: 20 Adisk]) - Z0/90.) & (k)

_ numSteptayl ogVis py'prrs‘n'fac 1estTER_log eav (GUI &
6 T T

€.c i v1:3}" testTs8 log. cav
§-5 |mrs’]r default [tern Sizec 180, 221] pid 117532
121f
s 3 @ 'stari2’ 4o tend' 5i lend2” B: 'size! Ti v
g3 e i |m<p1r il t3) s =L 11T T Binlhs, 0, CRIvIN s "BOn2y, @lvay
= (i ‘|in3dr, ! 4, @3t
J3 == it avatlsile. Tutninl U staried
L)
n e] n GUT requested - starting. ..
i [2 4 A GUT col fite: /bop/lesiTSE log. ok rendecSehdin s render LestTSE lag
! Humanc vk ak
: . (SRevision: BI0BE 5§ ok, Loading rumpy.., (1.5:1) ok, le
= fing metplatlib.. (B.98.3) ok,
Reload NToolBari == |ms_ e B.er\:Fer| P Sy i 2
GUF can file: fEmp/testTSE Ing. gk 1a: tine 134860.420652 Start B Start2 6
g s S| 2z Goto line munber/narkes? 20

self, k. id = “nusStepfseLogVis.py / testTRe

o0 4 tu!! 134668, 42593 start 9 startz 4

mau*-.m.w*a:nrna]

= =ol4 gk = typel'hject’, (obzect,]. {
¢ do KOT usa enginesring natation @V spa
[direct nuaeric velus setters (=g, wher

P E R Sicari b 1 tesleesyslogmnterlzie?!J: 1134068, 428852] start 0-8 end: 0,0 size: 11 ; value 6 0. |
[2 tostlincSyslogBuffor [23870]: [134868 421314 start 8.8 end: 1,1 ez 11 walue 11
3 testTineSyslogBuffer[236701; [134863. 4214341 start 0-6 end P11 ; velue 2 2
4 testTinedysloghutTer | 23675): (134060.421406) start 0-8 end 2 11 ; value 3 3
5 tostTinoSyslogBuffer [F9879]: [1346E8.421931] start 68-8 ond 2 11 jovalio 4 4
6 testTineSyslogBuffer[236701: (134863422136 start @-8 and 11 ; value 5 8
7 testTimeSysloghutfer [23670): [134069.422324] stdrt 0-8 end : 11 ; value 61
.8 tostlinebysloghuffer [23870]: [114868.420517] start 8.4 and n: 11 ¢ valua 7.2
=8 testTineSyslogBuffer[236701; [134B63.4227911 start 0-8 end: 3 aze: 11 ; value 8 3
0 testTimeSyslogBulfer [23678]: [134068.422836] starl 0-8 end: 9,4 size: 11 ; value & 4

Fig. G.10: Screenshot of numStepCsvLogVis.py running - a typical log shown in a text editor
(bottom); the terminal part of the application stepping through the CSV representation of
the log (upper right); the matplotlib GUI part of the application (upper left)

dependency on a GUI toolkit. In the most basic form, it allows the user to "step"
through the read .csv lines, by pressing the arrow keys on the keyboard: at each
step, the current log line will be printed at the bottom of the terminal (with
the rest of the lines scrolled up, as is usual for a terminal). However, using
a CSV offers the "a priori" knowledge of the number of columns, and their
names, in the data file — and as such, allowed us to implement a small "column
specification" formatting language. Such a "columnspec" can be specified on
the command line, as on listing G.4.1:3.

For instance, the columnspec "@(nv:2)" will expand with the name and
value of all columns up to 2 (here, "time" and "start'), separated by space;
and "@(nv5-[self.currow-1])" will expand to the name, and the current value
minus the previous row’s value, of column 5 (here, "end2"); all other parts of
the columnspec string are used verbatim in the formatted output. Notice on
listing G.4.1:3, that the software tries to keep track of the character width
of all the numeric values, and allocate space for them accordingly; stepping
through the entire CSV log file once, would inform the software about the max-

G25—259

Paper G.

Listing G.4.1:3: A snippet of output during numStepCsvLogVis.py stepping, with a "column-
spec" as a command line argument

$ python numStepCsvLogVis.py -c="@(nv:2) ; delta: @(nv5-[self.currow-1]1)" \
testTSB_log.csv

20 A: time 134868.42503 start 9 ; delta: end2 1
21 A: time 134868.425216 start 10 ; delta: end2 1
22 A: time 134868.425403 start O ; delta: end2 -4

imum character width each column value requires, and thereafter the column
formatting would be constant.

The application also supports a curses mode; a real-time "player" that
can play back time-stretched timestamped data; an animation mode where a
Matplotlib plot can be generated at each step, and exported as a sequence of
bitmaps; and there is an example on how to sonify data, allowing for creation
of videos with sound. All of this functionality was implemented, to reduce
the cognitive strain during analytical browsing of arbitrary plain-text log files,
specifically in the case of timestamped data — so that it would be easier to
catch an error “in the act”, so to speak. We have released numStepCsvLogVis,
which runs under both Python 2.7 and 3, as open source in 2013; and more
information and download links are available online via [1].

G.5 Developing a virtual, CD quality, ALSA driver

Having reached the conclusions in Sect. G.2, Sect. G.3 and Sect. G.4, we
ported our AudioArduino driver to use the high-resolution timer API in the
Linux kernel — again with the goal to change its settings from the original
8 bit/44.1 kHz/mono to CD-quality (16 bit/44.1kHz/stereo). In doing this, we
ran into expected problems, such as faulty buffer and period wrapping arith-
metic, which eventually got resolved. However, that resolution wasn’t com-
plete: while problems with ALSA-only software (like the command-line appli-
cations aplay or arecord) were not detectable anymore, full-duplex operation
in audacity kept on exhibiting problems, such as random drops, or insertions
of snippets of silence in the capture stream. It should be noted that in our
projects like [3a], one of the main goals with AudioArduino is to afford a poten-
tial student of digital audio a full-duplex operation experience in a high-level
audio software (here primarily exemplified by audacity), initially through a
duplex loopback test (which involves the Arduino device simply copying the
playback data into the capture stream); thus, this kind of a problem represented
a show-stopper for us.

We initially understood this behavior to be indicative of problems with our
driver programming: a failure to take into account some unknown parameter,

G26—260

G.5. Developing a virtual, CD quality, ALSA driver

that would become relevant first at CD-quality rates, exposing itself only due
to the increased load implied by the use of audacity (along with its additional
level of indirection into ALSA, due to its use of the PortAudio library). To
confirm this, we felt that we would need to compare our driver against a sort of a
benchmark, a driver of similar characteristics: one that uses the high-resolution
timer API, and works at CD-quality rates. However, the hrtimer API is used in
only a couple of drivers in the ALSA source files (among them the virtual dummy
driver); and even if we had access to those particular soundcards, we may not
have been able to use them on our development platform (as netbooks lack a
traditional PCT slot, for instance). Thus, we found the idea, of a virtual driver
— a version of the dummy driver, in the spirit of minivosc [2a], but working at
CD-quality rates — used as a benchmark to compare against, attractive.

Note again that the original, virtual dummy driver doesn’t perform any mem-
ory operations, which is why it wouldn’t suffice as a benchmark to compare
against; our version, provisionally called dummy-mod, just like minivosc writes
(copies memory) to the capture stream (and thus minivosc-mod would have
been a better name choice for it, if it wasn’t for the fact that the two use
different kernel timer APIs). Having fully expected that the virtual driver
dummy-mod, would demonstrate a proper full-duplex behavior and work "out of
the box" at CD-quality, imagine our surprise when also this driver exhibited
problems, shown on Fig. G.11.

The situation on Fig. G.11 is notable, because it raises the question: why
would a wvirtual driver operation cause a failure at all — even if the failure is in
a component (PortAudio) which is not directly a part of the ALSA framework?
Or, alternatively: why would a virtual driver cause an error, that drivers for
actual hardware (like hda-intel) do not cause, on the same platform (and for
the same stream quality)? In more detail, the top stereo track on Fig. G.11 is
a sinusoid waveform generated from within audacity, but could be arbitrary
audio data; it is simply used to activate the playback process along with the
capture one, so the virtual driver performs in full-duplex mode; that playback
data is otherwise ignored, and has no further effect in the full-duplex operation.
The capture data — the bottom track — is generated by the virtual dummy-mod
driver itself: upon each start of audio operation, the ALSA framework sets up
"buffer" and "period" sizes in bytes for a driver, the "period" size corresponding
to the amount of bytes to be transferred per call of the periodic timer function.
Our virtual driver then writes a "big" sample pulse at each buffer boundary,
and a "small" sample pulse at each period boundary; typically, audacity in
full-duplex mode sets up two periods per buffer, and thus we expect alternat-
ing "big", then "small", pulses in the captured audio stream. This is why the
emphasized part on Fig. G.11, showing a "big" pulse followed by two "small"
ones, is a problem: it implies that a period’s worth of bytes — a period right af-
ter a buffer boundary — has been altogether removed, or dropped. Even worse,
Fig. G.11 shows this drop happened before 3 seconds expired, since the start
of the full-duplex operation.

Confirming that this is a failure occurring in PortAudio, was again a costly

Ga2y7—261

Paper G.

unm. re/portaudy 1ib/. L1bs/11bpa;
: c{ml 5 L’-‘J rf.od ‘s worth

Fig. G.11: Screenshot of a drop with a virtual soundcard driver (dummy-mod, our modification
of dummy) triggered in PortAudio, during CD-quality full-duplex operation of Audacity (the
vertical breakage of the Audacity cursor is an artifact of the screenshot process). The top
audio track is used to drive the playback operation; the bottom track is the captured data,
with the drop emphasized; the terminal below shows related messages from PortAudio.

G28—262

G.5. Developing a virtual, CD quality, ALSA driver

endeavor for us; one needs to start suspecting PortAudio to begin with, before
rebuilding the library in debug mode, to enable printout of additional debug
messages. Unfortunately, the part of the PortAudio code that triggered this
behavior originally did not contain any debug messages whatsoever, and we
eventually found it by inserting additional debug printout messages - and ob-
serving the correlation with the drops generated by the real-time full-duplex
operation of audacity (instructions and code for reconstructing this behavior,
as well as a patch file showing our added debug messages to the PortAudio
library in this case, are available via [1]).

There are two conditions, buffer overrun and buffer underrun, that typi-
cally cause errors in data streaming; PortAudio code may refer to either as
an "xrun". The PortAudio code, triggered during a drop as on Fig. G.11,
states that the condition for entry in it is "nmot an xrun"; however it still re-
sults with handling typical for an xrun, which is dropping data altogether and
restarting the stream. Thanks to the assistance of alsa-devel, portaudio
and audacity-devel mailing lists, documented in [17], we eventually found
that this is related to polling of file descriptors by PortAudio; and that one
solution is to have the virtual driver’s timer functions emulate the behavior of
the hda-intel soundcard driver. However, before we focus on outlining this,
let us first revisit the ALSA architecture in more detail in section G.5.1.

G.5.1 Yet another overview of an ALSA-based audio system

To appreciate the complexity that is incorporated in the ALSA system as a
whole, consider Fig. G.12, which is a composite of several other diagram depic-
tions.

Fig. G.12 shows three distinct diagrams, depicting the ALSA framework
in different ways; note that in this figure, references to the older Open Sound
System (OSS), found in the original source figures, have been removed. The
diagrams are stacked along the z axis — however, all of them preserve the
boundaries between the hardware, kernel- and user-space domains (along the
y axis).

The top layer (from ref. [20]) depicts native ALSA user-space applications
(or applications conforming to the ALSA API) utilizing the user-space ALSA
library API, which as mentioned, is provided on a running Linux system by
the libasound.so shared object file (not depicted on diagram). Besides the
user-space applications, there may be libraries like PortAudio or PulseAudio
which utilize the ALSA library API, and in turn provide a different API to
user-space audio applications; and as such, add another level of indirection for
user-space API calls to the ALSA library. The ALSA library API, in itself, may
provide a "direct" access to soundcard hardware - or may allow usage of plugins
(for audio conversion, routing, etc.) before the hardware is accessed. The user-
space ALSA library then utilizes the ALSA kernel API in order to provide the
actual audio operation functionality. The ALSA kernel API, in fact, provides a
framework for four different types of audio functionality: PCM, MIDI, Control

G29—263

Paper G.

Sequencer
User Clients

/ Contr 07
A/SA lem/ AP/
m/llgms 4 /
(Qonversion, /Routing, etc.)

%zrdu /u‘ access

) PCM MIDI Fontml Sequencer | !

/ ,,/111[)17

" Kernel Space

Hardware

/ Soundcard hardware / =ogliE],

Fig. G.12: A composite of several ALSA diagrams, stacked along the z-axis. Bottom layer:
ALSA subsystem from ref. [7] and ALSA driver from ref. [18]; middle layer: ALSA user- and
kernel-space architecture from ref. [19]; top layer: ALSA basic structure/framework from
ref. [20].

G30—264

G.5. Developing a virtual, CD quality, ALSA driver

and Sequencer; finally, this framework is completed by the ALSA kernel driver,
which implements the part of the functionality as specific to the particular
soundcard hardware.

Let us mention that in all our ALSA related work so far, we have focused
solely on the PCM functionality, as that is the part of the framework dealing
with actual digital audio data streaming. Note that PCM typically stands
for "pulse-code modulation", which as a term, could refer to a specific binary
encoding (e.g. ITU G.711 A-law or p-law [21]) as used in traditional telephomny
(like in "four-wire" telecom PCM equipment, as described in e.g. [22]) — but may
also refer generally to “the basic concepts of transmitting a sequence of symbols,
i.e., pulses, to represent information [23]”, applicable even to telegraphy. In
ALSA (similar to other digital audio contexts, e.g. as in [24]), it is meant to refer
to the fact that this portion of the framework deals with digital representation
of analog audio samples. However, this digital sample representation in the
PC memory depends on the driver audio settings (e.g. interleaved vs. non-
interleaved), and is not necessarily the same as the telephony encoding the
term PCM may specifically refer to.

The diagram in the middle layer of Fig. G.12 (from ref. [19]) shows a slightly
different view of the ALSA architecture. Here the user-space applications are
categorized as Control Apps, Mixer Apps, PCM User Applications, MIDI Apps
and Sequencer User Clients. These applications would interact with the user-
space API, which here is categorized in Control API (containing a SimpleMixer
interface), PCM API (containing a PCM Plug-In), Raw MIDI API and a Se-
quencer API - we can consider these to be different interfaces of the ALSA
user-space library API. These interfaces, in turn, hook into the kernel space
APIs, here categorized as Control, PCM, RawMIDI, SeqMIDI, VirtMIDI, Se-
quencer Core, and Timer. The diagram in the bottom layer of Fig. G.12 shows
the ALSA subsystem perspective from ref. [7]. Here the kernel-space "Sound
Core", composed of the kernel modules sound_core.ko, as well as snd.ko,
snd_pcm.ko, snd_timer.ko and snd_page_alloc.ko, exports generic ALSA
information in the /proc/asound/ and /sys/class/sound/ "pseudo filesys-
tem" subdirectories of the root filesystem of the machine. Finally, the diagram
on the bottom layer of Fig. G.12 features an overview of the organization of an
ALSA kernel driver (from ref. [18]), which the sound core uses to hook into a
particular hardware subsystem that will eventually interact with the soundcard
hardware - we will focus more on this in a bit.

Following the UNIX philosophy that "everything is a file" [25], the sound
core exports files that represent the substreams of a given soundcard hard-
ware (which is present, and for which a driver is loaded) - "pseudo" files
like /dev/snd/pcmCODOc or /dev/snd/pcmCODOp, which represent the capture
and playback streams (respectively) of sound card 0, device 0 (see [26], or
/Documentation/sound/alsa/ALSA-Configuration.txt in kernel source) as seen
by ALSA on that particular system. Note that the kernel exports these files,
only if ALSA is present and running on the system; via [1] we provide a script,
load-alsa-debug-modules.sh, which shows how the ALSA kernel modules

G31—265

Paper G.

can be blacklisted, so that ALSA is not active after the OS boots; and also
shows how either "vanilla" ALSA modules - or debug ALSA modules (from a
different, custom, location) - can be loaded into a live system. As it can be
seen in the load-alsa-debug-modules.sh script, for our 2.6.38 development
OS and platform, there are a total of 15 kernel modules that constitute the
ALSA engine in kernel space; three of which deal with the onboard Intel HDA
soundcard present on these PCs — however, on the 2.6.32 platform, there are
differences (e.g. there are 18 kernel modules, including some OSS compatibil-
ity modules which are not present on the newer kernel). Note that if ALSA
modules are loaded upon boot, it may not be possible to remove them - since
it is not possible to remove a kernel module from Linux, which has a refcount
(reference count of registered users of the module) different from zero. These
versions of Linux can correctly resolve refcounts due to kernel-space module
dependency, and for some user-space calls (like module loading and unloading)
- but unfortunately not for all user-space calls to the kernel module: some user-
space calls will cause the refcount of a module to increase, without a possibility
to decrease it afterwards. Therefore, having the ALSA kernel modules loaded
at boot time, almost guarantees that some user from the operating system (e.g.
PulseAudio) will claim the drivers at startup, making it impossible to remove
them in the same running OS session - which is what forces the blacklisting
step. Additionally, note that different Linux distributions may choose to build
ALSA monolithically "in-kernel", as opposed to building it as separate loadable
kernel modules - in which case it should be impossible to remove ALSA (as
there are no separate kernel modules anymore, whose loading at boot time can
be blacklisted).

It is important to note that the ALSA library API essentially allows access
by user-space applications to soundcard hardware through the exported PCM
files; that is the reason we have included the dashed line on Fig. G.12, which
connects the ALSA library box on the top layer diagram, with the exported
files hexagon on the bottom layer diagram. This allows us to equivalate the
audio operations to file operations: soundcard playback would be equivalent to
writing data to the /dev/snd/pcmC*D*p files, while soundcard capture would
be equivalent to reading data from the /dev/snd/pcmC*Dx*c files (or rather, the
corresponding file descriptors). However, while [26] (from 1999) may imply that,
say, /dev/snd/pcmCODOp is directly writeable — we would have to peruse the
alsa-devel mailing list archives, to realize that /dev/snd/pcmC*D*p files have
not been directly writeable since at least 2003, because “the native devices need
a special initialization using ioctl [27]”. Thus, in order to interact with these
"pseudo" files, we would have to use the ALSA Library (or alsa-1lib) user-
space C API (although, note that writing to "pseudo" files such as /dev/audio
may still be possible through OSS emulation).

The main resource describing the different methods of interacting through
these files from the ALSA library API is [28]; to begin with, it notes that there
are three UNIX environment transfer methods (ultimately, in respect to file
descriptors): standard I/O transfers, exemplified by functions like read and

G32—266

G.5. Developing a virtual, CD quality, ALSA driver

write, which can have blocking or non-blocking behavior; event waiting rou-
tines, exemplified by functions like select and poll, which allow reception of
notifications from the underlying device; and asynchronous notification which
allows data transfers to occur in a handler of the SIGIO signal, and is related
to the UNIX signal function [29]. This relates to the following types of ALSA
transfers, exemplified through user-space API functions:

o Standard Read/Write transfer — snd_pcm_writei() and snd_pcm_readi
() for interleaved, and snd_pcm_writen() and snd_pcm_readn() for non-
interleaved access

o Direct Read/Write transfer (via mmap’ed areas) — involves calls to snd_
pcm_mmap_begin() at start, snd_pcm_mmap_readi() and snd_pcm_mmap
_writei() for interleaved (or snd_pcm_mmap_readn() and snd_pcm_mmap
_writen() for non-interleaved) access, and snd_pcm_mmap_commit () to
acknowledge end of transfer

o Asynchronous mode — in which snd_async_add_pcm_handler() can be
used to define a handler, where the above transfer functions would run;
then, the function snd_pcm_poll_descriptors() can be used to obtain
file descriptors for event waiting routines.

These transfers could be used from single-threaded or multi-threaded user ap-
plication contexts, and could run in blocking or non-blocking mode. Before any
of this can be used, the programmer needs to open the corresponding soundcard
device, by using a string of the form "hw:0,0" (which contains card and device
number) in the call to snd_pcm_open (), and then set its hardware and software
parameters; transparently to the programmer, this will set up the utilization
of the underlying PCM pseudo files of the device. The resource [28] also refers
to basic C code examples (in the alsa-1ib sources) which demonstrate the
usage of this APT; earlier, there were also some ALSA sample programs in [30],
which demonstrated up to six combinations of the above methods per example
(unfortunately, at the time of this writing, the resource [30] seems not to be
available on the Internet anymore).

Utilizing these functions in user-space (and the respective PCM pseudo
files), results with eventual interaction with the ALSA engine in kernel space —
and in particular, the respective soundcard driver module. The driver consists
of several callback functions, which run at pre-defined times (e.g. when the
driver is loaded or unloaded; when the hardware device is attached to or re-
moved from the given bus; upon start and stop of audio operation issued from
user-space software, etc; we have included more details on this in [2a, 3a]). On
the bottom layer of Fig. G.12, two of these callbacks: the .trigger and the
.pointer, are shown. The pointer callback’s job is to return the amount of
audio samples (expressed in units of ALSA frames), that have been played back
or recorded up to that point in time, to the sound core — and it eventually allows
the rest of the audio engine to do some error checking (e.g., if an xrun condition

G33—267

Paper G.

has occurred). Part of this error checking is triggered when the driver calls the
snd_pcm_period_elapsed() function (of the ALSA kernel API) — which, in
this framework, the driver is obliged to do periodically. The different callback
functions in the driver can exchange data through a C structure which can be
provisionally called a "driver struct": it might contain both primitives (integers,
strings), and pointers to memory or other structures, and it is created at the dis-
cretion of the driver programmer; as such, it can become quite complex, which
is why in [2a, 3a] we have attempted to visualize the respective driver structs
as structure maps. One of the most important pointers the driver struct stores,
is the pointer to the portion of memory through which the driver exchanges
data with the soundcard hardware, known as dma_area: each capture or play-
back substream has its own dma_area, and ALSA copies data from userspace
to this memory area for the soundcard playback, and conversely it copies data
from this memory area to userspace in the case of soundcard capture. In [3a],
data from the playback dma_area is used as input for the ftdi_write func-
tion, whereby the playback data copied and sent to the USB chip; while data
received in the USB callbacks from the chip is copied to the capture dma_area
— in this way, the driver utilizes the USB kernel subsystem to, finally, address
the actual soundcard hardware.

Having this in mind, let’s take a closer look at the concept, whose demon-
stration has been a key goal in our driver development — that of full-duplex
audio streaming.

G.5.2 Frames, periods, and the meaning of full-duplex

Before we continue, let’s review how digital audio (PCM) data storage is han-
dled in ALSA. By setting an audio sampling rate f4 = 44.1kHz, we specify
that 44100 samples are to be transferred each second - for each independent
audio channel. A sample can also be stored with different sizes (which relates
to the sampling resolution); we can choose to store each sample, say, as an 8-
bit unsigned integer (like in [2a, 3a]). However, for a CD quality reproduction,
samples are stored as 16-bit, little endian, signed integers - and as such, each
sample takes up two bytes. Furthermore, multiple channel data is typically in-
terleaved, meaning that for a given sample time, a sample from each channel is
taken and grouped together in a sequence, known as an ALSA frame. In other
words, an ALSA frame is an “equivalent of one sample being played, irrespective
of the number of channels or the number of bits [31]”; or a “set of samples, one
per channel, at a particular instant in time [32]” (see also [28], [33]). In terms
of data transfer, this allows us to understand the audio rate sampling rate of
44.1kHz as a requirement for transfer of 44100 frames, regardless of the number
of channels and sampling resolution involved. This kind of organization then
determines the layout of audio data storage in memory, shown on Fig. G.13.
An ALSA substream is a software structure that roughly corresponds to a
hardware connector on the soundcard: a driver for a soundcard with one stereo
playback and one stereo recording minijack plug, would declare one stereo play-

G34—268

G.5. Developing a virtual, CD quality, ALSA driver

byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8 byte N-3 byte N-2 byte N-1 byte N

00000000 | 10000000 | 11111111 | 01111111 | 00000001 | 10000000 | 11111110 | 01111111 o 00000000 | 00000000 | 00000000 | 00000000

ch2 ch2 ch2 12 cl chl 2
LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB

chl: sample 1 ch2: sample 1 chl: sample 2 ch2: sample 2 chl: sample N/2 ch2: sample N/2

frame 1 frame 2 frame N/a

Fig. G.13: Byte-level layout of a 16-bit, little-endian, interleaved, stereo (two channel) digital
audio (PCM) data in computer memory (e.g. a dma_area of an ALSA substream). Larger
units like samples and ALSA frames are indicated, labeling uses 1-based indexing.

back substream and one stereo capture substream. Each substream refers to its
own dma_area, and thus Fig. G.13 would illustrate data stored there, in case of
stereo, 16-bit, interleaved setup - however, it is also a format used to store data
in Microsoft .wav files. Noting that endianness is only relevant for numeric
values that are larger than (and thus cannot fit in) a byte, a consequence of it
is that if we read the first values in Fig. G.13 as 8-bit unsigned integers, we get
000000002 = 019, 100000002 = 1289, 111111115 = 2551, 011111115 = 1274y,
etc. — however, if we read them as little-endian 16-bit signed integers, we get
10000000000000002 = —3276810, 01111111111111119 = 3276719, etc as sample
values (see the script print_sawramp.sh in [1] for an example of generating
and inspecting such a file; and Fig. G.24 for an example waveform plot). Since
the signed integer values are dimensionless, as first approximation into their
physical meaning we can take that the bounds of the 16-bit signed range are
linearly mapped to the positive and negative peak voltages, that an eventual
digital-to-analog converter (DAC) would reproduce. An ALSA driver would
use the constant SNDRV_PCM_FMTBIT_S16_LE to declare itself capable of han-
dling little-endian, 16-bit, signed integer audio samples; and SNDRV_PCM_INFO
_INTERLEAVED to declare capability for interleaved audio data access - so for
CD-quality settings, it holds that IV frames, would correspond to 2N samples
per channel, or 4N bytes in all (or: here one frame is equivalent to four bytes).

The audio data rate of 44100 frames per second has to be implemented
through periodic transfers of data between the PC and the soundcard hardware,
but it in itself doesn’t specify at what actual period of time will data be ex-
changed. From a user-space perspective, the ALSA library API offers functions
to set this explicitly - but it also offers functions like snd_pcm_hw_params_set
_period_time_near and snd_pcm_hw_params_set_period_size_near, which
would set up the value, nearest to the requested, that the soundcard is capable
of. From a kernel-space perspective, the driver module declares the capabili-
ties of the soundcard through the period_bytes_min and period_bytes_max
properties; and in the .prepare callback (which runs at each start of an audio
operation), the finally "decided" period size is reported to the driver through
the substream->runtime->period_size property (given in unit of frames).
Since the period size should implement the audio rate, it also determines the
period time: if the audio rate is f4 = 44100Hz (or frames per second), and

G35—269

Paper G.

the period size period size; is (say) 2048 frames, then the period time Tp
(in seconds) can be calculated via:
period_ sizey
Tp=—"—""J 15 (G.5.1)
fa

resulting with (say) a period time of Tp &~ 46ms. This is also how in a
driver like AudioArduino [3a] we find the time period, at which the previously
discussed periodic timer functions are set to run. Note that ALSA typically
allocates the size of a dma_area to be an integer multiple of the period size;
this is known as the buffer size, and is also reported in the . prepare callback of
the driver, through the substream->runtime->buffer_size property (given
again in unit of frames).

When a period time has expired, a period size amount of data should have
been exchanged; the kernel driver is obliged to inform the rest of ALSA about
this by calling snd_pcm_period_elapsed(). The kernel driver also returns the
"current" or "latest" status of the data transfers by maintaining and returning a
buffer position value from its .pointer callback function (expressed in frames)
- which the rest of ALSA can call at any time. Additionally, ALSA main-
tains two more position pointers related to the same buffer, accessible also to
user-space: substream->runtime->status->hw_ptr which generally follows
the value returned by .pointer, and substream->runtime->control->appl
_ptr which indicates the buffer position, that the user-space application has
been able to handle up to that point in time. A setup of 4 periods per buffer
and corresponding position pointers is shown on Fig. G.14.

Software Write Pointer Hardware Read Pointer
advancing by I .
one fragment at a time, _>—> == d(.izljncn,lg [.nouot(;)mcally,
with wrap-around | — % — With Wrap-aroun
| |
filled empty | filled
Fragment #1 Fragment #2 Fragment #NFRAGS
IRQ! IRQ! IRQ! IRQ!

FRAG_SIZE > FRAG_SIZE > FRAG_SIZE > FRAG_SIZE

< B

BUF_SIZE

Fig. G.14: Schematic overview of the playback buffer in the traditional playback model, valid
for ALSA (from ref. [34])

Figure G.14, and its source article [34], emphasize several important points

G36—270

G.5. Developing a virtual, CD quality, ALSA driver

that may otherwise be easy to overlook in other ALSA documentation. First,
note that Fig. G.14 uses the term fragment (also used in the earlier Open
Sound System), to refer to what ALSA calls a period. Essentially, Fig. G.14
would represent the entirety of the playback dma_area buffer, where the data
would be arranged like on Fig. G.13; BUF_SIZE would represent the entire
allocated size of the buffer, while FRAG_SIZE would represent the period size.
An important point is that the audio playback process is conducted through
the same memory buffer, but in two distinct stages: a user-space application
software would have to write audio data in this buffer (audio data which could
have been read from hard disk, or generated on the fly), while the soundcard,
with some latency, would have to read audio data from this buffer in order
to reproduce the audio samples. Thus, there is a Software Write Pointer (the
appl_ptr), which keeps track of how much data has the user-space application
written — and a Hardware Read Pointer (the hw_ptr), which keeps track of how
many samples of that data have been played back by the card already. This
implies that the software write part has to occur first, and thus the software
write pointer should in principle be ahead of the hardware read pointer; thus,
on Fig. G.14, the software write pointer being behind the hardware read one,
implies that the software write pointer has already "wrapped" - given that the
buffer is considered to be a circular or ring buffer. The area between the two
pointers doesn’t have to be empty (it might contain "old" data), however, in
any case it doesn’t contain up-to-data for usage; we could consider it as a region
that is allowed to be overwritten by the software write process. In this context,
an underrun would happen if the application is takes too much time to perform
the software write parts of the process, thus allowing the hardware read pointer
to "catch up" with the software write pointer (which would mean that there is
no more valid data for the soundcard to reproduce).

We can conceptualize the capture process similarly, except some meanings
change: hw_ptr would be a hardware write pointer, since the card has to write
the recorded data in the dma_area; and appl_ptr would be a software read
pointer, since the application has to read the dma_area before it ultimately
saves its contents to disk. Another point that Fig. G.14 emphasizes, is that
“traditionally on most operating systems audio is scheduled via sound card in-
terrupts (IRQs) [34]”. On the other hand, in [2a, 3a], we use timer functions to
schedule audio; this is similar to the traditional model in the sense that kernel
timers run as software interrupts (softirqs) - however, there are more funda-
mental differences, which are discussed in more detail in the next section. Note
that if a user-space application uses an access method which involves "sleep-
ing" on a file descriptor, the soundcard interrupt would also serve to "wake up"
that part of the process - thus becoming a signal to activate, say, the "software
write" part of the playback process. Also, determining the optimum buffer and
period/fragment size (and thus time) is not straight-forward: shorter periods
increase CPU utilization and thus power usage (which becomes relevant in mo-
bile use: note that [34] is a proposal that, among other things, suggests use
of longer periods largely motivated by power-saving) — however, longer periods

G37—271

Paper G.

also increase latency.

At this point, let us revisit the concept of full-duplex operation. Telecom-
munication textbooks usually provide a rather basic definition, such as data
being “transmitted in two directions at the same time [35]”. Actual implemen-
tation can be in different ways: e.g. in RS-232 asynchronous serial, there are
two dedicated wires, RX and TX (Fig. G.6), which are one-way (or simplex)
in nature — and they allow the transmission of data, both from the PC host to
the device, and from the device to the host, at "the same time". Starting from
that definition, full-duplex in terms of ALSA would simply mean the ability to
run audio playback and capture processes from a user-space application at the
same time. Thus in [5a], we can demonstrate a full-duplex operation from the
perspective of the PC - even if the USB interface chip used there, the FTDI
FT245, has a bidirectional parallel bus which has to be contended, and so per
definition, can only work in half-duplex mode (for more, see sect. G.6.1); but
that success, as noted previously, is due to the relatively low audio data transfer
rate. At CD-quality, we have to remember that full-duplex would involve two
buffers (one for capture, and one for playback) with corresponding pointers as
on Fig. G.14, and two sets of IRQs/timer functions. Ideally, the playback and
capture hardware buffer pointers should be in sync, since in principle they in-
dicate the absolute passage of time — however, having noted kernel preemption
and the jitter it introduces, we should be aware that such synchronization can
be implemented only approximately; especially since it is quite possible that,
at times, the OS may fail to service an interrupt request (or a timer function)
fully.

Eventually, the meaning of full-duplex with ALSA is slightly stricter than
the basic definition: it also implies usage of specific API functions in order to
set up streams for full-duplex. In an ALSA driver kernel module, one should
use snd_pcm_group_for_each_entry() with snd_pcm_trigger_done() in the
.trigger callback function, so this callback (as well as .start and .stop)
runs only once for both streams (otherwise the playback and capture streams
would have .trigger, and other callbacks, called separately twice). In user-
space, one should use the ALSA library API function snd_pcm_link to link the
playback and capture substreams; its use may propagate to other libraries as
well (e.g. PortAudio uses it in its PaAlsaStream_Configure() function). This
approach would minimize the discrepancies between the playback and capture
hardware pointers, however it cannot eliminate them completely: on a single
CPU system, the CPU would still have to execute IRQ handlers in series,
even if the IRQ signals may have arrived at the exact same time - and this
alone might introduce a small error (e.g. the playback and capture interrupt
at 2048 frames; if capture gets serviced first, the playback has to wait; when
playback gets serviced, maybe the soundcard has already advanced to frame
2049, but the callback may still refer to the value that originally caused the
interrupt, that is, 2048). Finally, note that there may be subtleties regarding
linked streams, depending on the use-case for the full-duplex operation (which
is further discussed in subsection G.5.4, in context of the latency.c program

G38—272

G.5. Developing a virtual, CD quality, ALSA driver

overview):

o "Monitoring" - if we want to listen to (play back) an audio signal that is
just being recorded (captured)

o "Studio overdub" - if we want to "overdub', that is, record (capture) an
audio signal over/in sync with already playing audio track

Interestingly, in our previous ALSA driver work [2a, 3a, 5a], we have never
explicitly used the snd_pcm_group_for_each_entry full-duplex setup function,
as the low data rates (max 44100B/s for 8-bit mono streams) allowed those
drivers to perform reliably even without it. Otherwise, that setup approach can
be rather easy to overlook in the documentation; and we first became aware
of it in the course of performing the driver comparison, described in the next
subsections.

G.5.3 ALSA,DMA and timers: comparing HDA intel and dummy
drivers

Up to this point, we have considered the architecture of ALSA, without men-
tioning one of the most important aspects of it: as hinted by default names
such as dma_area, ALSA is primarily intended to address cards that exploit the
direct memory access (DMA) mechanism to interface with a PC. To begin with,
we should be aware that in modern commodity PCs, the CPU(s) communicate
with random access memory (RAM) through a Northbridge chipset [36]. Part
of such a mechanism, including the DMA controller, is shown on Figure G.15.

The DMA controller is a standalone integrated circuit (IC) chip; there are
different manufacturers and models, but most common in introductory litera-
ture are Intel 8237, 8537 or 82357. The details of the interaction mechanism
can be somewhat complicated, but a basic introduction can be found in [3§],
[39], [37]. To begin with, Fig. G.15 is modified so it fits the ALSA sound-
card context: the peripheral device could be something else (like a floppy or
hard disk controller), however, we have specifically decided to consider it as a
soundcard here. We would expect the peripheral device to have its own crystal
oscillator (XO) for timing its own, "card" events: e.g. in AudioArduino [3a], we
derive a clock close to 44.1kHz from the 16 MHz XO on the Arduino, which
we use to reproduce or capture individual samples - these we would consider
to be the "card" events (events occurring under card clock time).

On the other hand, Fig. G.15 notes that the PC also has its own XO as
a master clock source, which controls the execution of events in kernel and
user space. Since we have two different physical clocks in the form of crystal
oscillators, we cannot expect them to run at the same rate (note an Arduino’s
16 MHz oscillator frequency vs. a PC’s 1.6 GHz), nor to remain synchronized:
even if they were started at the same time, they will drift; in other words, the
soundcard and the PC represent two different clock domains. Additionally, we
would implicitly observe these two clocks from the perspective of our "own',

G39—273

Paper G.

; ADDRESS
LATCHES

ADO-AD15

ALE A
: : CPU — 3
H H
. d an H (kP) DATA BUS A
(intern capture memoryy 0% DATA BUS_| MEMORY
! frames: 32 641 B (RAM)
H 1 o
! ‘ ‘: CONTROL BUS A CONTROL
[EESESEEEEEEEEEEE) TQ
H H HLDA HOLD | TOR, IOW 5 BUS
! MEMW, MEMR
! DATA BUS 4 —o
H \
H ' ALSA array:
substream->runtime->dma_ area
H
frames: 32 64
' CONTROL HRQ
1 BUS HLDA DMa *
+ | PERIPHERAL [fT——— | CONTROLLER OO T
DEVICE IOR, TOW
MEMW, MEMR f
1 | (e.g. soundcard) DREQ
H 1
H) H DACKO
H i

" LYTI E D/TI E M
(in dent obsexvgr, XOcARD | (XOpc)
CoT R =

' [CARD EVENTS] :[KERNEL SPACE| [USER SPACE]

Fig. G.15: Block diagram of a DMA controller in a microprocessor system (from ref. [37])

independent clock, symbolizing the "real" flow of time - thus, in principle, we
deal with three clock domains when observing a system like this.

Let us now assume that the soundcard on Fig. G.15 is performing a capture
operation: analog-to-digital conversion, followed by storage of samples into
internal capture memory of the card (here, as an example, 64 CD-quality ALSA
frames in size). At the same time, the switches as shown on Fig. G.15 (in
position A) allow direct communication of the CPU with memory through its
address, data and control buses. Let’s assume that once the soundcard fills a
certain amount of its local capture memory (say, a period size of 32 frames), it
will want to transfer this data to main memory. In this case, the card would
assert the DREQ signal; as a result, the DMA controller would eventually ask
the CPU to relinquish control of the bus, by asserting the HRQ signal. Once
the CPU has set its bus pins to high-impedance (thus electrically isolating the
bus lanes from itself), it confirms back to the DMA controller by asserting the
HLDA signal. At this point, the DMA controller changes the switch positions
(to position B), and sets up the correct control and address signals, so the card
can output its data on the data bus while it is being correctly routed to RAM
memory. The DMA controller then asserts the DACKO signal, letting the card
know to proceed with the transfer. Meanwhile, the CPU can process other
commands, as long as they do not require information from RAM at that time.
When the DMA transfer is done, the DMA controller starts by deasserting the
HOLD (HRQ) signal, and eventually transfers the control of the bus back to

Gqo0—274

G.5. Developing a virtual, CD quality, ALSA driver

the CPU again.

Without this kind of a mechanism, the CPU would have to go through
the entire instruction (or fetch-decode-execute) cycle [38], [40] for every single
datum transferred; thus DMA allows for improved transfer efficiency while re-
lieving the processor of wasting cycles. A consequence of this, is that the CPU
is not "aware" of the data transferred via DMA: while certain DMA operations
might be visible in a kernel log (like on Fig. G.2), it would be in principle
impossible to, say, print out the data transferred during a DMA operation in
such a log: one can only access (and print out) contents of RAM, after the
DMA operation is complete. This, on the other hand, imposes interrupts as
the most straightforward way for the card to notify the CPU of the progress
of the transfer: since the CPU doesn’t "know" the status of, say, the capture
operation, the card can interrupt the CPU as soon as a period size of bytes
has been transferred, which will act as a signal for the CPU to read the lat-
est value of the buffer pointer, and possibly trigger further ALSA mechanisms
accordingly. It is important to emphasize that in this case, for a capture direc-
tion, the value of the buffer pointer at the moment of interrupt handling would
represent bytes that have already been transferred via DMA, and are present in
the capture’s dma_area in RAM — and this is what makes the DMA mechanism
fundamentally different from the timer function approaches we’ve used in our
previous ALSA drivers.

We first became aware of this, thanks to the following comment by C.
Ladisch:

“Your driver’s .pointer callback must report the actual position at
which the hardware has finished reading from the buffer. You must
read some hardware register of your DMA controller for this. It is
not possible to deduce this from the current time because the clocks
do not run at the same speed, and any kind of buffering will intro-
duce more errors. The dummy driver uses a timer because there is
no actual hardware. [17]”

Further on in the same discussion thread, it is also noted that the assumption,
that we made so far in the example — that a card would have an internal
capture memory buffer, and DMA would transfer bytes between it and main
RAM memory — is historical; and does not hold any longer for modern cards, for
which “all data is immediately read from/written to main memory [17])” (this
is indicated on Fig. G.15 with a grayed out "intern capture memory" symbol in
the soundcard domain). Taking all this into account, it becomes clear that we
would be always late when using a kernel timer callback as a periodic ALSA
function, as opposed to using an IRQ handler of a real soundcard-generated
interrupt; the chief causes being:

e An IRQ handler runs with the maximum kernel priority (that of a hard-
ware interrupt); a kernel timer runs with the next lower priority (that of
a softirq), and as such is more prone to jitter due to kernel preemption

Gq1—275

Paper G.

e For the capture direction, the periodic execution of the IRQ handler sig-
nals existence of a period size of new capture bytes already present in the
substream’s dma_area in RAM; with a kernel timer function, we can at
best just start the process of copying data into the dma_area (meaning, it
will take additional time for the bytes to be actually present there) - and
with a virtual driver, this copying process will have to utilize the CPU as
well

e Since running potentially long operations (like copying memory) in a
interrupt context (to which the kernel timer function, as a softirq, belongs)
is not recommended, in both our virtual and AudioArduino drivers a
tasklet is used as a "bottom half" [8], [7], to schedule such operations for
slightly later; this can be seen to introduce a further source of jitter due
to kernel preemption

To summarize: usage of kernel timer functions is not, and cannot be, an accu-
rate simulation of the periodic performance of hardware interrupts of a sound-
card that utilizes DMA, in an ALSA soundcard driver. However, currently we
cannot conceive of a software based approach, that could be seen as a more
accurate simulation (and would work without changes to a vanilla kernel of the
series we used for development).

Confirming whether this is a correct understanding, however, can be diffi-
cult. To begin with, there is no "generic' DMA soundcard hardware (as on
Fig. G.15; interfaced, say, via PCI), that we could use as a model; furthermore,
a detailed investigation would require hardware measurement/probing of the
high-speed, parallel PCI bus, something we are not in a position to perform at
this time. Therefore we opted for something simpler: since both of our devel-
opment netbooks feature an integrated onboard HDA Intel soundcard, we used
this as our model of a DMA soundcard; and as an experiment, we produced a
set of programs and scripts, that capture kernel log data while certain ALSA
operations are performed, and then filter that data and plot it. The user-space
ALSA programs (captmini.c and playmini.c) set up a card for CD-quality
operation, with buffer size of 64 frames and period size of 32 frames (which
results with a period time of ~ 726 us), and then call a quick succession of
two ALSA commands (snd_pcm_readi for capture, and snd_pcm_writei for
playback, respectively), before terminating; ftrace kernel data (as on Fig. G.2)
is captured during execution of the two commands. Running these programs
against different drivers — in our case, first a virtual snd-dummy .ko based one,
then the snd-hda-intel.ko one — allows collection of data, which allows for
the drivers to be compared.

We have chosen the small period and buffer sizes primarily to minimize the
duration of operation. Even if the expected time for the operation to complete
in this experiment is on the order of a few milliseconds, massive amount of
kernel log data is generated, which needs to be filtered in ordered to be plotted
meaningfully. We have chosen to limit the data to ALSA kernel functions (those
prefixed with snd_pcm_, as well as functions defined in the drivers themselves),

Gg2—276

G.5. Developing a virtual, CD quality, ALSA driver

L
f/ i
(Y
g 5 ;
b H i
| o -
00 e o 20000 e
-— o o mon, s w7
e - - - o oo -
4 s .
e e . . ot e
. o - - s b a,,,,_[P
_— 00 . oo o ot
- o jugd = SN
900000 sonom - “
e s ; - - b oo —— »
| 7 o 1 1"
- T - -
' . . 100w
e - -
1m -
1 - -
[T
=] -
- = -
- 120w - . luu - -
- - 130w 3 -
- . T
. .
140 - - 140m
- -
-t -
umﬁ' I -
- -
. -
- (p=o, e -
- .
1 R
- .
- 1o
- - - 180w
. - e 150 - _; " o
L3 gijg [, e
om HHE 21m \
2 1 ¢ - —
2
. . 1}.. !
. R
2
. [o
- St
- HiE
- €

Fig. G.16: Behavior of the hda-intel driver: capture behavior with snd_pcm_readi (left)
and playback behavior with snd_pcm_writei (right); blue arrows: userspace command, red:
interrupt callback

G43—277

Paper G.

ioctl handlers, IRQ handlers, task switching and some hrtimer related functions.
Additionally, moments when the user-space functions run are plotted, and the
drivers are modified so they print out the values of all substream buffer pointers
when their .pointer function is called. Function names are arranged in per-
CPU lanes with preserved call nesting indentation, and plotted on a vertical
time line. Even with the filtering, it is very difficult to present the details in
printed form — still, we submit Figure G.16 and Figure G.17, which plot the
simplex behavior of the HDA Intel "real" soundcard driver, and our modified
dummy virtual soundcard driver, respectively (on both, left side shows capture,
right side shows playback); an electronic, PDF version of this article would
allow sufficient zoom to observe details in these figures.

All plots on Figure G.16 and Figure G.17 feature the DMA controller and
the time domains’ symbols of Figure G.15 on top. Each plot presents a vertical
time axis for each domain: as a visual reminder of the clock domain indepen-
dence, the "real time" domain is taken to be the reference, the "card time"
domain is shown to run faster than the reference, while the "PC time" domain
is shown to run slower than the reference. The starting point is the start of
logging taken as 0s, aligned on all three axes, and time increases "downwards'
(tick marks indicate 100 ys units). On the "PC time" domain, the first two lanes
(from left) display filtered kernel functions from the ftrace log for each of the
two CPUs; the third lane shows user space functions. The thick blue arrows
from user to kernel space should indicate the kernel-space functions that run
in response to the user-space function calls. On the "kernel time" axis, with
thicker red vertical lines we indicate duration of any interrupt handler captured;
while the orange rectangular backgrounds (often appearing as horizontal lines)
indicate when the kernel switches user-space tasks. On the user space side, also
a numeric indication (in frames) of the three ALSA buffer pointer variables is
shown (the .pointer [violet], hw_ptr [red] and appl_ptr [blue] value), as well
as a linear interpolation between their values at different points in time.

On Fig. G.16, the start of the IRQ handler (which contains the func-
tion which we consider periodic: azx_interrupt() for hda-intel, or dummy
_hrtimer_callback() for dummy) is replotted on the "card time" axis 5 us
earlier, and considered as an interrupt request originating from the card ("card
TRQ"). Thus, the card IRQ are shown to occur slightly "earlier' (in respect
to "real time" axis) on the card, than their respective handlers running on the
PC - which is what we’d otherwise expect to happen in reality too (the clock
domain mismatch emphasizes this visually even more). In this sense, we try
to extrapolate when the card interrupt requests have been raised on the card,
based on the information we have on when the respective IRQ handlers ran
on the PC. The thick red arrows on Fig. G.16 connect such a "card TRQ" in
the card time domain with the respective IRQ handler in kernel space. Finally,
we use a visual representation of a filled buffer: on the "card time" line, we've
manually indicated the expected state of the assumed "card" buffer, while on
the user space side, it indicates the value of the relevant buffer pointer variable.

In this way, Fig. G.16 reveals a fundamental asymmetry between the play-

Gg4—278

G.5. Developing a virtual, CD quality, ALSA driver

o)

11)

Fig. G.17: Behavior of the dummy driver: capture behavior with snd_pcm_readi (left) and
playback behavior with snd_pcm_writei (right); blue arrows: userspace command, red: timer

callback

G45—279

Paper G.

back and capture ALSA operations: in a capture operation, the .pointer
value (from the card) is the primary buffer pointer variable, hw_ptr follows the
.pointer value, and appl_ptr follows the hw_ptr — while in a playback oper-
ation, the appl_ptr (set by user-space) is the primary buffer pointer variable,
the .pointer value (from the card) follows appl_ptr, and hw_ptr follows the
.pointer value. Essentially, the .pointer, since it originates from the card, is
independent from the other two values, and its value informs the kernel about
the status of DMA operations of the card: in the capture direction, it notifies
how many frames have been captured by the card; in the playback directions,
it notifies how many frames of those supplied by appl_ptr have already been
played back. Then, hw_ptr always follows .pointer, but with a slight delay -
it gets updated only at the call to the ALSA kernel function snd_pcm_update_
hw_ptr0, and it gets updated to the last (previous) .pointer value registered
by the kernel (at that point, the actual .pointer value is typically advanced
from what hw_ptr is set to). The appl_ptr shows the user-space application
status: how many frames the application has supplied for playback, or how
many frames has it already copied from kernel-space for capture. Note that
the .pointer value wraps at buffer size (in frames), as appropriate for the ring
buffer nature of the dma_area; while appl_ptr and hw_ptr are cumulative (but
are shown as if wrapping at buffer size on Fig. G.16 and Fig. G.17).

In other words, if we assume existence of card buffers, we could say the
following on the operation asymmetry: in capture, the card buffer is filled
first, the PC buffer (dma_area) follows it, and the "card IRQ" is a signal to
the user-space application to start copying a period size of captured data; in
playback, the PC buffer is set first by the user-space application, the card
buffer follows it, and the "card IRQ" is a signal to the kernel informing that a
period-sized amount of frames from those set by the user-space application have
actually been played. Fig. G.16 reveals another asymmetry between playback
and capture, which may be specific to the HDA Intel card and driver: in
both cases, the first "card IRQ" is issued relatively quickly (on the order of
100 ps) after the first user-space command; however, for the capture case, we
can consider it as a start of operation, and "card IRQ"s appear regularly at
period time afterwards — while in the playback case, this first "card IRQ" seems
like an acknowledgment, then another "card IRQ" runs after half a period time,
which can be seen as the start of operation, and only afterwards do the "card
TRQ"s appear regularly at period time. We cannot state with certainty the
reason for this behavior of the HDA Intel card and driver - however, it does
ultimately relate to our solution for a full-duplex, CD-quality virtual ALSA
driver.

Another interesting point about this example is that playmini.c, for the
small period and buffer sizes used, tended to generate lots of xruns when used
with the hda-intel driver (note however that Fig. G.16 shows a successful run
of the program, one where an xrun didn’t occur). We made a small test using
a script, playdelay.sh, which was based around inserting a given nanosleep
() delay between the two snd_pcmd_writei () user-space ALSA calls, running

G46—280

G.5. Developing a virtual, CD quality, ALSA driver

the program multiple times, and recording the number of xruns that have
occurred. Thus we measured the response of delays from 100 pus to 1ms in
10 us increments, running playmini.c for 100 times in each increment; and
realized that the optimal delay (the one for which a minimal number of xruns
were recorded per 100 runs) between the two snd_pcmd_writei() calls is 310 ps,
which is notably close to half the period time for this case (363 us). To conserve
space, we do not include the resulting plot in this article, but the script and
the plot image can be found via [1] (or alternately, via [17]).

Fig. G.17 shows the same context as Fig. G.16, but for the operation of
a virtual, snd-dummy.ko based, driver. Correspondingly, the card hardware
and the "card time" axis are vividly crossed out on Fig. G.17, as no actual
card hardware is used. The meaning of most symbols on Fig. G.17 is the same
as on Fig. G.16, with the exception of the red thick arrow - it now cannot
originate from the card hardware, so it is drawn pointing from the other side;
and also it doesn’t indicate a "card IRQ" anymore - it indicates where the
timer function is running. In both capture and playback cases, at least a
period time needs to expire after first user space command, for the first timer
function to run; however, Fig. G.17 indicates that in the capture case, snd_
pcm_readi may be blocking - that is, the first such user-space command may
wait for an update from the periodic kernel function, before the next such
user-space command proceeds; but in the playback case, it seems that both
snd_pcm_writei commands can execute, before even the first instance of the
periodic timer function has run - which implies queuing. Another thing visible
on Fig. G.17 is that the period time isn’t kept exactly, which shouldn’t be
surprising by now, considering the jittering behavior of high-resolution Linux
kernel timers discussed previously (Fig. G.5).

While Fig. G.16 and Fig. G.17 can be said to illustrate some of the basic
differences between a virtual (with periodic timer functions) and a hardware
DMA (with periodic IRQs) ALSA driver, the level of understanding they bring
about was still not enough to implement a virtual ALSA driver, that would
work seamlessly at CD quality settings with Audacity as a front end. For
that, we went through several other attempts at visualization of the kernel
log data, while focusing on the methods the PortAudio uses to utilize ALSA
- this is described further in the next section. Driver, program (captmini.c
and playmini.c) and script code, as well as logs, used to create the plots on
Fig. G.16 and Fig. G.17 is available via [1] (or alternately, via [17]).

Before we proceed, let us first return briefly to the PC soundcard hardware
we used. To begin with, "HDA Intel" is a reference to Intel’s "High Definition
Audio", whose 225-page specification is publicly available [41]; this specification
was codenamed "Azalia", which is likely the reason behind the snd-hda-intel
.ko driver using azx_ as a prefix for its driver functions. The specifications
defines a "High Definition Audio Controller" device, which on one hand con-
nects to the PCI bus, and on the other hand provides a high-speed serial bus
called "High Definition Audio Link". Finally, there are devices that connect
to the HDA Link bus, and otherwise contain the hardware A/D and/or D/A

Gg7—281

Paper G.

converters, called "High Definition Audio Codec". There can be multiple such
codecs attached to a HDA Link - and typically, their production is outsourced.
Using the alsa-info.sh script (downloadable from the ALSA website), we
have probed the soundcard hardware on our development netbooks, and real-
ized they contain a Realtek ALC269 codec (NetColors) and a Realtek ALC662
revl codec (MSI Wind); the datasheet for ALC269 can be found on [42]. Thus,
the model we have on Fig. G.15, where a single peripheral "card" would con-
tain all circuitry (both the PCI interface and the A/D and D/A converters) is
a simplification; in our actual case, the DMA soundcard hardware is split in
two parts: a HDA controller by Intel, and a HDA codec by Realtek (with a
serial bus in-between) - and correspondingly, there are several ALSA drivers
loaded on a live Linux on our development platform: snd-hda-intel.ko, snd-
hda-codec.ko and (ultimately) snd-hda-codec-realtek.ko. Still, inspecting
the snd-hda-intel.ko was the right approach to obtain periodic interrupt in-
formation for Fig. G.16 — as this driver governs the soundcard system part (the
HDA controller) which would be directly attached to the PCI bus.

G.5.4 Solving the virtual, full-duplex, CD-quality ALSA driver:
Visualizing and animating ftrace kernel log files with gnu-
plot

The discussion in the previous subsection was a necessary, but not sufficient,
prerequisite for implementing a virtual ALSA driver, which would operate un-
der CD-quality settings, but without the drop problems in the PortAudio li-
brary (as illustrated on Fig. G.11). The user-space programs being traced in
the previous subsection (captmini.c and playmini.c) implement capture and
playback operations separately, and as such do not model full-duplex operation.
Furthermore, they utilize only the simplest method of interacting with ALSA
(via snd_pcm_readi and snd_pcm_writei ALSA API calls) in a single thread
- while the PortAudio library polls ALSA file descriptors in a multi-threaded
context. Because of this, we needed to identify additional user-space software
for tracing inspection, which lead to additional approaches to visualizing data
obtained from that.

We were interested first in finding a "minimal" full-duplex ALSA user-space
program, in the same sense that captmini.c and playmini.c could be seen
as "minimal" simplex user-space examples. While such software exists, its ex-
istence evaded us for a while: for one, it is only distributed in source form, in
the test subdirectory of the alsa-1ib source package; and then, its name is
latency.c, making it easy to overlook in this context. Unfortunately, there was
very little information about this program, beyond the source code itself, which
mentions simply that it can be used to measure "latency between capture and
playback"'. As such, understanding what the program does, and how, wasn’t
necessarily a straightforward process for us — and because of that, we wrote
some of the understanding we gained as a sort of an initial documentation, and
posted it as a page on the ALSA project Wiki [43].

G48—282

G.5. Developing a virtual, CD quality, ALSA driver

The latency.c program is a single-threaded application, and ultimately
reduces to using snd_pcm_readi and snd_pcm_writei again; however, it con-
veniently offers a way for choosing polled or non-polled mechanisms through
command line arguments. On its Wiki page [43], we also included some quotes
from relevant posts on the ALSA mailing lists; some of these further clarify
the perspective that ALSA has on full-duplex operation. First, latency.c is
intended to capture input data, and play it back as soon as possible; how-
ever, that can be implemented in two different ways, depending on whether
snd_pcm_link() is used; which is shown on Figure G.18.

Capture | CO | C1 | C2 | C3 Capture co| c1f|c2|cC3

Playback Co | C1 | C2

I >t

I >t

Fig. G.18: Difference between unlinked (left) and linked (right) full-duplex capture and play-
back ALSA streams for latency.c (from ref. [43])

Each of the square sections on Fig. G.18 represent a period size of audio data
(their boundaries can be considered to be defined by the moments when the
periodic functions [IRQ or timer functions] run). In case of unlinked streams,
we have to wait for the first period of capture data (C0O) to be available, before
we can use that data for playback - however, since it will take additional time
to start the playback stream from user-space, the delay between the start of
capture and start of playback in this case will be greater than the period time.
When the streams are linked, only one snd_pcm_start() command is used to
start both capture and playback streams; in an idealized case, we can consider
them "aligned" in time (as on Fig. G.18 right). Here, the first playback period
must be silence (as at that time, the first capture period of data CO is not
yet available); and while we would like to start playing back CO already in the
second playback period, we cannot - because by the time user-space became
"aware" that CO is available, and copied to playback, the second playback period
would have already started. This is the reason why the latency.c program
starts with writing silence data twice to the playback buffer. Thus, ultimately,
the latency that the latency.c program measures, corresponds to 2- period_
size plus whatever hardware latencies occur. Note that this behavior may be
specific for this use case, which - in the terms we introduced at end of sect. G.5.2
- we could call a "monitoring" full-duplex use case (i.e. we want to play back
data which is captured live as soon as possible); and may not necessarily apply
to "studio overdub" full-duplex case (where we play back audio tracks, and we’d
like to capture audio input, so it is - as much as possible - in sync with the
playback data).

We used a modified version (with additional command line options, and
other changes) called latency-mod. c, available via [1] (or alternately, via [17]),

G49—283

Paper G.

for debug inspection. As it is ALSA-only application, analyzing it wouldn’t
track down the reason for the PortAudio full-duplex drop; however, we hoped
to gain a better understanding of what happens on the kernel level during a
polled full-duplex operation. Essentially, the analysis would consist of plotting
data similar to Fig. G.16 and Fig. G.17; however here we would have to show
both playback and capture data simultaneously - basically, as if the left and
right plots on Fig. G.16 (or Fig. G.17) were to overlap. This makes it more
difficult to read the plots and draw conclusions, and we attempted to address
this by trying two animation approaches.

The first approach was to run a debug acquisition test multiple times, plot
the acquired data as on Figs. G.16 and G.17, but in "landscape" mode (the plot
is rotated so the time axes are horizontal), and then produce a GIF (Graphics
Interchange Format) animation, where each animation frame is a plot of one
test run; we used this approach both for latency-mod.c tests, and for those
described in the previous subsection. With a low resolution GIF animation,
details are lost — but, such an animation still allows for a visual understanding
of the jitter present in the periodic functions: at first sight, one can deduce
that the jitter of hda-intel driver’s azx_interrupt() can be as large as the
one of dummy’s dummy_hrtimer_callback(). More interestingly, it reveals that
how often the driver’s .pointer callback is called, can be dependent on the
arrangement of both driver code, and user-space code.

In terms of driver code, let’s recall that the three buffer pointer variables
(.pointer, hw_ptr and appl_ptr), have different "primacy" depending on the
operation direction (playback or capture); and do not change simultaneously,
being updated by snd_pcm_update_hw_ptr0 to a "previous' value. Because of
this, the ALSA engine may typically call .pointer twice (or more) in quick
succession - until the value of hw_ptr "settles" (that is, becomes equal to the
.pointer value). This causes some interesting behavior: in the original dummy
driver, the value returned for .pointer is based on measurement of expired
time from start of operation; this means that there is a pretty good chance
that by the time .pointer is called for the second time, enough time may
have passed so that the calculated .pointer value has changed for 1 frame
since last time. Thus, the hw_ptr cannot "settle" in the second call, and the
ALSA engine continues calling .pointer in quick succession — "quick" here
meaning mere 30 ys or so apart, which we may perceive as a useless utilization
of the CPU (especially since this is a virtual driver, and there is no reason
why, in principle, we couldn’t return any value whatsoever for its pointer -
including a value that would stop the quick succession). In the modified driver
version we used, dummy-mod, we moved the calculation of the returned .pointer
value in the timer callback; because of this, the .pointer value is updated less
frequently - meaning that hw_ptr can usually "catch up" after only two calls to
snd_pcm_update_hw_ptr0. In this sense, dummy-mod’s behavior resembles the
operation of hda-intel more closely than the original dummy does. In terms
of user-space code, we realized that if latency-mod.c is ran both without
blocking and without polling, there will be a tight loop in user-space code

G50—284

G.5. Developing a virtual, CD quality, ALSA driver

calling snd_pcm_readi - which will be visible in the animated GIF as many
quick successions of .pointer, even for the hda-intel driver! Links to these
GIF animations can be found via [1] (or alternately, via [17]).

The second approach to animation was to take debug log data acquired from
a single run, and using a separate gnuplot script, render plot frames which
represent a sort of a zoomed region into plots like Fig. G.16 (or Fig. G.17),
centered around a particular time moment; one such frame is shown on Fig-
ure G.19. These frames are then composed as an MPEG animation, with the
end result being a video of time-stretched vertical scrolling along the plot’s
time axes.

- LB~ 7 T CRUL ipleyhack) {coptire)

5] sy, {peen,)
[5] aumpy {paes)

1.50m

280m [~

o) Thmee |
2um I 220

220m

L 230m |- 2% | !

240m -

Fig. G.19: One frame of animation, of a kernel log of the full-duplex operation of the dummy-mod
driver, used with the user-space latency-mod.c program.

The main benefit from an animation like on Fig. G.19 is that it allows
one to gain a sense of the rhythm of the periodic kernel functions and the
change of buffer pointers. The rhythmical sense could have been enhanced
further by a sonification audio track (e.g. generated similarly to the approach
in Sect. G.4.1), but we didn’t pursue that further in this context. The animation
is a time-expanded video (basically, a slow-motion video akin to high-frequency
time-lapse videos) where ~ 6 ms of real-time debug capture is visualized as 26
seconds of animation. The plot is centered around the "current" "card time"
moment (indicated by the captioned box and the horizontal gray line in the
middle), and shows a range of 300 us before and after the "current" time. To
the right, there are two lanes: one for playback, and one for capture; both

G51—285

Paper G.

of them feature a (gray) box, with a set of squares representing the buffer
(white background), and a rendering of the current value of the different buffer
pointers: for playback, appl_ptr (dark blue) is on top as a primary variable,
and the .pointer (violet) and hw_ptr (dark red) are on the bottom; for capture,
.pointer (as primary) followed by hw_ptr is on top, while appl_ptr is on the
bottom; all of the variables wrap at buffer size, and the value is indicated
both as an arrow, and as a colored line inside the buffer symbol. To the left
of the plot, there is again a similar box, with two buffer symbols: the top is
related to playback, the bottom to capture. From the inner side of the buffer
symbols, the respective hw_ptr variable is repeated (in violet); on their outer
side, we show the assumed playback (red) and capture (blue) buffer pointer "on
card", interpolated from the first known respective hw_ptr value at CD-quality
rate. In an animated format, this allows for a more natural understanding of
the buffer pointer mechanisms; unfortunately, it doesn’t allow for more precise
statements, other than hw_ptr generally being able to follow the assumed "card"
pointer values (and the pointers following each other depending on stream
direction as described previously), in both hda-intel and dummy driver cases.

Note that here we use period size of 128 frames and buffer size of 256 frames,
since for smaller values, latency-mod.c very easily generates an xrun. In gen-
eral, the smaller the period and buffer sizes, the more the likelihood for an
xrun increases, and as such it also happens for the chosen 128/256 frames com-
bination; however, we used this animation approach on test run acquisitions
that ended successfully, in order to gain a model of how the proper operation
is supposed to work. Having encountered xruns in both this and previous
tests, made us briefly look into finding a way to visualize when an xrun is de-
tected; unfortunately, as of now, we haven’t found a simple and legible enough
method. The best we can say currently, is that on the level of ALSA, the bulk
of the calculations for an xrun detection seem to occur in the snd_pcm_update
_hw_ptr0() ALSA kernel function, defined in alsa-kernel/core/pcm_lib.c
file (in the alsa-driver package); and they may depend both on the period
and buffer sizes, and on a delta defined either through new and old values
of hw_ptr — or through an elapsed time (involving calculation via jiffies
). Additionally, an xrun is detected in the snd_pcm_update_state() kernel
function (in the same source file), where the detection relies on avail and
stop_threshold variables. The avail variable, roughly, returns the difference
between frames processed by user space, and frames processed by the sound-
card; since the meaning of this differs depending on stream direction (playback
or capture), there are different formulas and thus different functions to calculate
this parameter: snd_pcm_playback_avail() and snd_pcm_capture_avail ()
(see file alsa-kernel/include/pcm.h in the alsa-driver package).

While the above animation approaches do manage to provide insights into
the operation of ALSA drivers which are otherwise obscure, they didn’t re-
veal the reason for the failure with PortAudio. Thus, we needed another
user-space program, which would again be used to drive a full-duplex oper-
ation, but utilizing the PortAudio library - and in that sense, would emulate

G52—286

G.5. Developing a virtual, CD quality, ALSA driver

the full-duplex audio operation of Audacity, without the GUI overhead. For
this purpose, we used a program named patest_duplex_wire.c, which we de-
veloped from several PortAudio examples, most notably patest_wire.c and
patest_record.c (found in the test/ directory of the portaudio-v19 source
package). Note that in this program, as per PortAudio limitations, we can only
set a framesPerCallback variable, and a total duration in frames, from the
command line. The PortAudio framesPerCallback variable will typically be
used to set the period size of the ALSA driver, but not always: the driver’s pe-
riod size could end up different (quantized to the nearest possible value). Fur-
thermore, we decided on developing another test and visualization approach
(implemented in a script, collectmirqg.sh): running a user-space program
with different period and buffer size settings, and recording and plotting only
the occurrences of periodic functions (IRQ or timer functions) of the driver (a
technique similar to the approach on Figs. G.3 to G.5). The results are visual-
ized on a plot, which in this case, has the time axis as the ordinate (vertical),
while the abscissa is used as an index of a particular test run acquisition. This
allows for side-by-side comparison of runs, obtained with different software:
with either latency-mod.c or patest-duplex-wire.c programs, using either
dummy-mod or hda-intel drivers, and with different buffer and period sizes.
Plots of such a side-by-side comparison are given on Figure G.20.

-10‘2

1
—
&

% 5
E& z‘{ jI :I ;1: :I ;I :'Jrzm #;7 ﬁm ﬁm ‘ESS B)

LR
B Iy

11

500-10"3
j——+—4=-9r-

+
J,»‘Zq
4

'O, €O~ g 0, 03, 03, O, 0
6’,t<‘7,r2c9/’)9,f0,£21/t)2, 23,
N ’1d \"1(1 ! /w W,

-+ +
0o, 0o <03, f03 (‘00) r’o; [COyq,, 03, O3, O35 O3, s
/'32 30\/ 6’7]6 ?D 80 9. ‘10 D]DQ J\p’i)}I)él “pa Up
~y,, d’lz (2/1,0 ~y, b /z(;af /,{ /2111 (/Qr /1(/;7{,,1 & (11,,2’ duqt , 22 ~dy,
38 129 15015108 191 936 256 256 95 265251 25525, 2. ’723

125512g" R
& 2502502578257 5-25, 78, 358 ergé’ 257 egﬁ N5 0575057505750 6\512 51965196 5195 R

Fig. G.20: Rendering of data obtained using collectmirq.sh, displaying the periodic ALSA
driver functions: a) 10 runs using the latency-mod.c program (period/buffer size 128/256
frames); and b) 10 runs using the patest-duplex-wire.c program (period/buffer size 256,/512
frames); for different drivers (see text). Test duration in all cases is 512 frames.

The situation on Fig. G.20 made us aware that the phase between the differ-
ent directions (playback or capture) of the drivers’ periodic functions (the inter-
rupts, or the timer functions) may be relevant to our problem. For each combi-
nation of: a user-space program (latency-mod.c or patest-duplex-wire.c);
period /buffer size setting; and a given driver (dummy-mod or hda-intel) - the
collectmirq.sh script will perform 10 debug log acquisition runs (for a total
of 200 test runs). Acquisitions are numbered per sequential user-space program

G53—287

Paper G.

runs, and this is the starting number on the abscissa tick labels on Fig. G.20.
On the plots on Fig. G.20, the + markers indicate the time moments when the
given periodic functions have been logged. In principle, we could have deduced
the stream direction (playback or capture) of a periodic function, by printing
out the driver structure variable substream->stream when the function runs;
however, we wanted to keep the driver timing interference due to printouts to
a minimum (the timestamp is obtained from the periodic function entry in the
ftrace log), and since we already print the .pointer values, the code deduces
whether a periodic function is for playback or capture, by parsing the data
printed by the .pointer function called in the context of the periodic function.
However, the hda-intel driver may start operating with azx_interrupt()
calls wherein .pointer does not run - which is the reason for the "lone" +
markers on Fig. G.20. For all other markers where the stream direction is
known, we plot additional elements: for playback, to the left a square node
and .pointer value, in gray; and for capture, to the right a circle node and
.pointer value, in black (note that the value numbers may be truncated to-
wards the edges of the plot). To ease the visualization of periodic behavior in
time, the nodes for a respective direction are connected with vertical lines of
respective color — and if applicable, every second such line is drawn dashed.

On the plot on Fig. G.20 a), where the drivers are set to period/buffer
size of 128/256 frames, it is visible that the left half (showing hda-intel’s
operation), generally reports either 129 or 1 as the .pointer value for either
direction; conversely, the dummy-mod (right) half shows values like either 137
(138 ... 148) or 9 (12 ... 19) for the playback (gray); and either 133 (135

141) or 5 (6 ... 10) for the capture (black). Something similar happens
for period/buffer size of 256/512 frames, on the plot on Fig. G.20 b): the
hda-intel left half reports either 257 (265) or 1 (9) for either direction; while
the dummy-mod right half shows values like either 265 (268 ... 274) or 9 (12

19) for the playback (gray); and either 261 (264, 267) or 5 (7 ... 13)
for the capture .pointer value (black). Clearly, the .pointer values tend to
indicate the period size boundaries in the buffer; for hda-intel they are more
stable — while the variance in the .pointer values for the dummy-mod driver
can be explained by the fact that here the value is calculated based on elapsed
time in the timer functions; and due to preemption, we cannot expect that
these functions will execute exactly periodically (or at least, as exactly as an
TRQ handler, responding to an interrupt by a dedicated hardware timing signal,
would).

However, there is another fundamental difference between the hda-intel
and dummy plot halves on Fig. G.20: for the dummy driver (and ignoring the
jittering due to preemption), it seems that both playback and capture timer
functions tend to execute very close to each other (nearly "at the same time"), as
it would be expected for linked streams. However, for the hda-intel driver, it
seems that the execution of periodic interrupt handlers for one of the streams
— the playback one (gray) — is consistently occurring earlier from the other
one, which we can interpret as a phase offset/shift; and in spite of this, the

G54—288

G.5. Developing a virtual, CD quality, ALSA driver

.pointer values reported still match across directions (that is, both directions
will report a .pointer value of, say, 129; even if the interrupt for one executed
significantly earlier than the other)! Comparing the a) and b) sides on Fig. G.20,
it seems that this behavior of the hda-intel driver is persistent across changes
of buffer and period size settings. Further investigation revealed that for a
period size > 64 frames, this phase delay/offset (or the difference between
moments of time, where corresponding playback and capture IRQs execute) is
consistently around 48 frames (1.088 ms at CD quality). It was this behavior of
the hda-intel driver, that we aimed to simulate in the dummy-mod driver: we
set up the timer functions, such that the playback one would be consistently
delayed early for 48 frames from the capture one; and we set up the .pointer
function to return quantized values based on the elapsed time, which stabilized
them. This resulted in a version of dummy-mod driver, called dummy-fix; a
comparison (like on Fig. G.20) between the dummy-fix and hda-intel drivers’
operation is given on Figure G.21.

3 = B Gnoplot (window id - 0}

H 2egaaq %7

.25 T T T T T T T

209848 KZUSE 209“202 ZOUG ZUQB 20d94p20
02
10 %10 %10 %0 1-%10 %11 OO0 ¥00 %01 %01 W11 11 W11

15 -
20ﬂBI ?OQQI QOQSI zoﬁeI?ngaI 2GQGIQD§EIQDMI2MM 209858 ?GQBT 204098 ?UQQI QIMQBI ZOQDINEGI?DE GIQDMJ
0150 0 k00 %00 %10 KO0 K01 kO 1 %00 ¥1 0 X0 0 %11 %11 %I 1 %11]
0.05 -zon».Tmn&TmneTmstugsTuge 048 ungaasmmmwmmemmnT mnstogeTzoneTzoge 20004 2089320
o . - L . | L

e

i}

=

=2
o
o

Prespapdege v

BRTIOIIDA1T T
BROLSEH DI

BRI

EPTAGIE A0 T10-a08 |-
(e TR

E s s
BRI
ERETREIn L
BRTHOI 975 900 000
BRI SISO T [
EPEIAENE 400 410.PY
BRTAGIE A I e [
Fibear-dee-ia-ane [
PrAaTdsep |- e
PRI i
EPE S0

Ftz eap- sk Lot
B
EHTSnarAne-r

15.4655,°0.131423

Fig. G.21: Screenshot of gnuplot (data obtained using collectmirq.sh), rendering the pe-
riodic ALSA driver functions, using audacity as user-space program: 10 runs using the
hda-intel (left), and 10 runs using the dummy-fix (right) driver; period/buffer size is
2048/4096 frames in all cases.

Figure G.21 shows the typical usage of gnuplot with data from collectmirq
.sh during our development: the plot layout is nearly the same as on Fig. G.20,
except here the playback direction is colored red, and the capture one blue.
Again, it shows a comparison of timing and values of pointer positions, but
this time during CD-quality full-duplex operation of Audacity (whose under-
lying PortAudio tends to choose period/buffer size of 2048/4096 frames for
either of the drivers). While not very visible on this scale; the playback pointer
position of the dummy driver is delayed 48 frames early from the capture one

G55—289

Paper G.

- simulating the behavior of the hda-intel; and in that, both drivers behave
relatively similarly (as there is not much difference as we traverse the "takes"
along the x-axis). This early delay of playback pointer position, and the quan-
tization of pointer values, is what "fixes" the virtual dummy-mod driver, so it
can perform a CD-quality, full-duplex operation in Audacity — without a drop
like the one shown on Fig. G.11.

Unfortunately, currently we cannot say exactly why this kind of a change
of the virtual driver’s behavior, would have an influence on the detection of
a problematic audio performance in PortAudio, which is otherwise unnoticed
by ALSA itself. The delay (or phase difference) between playback and capture
TRQs could be an inherent behavior of the Intel HDA controller hardware, or
it could be due to a mode of operation set specifically by this version of the
Linux hda-intel driver. The hardware IR(Q timing behavior isn’t specifically
addressed in Intel HDA documentation like [41] or [44] (which handles architec-
tural topics, that are independent of OS and driver choice). The playback/cap-
ture delay behavior of hda-intel could also be one of several hardware modes,
chosen due to a special setting enforced by the driver - in which case, the ques-
tion of why would the hda-intel driver developers choose to implement it,
arises; it is possible it could have been a workaround for a bug. Indeed, after
reporting our fix on [17], we were informed that our PortAudio drop problem,
may in fact have been triggered by a PortAudio bug [45], that was fixed only
recently (in 2013). An answer could probably be found by deeper review of
related posts in alsa-devel mailing list, and the history of HDA Linux driver
files (as found in the official git repository of alsa-driver). Unfortunately, a
full clarification of this issue would require a more detailed investigation, than
what we could afford in this project, due to time constraints. All of the code
used in the development, discussed in this section, has been released through [1]
(look up the alsa-tests directory) — or alternately, it can be found, differently
organized, via the mailing list thread [17].

G.6 Profiling the CD-quality, full-duplex operation of
FTDI FT232RL USB-serial IC

Having successfully solved the issue of a virtual CD-quality full-duplex ALSA
driver, capable of writing data in the capture stream (in the form of the
dummy-fix driver described in the previous section), we were persuaded that it
would take nothing more than replicating that mechanism — where the playback
timer function is delayed 48 frames early in respect to the capture timer func-
tion, and the .pointer function returns frames calculated based on elapsed
time, which are quantized — in our AudioArduino driver, so that we could
demonstrate full-duplex CD-quality operation with actual hardware; in this
case, an Arduino Duemilanove.

By this time, however, we were already aware of the major deficiencies
of our approach, that became apparent in the course of this project. In re-

G56—290

G.6. Profiling the CD-quality, full-duplex operation of FT232RL

view, our new work would be based on the full-duplex, 8bit/44.1 kHz/mono
AudioArduino driver [3a], which keeps the original ftdi-sio USB serial driver
(for the FTDI FT232RL USB-serial chip on the Duemilanove), and adds an
ALSA interface on top, based on kernel timer functions (inherited from the
ALSA dummy driver). As mentioned in Sect. G.4, the ftdi-sio driver allows
for fp = 200000 B/s data rate throughput through the USB-serial chip; while
uncompressed CD-quality audio demands a throughput of f,5 = 176400 kB/s.
On one hand, the fact that f,p < fp should indicate that such a driver could
be expected to function properly; on the other hand, the inequality G.4.10 does
not hold for these settings, so it is likely that the driver could be susceptible to
timing errors due to kernel preemption. However, we expected that by moving
to high-resolution kernel timers - and otherwise implementing the architecture
of dummy-fix - would minimize these effects; so as to result with a driver which,
at least most of the time, reliably operates in full-duplex mode. Then again,
we are aware from subsection G.5.3 that an ALSA driver architecture based on
timer functions - even the high-resolution kernel ones - cannot fully replicate
the DMA and TRQ soundcard mechanism, that ALSA is primarily meant to
address. This would be even more true in this case: while USB does make use
of DMA on a low level (as USB controllers are attached to the PCI bus), this is
in a sense abstracted for us - as we interface with relatively high-level functions
of the ftdi-sio driver, which execute before (or after) any potential DMA op-
eration would occur, and may already include the effects of any IRQs that may
have executed in relation to the data transfer operation. In this sense, here we
are even further from the DMA+IRQ model, than when we merely attempted
to simulate it in a virtual driver — and this, in itself, should alert one to expect
potential problems in the intended operation of the planned driver.

As these concerns couldn’t help us a priori predict the behavior of a CD-
quality AudioArduino driver, there was nothing else left but to try it. Before
we address the problems that we encountered during its development, let’s first
note some specifics of USB communication.

G.6.1 A closer look at USB and full-duplex

The 650-page USB 2.0 Specification [46] defines three USB data rates in terms
of signaling bit rates: high-speed at 480 Mbit/s, full-speed at 12 Mbit/s, and
low-speed at 1.5 Mbit/s; when the Arduino’s FT232 is attached to our develop-
ment PC, the kernel first recognizes it as a "new full speed USB device using
uhci _hed" in the syslog - which means that USB data between the PC and
the FT232 is exchanged at 12 Mbit/s. Then, the specification defines the USB
cable as containing four wires: Vgyg (nominally at 5 V), GND (ground at 0 V),
and D+ and D- (data+ and data-, also emphasized on Fig. G.26). It is notable
that the data pins D+ and D- form a differential pair: they can be seen as
carrying the same data, but with opposite phase (or, as parts of the very same
wire that carries a current signal, that has been turned in the opposite direc-
tion at one end). This means that USB is incapable of physical full-duplex,

G57—291

Paper G.

understood as existence of two different data signals at the same time (as in
the case of RS-232 serial) - simply because there is no other physical medium
(like a wire) in the cable, that would carry a second signal. At the same time,
this implies that electrically, the USB cable data wires represent a bidirectional
bus: the USB devices must be able to take turns in sending data over the
medium of D+ and D- wires, which means they must be able to terminate
their end of the connection with high or low impedance, as appropriate. The
USB 2.0 Specification also defines a tiered star bus topology, where tier 1 is
the USB Host (and notably “there is only one host in any USB system. The
USB interface to the host computer system is referred to as the Host Controller
[46]”); while the other tiers are populated by USB Devices, which are then
categorized into: USB "Hubs'; and devices implementing "Functions" (such as
a soundcard, or a USB-serial chip). USB Devices expose a set of endpoints,
with which the host forms (logical) pipes (which can be of stream or message
type); endpoint 0 is reserved for control messages over the "Default Control
Pipe", which a device must implement, so it exists once the device is powered
on the bus. USB recognizes four types of data flow over a logical pipe: Control,
Bulk Data, Interrupt Data, and Isochronous Data Transfers. Using the 1susb
program under Linux, we can see that the FT232 exposes two USB endpoints:
EP 1 IN (with endpoint address 0x81) and EP 2 OUT (with endpoint address
0x02), both of which are of Bulk transfer type, and have a maximum packet
size of 64 bytes.

Most importantly, the specification defines USB as a polled bus (meaning
that devices are asked in turn if they have any data to transmit), where ac-
cess of the devices to the interconnect is scheduled in advance, and where the
scheduling is controlled by the host - in that the “Host Controller initiates all
data transfers [46]”. In relation to this, the USB spec defines a frame, which
(unrelated to the concept of an ALSA frame) simply represents a time base/in-
terval of 1 ms established on full- and low-speed buses; for high-speed USB, an
additional time base of 125 us is defined, called a microframe. We may have
met the concept of scheduling already: within a kernel context, we perform
scheduling any time we use a function like the aforementioned add_timer () of
the Linux standard timer API, even in context of periodic functions - because
that function, simply, allows us to schedule the execution of some function at
some time in the future. In the context of USB, something similar occurs -
except that the host controller needs to manage the scheduling of messages
not just for one, but for all devices that, via hot-plugging, may appear on
(or disappear from) the USB bus. All of these factors represent a significant
departure from the concept of full-duplex, we may be acquainted with from
RS232 serial communication; thus, we have attempted to illustrate how some
of these factors in USB communication may have an influence on our use case,
on Figure G.22.

In absence of a USB analyzer device, which could have provided a detailed
timing of each USB packet on the bus, the next best available thing is to
capture and analyze the low-level kernel perspective on USB traffic: the mes-

G58—292

G.6. Profiling the CD-quality, full-duplex operation of FT232RL

P ———————
R R e URB_S(77): [64/512/ O<| |D[570/512/512] :URB_O(OK) hoste2:2.1]789](1756)

a7 w99 URB CIOK) st 22l o orsy 1L

9 5 e
T03lhost—2: S(7%): [6 ===>T ol 3 > Ste2:2.2|[79] €1791)
T3] = [61/ 708/ 0] \URB_C(OK) hoste2:2.2 L Fndpomt
s K= 0x81
g N
~g 4103 4 —] = | LEPL1IN)
GE TT796[host—2:2.1 URB_S(?7): | 64/512/ 0]<] [DT436/372/372] :URB _C(OK) host«-2:2.1[1705] (1793) B
S use | | Bl HE
T 8 = - = =
2E 10— T e s ———157130/ 375/ 375, CRB-C(OK) host= 221 Lw{\r@: o
&< 1799 host—2:2.1 URB—S(77): | 647512/ 0]< ST 61/ 704/ 0] :JURB_C(OK) hoste 2:2.2|1800](1707) 1=
E Endpomt
5= 0x02
8108 i — A (EP 2 OUT)
T802fhost—=2:2.1 URB_S(?2): | 64/512] O<] — |D[417/353/353] :URB_C(OK) hoste2:2.T|TS0T|(1799)

3 L8031 222 URB_S(77): [768/704/704DL — — p
10-10 I =D 8 0 —— |D[410/376/376] :URB_C(OK) host«2:2.1{T807]1802)

tls)

Fig. G.22: Visualization of a snippet of URB requests and responses, representing USB traffic;
captured using usbmon / tshark on Linux during a full-duplex, CD-quality operation of
Audacity with Arduino’s FT232

sages, which the kernel exchanges with the USB host controller device on a
PC, known as USB Request Blocks (URB). This is not a term defined in the
USB specification; and on the official website, it seems to be mentioned only
in presentations by Microsoft employees (e.g. [47]) - but is also used in the
Linux kernel. Under Linux, capturing the URBs is possible using applications
like tshark or Wireshark (and by proxy, the kernel debugging facility called
usbmon; see also sect. G.7), and results with a timestamped list or a log, which
may be difficult to parse visually at first glance; Figure G.22 visualizes the
same information a bit differently. To begin with, all the packets are captured
on the PC, and so we can consider the timestamps of the captured URBs to be
in the PC clock domain; therefore the time axis (ordinate pointing downwards)
is drawn from the PC side. The PC communicates with USB endpoints on the
device, which have a specified direction and a four-bit number, encoded in the
endpoint address: e.g. the hexadecimal endpoint address 0x81 is 100000013 in
binary; the lowest bits 0 to 3 (00012) specify the endpoint number 1, and the
most significant bit 7 (12) specifies the direction IN. Note that the direction
is given from the perspective of the USB host, not the device (which actually
contains the endpoints): when the host wants to read data from the device, it
initiates a request to the IN endpoint (which transfers to host); and when the
host wants to write to the device, it initiates a request to the OUT endpoint
(which transfers from host). These requests, and the responses from the device,
are in the form of URB messages. Note that as per the USB spec bus topology,
there may be a USB hub in between the PC host controller and the USB device
(here seen as a USB "Function", as opposed to a hub); that detail is ignored on
Fig. G.22.

On Fig. G.22, text labels with some information headings from the captured
URBs are plotted, aligned vertically to their timestamp position on the time
axis. The text labels are aligned horizontally in respect to their direction (and
otherwise adjusted to avoid overlap): the USB host can only issue requests

G59—293

Paper G.

(considered as being of a type called URB_SUBMIT by usbmon / tshark), and
the USB device can only issue responses to those requests (which are classified
as a type called URB_COMPLETE). The submit URBs are aligned at the left, and
the complete URBs at the right, inside the central diagram on Fig. G.22 (bound
by two vertical lines). The text content of the labels is "mirrored" on each side,
and it contains: a direction string (like "host — 2:2.1", where "2:2.1" stands
for bus number 2, device number 2, endpoint number 1); a type and return
status string (like "URB_S(77)", where we have replaced "??" for the status
reported as "-115 (-EINPROGRESS) Operation now in progress" by tshark);
a sizes/lengths string (like [64/512/0], where the first number is actual size
of the captured URB; the boldfaced second is so-called URB length which is
either a request for a given amount of data, or identical to the data payload
length; and the third number is the length of the data payload, which can be
zero); and a direction character (either >’ or <’ if the data length is 0; and
'D’, which is our rename of the '0” which is reported by tshark when there is
data available). Note that on Fig. G.22, all submit URBs have a -115 status
(in progress), and all complete URBs have a status of 0 (OK).

Each URB is numbered, which is shown on a label on the respective outer
side of the central diagram; the figure shows a snippet of URBs from number
1789 (whose timestamp is also taken to represent the starting time 0 of the
axis) to number 1804 in that particular acquisition. Software like Wireshark
can automatically parse information on, which URB "complete" is a response
to which URB "submit" request - and provide hyperlinks in the GUI for easy
navigation between the two; this can be exported as a "request in" number,
which for the response ("complete"') URBs is shown in parentheses to the right
of the respective URB number on the figure. We have attempted to additionally
visualize this relationship, using the thick "trapezoidal' lines behind the labels
in the central diagram on Fig. G.22. To address legibility, these lines generally
become darker in shade as time progresses - but also, every second one has a
sudden change in shade, as well as a different end position at the right side.
The trapezoidal shape should indicate (not to scale) that a URB would spend
relatively short time traveling on wire, and most of the elapsed time between
a request and response is spent waiting for a response to be generated by the
device. So we can read the diagram as follows: with URB 1790, the PC host
submits a request to EP 1 IN of the device, for 512 bytes ([64/512/0]) to be
delivered to the host (read from device), in a URB 64 bytes in size. After some
time, the host sends another request, URB #1791, to EP 2 OUT of the device,
this time asking the device to accept 704 bytes ([768/704/704]) from the host
(write to device); the data is sent along with the request, making the total size
of the URB request 768 bytes. Soon afterwards, URB "complete" number 1792
comes in from the device, which is a response to URB #1790; in response to
request for 512 bytes, it carries only 383 bytes ([447/383/383]) in a URB 447
bytes long. This is followed by another request submit by the PC, in URB
#1793, for 512 bytes ([64/512/0]); and soon afterward URB #1794 comes in
from the device, which is a response to URB #1791, apparently acknowledging

G60—294

G.6. Profiling the CD-quality, full-duplex operation of FT232RL

that the device received 708 bytes ([64/708/0]) in a URB without data (64
bytes long). These events seem to be repeated with some regularity at a period
of 4ms, which we can relate to the 1 ms "USB frame" time base - but also
to the duration of a jiffy on our development platforms. It is notable that it
takes far less time for the device to respond to a write request from the host
(e.g. URBs #1791-#1794), then it does for it to respond to a read request (e.g.
#1790-#1792); an obvious reason is that the FT232 device would have to wait
for data to come in from the serial side, before sending it to the host over
USB. Furthermore, the PC host seems to consistently ask to read 512 bytes,
or write 704 bytes, of data per request; however, in URB #1794, the device
acknowledges receiving 708 bytes, while the write request in #1791 carried only
704 bytes; arguably, this could occur if at a previous time, the device could not
have accepted or acknowledged the entire payload written by the host, and so
in #1794 it would acknowledge the missing piece it handled in the meantime.
Also, the device may send back the entirety of the requested 512 bytes per read
(#1789), but it may also send less than that (#1792, #1795, #1798, #1801).
Since the "complete" URBs are the responses, and ultimately the confirmations
of a successful read or write transfer, we have their positions for another set of
shaded direction lines, to the right of the central diagram on Fig. G.22. The
shadings and directions of these lines are related to the respective endpoint on
the device: thus URBs #1794 and #1800, as responses to a write from the host,
are sources of lines towards EP 2 OUT — and all the others are destinations
of lines originating from EP 1 IN. The same kind of direction lines are also
repeated near the PC box, for reference.

Ultimately, Fig. G.22 reaffirms the half-duplex nature of USB: the requests
from the host, and the responses from the device, cannot possibly travel over
the single differential pair D+ and D- in the USB cable at the same time, in
full-duplex fashion. The salient point, however, is that since the USB packets
are exchanged at a much higher bitrate (12 Mbit/s for full-speed USB) than
the target serial 2Mbit/s bitrate, we obtain not just the impression of, but
actual full-duplex operation over serial, as witnessed by the RX and TX signal
acquisition on Fig. G.25. On the other hand, we can also expect that kernel
operation on this level will also be susceptible to jitter - independently; which
may compound with the jitter effects we already recognized as part of the use
of kernel timer function within ALSA drivers.

G.6.2 An elusive overrun error, and the FT232 FIFO buffers

As mentioned in the start of this section, our efforts in this phase were focused
on implementing a CD-quality version of the AudioArduino driver - which
we called snd_ftdi_audard-ani16s; however, testing its final versions demon-
strated a specific problem, which is shown on Figure G.23.

The screenshot on Fig. G.23 depicts Audacity during a digital duplex loop-
back test [3a], where we program the Arduino to simply resend each byte
that it received as part of an audio playback operation; therefore, in case of

G61—295

Paper G.

[B B outlész500
Fe dit Tr

- ' : B 5 0L
3 m)p) M) W) o) I ol LR JRE & |
: ol ¥ 4 s o k| e 24 0 P 40
|': i - Bl ol & »2 ERIEHELy 0
15 i d Rl L —_
T — E
! : : . |
Stwrwa, 441001 '_
16-bit PCH 0.5
e | s
+ | OO
L 05
o R
-L,0 |
10
0,5 g
0,0 \\
RE : =
=|Project Hate (Hzk Selection Start: T End @ Length Hiidin Positon:
laaron | = Snap T [1 [00R00mO0 200000 sampies~ 00000 m003-00000 sampiasv) 00700 m00 s+4342 0 samples~
Disk space remans for recording 1 hoar 2nd 7 minutss |#ctual Race: 44100

Fig. G.23: Screenshot of Audacity, working in CD-quality full-duplex mode with an AudioAr-
duino driver, and a Duemilanove as digital duplex loopback device. The outgoing/playback
track is the first one (vertically collapsed), the incoming/capture track is on the bottom
(expanded); note the error in the capture stream, starting right before the 7.5s mark.

a proper full-duplex operation, the capture stream should be identical to the
playback stream, and any other result would indicate either driver or hard-
ware problems. As an input (playback) stream, we use a linear ramp of all
the 216 values of a 16-bit signed integer, in antiphase per channel (we use the
genbindata_sawramp_16s.pl script, mentioned in Sect. G.5.2, to generate this
input audio data); this takes approx 1.48s to reproduce at CD-quality, and a
loop of this input would thus represent a sawtooth wave with a fundamental
frequency fy = 0.67 Hz - that is, an infrasound. As such, its role is not so much
to allow for an auditory test, but instead to allow for easier visual identification
of possible errors in the capture stream (and thus errors in the loopback duplex
test).

Note that on Fig. G.23, for up to some 7.5 seconds of the operation, every-
thing is fine; which means that we can exclude ALSA driver problems, such as
circular buffer wrapping errors (since 7.5s > 0.046 s of the typical period dura-
tion in Audacity, corresponding to period size of 2048 frames), as the cause of
the duplex loopback error. However, it can be something of a challenge to state
exactly what is the cause of the error: inspecting the debug mode output of
PortAudio and ALSA during our tests, indicated that neither of these compo-
nents report registering an xrun (as an indicator of timing errors on the kernel
level). In any case, had we experienced an xrun, we would have expected either
a period’s worth of dropped frames (e.g. like on Fig. G.11), or a corresponding
amount of silence; which is seemingly not the nature of the error on Fig. G.23.
Furthermore, during our tests, the error could have appeared randomly as early

G62—296

G.6. Profiling the CD-quality, full-duplex operation of FT232RL

as 1-3s, and as late as 30s after the start of a full-duplex operation: that means
that obtaining ftrace kernel debug logs may be unfeasible for these kind of
tests (given the massive amount of data that would be generated on the order
of tens of seconds), meaning that we would have to look for an alternate way
to confirm the cause of this error.

By inspecting multiple errors of the sort, we observed that when the error
in the capture stream of the kind on Fig. G.23 is zoomed in, it also resembles a
sawtooth wave, except with a period of 256 frames (or 256 samples per channel);
this is a non-linear distortion in respect to the original signal. Furthermore,
occasionally the error takes form as a sudden inversion of the channels’ data
(i.e. the left channel starts showing the phase that was previously in the right
channel, and vice versa). This points to an amount of bytes, which is not
an integer multiple of the frame size (for CD-quality, 4 bytes), being "lost" or
"dropped" somewhere in the round-trip from playback to capture — causing a
framing error; such a situation is shown on Figure G.24.

Bl4

B6 ‘ B ‘ B8 ‘ B9 ‘BlO‘B]l‘BlQ‘B]B B15 Blﬁ‘BU‘B]S‘BlQ‘

LLO LMo RLO RMJ DET LM RLI RML LL2 LM2 RL2 RM2 LL3 LM3 RL3 RM3 LL4 LM4 RL4 RM4

SSRRL R 8 SN SR SRR SRR NSO AR SR U

R
hd
. ‘ BO | B ‘ B2 ‘ B3 ‘ B4 ‘ B5 | B6 ‘ B7 ‘ B8 ‘ B9 |B10|B11 mz‘ms 314‘315 BIG‘BW‘BIS B19
LLO LMO RLO RMO LL1 LM1 RL1 RMI1 LL2 LM2 RL2 RM2 LL3 LM3 RL3 RM3 LL4 LM4 RL4 RM4
- 256 511 512 767 768 1023 -1024 1279
Snasses S
~200 \\L
—400 T
—600 e
—800 —_
1000 b o e apeper—10 SR R
1,000 e
800 —_—
600 _—
400 /T
200
—2 0 2 4 6 8 10 12 14 16 18 20 22

Fig. G.24: The effect of dropping a single byte from an interleaved CD-quality stream; byte
array and stereo waveform plot of: original stream (top), stream with dropped byte (bottom).

G63—297

Paper G.

On Fig. G.24, the abscissa can be thought of as an index of a byte, in the
interleaved CD-quality stream; or alternately, time in units of a byte period (as
per the audio rate) — although time delays due jitter are not represented. The
"byte array" graphic representation is an alternate rendering of Fig. G.13, which
shows the index of a byte inside a square, and the binary content shown rotated
on top; below, we use labels where the first letter (L, R) indicates the channel,
the second (L, M) indicates least (LSB) or most significant byte (MSB) weight
in the 16-bit sample, and the third (0,1,...) is index of the frame; and below
the braces, we show the signed integer decimal value of the 16-bit binary value
of the sample. These decimal values are then plotted, with linear interpolation,
on the plots below - as the waveform of the respective audio channels. The top
byte array can be seen as the input (to the card/Arduino from the PC) - or
the "original", playback data; the bottom can be seen as the returned output
from the Arduino, that becomes the capture data in the PC.

Since our driver deals strictly with trafficking uncompressed audio stream
data, there is no framing information whatsoever embedded in the signal, that
could help the system identify that a framing error has occurred — all we have
is the expectation that at these settings, an ALSA frame is 4 bytes wide, and
frames are arranged sequentially one after another in the stream. That is why,
the loss of a single byte at the fifth position (B4) on Fig. G.24 would cause the
data in the playback stream to effectively be shifted in the capture stream -
with complete disregard for the interleaved frame format, which has disastrous
consequences: as visible on the figure, not only does the corresponding range
(and thus the slope of the linear interpolation, which affects the frequency
domain spectrum of the signal) increase significantly, but the phase of the
signal changes as welll LSB data is now shifted to MSB position, which would
explain the increase of frequency we observed in the error earlier (in a 16-bit
linear ramp, the LSB values change 256 times more often than MSB ones). If
there were two bytes dropped on Fig. G.24, say B4 and B5, then we would have
observed not a distortion, but an exchange of the left and right channel data.
If we dropped exactly 4 bytes, we would have dropped an entire frame, which -
beyond the loss of the corresponding sample(s) in the channels - would not have
caused any further distortion to the signal. Of course, the exact behavior of the
distortion (when it occurs), would depend not only on the amount of dropped
bytes (the size of the error), but also on where within a frame does the error
start — and the characteristics of the input signal: the change in frequency we’ve
observed here, is specific to the linear ramp nature of the input we used. Let
us lastly note, that for the process opposite of the byte removal one (discussed
so far) - the insertion of a byte in a stream - we would have observed the very
same kind of distortion effects.

Awareness of this error mechanism does not reveal where the loss of bytes
may have occurred, however. Eliminating driver operation (mostly the dma_
area circular buffer wrapping mechanism) problems as a cause, we're left with
the part of the route the data takes through USB and the Arduino, and back
again. To confirm this, first we used the USB debug facility in the Linux ker-

G64—298

G.6. Profiling the CD-quality, full-duplex operation of FT232RL

nel called usbmon (see /Documentation/usb/usbmon.txt in the kernel source).
It provides timestamped and encoded (but human-readable) strings similar
to ftrace; and we used the command-line tool tshark (part of the Wireshark
open-source analyzer software) to interface with usbmon and capture USB pack-
ets with their entire data payload. Finally we used a script to extract and
concatenate payload data into binary files for each direction (playback and
capture), which lent themselves to comparison with binary diff tools such as
dhex. This procedure confirmed that the data in playback USB packets is iden-
tical to the original data, but the capture direction USB packets contain the
error — which narrows down the list of suspects for the location of error origin
to the Arduino board.

Next, we wanted to confirm what happens on the Arduino board itself —
and the best opportunity for that was to capture the RX and TX serial signals
between the FT232 and the ATmega328 chips (see Fig. G.6) on the board. To
troubleshoot an error of this kind, we would have had to record the signals on
the order of seconds, which along with multichannel sampling of binary signals,
implies the use of a digital logic analyzer (as opposed to an oscilloscope; even
if the distinction gets blurred in recent times). Here we used a Saleae Logic
device, along with its accompanying software (also called Logic). The Logic
software is not open-source; however, a freeware download is available, built
natively for Linux (and only recently, we also learned that it is possible to use
the open-source sigrok suite to interface with these devices [48]). Using the
Logic device and software, we obtained acquisitions of the RX and TX signals
during full duplex operations, one of which is shown on Figure G.25.

+00 ms) +1ms +2ms +30ms w4 ms +50 ms 6l ms

Fig. G.25: Screenshot of first 50 ms of Saleae Logic analyzer capture, measuring the TX and
RX (serial) lines - connecting the FT232 USB-serial chip and the ATmega microcontroller,
on the Arduino Duemilanove - during a CD-quality full-duplex loopback operation with
Audacity.

While on this zoom level of Fig. G.25, the individual RS232 byte signal
levels cannot be seen (as they are visually compressed) - a clear "silence" gap

G65—299

Paper G.

is visible at approximately 46 ms (~ 2048/44100), which corresponds to a
typical period size (2048 frames) chosen by Audacity. Note the likeness to
Fig. G.9: the gap is due to the USB rate (200000 B/s) being faster than the
audio rate (176400B/s, which controls the period time). In the version of
the AudioArduino driver inspected on Fig. G.25, during playback there is a
single call to the ftdi_write() driver function each period, with a period
sized amount (here, 4096) of input bytes; this acquisition confirms that such
a call does, ultimately, result with an uninterrupted serial stream out from
(and back in to) the FTDI chip. Note that the Saleae Logic must sample at
16 MHz, to capture asynchronous serial (RS232) at 200000 bytes/sec, and be
able to automatically decode it; and at that resolution, it can capture maximum
about 1 second of data - which cannot help us capture and debug errors that
might happen later in the full-duplex process (like on Figs. G.23 or (later)
G.31). Therefore, we had to repeat test runs, until we would get a definite
error within the first second of full-duplex operation, so that we could inspect
the corresponding RX/TX signals: the Logic software allows export of decoded
data from serial signals as an ASCII file, which then allows for easy comparison
between the RX and TX signal contents. During this part of the development
process, we have observed errors (recorded as phase distorted capture audio
in Audacity, as on Fig. G.24) within the first second of full-duplex operation -
while the corresponding Saleae Logic acquisition of both the TX and RX signals
reported them to be both identical to the original input, and that therefore no
data was being lost there; this indicates that the observed error must have
happened somewhere in the FTDI USB/serial chip, with the data on its way
from the chip to the PC.

The 43-page FT232 datasheet [49] notes that this chip has two on-board
buffers, a 128 byte receive buffer and a 256 byte transmit buffer, placed between
the USB serial interface engine and the UART controller within the chip. These
are known as FIFO RX and FIFO TX Buffers, the designations being relative
to the USB interface: “Data sent from the USB host controller to the UART
via the USB data OUT endpoint is stored in the FIFO RX (receive) buffer. ...
Data from the UART receive register is stored in the TX buffer [49]”. Or, in
other words, data sent from the PC (the host) to the FTDI chip (via USB),
ends up first in the FIFO RX buffer (the chip receives) — while in the opposite
direction (the chip transmits), the FIFO TX buffer is used. These would be the
main suspects for the location of the error: while the datasheet isn’t explicit
about this, we find it hard to imagine that these buffers would work in any
other fashion, than as circular (ring) buffers - which means that they would be
susceptible to, in particular, buffer underrun or overrun errors. At this point,
it would be useful to have a better view of the placement of these buffers in the
system, as well as a speculative model on the appearance of underrun errors in
the buffers; this is what Figure G.26 attempts to illustrate.

While the block diagram on Fig. G.26 shows a more detailed context of
the FT232 USB-serial chip in our development system, it is still a simplified
rendering of information given in the chip’s datasheet [49] and the Arduino

G66—300

G.6. Profiling the CD-quality, full-duplex operation of FT232RL

3

] FIFO TX Buffer _

g (256 bytes) E Q
g g =
= (TITTTITTITTITTITITIT] g =
g . E 3
£ USB (RXD)5| MSTXD [&
| —_— UART (RS232) [o
z ik controller R 2 5
= g =
G FIFO RX Buffer S
& (128 bytes) g =
= FT232 USB UART IC g =
2 (USB/Serial converter chip)

Fig. G.26: A representation of the buffers of the FT232 chip. The block diagram on top is
a zoomed view of Fig. G.6, with the FT232 chip and its buffers emphasized (TX top, RX
bottom).

Duemilanove schematic [50]. This block diagram preserves the same orienta-
tion as on Fig. G.6: the PC is to the left, and the ATmega328 microcontroller
to the right, of the FT232 chip. The PC is connected through a USB connec-
tion, whose data wires are connected to pins 15 (USBDP) and 16 (USBDM),
controlled internally by a USB transceiver engine in the chip. The microcon-
troller is connected through a serial connection, consisting of what the Arduino
Duemilanove schematic refers to as RX and TX lines (M8RXD and M8TXD);
note that these lines are named from the perspective (receive and transmit) of
the microcontroller (they are connected, respectively, to: pin 2 (RXD) of the
ATmega328, which is pin DO on the Arduino board; and pin 3 (TXD) which
is also pin D1 on the board) - and note that they are connected to the op-
posite named serial pins on the FT232 (respectively: pin 1 (TXD), and pin 5
(RXD)). These serial lines were the ones measured on Fig. G.25, and they are
internally managed by the UART controller engine of the FT232 chip. The
FIFO buffers, then, are placed between the USB Transceiver/Serial engine and
the UART Controller engine of the FT232 chip, "halfway" between the PC and
microcontroller endpoints.

The thick gray direction lines on Fig. G.26’s block diagram show the route,
that the data would take, in each direction. When the PC sends data, it goes
through the USB connection - and after it is received by the USB Transceiver/Se-
rial engine, the engine places it in the FIFO RX (chip receives) buffer. There-
after, the UART controller reads data from the RX FIFO, and sends it, for-
matted as RS232 voltage signal, on its TXD pin — which, via the M8RXD line,
arrives to the RXD pin of the ATmega microcontroller (lower gray line). In the
opposite direction, the microcontroller sends data as RS232 formatted voltage
on its TXD pin, which arrives at the RXD pin of the FT232, and is received by
the UART Controller in the chip - which promptly stores it in the FIFO TX
(chip transmits) buffer; the USB Transceiver eventually reads the data from
this TX buffer, and sends it to the PC through the USB connection (when
a corresponding URB request comes in; upper gray line on Fig. G.26). The
FIFO buffers are represented graphically as rectangular arrays: since in printed
format, subdividing the arrays at individual bytes would not be legible - we
have chosen that one cell should represent 16 bytes (4 frames at CD quality) on

G67—301

Paper G.

the diagram; the arrays are left-aligned for easier perception of the difference
in size between the two buffers.

In order to account for a mechanism that results with a removal or an
insertion of a byte in the stream (as on Fig. G.24), we will provide a speculative
description of the evolution of the buffer’s states in time, during a data transfer
— consider Fig. G.27.

TX buffer, underrun TX buffer, overrun

Opmd | dAes

. med L e

SHEEE NN

- omd 4
RX buffer, underrun RX buffer, overrun

min | BEPEY |

en RIS SRR > < S

- e

Fig. G.27: Representation of possible xrun states in TX (top) and RX (bottom) buffers.

Fig. G.27 visualizes the two types of "leaky bucket" errors, overrun and
underrun, for each of the TX and RX buffers as on Fig. G.26. The axes can be
seen as time, or position into the buffer; the buffers are assumed to be circular,
so they wrap at the end of the axis. The "head" pointer variable, shown in
dark gray (and taller), shows the state of writes into a buffer; the "tail", shown
in light gray, shows the state of reads from a buffer, Each state (A, B, C, D)
represents a short period of time, where the head or tail changed; the arrow in
each stands for the state at the end of this period, and the duration between
the states is arbitrary (not necessarily periodical). The shade of the arrows
around the state labels at the left, indicates which variable is under control
of the USB host; so for the TX buffer, the USB host controls the tail (reads),
while for the RX buffer, it controls the head (writes). This is assumed to take a
short time, so the corresponding shapes are rectangular. Conversely, the other
variable in a state would be controlled by the serial UART, and can be assumed
to change in a slower, incremental fashion, which is indicated by a triangular
shape.

As example, for the RX buffer, the head increases when the PC has sent

G68—302

G.6. Profiling the CD-quality, full-duplex operation of FT232RL

data via USB, which ends up being stored by FT232’s USB transceiver in the
FIFO RX buffer (write); conversely, the tail increases when FT232’s UART
controller has read bytes from the FIFO RX buffer, and has successfully sent
them on the M8RXD serial line. In this context, when reading from, occurs
faster than writing into a buffer, inevitably a state is reached where there is
no more data to be read, which is an underrun (the "bucket" leaks faster than
it is filled). Conversely, when writing into, occurs faster than reading from a
buffer, inevitably the buffer will run out of space, and will not be able to store
incoming data, which is a state of overrun (the "bucket" is filled faster than
it leaks). Thus, we can interpret, say, the TX underrun diagram (Fig. G.27,
top left) as follows: in state A, head is ahead of tail, and everything is fine;
after some time, in state B, the head has slowed down (it hasn’t advanced as
much as the tail), but there is still no error; later in state C, the head has
stopped completely, while the tail has crossed it at the end of the state - bytes
beyond the head are invalid (they represent previously processed values), and
an underrun occurs; finally after some time in state D, the head has sufficiently
advanced again, so the operation returns to normal. Note that in both overrun
diagrams (Fig. G.27, right), the start is with state A where the head is to the
left of the tail - this is meant to represent a valid state, where the head had just
"wrapped" around the buffer boundary (which means that in absolute terms,
at that point the tail is still behind the head).

What will the effect of the under/overrun (or zrun) be on the output stream,
depends not only on the timing and sizes of the consecutive reads and writes -
but also on how the engine is designed to handle the error. For instance, for an
underrun, the engine might return only the valid bytes (so, less than requested);
or it may return the entire request, however either returning previous values,
or zeroes, as padding for the invalid values. For an overrun, the engine may
either discard the incoming bytes that would have been stored ahead of the
tail; or may choose to write them in, thereby overwriting values the tail hasn’t
read yet. In either of these cases, the engine may decide to reset one (or both)
of the pointer variables to 0 (the start of the buffer). However, it seems that an
overrun is a more serious error, as in the case of an underrun, the engine might
simply stall the tail until the head advances; for an overrun, bytes always end
up corrupted (we’d need an additional buffer where all incoming values would
be previously stored, if we're to stall the writes in this buffer effectively). For
instance, an overrun where the incoming bytes that would lie beyond the tail
are discarded, where the tail and head are reset to the start of the buffer, and
the tail is stalled until the head sufficiently advances, would account for loss of
bytes in a stream as on Fig. G.24.

This model might provide a basis for relating a mechanism as on Fig. G.24,
to the problem as observed on Fig. G.23; unfortunately we cannot confirm
what is the exact cause of such errors. To begin with, the FT232 datasheet [49]
doesn’t even mention the words "underrun" or "overrun' (or "overflow" - even
if it is typically applied in a different context). Some more information can be
found in the source code files of the ftdi-sio driver in the Linux kernel — but be-

G69—303

Paper G.

fore we address that, let us notice that on Fig. G.22 (which otherwise visualizes
USB traffic during CD-quality operation of the same snd_ftdi_audard-ani6s
driver discussed here), the exchanged URB messages have a size of 64 bytes,
when they do not carry any data (in either direction). This portion encodes
information like URB type, status, etc.; and can be seen as the header of a
URB message - covering the bytes with zero-based index 0 to 63 (0x00 to 0x3f
in hexadecimal) in the message. But if there is any data carried with the URB
message, then the first two bytes of the data section - the bytes with zero-based
index 64 to 65 (0x40 to 0x41) from the URB header (and repeatedly at 64 bytes
in the URB packet) - in fact represent status bytes, which contain information
not otherwise present in the URB header. The ftdi-sio Linux driver, in fact,
skips these bytes over (in case of a read from the device) before handing over
the rest of the data to the kernel (including the ALSA component, in case of Au-
dioArduino). Notably, these status bytes are not mentioned in the datasheet
[49]; however, there is an application note from FTDI [51], concerning data
throughput and latency of these chips, which does document their existence —
but unfortunately, does not document their meaning, or the use of their values.

The only reference we’ve found so far, that documents the meaning of these
status bytes, is the C header file ftdi_sio.h - part of the ftdi_sio driver in
the Linux kernel; there we find the bit field information, of which we provide a
verbatim copy in listing G.6.2:1.

Byte 0: Modem Status * Byte 1: Line Status
*

Offset Description * Offset Description
BO Reserved - must be 1 * BO Data Ready (DR)
B1 Reserved - must be 0 * Bl Overrun Error (OE)

B2 Reserved - must be 0 * B2 Parity Error (PE)

B3 Reserved - must be 0 * B3 Framing Error (FE)

B4 Clear to Send (CTS) * B4 Break Interrupt (BI)

B5 Data Set Ready (DSR) * B6 Transmitter Holding Register (THRE)
B6 Ring Indicator (RI) * B6 Transmitter Empty (TEMT)

B7 Receive Line Signal Detect (RLSD) * B7 Error in RCVR FIFO

* oKX X K K X X X K X X X

Listing G.6.2:1: Bit field map, as found in ftdi_sio.h - with meanings of individual bit flags
of the status bytes, returned by the FT232 chip.

We have attempted to look further for official documentation mentioning this
information, but in vain: for instance, an Internet search for "Transmitter
Holding Register" limited to the manufacturers website, returned zero results
as of 2014. At least, through listing G.6.2:1 we learn that the device itself
can acknowledge an overrun error, through the bit B1 in the Line Status byte
(byte 1). Just after the snippet on listing G.6.2:1, the driver code defines
bitmask values for reading these bits, among them FTDI_RS_OE intended for
the overrun error bit. This made us look elsewhere in the ftdi_sio driver
code, to see if these values are used, and indeed they are - precisely before the
spot where the status bytes are discarded, and the rest of the payload data is

G70—304

G.6. Profiling the CD-quality, full-duplex operation of FT232RL

transmitted to the kernel; in particular, FTDI_RS_OE is used in the ftdi_sio.c
driver file, at the point in the ftdi_process_packet () function, shown on the
stanza on listing G.6.2:2.

Listing G.6.2:2: Location, where overrun (FTDI_RS_OE) is checked in the second status byte
(packet[1]) from the FT232 chip, in the ftdi_sio.c driver source file.

flag = TTY_NORMAL;
if (packet[1] & FTDI_RS_OE) {
flag = TTY_OVERRUN;
printk ("ftdi: OVERRUN error 1len: %d; packet: 0x%02x Ox
%02x \n", len, packet[0], packet[1]);

As it can be seen on listing G.6.2:2, the overrun check is simply used to set
a flag variable to an error value; later in the code, this flag is used to determine
whether to proceed with writing the data further to the serial port abstraction
in user space. In our AudioArduino modification, we have always chosen to
write the bytes to the ALSA part of the driver regardless of this flag, in order
to have a more direct exposure to errors, should they occur. In fact, the original
driver didn’t even report these errors anywhere - which is why we have added
the printk() statement in that part of the code on listing G.6.2:2. With this
in place, we were able to rerun our tests, while monitoring for the report of
precisely this error in the system log. We could confirm that there indeed is
correlation between the occurrences of phase distortions in Audacity (as on
Fig. G.23), and the printouts of the above overrun error message. Although,
at times, we have also seen an error printout occur, without a corresponding
distortion in the signal - we believe that can be accounted for, by assuming
that at those times, the FIFO overruns that occurred are an integer multiple of
the ALSA frame (4 bytes) in size. The interesting thing is that we used to get
two distinct status byte value pairs printed, when an overrun error occurred:
0x01 0x02, and 0x01 0x62; the appearance of one or the other pair, didn’t seem
to be related to whether long-running distortion occurred in the signal at the
same time. With the information in listing G.6.2:1, we can look more closely
at what those values stand for: in particular, when the second byte’s value is
0x02 = 000000102, that means that all bits in the field are zero except for B1,
which is the Overrun Error; and when its value is 0x62 = 011000102, bits B1,
B5 (Transmitter Holding Register) and B6 (Transmitter Empty) are set.

Unfortunately, this does not bring us to much further insight; to begin with,
without further documentation, we can never be sure that the "Transmitter" -
as used in the names of B5 and B6 bits - specifically refers to the FIFO TX
buffer of the FT232 chip (as on Fig. G.26). If it does, we could speculate
that the Line Status byte value of 0x62 signals an overrun in the FIFO TX
buffer, and the value of 0x02 notifies of overrun in the FIFO RX buffer on the
chip - but again, without an explicit reference in an official documentation, we
cannot really claim that this is the case. In our tests, at times we have observed

G71—305

Paper G.

that the 0x02 value occurs more frequently than 0x62, when an error appears.
Because of this, we ran a few half-duplex tests - with only the Arduino writing
to the PC, and the PC capturing only, without playback - where we observed
only the 0x62 line status value occur; this should, apparently, confirm that 0x62
indeed signals overrun in the FIFO TX. In full-duplex context, we can observe
that - besides the FIFO TX being twice as large as the FIFO RX buffer - the
Arduino can only write in the TX buffer, that data which it received from the
RX one; and from [3a] we know that the Arduino will copy a byte in mere
~ 6.9 us, with a jitter far less than that. As another example: in one of our
full-duplex captures, a 0x02 overrun was signaled, resulting with a state as on
Fig. G.11; comparison of USB URB payloads on the PC revealed that the write
data (from PC to USB chip) is intact, but the read data (from USB chip to
PC) is missing a continuous block of 37 bytes — while a comparison between
serial RX and TX signals on the Arduino (as on Fig. G.25) revealed the full
original data present on both. As per Fig. G.26, this could only be explained
by an overrun in the TX buffer — but then, the interpretation that 0x62 signals
a TX overrun and 0x02 signals an RX overrun is not correct.

Unfortunately, as mentioned earlier, we cannot claim what exactly happens,
as we cannot state with certainty, what do the bit field names (in the Line Sta-
tus byte bits) refer to exactly. The difficulty in tracking down this information
was clarified, when we eventually stumbled upon a discussion in the usb-devel
mailing list [52]; below, we provide extracts of the most salient points in this
e-mail thread:

[43

— Can anyone confirm that the state of the chip’s TX buffer (at least
whether it is empty) can be retrieved from the chip? There is no
publicly available datasheet about this kind of hardware details.

I don’t have the datasheet, so I can’t answer this for you, sorry.

— Is tedrain() supposed to ensure that all TX data has been sent for any
serial device? If so, why is it not implemented for this device?

No one has implemented it to do so. Other usb—serial drivers have
implemented this functionality, just not this one. Perhaps because no
one has noticed before, or maybe the chip really can’t do it.

Without the specs for the device itself, I can’t really tell for sure.

If you do get ahold of the specs, let me know, and I’ll be glad to work
to add this support to the driver, as I agree, it is something that
would be useful to a lot of people.

I have e—mailed FTDI’s support to ask whether the assumptions described
above are true and whether there is no register to read the actual
amount of data in the hardware buffer(s). Their website states you need

G72—306

G.6. Profiling the CD-quality, full-duplex operation of FT232RL

to sign an NDA to get the register descriptions, but with some luck that
isn’t needed.

OK, no luck. I got a reply that pretty much said "please sign this NDA"
and since I'm not a lawyer, I'm not sure whether the conditions would
allow me to use their datasheet for GPL code. [52]”

Assuming that, in our case, the PC writes too fast to the FT232 chip, we too
could have used something similar: if we could have retrieved the state of the
FIFO RX buffer from the chip, we might have known in advance whether we’re
about to overrun the buffer — and we could have performed traffic shaping
by delaying the writes; which may have helped avoid the FIFO RX overrun
altogether. However, it is uncertain whether information obtained through a
non-disclosure agreement (NDA) would be applicable to a project with open-
source ambitions like this one.

As a last-ditch effort, we attempted to focus again on information which
we can extract from the kernel, and perform an analysis, this time based solely
on the amount of bytes written to and read from the FT232 chip by the driver.
This approach ultimately failed in terms of bringing a solution; however, we
provide an overview of it in the next subsection.

G.6.3 An inconclusive analysis - ftdi_ profiler and visualization
using multitrack_ plot.py

With the conclusions from the previous subsection in mind, we decided to fo-
cus solely on the data exchange between the PC and the FT232 — implying
that we would want a test, without the audio ALSA layer interfering with the
process. This resulted with a new kernel driver: just like AudioArduino, it is
implemented in a single header file (ftdi_profiler.h) which is utilized by the
ftdi_sio.c source file of the official Linux ftdi_sio driver, modified in the
same way as it was for AudioArduino; compiling it results with a driver kernel
module ftdi_profiler.ko. As mentioned, it does not include any ALSA func-
tionality - however, it includes the same organization of timer functions as found
for playback (write to device) or capture (read from device) in the AudioArd-
uino driver - and thus is hooked through the same two functions of the original
ftdi_sio driver (ftdi_process_packet () and ftdi_write()). So instead of
expecting interaction through ALSA or a serial port, the ftdi_profiler driver
exposes files in the Linux /proc filesystem, which can be used to set: a period
of time, an amount of bytes to write during that time period, and a duration
time of the test; finally, there is a file /proc/ftdi_profiler exposed: reading
from this file starts the process - a kernel timer function write loop (and the
corresponding reception of data, like in a full-duplex AudioArduino operation)
- if it hasn’t been started already; if it has been started, the read from the file
simply reports that the process is on-going. The process terminates itself once

G73—307

Paper G.

the duration time, set previously through the /proc filesystem, has expired.
Thus, there is no interaction with a user-space program during this process
(aside from the start-up triggered by a read of the file in /proc).

Here we were mostly interested in performing debug data acquisitions of
longer running operations - up to 30 seconds - to ensure that we would cap-
ture at least one buffer overrun per test run. Using the ftrace Linux kernel
logging facility, in the full function graph mode like we used it previously (re-
call listing G.2:2b), would have generated immense amount of data; making it
additionally difficult to process. Instead, here we opted simply for the driver
printing a single line of information when the callback functions run in each di-
rection (writing and reading), mostly focused on the timestamp and the amount
of bytes processed, as well as printing of the FTDI status bytes in case of a
read; however, we still used the ftrace engine here, in that we used its trace_
printk() function - so we could avoid the overhead, associated with the usual
printk () function of the Linux kernel. Of course, this is simply another version
of a duplex loopback test, and it requires the Arduino connected to the PC,
programmed to send back the bytes it received as soon as possible; the content
of the bytes is however irrelevant here, as ftdi_profiler simply writes the
requested amount of zero (0x00) bytes all the time.

With this test format, we didn’t expect that the procedure would be too
CPU intensive, so we made an attempt to capture the URB requests (as on
Fig. G.22) during this test procedure as well, through the usbmon debug facility
of the kernel. Unfortunately, the ftrace and usbmon debug subsystems, even
if they both by design address the Linux kernel, are somewhat incompatible be-
tween each other, at least in the OS versions we worked with - for instance, we
could not find a way to route a usbmon message to the ftrace log on the kernel
level; so we attempted the most straightforward way - setting up a continuous
read (via cat) of the usbmon tracing files, and redirecting that to the ftrace
log external input file (ftrace_marker), from the shell. This introduces levels
of indirection, that would make the usbmon- acquired data more unreliable; but
in addition, we realized that the timestamps produced by usbmon are in a com-
pletely different format than those by ftrace! Simple attempts at correlation
(starting at a common marker, and comparing the difference of time expired
since then) between the two kinds of timestamps revealed that they are not
predictably correlated. Because of that, we didn’t use the data acquired by
usbmon at the time, and the analysis below refers only to data produced by
ftdi_profiler itself (however, since then, we learned of a method to convert
usual kernel timestamps into usbmon-style timestamps [53], which would have
assisted with time-correlating data from both domains more reliably). Still,
the test procedure we described above, can be found implemented in a script
we called ftdi_profiler.sh (available via [1]).

As in previously discussed tests, this procedure too generates a plain-text
data acquisition log, which needs to be processed afterwards. The idea for
analysis is essentially simple: try to find a condition on the PC, that would
unambiguously trigger an appearance of an FT232 overrun; and prove it by

G74—308

G.6. Profiling the CD-quality, full-duplex operation of FT232RL

implementing an algorithm, that by processing the log-contained timestamp
and byte amount information only, would "predict" the times of appearance
of the overruns - which can be validated by the existence of records of actual
overruns in the log. Of course, if we knew exactly what we were looking for,
we could have written such an algorithm immediately; however, given that
we were trying to identify such a condition in the first place, we again had to
resort to customized visualization of data —and as the now famous quote (often
attributed to J. Zawinski) goes: now we have two problems. Here the data is
of a slightly different nature than in previous tests: the log mostly doesn’t
contain redundant data, and so the parsing can be a bit simpler. However, we
have both timestamp position data, and integer values contained in multiple
time-dependent variables, from which we would also attempt to derive new
variables. In all, the most natural form of visualization of this kind of data
to us seemed to be a waveform plot: time on the abscissa, and variable value
on the ordinate; per variable. As this is a standard plotting approach, first
we attempted to experiment with gnuplot: while it certainly doesn’t have
a problem with plotting this kind of data, we realized that one of the most
important aspects in this case for us was the ability to quickly zoom in and out
around data at particular points in time. While gnuplot has two interactive
interfaces on Linux that allow this, the x11 one is fast but difficult to work
with (both visually and interactively), and the wxt one is rather usable but
slow (especially in terms of zoom in and out) with the kind of data and plots
we used.

Therefore, we looked into other possibilities for plotting and visual analy-
sis of this data. We already had experience with Python’s matplotlib from
Sect. G.4.1; while we found this library very versatile and convenient to work
with, we also found its response during zooming interaction rather slow. We
then tried another plotting library for Python called chaco (v. 3.4.0), which
we found to have a much faster response to zooming; unfortunately we hit a
bug in that library, which unexpectedly started filling areas on the plot for
large data (already at about some 110k points). So we had to look further;
and found a standalone GUI plotting application called kst. It is a part of the
KDE desktop environment software, but we didn’t have a problem finding a
package that could run in our development OS, which uses the Gnome 2 desk-
top environment. Unfortunately, while the version we found, 2.0.7, could start
up without a problem - it also caused a CPU hog (some 90% or more CPU
utilization) as soon as a graphics session was started with our data loaded; this
didn’t get resolved even after we built the application from source, and as such
this application version ended up being unusable to us. Eventually, we tried
the Windows version of kst 2.0.7 running under the Wine emulator in Linux
- and ironically enough, this version didn’t suffer from the bug, so we ended
up using this version. This application impressed us with its speed in terms
of zooming interaction, and the allowance for limited manipulation data in the
application using a specific syntax. However, the feeling of having settled down
on a choice didn’t last long: as we kept increasing the number of plotted vari-

G75—309

Paper G.

ables we derived from the acquired data, kst kept on behaving more sluggishly;
its screen can be separated into multiple plots, but they cannot be scrolled -
so ultimately, we also ran out of space where we could meaningfully (in the
visual sense) plot our variables; we experienced that more than three variable
waveforms on the same plot become very difficult to read and analyze. But
there was one more issue with kst which ultimately forced us to look further -
which is the issue of data interpolation, shown on Figure G.28.

k i ' ' L L i 1 0 L I
o 0.08 ol .15 0.2

Fig. G.28: Result (lower, red, outlined squared marker) in kst, of our attempt to interpolate
an input signal, defined at one set of time moments (upper, blue, filled circle marker) over
time moments defined in another set

In kst, like in other plotting software, sampled data is handled so the time
positions are usually defined as one vector, and the actual values of a signal at
those positions as another vector; here "vector" being short for "data vector",
having the meaning of one-dimensional array of real numeric values (integers or
floating point numbers). Fig. G.28 is our attempt to resample the input values
vector, defined at time moments t; = i-At, i =0,3,6,9,... (ori = 3-n,n € Np),
over the union with time moments at t; = j-At, j = 1,2,4,5,7,... (j being
the "remainders" between i, or j = n-sgn(n mod 3) for n € Ny, j > 0), which
may belong to another input vector. This means that the values stored in
the vectors are in different time domains - or more properly, sampling domains.
However, for a software like kst to be able to perform calculations on them (e.g.
to subtract one signal from the other), it needs them in the same time domain
- which then implies a need to resample the signals to a common time domain
(the union of all time positions present in either of the signals). Therefore here,
we would ultimately like to resample the input values, over the union of the
time moments defined for both signals - which for the choices in this case, would
boil down to all time moments ¢, = n - At,n € Ny. Fig. G.28 is the outcome,
of what looked like the most straightforward approach for doing that to us: to
enter in kst, as Equation, "[val i (V2)]"; to enter, as X vector for the equation,
"t_j (V3)"; and to check "Interpolate to highest resolution vector" (V2 and V3
are internal data vector names that kst assigns; val i and t_j would be our
custom names, which would be related to the indexing above). However, as

Gy6—310

G.6. Profiling the CD-quality, full-duplex operation of FT232RL

shown on Fig. G.28, the output is interpolated only over the ¢; domain, and it
doesn’t include the time moments t;; also, a proper linear interpolation would
mean that the output values, as points, should lay exactly on the line formed
by the input values - while here, clearly, the output values are slightly below
it. We might consider this a documentation bug, as to our knowledge, the kst
documentation is not explicit about how to do resampling of data values of this
kind. We submitted a bug regarding this issue [54], although possibly at the
wrong site (the Ubuntu bug tracker, instead of the upstream one for kst).

During our period of analysis with kst, we would have often been led to
conclusions which seemed to be absurd - and becoming aware of the behavior on
Fig. G.28 did finally account for some of that However, we also became aware
that in terms of plotting, it may be that linear interpolation, as a technique,
is not what we needed at all. Consider that our data at this stage consists
of samples, taken at different time positions: the writes are periodic, as they
are driven by a kernel timer function with a set period; the reads can also be
seen as periodic, but with a different, independent period - given that they
are driven by URB responses (Fig. G.22). As such, they generally occur at
different time positions; or, again, they are in different sampling domains. Let
us consider the case where we would look for the difference between two such
signals, shown on Figure G.29.

—— Vbt —0— Vbt
—— bt —— bt
600 | | —tpm A 600 | | —tpmm Aver

512 | / 512 |
448 | 448 | .
400 1 Z 400 1 ,]

200 + 200
124 | 124 JJ—
62 | 62 [
0 HHH—- + >t 0 > ¢ [ms]
< < g B3 ¥ < 2 g AP P 33 %
S G d ‘6 - S G 5 ‘6 -
N by gy % by 5N b gy “ N

Fig. G.29: Linear (left) vs. null interpolation (right) plot for discrete signals in different sam-
pling domains: wy¢, rp¢, and their difference Awr (based on ftdi_profiler data acquisition)

Fig. G.29 shows two signals, based on a data acquisition from ftdi_profiler
set to write 64 bytes at each period of 362.8 ys (which corresponds to the CD-
quality data rate of 176400 B/s), but with a small modification. First, let’s
note that unlike tests like Fig. G.25, where we’d pass 4096 bytes at each call
to ftdi_write() from the timer function - here we write only 64 bytes at a
time; which is both the declared maximum packet size of the FT232’s USB end-
points, and the half of the size of its FIFO RX buffer; so we would consider it a
"short" write. The ftdi_write() function in itself basically allocates memory

Gy7—311

Paper G.

for a URB request, copies the data received through the function’s arguments
to the URB request, and then queues the URB using usb_submit_urb(); the
notable thing here is that the lower layers of the kernel USB implementation
will decide when to physically send a URB on the USB bus - otherwise, the
ftdi_write() doesn’t block in waiting for a confirmation that the URB has
been successfully sent, so it returns relatively quickly after being called. Since
we’ve never experienced a problem with the ftdi_write() call itself, we felt
justified in simply keeping a counter for the total amount of written bytes in
the ftdi_profiler driver, and increasing it for the amount of bytes to be
written as soon as ftdi_write() has returned - and using the value of this
variable, which we’ve variously named w(r)tot(b) throughout code (or wy; on
Fig. G.29), as a metric for the total amount of written bytes. Thus, we can
observe on Fig. G.29 that wy; changes relatively regularly with the requested
time period and amount of bytes. On the other hand, in the read direction,
the ftdi_profiler driver layer gets the data only after the underlying ftdi
_process_packet () function has extracted it; as such, in the variable we’ve
named named r(d)tot(b) or rp we accumulate the actual amount of bytes re-
ceived per call. Since it is not us that set the read period, but the lower layers
of the USB framework, we might as well consider the read to be triggered like
an interrupt; still, we can observe on Fig. G.29 that the read is also regular,
albeit not strictly periodic: the variable increases in steps of 62 bytes (which
is related to the existence of the status bytes in the read direction, as noted
in [51]) in quick succession, and after &~ 2ms that process repeats. Note the
difference from the regime on Fig. G.22: there the reads and writes carry more
variable amounts of bytes; for the short writes here, they are more consistent.
Thus on a PC, when we inspect received data on the level of the kernel driver,
we perceive short, 62 byte sized packets with a short period; when we inspect
through usbmon, the same data (with status bytes) is concatenated in larger
URB response packets, with a longer period. It is here, where we modified the
data on Fig. G.29 for visualization reasons: in reality, in the quick succession
the reads are only few microseconds apart, which would not be legible in a
print format plot; therefore we artificially extended the time between the reads
to 40 us, so they could be resolved individually on Fig. G.29.

It is clear that on Fig. G.29, wy; and 1y belong to different sampling do-
mains; on the abscissa, the 4+ and the vertical lines mark the union of times-
tamps defined for both signals; the intersections of the vertical lines with the
respective signals, where a timestamp is not already defined, are marked with
unfilled markers - and represent where we must interpolate sample values, in
order to properly define the difference Awr[t] = wy[t] — rpe[t]. The difference
signal Awr is only defined where a sample (interpolated or not) exists for both
functions. It is here, where we can start perceiving the limitations of the linear
interpolation plot: if the integer (i.e., digital) values were meant to be repro-
duced by a digital-to-analog converter and, say, a loudspeaker - then the linear
interpolation (as on Fig. G.24) is entirely appropriate: since even if the DAC
reproduces the values in a step fashion, the electric and mechanical filtering

G78—312

G.6. Profiling the CD-quality, full-duplex operation of FT232RL

involved will mean that in response, the loudspeaker membrane will move in
a smoothed, almost linearized fashion. However, here we represent variables
that only have meaning in digital operations - where it is important that once
set, they keep their value until changed; which makes them more akin to a
Heaviside step function when plotted. Resampling in a step function context,
as opposed to linear interpolation, is often known as null interpolation. As
example, imagine we’re zoomed in a close range around the 3.670 ms mark on
Fig. G.29 left, showing linear interpolation: the obvious deduction is that Awr
and 1p; both grow, and that Awr[t] < ry[t] - in the entire interval. However, if
we’d look at the null-interpolation plot on Fig. G.29 right, zoomed in around
the same range, the obvious deduction is different: here Awr is constant - it
does not change - in the given interval; and while Awr[t] was indeed lesser than
e [t] before the 3.670 ms mark - it suddenly becomes greater than ry[t] after
that mark!

Having the need to observe many variables quickly at different levels of
detail with null interpolation, we immediately thought of a multitrack waveform
interaction, in essence the one provided by audio editors like Audacity (as shown
on Fig. G.23): where waveform tracks can be quickly zoomed in and out on
both the time and value axis, and arbitrarily rearranged in terms of vertical
track position; and where markers can be set at arbitrary positions in time,
and quickly navigated to and fro, regardless of the zoom state. Unfortunately,
neither kst nor gnuplot alone offer such interactive experience by default, in
the versions we tried. Accidentally, we stumbled upon a relatively unadvertised
library for Python, M. Tsuchida’s Xnuplot. It is intended to provide a binary
interface between Python and gnuplot, while allowing for the use of Python’s
scientific computing numpy package; which facilitates a rather optimized access
to gnuplot, which works from Python 2.7. Eventually, we arrived at a GUI,
which at least to an extent could simulate the multitrack interaction of audio
editors like Audacity: we called this program multitrack_plot.py, and it is
shown on the screenshots on Figure G.31 and Figure G.32 (note that these
screenshots show the entire scope of plot tracks in the given case - while in
typical use the window is smaller, and there is a vertical scrollbar on the right
instead).

Before we address Figs. G.31 and G.32, let us look at some specifics of
multitrack_plot.py. First of all, the acquired data from ftdi_profiler is
formatted as a space-separated values text file, and then it is automatically
parsed by the library’s numpy.genfromtxt function into binary data; this bi-
nary data can be saved as a cache, and then loaded at subsequent runs - greatly
shortening the program start-up times, as it obviates the need to re-parse the
textual data. Thereafter, we have the data accessible as numpy arrays, which
can also have named columns; and all variables that we derive thereafter, are
obtained through manipulation of such arrays. Unfortunately, the issue of null-
interpolating the arrays popped up again, and among our attempts, we even
tried to repurpose the interp1d function from the scipy Python library - how-
ever we either encountered calculation problems (such as generation of NaN

G79—313

Paper G.

[not-a-number| values), or the algorithms were simply too slow. Ultimately, we
had to develop our own null-interpolation functions, two of which are shown
on listings G.6.3:1a and G.6.3:1b.

Listing G.6.3:1a: Function getNPsaZeroCln- Listing G.6.3:1b: Function getNPsaZeroDIn-

terpolatedOver

terpolatedOver

def getNPsaZeroCInterpolatedOver(aa, ats, avals, bb, bts,
bvals, ii, iis, fill_value=0.0):
atmin, atmax = aalats][0], aal[ats][-1]
btmin, btmax = bb[bts] [0], bb[bts][-1]
aail = [] ; lastvala = None
bbil = [] ; lastvalb = None
for itz in iiliis]:
a_outrange = (itz<atmin or itz>atmax)
a_exists = itz in aalats]
b_outrange = (itz<btmin or itz>btmax)
b_exists = itz in bb[bts]
if a_outrange:
vala = (itz,fill_value)
elif a_exists:
vala = aal aalats]==itz][[ats, avals]][-1:]
vala = tuple(vala[0])
else:
vala = (itz, lastvala[1])
aail.append(vala)
lastvala = vala
if b_outrange:
valb = (itz,fill_value)
elif b_exists:
valb = bb[bb[bts]==itz][[bts, bvals]][-1:]
valb = tuple(valb[0])
else:
valb = (itz, lastvalb[1])
bbil.append(valb)
lastvalb = valb
a_npz = np.array(aail, dtype=[(iis, iiliis].dtype), (
avals, aalavals].dtype)])
b_npz = np.array(bbil, dtype=[(iis, iil[iis].dtype), (
bvals, bblbvals].dtype)])
return a_npz, b_npz

def getNPsaZeroDInterpolatedOver(aa, ats, avals, bb, bts,
bvals, ii, iis, £fill_value=0.0):

atsu,atsuind,atsuinv= np.unique(aalats], return_index=
True, return_inverse=True)

btsu,btsuind,btsuinv= np.unique(bb[bts], return_index=
True, return_inverse=True)

ia = ii[iis] ; av = aal[avals]; bv = bb[bvals]

npnza = np.nonzero(np.setmemberid(ia, atsu))[0]

npnzb = np.nonzero(np.setmemberid(ia, btsu))[0]

out_of_bounds_a = np.logical_or(ia < atsu[0], ia > atsu
[-11)

out_of_bounds_b = np.logical_or(ia < btsul[0], ia > btsu
[-11)

npnzae = np.ediffid(npnza , to_end=[1]*(len(atsu)-len(
npnza)+1))

npnzbe = np.ediffld(npnzb , to_end=[1]*(len(btsu)-len(
npnzb)+1))

ainds = np.repeat(np.arange(0, len(atsu)), npnzae)

binds = np.repeat(np.arange(0, len(btsu)), npnzbe)

avalid = av[np.zeros(len(ia), dtype=np.intp)]

avalid[~out_of_bounds_a] = av[atsuind] [ainds]; avalid[out
_of_bounds_a] = £ill_value

bvalid = bv[np.zeros(len(ia), dtype=np.intp)]

bvalid[~out_of_bounds_b] = bv[btsuind] [binds]; bvalid[out
_of_bounds_b] = fill_value

a_npz = np.zeros((len(ia),), dtype=[(iis, ia.dtype), (
avals, av.dtype)l)

a_npz[iis] = ia; a_npz[avals] = avalid;

b_npz = np.zeros((len(ia),), dtype=[(iis, ia.dtype), (
bvals, bv.dtype)])

b_npz[iis] = ia; b_npz[bvals] = bvalid;

return a_npz, b_npz

The functions getNPsaZeroCInterpolatedOver and getNPsaZeroDInter
polatedOver on listings G.6.3:1a and G.6.3:1b are both called in the same
manner: they accept two main input arrays (with the labels of their timestamp
and value columns), and a third input array (with its timestamp column label)
which needs to be calculated separately beforehand, and contains the union of
the timestamps in the main input arrays; the function then returns the data
in the input arrays, null-interpolated over the timestamps in the third input
array, as two new arrays. The functions on both listing G.6.3:1a and G.6.3:1b
return the exact same results for the same input. These functions illustrate
well the issue of vectorization (where "vector' is again understood generically
as an array of numeric values), especially relevant as an optimization technique
in the Python/numpy environment. Namely, in a preliminary test we did, with
input arrays of 4 and 13 samples (respectively) over the same range and non-
repeating timestamps (i.e., the union contains 17 timestamps), the *C* version
completes between 13 ms to 19ms, while the *D* version completes in 1.4 ms
to 1.6 ms - so in the worst case, the *C* version is some 13.5 times slower than
the *D* version! This could be even more pronounced for larger data: for our
actual data, we have experienced the *C* version take longer than 20 minutes,
while the *D* version would complete in under a minute, for the same data!

G8o—314

G.6. Profiling the CD-quality, full-duplex operation of FT232RL

The reason for this is vectorization: listing G.6.3:1a shows that the *C* version
runs a for loop, with conditionals inside for each element of an array; the
problem is that the loop is defined on the level of Python, which is a scripting
(interpreted) language - therefore, to process each element of the array, the
program context needs to return to Python, so it can iterate towards the next
element, which costs processing cycles (and ultimately, time). On the other
hand, there are no Python loops on listing G.6.3:1b for the *D* version: it is
fully "vectorized", in that each time a Python line of code is executed, a numpy
function is called - with entire arrays as arguments; thus the numpy function
can proceed within its C library domain (with all the optimizations implied in
that), and process the arrays in their entirety, before returning to the Python
context for the next line of code. While vectorization may thus sound as a
panacea, this would be a great time to remind ourselves, that - just as any
other user-space code - also the C library implementation of numpy is subject
to kernel pre-emption (as on Fig. G.2).

Beyond this, most of our attention in this stage was focused on deriving
variables for visualization - one of which we’ll describe more closely. Recall first
that here, we're trying to write 64 bytes at a time, with a period of 362.8 us;
but we’re also aware that the periodic kernel timer function can be preempted,
in which case a write would occur later than the period time - and that in
case of a preemption, the kernel can queue another write immediately after
the delayed one (in quick succession); furthermore, the call to ftdi_write()
returns immediately, without reporting on a status of the actual transmission of
bytes via USB. Thus, we could say, that each time a write (also those in quick
succession) returns, we are informed that the bytes are queued for sending
(not that their sending transmission finished). If we now assume that each
such queuing write, is a "fill" of a leaky bucket, which empties with the USB
data rate fp (as in Eq. G.4.5) - then we can calculate to what extent is the
entire write buffer filled, each time we’re registered /logged a new write; this is
graphically shown on Figure G.30.

The top of Fig. G.30 shows, for reference, the time period required to send
a packet of 64 bytes as per the audio rate, T, g (as in eq. G.4.6; here 362 us); for
comparison, in the row below, are the packets showing the time it would take
to send the same 64-byte packet as per the USB-serial rate, T (here 320 us).
The first two rows show the idealized periodic response; while the rows below
simulate a more realistic situation: sometimes the packets are written late,
and sometimes in quick succession (in which case, we show the packets below
each other, for legibility). The start times of these packets are mapped to the
plot below on Fig. G.30. When a packet comes in, we plot a sudden jump
of 64 bytes upwards; then, the leaky bucket operation is symbolized with a
downward arrow; when the downward arrow crosses the abscissa, the queued
data would have been completely sent - this time is additionally visualized as
forming a box around the downward arrow. For those packets that do have
time to completely "leak out", like the first one on Fig. G.30, the time to "leak
out" is exactly T's. However, in case of a quick succession, the jump of 64 bytes

G81—315

Paper G.

192 -

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Fig. G.30: Illustration of the algorithm for estimating queued bytes for FT232 writes.

would be added to the amount "not yet leaked out", which would correspond to
the height of the downward arrow at that time; as such the time to fully "leak
out" increases. But even in case of quick succession - as soon as all the queued
bytes have been fully transmitted, the same behavior as for the first packet is
restored again. We could describe this behavior on Fig. G.30 mathematically
as:

tli] — tfi — 1)
T,

bpw, if fiqli — 1] < - bpw

Juali] = (G.6.1)

ftqli — 1] + bpw- <1 — M) , otherwise

Tp
where 7 is the sequential order index of the packet (0, 1, 2,...); t[¢] is the times-
tamp position of packet ¢, bpw stands for "bytes per write" and is, in this case,
64; and ftq stands for the amount of queued bytes at time ¢[i], that includes
the contribution of the packet ¢. Since in actuality, we calculate eq. G.6.1 only
at the timestamp for any given packet i, we would expect the variable ftq to be
visualized as the dotted line on Fig. G.30 in context of null-interpolated step
plot. As an example implementation of the algorithm in eq. G.6.1, below in
listing G.6.3:2 is a code snippet in the Perl language, that we used to generate
simulated data for Fig. G.30.

Listing G.6.3:2: Perl language implementation of eq. G.6.1

$ftpd is FT232 period = T_B; @ts is array of timestamps; $bpw=64; @ftq is array

for ($ix=1;$ix<=9;$ix++) {
$tsd[$ix] = sprintf("%.06f", $ts[$ix]-$ts[$ix-11);
$tsdb = sprintf("%d", ($tsd[$ix]/$ftpd)*$opw);
$ftgh = $ftql[$ix-1]-$tsdb; # helper 1
$ftghb = $bpw-$tsdb; # helper 2
$ftghh = ($£tqh<0) ? O0+$bpw : (($ftghb<0) ? $ftqh+$bpw : $ftq[$ix-1]+$ftghb) ; # helper 3
$ftq[$ix] = $ftqhh ;
$gstr .= "$ts[$ix] $ftq[$ix]\n"; # add string entry

G82—316

G.6. Profiling the CD-quality, full-duplex operation of FT232RL

Now, let us take a closer look at the visualization of data, acquired by
ftdi_profiler, in the multitrack_plot.py program - as shown on the screen-
shots on Figs. G.31 and G.32. Fig. G.31 shows a visualization of a 30-second
ftdi_profiler acquisition, using 9 tracks (with multiple plots inside); over-
runs are shown as red vertical lines spanning all tracks. The multitrack_plot
.py GUI draws a vertical cursor at the mouse location across all tracks, allow-
ing for easy selection of a region to zoom into; there is also limited keyboard
interaction for navigating the zoom history. Fig. G.32 shows about 30 ms of a
zoomed-in region around the second overrun (at around 7.97s) on Fig. G.31;
the ranges of the respective track plot ordinates are auto-adjusted to the values
shown. A brief rundown of the variables plotted is given on table G.1.

Figures G.31 and G.32 show some of our intent to predict an overrun. For
instance, track 4 shows the atso2thr variable; this is simply a threshold, which
at start we’ve set to various values (on the figures, that value is 256), and then
each time an overrun is detected, we increase that threshold by the "bytes per
write" amount (64). We hoped that some of the variables would cross this
threshold right before an overrun in specific manner, however that is difficult
to determine: Fig. G.32 shows that wrdltz crosses the threshold all the time;
while wrdlt2cs seems to cross it right before the overrun happens. However,
our hope in the write queue algorithm (as per Eq. G.6.1 and Fig. G.30) as a
potential overrun detector, seems to have been misplaced: note that on track 7,
Fig. G.32, the wftql variable is more or less constant both before and after the
overrun - and as such tells us nothing about a potential overrun condition. We
found that the behavior of the read function, where there is a quick succession of
reads (like in a loop), followed by a longer wait time that can be seen as a period
(as visible on Fig. G.30, or the variables rlen2 on track 6, or rtoe2 on track 9
on Fig. G.32), made it difficult for us to perceive the overall behavior of the
read side — especially graphical estimation of the total bytes transferred during
read in a single long period. This is why we’ve implemented a (vectorized)
piecewise cumulative sum algorithm in numpy, which sets a time threshold -
and for all successive reads that come closer than this threshold, their values
are summed; and finally the first item in the quick succession is updated with
this cumulative sum, while the rest of the items in the quick succession sequence
are dropped, resulting with a filtered version of the variable (we typically add
"cs" in the names of such variables). This allows us to view the read operation
as roughly periodic at about 1 ms, which is visible on the variables rlen2cs on
track 7, or ts2csdl on track 8, Fig. G.32.

Here, we should note that the overrun zoomed on Fig. .32, was signaled
by line status byte 0x02 (which we understood earlier to mean an overrun in
the FIFO RX buffer of the FT232) in that particular acquisition. In general,
the plot on Fig. .32 seems to indicate that - for that particular overrun -
the problem is not so much in the write procedure, but in the read one: the
read rate in bytes per second (rbps2cs, track 2) experiences a sharp drop right
before the overrun is detected; ts2csdl (track 8) shows that instead of the usual
1ms - right before the overrun, a read function did executed late: approx. 2ms

G83—317

Paper G.

whbgs! Imn 176644.6:244, md 176647.0|1247, rm 33744.7) ——
rhns? (mo 176508140, md ITEEROLO[2E0. rm 3346.6) =4

i T —
i|;4qgg ! == = == i

172000
170000

168000
\s8000 5 11 15 20 25 30

wibpez

80 N
40
20
% wrdHz
1080 wrdli2es
wedlt2esd
aom- alepahn

: 20
| L .

will ——

1500

1oaa

08

5 ip i5 20 25
o — - -
i denz ——

Fig. G.31: multitrack_plot.py showing a 30-second long acquisition

G84—318

G.6. Profiling the CD-quality, full-duplex operation of FT232RL

Table G.1: Overview of variables shown (per track) on Figures G.31, G.32

Track

Variables

Notes

1

wbps1, rbps2

rbps2cs

wrbpsz

wrdltz, wrdlt2cs,
wrdlt2csd, atso2thr

wdltl

rlen2

rlen2cs, wftql,
ts2dlre

ts2csdl, tsidl

wtoel, rtoe2

write and read bytes per second (total / ex-
pired time); in respect to their own timestamps
(1: write, 2: read)

read bytes per second "cumulative sum": reads
in quick succession (apart below a threshold)
are summed together, and that value is used at
the first read in the quick sequence (so the rest
of the sequence does not have to be plotted; i.e.
is filtered)

the delta (difference) wbps-rbps; in respect to
the union of both timestamps (z)

the delta (difference) between total write and
read bytes (wpe-1p;), expressed through union
of timestamps (z); read timestamps with "cu-
mulative sum" filtering of quick successions
(2cs), first differential of previous (2csd); and
an attempt to find a threshold level, which
when crossed would indicate an overrun, but
also increases for "bytes per write" upon an
overrun (2thr) - all expressed in read times-
tamps (2)

difference (in bytes) between how much the
written bytes total should be (based on elapsed
time), and the actual total of written bytes; in
respect to own (1) timestamps

size (length) in bytes of the last read; in respect
to own (2) timestamps

length in bytes of the last read "cumulative
sum" - quick successions filtered (2cs), queued
write bytes (ftql, eq. G.6.1), expected amount
of bytes to be read based on the time delta
from last "cumulative sum" read (2dlre); in re-
spect to own (1: write, 2: read) timestamps

time delta from last "cumulative sum" read
(2csdl), time delta from last write (1dl); in re-
spect to own timestamps

total write (toel) and read (toe2) error: differ-
ence between the expected total of read/writ-
ten bytes as per elapsed time and the audio
rate, and the actual total of read /written bytes;
in respect to own timestamps

G85—319

tdiprof-2014-01-13-12-08-57_64/repetae parh[3/3] = (0261155, 0.262024) 026184852 [1

Paper G.

VPEE50

wbps! |mn 176644 6:244, md 17684 7.0(247, rm 33744.7) ——
shgsd (mn 175540 91140 md TTEEN 290 rm 146 £

175600 T

176500 -
175450

APEESD oo

787 TaTE

Jemet ey

798

T T T | S| B R

7805

176615 -

176605

178600

ATEE1D -

7875

rhpszcs

140

ot it

7865 AT

wibpez —

785

T Cravs

renzis ——
Wit ——
=2dre +

385

0.004
0.0035
0003
0.0025--
d.002
0.0045 --
-0.904----
a.qnns |
i

182csdl ——
tsldl ——

L.ﬁﬁl II | :lz"lxps I[, | |'.'I'|

?[gﬁ5|| I |.l:|. .I. :|-|:| |“|:-:| |.h;’.’i' |”.

T

bl

wionl [wial-abpsLT)

- T i T 3

F RN TP o

S45A0 -
1000

500

S Sows o e Sl o e T -

7978

788

Fig. G.32: Same acquisition as Fig. G.31, zoomed in around an overrun

G86—320

G.7. Debugging facilities - overview

after the previous one. Finally, at this moment, ts2dlre (track 7), which is
the expected amount of bytes to be read based on elapsed time, is greater than
rlen2cs, the actual amount delivered (track 8) - meaning that this instance
of the read function is not only late, but it also didn’t compensate for that
lateness by contributing correspondingly increased amount of data, either; and
during the entire time this happens, the writes continue unabashed. Had this
been an overrun predictor condition, we could have implemented the algorithm
in the read function of our kernel driver; once it detected that reads are coming
in delayed with not enough data, it could have signaled (say, through a mutex
variable) to the periodic timer function doing the writes, that it should bail
out early and stop writing until further notice. Note that even if this fixed
the FTDI overrun errors, it could have also re-introduced detection of timing
errors in ALSA, or a related audio library, at the same time! However, the
conditions identified here, while they seem reasonably related to an overrun, are
not absolute predictors of one - mainly because they (i.e. delayed reads where
ts2dlre > rlen2cs) occur many times in a 30-second acquisition, without
triggering an overrun; and so there are definitely more of them, than the number
of detected overruns. It is possible such a delayed read could be a necessary,
but not a sufficient condition for a FIFO RX overrun - which in turn means,
there must be something else at play that finally causes the overrun, which we
haven’t identified yet.

There were factors that pointed to, that we wouldn’t gain much new insight
with multitrack_plot.py: in spite of the timestamp which is logged when
the timer function runs, we're fundamentally uncertain about the time, when
the bytes written are actually transmitted over USB; information from usbmon
could have helped, but it’s timestamps being in different domain introduce a
further level of uncertainty; thus we’d have difficulties in actually predicting the
state of the FIFO RX buffer of the FT232, based solely on PC-side information.
Had we been able to read the state of the FIFO RX, instead of predicting it, it
may have been possible to use it for traffic shaping purposes. We should also
note, that in particular multitrack_plot.py currently suffers from "research
code" quality: for instance, it is actually used by loading it in other Python
scripts, but it is not written as a library (as software development practices
would otherwise recommend, for that context of use). As with the rest of this
article, all of the software developed by us, discussed in this section, is released
as open-source, and available online via [1].

G.7 Debugging facilities - overview

From the discussion so far, we could observe that in the debugging approaches
we have touched upon, three distinct phases become apparent: obtaining data,
parsing data, and visualizing data. Parsing data, in this context, usually in-
volves processing plain-text log files, with the end result being a delimiter (space
or comma) separated value file (again in plain-text format). For the parsing

G87—321

Paper G.

stage, we have used a variety of scripting languages, such as awk, Python or Perl
- which is a standard practice for those kinds of tasks. In the discussion so far,
we have also addressed several applications that we used for the visualization
of data - such as gnuplot, python-matplotlib, python-chaco and kst; while
there is also other open-source Linux software that could be applicable, mainly
GUI waveform viewers (such as gtkwave), the need for customized plotting of
numeric values as waveforms, usually made us turn to script-controlled plotting
engines (mainly gnuplot).

In terms of obtaining debug data, however, it was not always clear to us
what facilities exist for our development platform; and which of those would
be applicable to our context of use - which is the operation of the ALSA audio
subsystem, and related hardware subsystems (e.g. USB), on the kernel level.
Because of that, in the rest of this section, we provide a brief overview, in no
particular order, of tools and approaches we have met (and in some cases, used)
during the development outlined in this article; and their applicability for our
development context and platform. Since super-user (su, or sudo) permissions
are required to load a kernel module in the Linux kernel - all of these approaches
will, at least partially, also require super-user permissions.

e printk(): This function is the main Linux kernel API facility, allowing
for timestamped output / logging of arbitrary data; and as such, is widely
used. Has to be manually inserted in kernel code; requires recompilation.
The output is found by reading the /var/log/syslog file, or by running
dmesg. There are facilities that allow the syslog to be broadcasted on the
local network and captured on a different computer, which is extremely
useful in case of a kernel module bug, which results with a kernel "Oops" or
a freeze (which typically require a hard restart, that the syslog contents
do not otherwise survive).

e trace_printk() / (ftrace): This function, which is a pendant to printk
(), is a part of the ftrace debug facility of the Linux kernel (included
since version 2.6.27). As such, it writes into the ftrace buffer, and thus
has less overhead than printk(). The output is found by reading the
/sys/kernel/debug/tracing/trace (or related) file. One of the more
important facilities of ftrace for us is the "function graph', which is a
timestamped and nested log that records entries and exits of all kernel
functions, that had ran on the PC during a debugging trace acquisition
session.

o gdb: The GNU Debugger is a command-line application, whose use for
debugging user-space code (libraries or executables) is standard practice.
It allows for setting breakpoints in code, as well as keyboard interaction
to step through code: from lines of source code, down to machine instruc-
tions; and many other facilities (e.g. stack traces). It can not be used
to debug a live kernel module in the same running instance of the OS
kernel. However, there is an engine called kgdb, which allows gdb on one

G88—322

G.7. Debugging facilities - overview

computer, to control and inspect a debug kernel on a different computer
(or in a virtual machine) over a serial (or network) connection — but the
requirement to use a debug kernel slows it down significantly, influencing
the appearance of timing errors in ALSA.

e trace-cmd and kernelshark: trace-cmd is a command-line application,
and kernelshark its GUI counterpart, which primarily offer an interface
to the ftrace debug facility of the Linux kernel. As such, apart from
a slightly easier setup of ftrace, trace-cmd can also obtain the con-
tents of the ftrace ring buffer as a binary file - and decode its contents
(including the outputs of trace_printk()) into plain text output at a
later time. These binary files can be seamlessly opened, and visualized,
in kernelshark (which, however, tended to be somewhat slow on our
development platform).

o perf: This is a command-line tool, with functionality partially integrated
in the Linux kernel; originally called "Performance Counters for Linux".
It can utilize hardware based counters, to keep track of how many times
particular functions have executed (in both kernel- and user-space). As
such, it can reveal statistical information related to performance (e.g. in
which function does a program spend most of its time) - but is not meant
to provide timestamp ordered data, or to reveal the order of execution of
functions at a particular time.

e OProfile: This is a suite consisting of command-line tools, a kernel
module and a user- space service. It’s purpose is mostly the same as perf:
that is, counting of events related to performance statistics. In addition,
it can derive call graphs, which can show a tree of which functions are
called from a given function, and how much time is spent in them — but
again, it is not meant to reveal the timestamped order of execution of
functions.

e pytimechart: This is a Python GUI application, implemented using the
already mentioned chaco library, which is an alternative to kernelshark
for visualizing ftrace, trace-cmd and perf log acquisitions. While it is
intended to be a faster tool than kernelshark, it was problematic to in-
stall it on our development platform - and in that context, we experienced
it performing somewhat slow as well.

e kprobes: This is an older Linux kernel API, originally contributed by
IBM, which offers kernel functions like register_probe() for kernel-
space probes, or register_kprobe_user () for user-space probes. It ba-
sically allows building of custom kernel modules - which, when loaded,
can hook into any kernel function (even those residing in other kernel
modules), and can run custom code before and after the traced function
executes. It seems to be in use (or at least has been in use, historically)
by systemtap.

G89—323

Paper G.

o systemtap: This is a framework with command line tools, quite appli-
cable to our context of use: it allows for writing instrumentation scripts
- where one can define the startup of a user-space program; as well as
"probe points", which run each time a particular user- or kernel-space
function runs, and can print various information, including timestamps.
Such a script is compiled transparently into a kernel module when ran by
the command-line tool; thus, in principle it can be used to trace another
kernel module without recompiling it. However, the systemtap script’s
utility depends on the existence of debug symbols in the traced modules
- and therefore, sometimes recompilation of the target kernel modules is
necessary.

o dtrace: First, let’s note an ambiguity here: in the Ubuntu packages
(also for our development platforms), a dtrace executable can be found,
which is in fact just a systemtap script - this is not what we are addressing
here. Here we refer to Sun Microsystems’ DTrace (capitalized) framework,
primarily intended for the Solaris OS — however with source code available
for compilation on Linux, under which the main executable again has the
(lowercase) name dtrace. It works in a similar way to systemtap - via
instrumentation scripts that are compiled into a kernel module, and can
trace other kernel modules. We managed to build the Linux version on
our development platform, and even run it with some basic examples -
however, what we needed were what it calls "fbt" (Function Boundary
Tracing) probes, whose use unfortunately caused our OS kernel to freeze;
not being able to solve this problem, we couldn’t make further use of
dtrace. Note there may be issues in compatibility of the DTrace (CDDL)
and Linux kernel (GPL) open-source licenses (see comments in [55]).

e valgrind and kcachegrind: valgrind is a command-line application
with several separate tools; the most interesting tool for us was callgrind,
which produces call graph information (similar to the one mentioned for
OProfile). There seem to be several GUT applications for valgrind gen-
erated data, among them kcachegrind which can visualize callgrind
call graphs (note the name similarity to cachegrind, which is another
valgrind tool, whose output can also be visualized by kcachegrind).
While valgrind is often cited in context of debugging, it is important
to note that valgrind tools cannot inspect/profile kernel-space code (at
least on our development OS versions); therefore, they are usable only in
a user-space context.

e lttng and 1ttv-gui: Linux Trace Toolkit New Generation (which super-
sedes the earlier 1tt) is a software collection and a command line tool,
allowing for tracing kernel- and instrumented user-space code; it includes
the Linux Trace Toolkit Viewer GUI. It allows for acquisition of times-
tamped events, like entries and exits into functions (similar to ftrace’s
"function graph"); however, it achieves that by loading its own kernel mod-

Ggo—324

G.7. Debugging facilities - overview

ules in the system. We had to build 1ttng from source to have it run on
our development OS; and while the resulting software itself was usable -
at the time we were ultimately interested in tracing user-space programs
without recompiling/changing them; and this could not be done with
lttng, as it requires user-space code to be instrumented, by inserting
additional calls to the 1ttng API in it.

e Perfkit: C. Hergert’s "performance recording toolkit" (not to be con-
fused with NVIDIA’s PerfKit software suite) is a GUI application, which
aims, via plugins, to provide real-time visualization of valgrind, ftrace,
or perf data. As we couldn’t find much documentation on customizing
the produced plots, and we otherwise weren’t in need of the real-time ca-
pabilities, we didn’t make use of this application during our development.

e usbmon: This is a built-in debug facility in the Linux kernel, allowing for
acquisition of data related to USB requests and responses on the kernel
level. Similar to ftrace, the generated data can be plain-text formatted
and relatively human-readable; it can be obtained by reading system
files like /sys/kernel/debug/usb/usbmon/2u (where e.g. the 2 refers to
the USB bus number) during the USB operation. It also provides a C
language API for collecting the data in binary format. Unfortunately,
on our development OS, it is not integrated with ftrace, in the sense
that there is no easy way to make usbmon events show in the ftrace log
with a minimum of latency; and also, usbmon supplies its timestamps in
a different format from ftrace.

o tshark and Wireshark: The command-line tshark, and its GUI counter-
part Wireshark, are already established applications for inspecting net-
work traffic; they are relevant here, because they can interface directly
with usbmon on Linux, and capture all of the USB traffic (including the
entire data payloads of USB request/response packets), in a binary file
- which can thereafter be decoded, and converted to a text format, by
these same tools.

o vusb-analyzer: This is a GUI application, implemented in Python and
GTK++, released as open-source by VMware. It can visualize usbmon data,
as well as few other types of logs. It is especially convenient, because
instead of visualizing USB requests and responses separately (as we did
on Fig. G.22), it takes them as the start and the end of a USB transaction
- which is then visualized as a box of a limited duration in the timeline
of the GUI, that also features a separate track for each USB endpoint.

e Debugging ALSA: To debug ALSA, one can build both the ALSA ker-
nel modules (in the alsa-driver package), and the ALSA shared object
library (in alsa-1ib), in debug mode. There are several debug options
for alsa-driver that can be enabled at compilation time; among them
CONFIG_SND_PCM_XRUN_DEBUG, with which each substream of each sound

Gg1—325

Paper G.

card will get a file, e.g. /proc/asound/card0/pcmOp/xrun_debug for the
card 0, device 0, playback substream. Then, a number corresponding to a
bitmask [56] can be echoed into this file, which will cause additional debug
information to appear in the system log /var/log/syslog. As mentioned
in Sect. G.5.1, if we want to use the debug ALSA kernel modules, the
vanilla. ALSA modules for the OS must be blacklisted from loading at
boot - else it is impossible to remove them fully from a live system (to al-
low the debug versions to load). When alsa-1ib is built in debug mode,
the resulting shared object library, libasound.so, can be loaded sepa-
rately for each call to an executable, using the LD_PRELOAD environment
variable in a Linux shell; when it is loaded, setting an additional envi-
ronment variable LIBASOUND_DEBUG to a number (verbosity level, see the
file alsa-1ib/NOTES) will cause additional debug messages to be printed
- however, notably, not in the system log, but in the standard output
stream of the respective executable that uses the library.

o Debugging PortAudio: The shared library libportaudio.so can also
be built in debug mode, and loaded individually (per executable call)
through the environment variable LD_PRELOAD. If the debug library is
loaded when an executable utilizes it, it will output additional debug
messages - again, into the standard output stream of the running exe-
cutable.

All of the findings noted above, should hold for the stated versions of our
development OSs. Note that the debug version of both libasound.so and
libportaudio.so shared libraries can be inspected with gdb. Note also that
some of these applications advertise simultaneous inspection of both user- and
kernel-space code; for most of them, this is a relatively new development, af-
forded by a functionality in the Linux kernel known as UPROBES, first introduced
in the 3.5 kernel series — and as such, not available on our development OSs
(which forced us to use a more complicated approach with hardware break-
points to obtain listing G.2:2b on Fig. G.2). Each of the options above offers
a different trade-off between ease of setup, ease of use, detail of debug data,
and influence on the timing as observed by audio subsystems; and as such,
may be appropriate in different contexts. For instance, in earlier work we have
successfully used a kgdb setup with a PC and a virtual machine, to debug a
null-pointer error in an ALSA driver of ours, which otherwise caused a kernel
freeze with no specific error messages; that same setup would have so much
overhead and influence on timing errors, it would make it impossible to inspect
the operation of running audio — however, for that purpose, an ftrace based
setup can be used instead, as we have done earlier in this article. We do not
claim this to be a complete list of debugging approaches for audio on Linux;
merely a list of those approaches that we had considered, or used, throughout
the development of this project.

Gg2—326

G.8. A note on obsolescence

.8 A note on obsolescence

A major source of irritation and frustration during the development of this
project, was the fact that nearly all the technology that we use in it is already
obsolete. We were continuously faced with the dilemma to either upgrade to
latest versions of software, along with the risk of discovering new bugs - or stay
with the current versions, and bugs that may already have been fixed, so that
this work would have a continuity with our previous soundcard related work,
at least in terms of kernel series; as this article shows, ultimately we opted for
the latter.

The issue of obsolescence does not refer to the software only, but also the
hardware: the Arduino Duemilanove, with an FTDI FT232 USB chip, has
long been obsolete, i.e. it is not produced anymore. Since we own very few
devices of this kind, the possibility that the board might break in mid-project,
leaving us without means to complete our research, was a constant source of
pressure. The open-source nature of the Arduino may have alleviated even
a condition like that, as the schematics are readily available, and it seems
the PCB layout consists of only two layers, making it reconstructible even in a
hobbyist lab. However, that reconstruction would still depend on availability of
the exact same parts, and as such, would have introduced further uncertainties
in our conclusions. The Duemilanove has long been superseded by Arduino Uno,
which has the same microcontroller (ATmega328) — but instead of an FT232, it
uses another Atmel microcontroller, ATmegal6U2 (earlier ATmega8U2), which
is programmed as a USB-serial converter (and in principle can be programmed
to exhibit other USB behaviors as well). Given that there is open source code
for the USB stack of the ATmega8U2/16U2 through the LUFA (Lightweight
USB Framework for AVRs) project, these devices can be considered an open
version of the FT232. This development certainly aligns with our goals in
this project, especially after our realization of the limits set by NDAs on open
development for FTDI chips.The issue of hardware obsolescence can be said to
have touched our development PCs, as well: the NetColors brand of netbooks,
one of which we originally procured from China, does not seem to exist anymore
(along with the website we ordered it from).

Furthermore, the Linux kernel 2.6.* release series, that we developed the
software in this project for, has likewise been long obsolete. As of July 2014, the
current mainline kernel is at version 3.16-rc4, and the stable kernel at version
3.15.5. The operating systems we used that were based upon the 2.6.* kernel
series, Ubuntu 10.04 (Lucid) and 11.04 (Natty), are likewise long superseded;
as of July 2014, the current Ubuntu OS, which is also a Long Time Support
(LTS) version, is version 14.04 (Trusty), which is based on Linux kernel 3.13.
These changes influenced our development as well, in that some of the earlier
mentioned tools we used, which we had to build from source, failed to build
at their latest version on our development OSs; so we had to check out earlier
revisions to make them work. However, if there is one benefit from our staying
at the 2.6.* series, it is the relatively wide availability of literature (like [8], [7])

G93—327

Paper G.

that addresses precisely the 2.6.* kernel series, and the changes introduced in
it — which should help make our work easier to contextualize in educational
terms, even if this kernel series is obsolete in practical terms.

Even further issues of compatibility emerge from relatively unrelated devel-
opment of different OS components and user-space software. Maybe the most
major transition, relevant to us, is the transition of the Gnome desktop envi-
ronment, which we utilized in our development OSs, from version 2 to version
3. The differences can be drastic: for instance, unlike Gnome 2, Gnome 3
requires hardware acceleration on graphic cards to start, and provides a fall-
back mode for hardware that does not meet its requirements. On the other
hand, the codebase of Gnome 2 has been forked, and now exists as the MATE
desktop environment. The Gnome desktop environment uses the GTK+ (origi-
nally GIMP Toolkit, not Gnome Toolkit) library to build its GUI widgets, and
thus the transition also encompasses the underlying GTK+ versions. Most im-
portantly, the APIs have changed as well, and there is no API compatibility
between GTK+ 2 and 3 — as we’ll see shortly, this change was more significant
for us, in the role of developers using the GTK+ library.

Yet another transition that influenced our development, was the transition
of the Python scripting language from version 2.7, which was the default on
our development OSs, to version 3. This transition introduces deep changes to
the language which are not compatible between versions; as one example, the
basic statement print "test", completely valid in 2.7, will raise a syntax error
in Python 3, which halts the execution of the script - there the correct syntax
is required to be print("test"). This impacted our development, because
among the reasons for our development and release of open source software,
was the expectation that once released, our software will be available for use,
without further maintenance from our side. What we didn’t clearly realize
until this transition, is the fact that while our software may remain available
(say, for download) in the future, that does not mean it will remain viable for
use: its usability will be limited by compatibility with the interpreter engines,
shipped with ever newer versions of OS distributions.

Having realized this during the development of numStepCsvLogVis.py (Sec-
tion G.4.1), we had to put additional effort to make the same script run un-
der both Python 2.7 and 3.2. Part of this was identifying Tkinter, the de-
fault GUI library for Python, as one that did not suffer such drastic changes
- which allowed us to provide a GUI that runs under both Python 2.7 and
3.2 for the same, single script numStepCsvLogVis.py file. In addition to this,
numStepCsvLogVis.py also handles some of the changes between the respective
numpy and matplotlib library versions related to Python 2.7 and 3.2, respec-
tively; these efforts will hopefully afford a slightly longer usable lifetime of this
software. For multitrack_plot.py (Sect. G.6.3), we didn’t have such luck:
for one, it was programmed somewhat in haste, and additionally, we needed
an easy access to a GUI element that would behave like a horizontal track in a
multitrack setting - and the pygtk GUI library for Python 2.7, as described ear-
lier, affords this. Only later did we realize that thus we’ve made this program

G94—328

G.9. Conclusion

somewhat unportable: even if we can replicate the syntax constructs, that al-
lowed us to run the same general Python code in both 2.7 and 3.2 earlier - the
underlying GTK library, as we mentioned, is not compatible between its own
versions 2 and 3. In fact, in turns out that pygtk refers strictly to the API
interface to GTK+ 2, when used through a call like import pygtk; Python 3
by default uses the API interface to GTK+ 3, referred to as PyGObject, which
is used through a call like from gi.repository import Gtk. Needless to say,
the syntax and functionality provided in gi.repository.Gtk, is not compati-
ble with the corresponding facilities in pygtk — and this makes it difficult for
us to develop a version of the multitrack_plot.py application that can run
under both environments.

To summarize: the domain of free/libre/open-source software and hardware,
is by no means immune to the phenomenon of obsolescence, which we can per-
ceive as the byproduct of the development of technology generally. While,
in general, one has to live with the notion that such changes in development
are for the better - obsolescence can also exert a pressure, especially on de-
velopers of research code like us: whose goals are often to develop and release
demonstration software, limited in scope, and without the intent for continuous
maintenance of the same. This is likely based in a certain underlying promise,
that digital technology in general, will ultimately allow for something, best
expressed in the old Java slogan: "write once, run anywhere" — our experience
shows that, while quite powerful, this notion may be better characterized as
hope, rather than as promise. Still, FLOSS software affords one important
freedom: the freedom to run obsolete versions of OS and user-space software,
if the task at hand demands it; however, even this freedom is only as relevant,
as the machines capable of running the code in question are readily available.

G.9 Conclusion

In this article, we provided an overview of our development efforts, to extend
our previous soundcard work for ALSA, to CD-quality full-duplex operation.
We have outlined the successful solution to the issue of a virtual ALSA driver
operating at those settings; while in terms of hardware, we couldn’t provide a
complete solution for a full-duplex, CD-quality AudioArduino driver. However,
we believe we may have identified, at least partially, the source of the problem
in the FT232 buffer overruns - and the limits to meaningful development in
an open-source context that might address it. Furthermore, in outlining our
development approach, we have provided discussions on relevant background
problems, such as: the issue of kernel preemption, the difference between the
standard and high-resolution Linux kernel timer API, and the effect that has
caused proper operation of our previous, low-speed drivers, even in the presence
of jitter — as well as the relationship of DMA operation to ALSA, and details
about USB traffic on the kernel level. Such details do not necessarily form the
core of professional inquiry even in strongly related fields, such as electronic

G95—329

Paper G.

music instrument development.

Even as part of the electronic music instrument community, we found it
hard to track down material that addresses practical problems in digital audio
development, especially ones expressed in terms of free/libre/open-source tools,
which we could have used as a basis; and the topics we discussed here haven’t
otherwise formed a significant part of our professional culture previously. In
other words: had we previously found discussions of problems, inherent in the
transition of PC digital audio to CD-quality, and expressed through free soft-
ware examples and tools - we would not have felt compelled to spend nearly a
year and a half on research & development leading to the production of this ar-
ticle and supporting materials. On the other hand, the topics discussed herein
are, in themselves, nothing special - and there certainly exist fields of com-
puter science, where these issues have long formed the core of the curriculum.
However, if those topics are not part of one’s professional background, one is
bound to spend massive amounts of time on it - and this is where, we believe,
lay the greatest contribution of this article: for all those, especially hobbyists
and newcomers to the electronic music instrument community, for whom these
topics do not necessarily form a part of their professional background - this
article and supporting material offer the opportunity, especially through that
part of our examples that can run on a PC independently of external hardware
(and can in principle be carried out "at home"), to shorten the time spent on
gaining an insight into full-duplex, CD-quality digital audio, to a fraction of
the time that we spent (on achieving the same).

This can also be seen from an educational perspective, especially in light of
our decision to keep this project expressed in terms of the same OS / kernel
series, as our previous work: with this, we offer educators a complete package,
describing issues in digital audio development from both the software and the
hardware side, and spanning audio settings from simplex, single channel, 8-bit,
8kHz, to full-duplex, dual channel (stereo), 16-bit, 44.1kHz - all expressed in
terms of a single/unified operating system and environment. This should allow
educators, who are considering implementation of practical exercises relating
to digital audio, insight into expected problems and possible solutions with
free/libre/open-source tools - should they find it applicable to port the kind
of examples described in our work, to their particular hardware and software
platforms.

As a side note, for all our relations to electronic music instruments, the
development described in this article was surprisingly silent; in fact, we can-
not recall a single instance, where we actually heard audible sound - or even
felt that a test with actual audio files would be warranted. And, somewhat
ironically, the development process also showed that one of the major prob-
lems in understanding PC digital audio on this level is, in fact - visualization.
We mentioned previously, that one of the major problems that we experienced,
was that not just new types of visualization, but sometimes also incremental
changes to existing types, can require a level of effort equivalent to starting a
new software project, with the corresponding cognitive strain - which can often

G96—330

G.9. Conclusion

lead to fatigue. In response, we would like to propose a concept for a GUI
application as a front end to various debugging tools, which we believe would
alleviate some of these issues.

Essentially, this application would simply relate the most crucial elements
in this kind of development: userspace & kernel space source code; scripts for
source code build processes; scripts for running executables and acquisition of
their debug output; and scripts for visualization, animation or sonification of
the debug output data. So, the application would consist of a single window,
with multiple tabs, each corresponding to one of the major phases in data visu-
alization. In the first tab, source files for both kernel- and user-space software
are specified (through a list, or a regular expression); as well as a script (or
a program) which would be able to run the resulting software, possibly mul-
tiple times and with variable parameters for each test run, and obtain debug
logs from the runs (possibly consisting of multiple files per run), whose nam-
ing is also set in this tab. In the second tab, a list (or a regular expression)
selects valid input log files (obtained through test runs in the first tab), and
a script (or program) is set, which will parse the input log files, and generate
text-formatted, delimiter-separated-values data files, whose naming policy is
also set in this tab. In the third tab, a list (or a regular expression) selects
valid input data files (obtained through the parsing procedure in the second
tab), and a script is set, which determines how the data is to be plotted; a
possible output from this tab could be a binary file, containing the plot data.
A fourth tab would contain the plot graphics GUI, where the binary files from
the previous tab would quickly loaded and visualized: the desired attributes
here would be: quick zooming in and out of ranges and multitrack operation
(like in Audacity), but also a possibility for horizontal or vertical arrangement
of multiple plot tracks, possibility to move plots from one track to another and
displace them in either axis direction, possibility for quick transparent overlap
between displaced tracks, and possibility to set markers, manually or according
to an algorithm, and to perform measurements on them; and finally, to allow
for export bitmaps of the plots based on variable parameters, that could be
used for producing animations. The settings in these four tabs would consti-
tute a project; the important thing about this application would be to remain
language agnostic (i.e. the user would use their language of choice to implement
parsing or plotting scripts), focusing only on setting up relationships between
input sources, data, and plot files; and to allow for incremental changes to files,
listed as scripts or source files (but not log or data files) within a project, to
be saved in an underlying revision control system (possibly git). This kind
of application would address one of the problems we recognized during this
type of work, which is cognitive strain, for example due to the proliferation of
names of debugged variables (and keeping track of their role in plots) — and
it could allow for easier development of test cases, especially for software bug
submissions.

In conclusion, we have provided an overview and analysis of issues, both
in hardware and in software, involved in the transition to CD-quality digital

G97—331

References

audio on the PC - by using an entirely free and open source toolchain (with the
exception of the Logic analyzer software, for which we’ve identified an open-
source alternative). We believe this will be of use, as practical introductory
material into high-fidelity, multi-channel digital audio topics, primarily for the
hobbyist and electronic music instruments community — but, possibly, also for
the wider academic community, as potential laboratory exercises in the general
area of digital signal processing. Even if the technology used in our work is
already obsoleted in terms of state of art - we hope that, by aiming to perceive
the devices and programs used as generically as possible, this article (along
with the rest of our soundcard related series) and related materials (available
via [1]) will still be useful - if only as a conceptual guide, or map, to expected
problems on this level of development. Ultimately, we hope that this project
contributes to a possible basis, that would support the further proliferation
of open soundcard and audio hardware projects - implemented in ever newer
hardware and software platforms.

References

[la] Smilen Dimitrov, “Extending the soundcard for use with generic DC sensors”,
in Proceedings of the International Conference on New Interfaces for Musical
Ezpression (NIME 2010), Sydney, Australia, Jun. 2010, pp. 303-308, 1SSN:
2220-4792, 1SBN: 978-0-646-53482-4. URL: http://imi.aau.dk/~sd/phd/
index.php?title=ExtendingISASoundcard.

[2a] Smilen Dimitrov and Stefania Serafin, “Minivosc - a minimal virtual oscillator
driver for ALSA (Advanced Linux Sound Architecture)”, in Proceedings of the
Linuz Audio Conference (LAC 2012), Stanford, California, USA, Apr. 2012,
pp. 175-182, 1SBN: 978-1-105-62546-6. URL: http://imi.aau.dk/~sd/phd/

index.php?title=Minivosc.

[3a] ——, “Audio Arduino - an ALSA (Advanced Linux Sound Architecture) audio
driver for FTDI-based Arduinos”, in Proceedings of the International Confer-
ence on New Interfaces for Musical Expression (NIME 2011), Oslo, Norway,
May 2011, pp. 211-216, ISSN: 2220-4792, 1SBN: 978-82-991841-7-5. URL: http:
//imi.aau.dk/~sd/phd/index.php?title=AudioArduino.

[4a] ——, “An analog I/O interface board for Audio Arduino open soundcard
system”, in Proceedings of the 8th Sound and Music Computing Conference
(SMC 2011), Padova, Italy: Padova University Press, Jul. 2011, pp. 290-297,
ISBN: 978-8-897-38503-5. URL: http://imi.aau.dk/~sd/phd/index.php?
title=AudioArduino-AnalogBoard.

[ba] ——, “Towards an open sound card — a bare-bones FPGA board in context of
PC-based digital audio”, in Proceedings of Audio Mostly 2011 - 6th Conference
on Interaction with Sound, Coimbra, Portugal, Sep. 2011, pp. 47-54, ISBN: 978-
1-4503-1081-9. DOI: 10.1145/2095667 .2095674. URL: http://imi.aau.dk/
~sd/phd/index.php?title=AudioBareBonesFPGA.

G98—332

http://imi.aau.dk/~sd/phd/index.php?title=ExtendingISASoundcard
http://imi.aau.dk/~sd/phd/index.php?title=ExtendingISASoundcard
http://imi.aau.dk/~sd/phd/index.php?title=Minivosc
http://imi.aau.dk/~sd/phd/index.php?title=Minivosc
http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino
http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino
http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino-AnalogBoard
http://imi.aau.dk/~sd/phd/index.php?title=AudioArduino-AnalogBoard
http://dx.doi.org/10.1145/2095667.2095674
http://imi.aau.dk/~sd/phd/index.php?title=AudioBareBonesFPGA
http://imi.aau.dk/~sd/phd/index.php?title=AudioBareBonesFPGA

References

[6a]

(1]

2]

3]

(4]

(8]
(9]
[10]

[11]

[12]

[13]

[14]

——, “Open soundcard as a platform for practical, laboratory study of digital
audio: a proposal”, International Journal of Innovation and Learning, vol. 15,
no. 1, pp. 1-27, Jan. 2014, 1ssN: 1471-8197. DOL: 10.1504/IJIL.2014.058865.

Smilen Dimitrov, “Comparing CD-quality soundcard drivers homepage”, web
page, 2014. URL: http://imi . aau.dk/ ~sd/phd/ index . php ? title=
ScdComparison (visited on 07/15/2014).

Chip Chapin, “CD-DA (Digital Audio) 1”7, Apr. 16, 2005. URL: http://www.
chipchapin.com/CDMedia/cddal.php3 (visited on 02/24/2015).

Leslie Lamport, “Time, Clocks, and the Ordering of Events in a Distributed
System”, Communications of the ACM, vol. 21, no. 7, pp. 558-565, Jul. 1978,
ISsN: 0001-0782. DOI: 10.1145/359545.359563.

Paul E McKenney and Dipankar Sarma, “Towards hard realtime response
from the Linux kernel on SMP hardware”, in Linuz.conf.au, Canberra, Aus-
tralia, Apr. 23, 2005.

Daniel Pierre Bovet and Marco Cesati, Understanding the LINUX Kernel:
From 1/0O Ports to Process Management, 1st Edition. O’Reilly Media, Oct.
2000, 1SBN: 0-596-00002-2.

Arnd C Heursch, Dirk Grambow, Alexander Horstkotte, and Helmut Rzehak,
“Steps towards a fully preemptable Linux kernel”, in Real-Time Programming
2003: Proceedings of the 27th IFAC/IFIP/IEEE Workshop on Real-Time Pro-
gramming (WRTP’03), Lagéw, Poland: Published for the International Feder-
ation of Automatic Control by Elsevier, May 14-17, 2003, 1SBN: 0-080-44203-
X.

Sreekrishnan Venkateswaran, Fssential Linux Device Drivers, 1st Edition.
Upper Saddle River, NJ, USA: Prentice Hall Press, 2008, ISBN: 9780132396554.

Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman, Linux Device
Drivers, 3rd Edition. O’Reilly Media, Inc., 2005, 1sBN: 0-596-00590-3.

Jonathan Corbet, “(Nearly) full tickless operation in 3.10”, May 8, 2013. URL:
http://lwn.net/Articles/549580/ (visited on 03/18/2014).

Robert Love, Linux Kernel Development, 2nd Edition. Indianapolis, Ind: Nov-
ell Press, Jan. 2005, 1SBN: 0-672-32720-1.

Thomas Gleixner and Douglas Niehaus, “Hrtimers and beyond: Transforming
the linux time subsystems”, in Proceedings of the Linux symposium, vol. 1,
Ottawa, Canada, Jul. 2006, pp. 333-346.

Jonathan Corbet, “The high-resolution timer API”, Jan. 16, 2006. URL:
https://lvwn.net/Articles/167897/ (visited on 03/19/2014).

Lennart Poettering, Pierre Ossman, Shahms E King, et al., “The PulseAudio
Sound Server”, Presented at the linux.conf.au 2007 conference, University of
New South Wales, Sydney, Australia, Jun. 17, 2007. URL: http://www.linux.
org.au/conf/2007/talk/211.html.

Lennart Poettering, “Cleaning up the linux desktop audio mess”, in Proceed-
ings of the Linux Symposium, vol. 2, Ottawa, Canada, Jun. 2007, pp. 145—
150.

G99—333

http://dx.doi.org/10.1504/IJIL.2014.058865
http://imi.aau.dk/~sd/phd/index.php?title=ScdComparison
http://imi.aau.dk/~sd/phd/index.php?title=ScdComparison
http://www.chipchapin.com/CDMedia/cdda1.php3
http://www.chipchapin.com/CDMedia/cdda1.php3
http://dx.doi.org/10.1145/359545.359563
http://lwn.net/Articles/549580/
https://lwn.net/Articles/167897/
http://www.linux.org.au/conf/2007/talk/211.html
http://www.linux.org.au/conf/2007/talk/211.html

[15]

[16]

[17]

18]

[19]

[20]

21]

22]

23]
24]
[25]
[26]

[27]

28]

References

Atmel Corporation, “ATmegad8A /PA/88A /PA/168A /PA/328/P [DATASHE-
ET]”, Feb. 12, 2013. URL: http://www.atmel.com/Images/Atmel-8271-8~
bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-
328P_datasheet_Complete.pdf (visited on 06/29/2014).

Gustavo de Veciana, “Leaky buckets and optimal self-tuning rate control”, in
Global Telecommunications Conference, 1994. GLOBECOM ’94. Communi-
cations: The Global Bridge., IEFE, IEEE, vol. 2, Nov. 1994, pp. 1207-1211.
DOI: 10.1109/GLOCOM. 1994 .512849.

alsa-devel, portaudio, and audacity-devel mailing lists, “Questions about vir-
tual ALSA driver (dummy), PortAudio and full-duplex”, Jul. 24, 2013. URL:
http://thread.gmane.org/gmane.linux.alsa.devel/ 110686 (visited on
04/01/2014).

xujianqun, “FAAESLLEH (Audio frame structure)”, Nov. 8, 2011. URL: http:
//blog.csdn.net/xujianqun/article/details/6949078 (visited on 04/05/2014).

Takashi Iwai, “ALSA Sequencer System”, Presented at the 7th International
Linux Kongress, der Friedrich-Alexander Universitiat Erlangen-Niirnberg, Ger-
many, Sep. 21, 2000. URL: http://www.alsa-project.org/~tiwai/1lk2k/
1k2k.html (visited on 04/05/2014).

——, “Sound Systems on Linux: From the Past To the Future”, in UKUUG
Linux 2003 Conference, George Watson’s College, Edinburgh, Scotland, Aug. 1,
2003.

Olivier Hersent, Jean-Pierre Petit, and David Gurle, Beyond VoIP Protocols:

Understanding Voice Technology and Networking Techniques for IP Telephony.
Wiley, 2005, 1sBN: 0-470-02362-7.

Roger L. Freeman, Telecommunication System Engineering, ser. Wiley Series
in Telecommunications and Signal Processing. Wiley, 2004, 1SBN: 0-471-45133-
9.

Bill Waggener, Pulse Code Modulation Techniques. Thomson Publishing, 1995,
ISBN: 0-442-01436-8.

Marina Bosi and Richard E. Goldberg, Introduction to Digital Audio Coding
and Standards. Kluwer Academic Publishers, Dec. 2002, 1SBN: 1-4020-7357-7.

Eric S. Raymond, The Art of UNIX Programming, ser. Addison-Wesley pro-
fessional computing series. Pearson Education, 2003, 1SBN: 0-132-46588-4.
Valentijn Sessink, “Alsa-sound-mini-HOWTO”, Nov. 12, 1999. URL: http:
//www.tldp.org/HOWTO/Alsa-sound.html (visited on 04/14/2014).
alsa-devel mailing list, “Problems with a PCM driver”, Aug. 31, 2003. URL:
http://thread.gmane . org/gmane.linux.alsa.devel/8634/focus=8643
(visited on 04/16/2014).

alsa-project.org, “ALSA project - the C library reference: PCM (digital audio)
interface”. URL: http://www.alsa-project.org/alsa-doc/alsa-1ib/pcm.
html (visited on 04/16/2014).

G100—334

http://www.atmel.com/Images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
http://www.atmel.com/Images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
http://www.atmel.com/Images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
http://dx.doi.org/10.1109/GLOCOM.1994.512849
http://thread.gmane.org/gmane.linux.alsa.devel/110686
http://blog.csdn.net/xujianqun/article/details/6949078
http://blog.csdn.net/xujianqun/article/details/6949078
http://www.alsa-project.org/~tiwai/lk2k/lk2k.html
http://www.alsa-project.org/~tiwai/lk2k/lk2k.html
http://www.tldp.org/HOWTO/Alsa-sound.html
http://www.tldp.org/HOWTO/Alsa-sound.html
http://thread.gmane.org/gmane.linux.alsa.devel/8634/focus=8643
http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html
http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html

References

[29] Andreas Trgllund Boye, Carsten Steffensen, Gustav Hggh, Jes Toft Kristensen,
Niels Christian Holm, and Per Kingo Jensen, “PC FM-radio receiver”, Elec-
trical and Electronic Engineering, The Faculty of Engineering and Science,
Aalborg University, 5th semester project report, Dec. 13, 2005. URL: http://
kom.aau.dk/group/05gr506/report/node21.html (visited on 04/18/2014).

[30] Aquiles Yénez Canas, “ALSA API - Sample Programs With Source Code By
Aquiles Yanez”, (dead link, unarchived). URL: http://alumnos.elo.utfsm.
cl/~yanez/alsa-sample-programs/ (visited on 08/09/2013).

[31] alsa-project.org, “FramesPeriods - AlsaProject”, Nov. 5, 2010. URL: http:
/ /www . alsa-project . org/main/index . php/FramesPeriods (visited on
04/18/2014).

[32] alsa.opensrc.org, “Frame”, Aug. 10, 2013. URL: http://alsa.opensrc.org/
Frame (visited on 04/17/2014).

[33] Jan Newmarch, “Programming and Using Linux Sound”, Mar. 27, 2014. URL:
http://jan.newmarch.name/LinuxSound/index.html (visited on 04/17/2014).

[34] Lennart Poettering, “What’s Cooking in PulseAudio’s glitch-free Branch”,
Apr. 8, 2008. URL: http://Opointer.de/blog/projects/pulse-glitch-
free.html (visited on 04/17/2014).

[35] John Cowley, Communications and Networking: An Introduction, ser. Under-
graduate Topics in Computer Science. Springer London, 2012, 1SBN: 1-447-
14356-6.

[36] Ulrich Drepper, “What every programmer should know about memory”, Nov. 21,
2007. URL: http://people.redhat . com/drepper/cpumemory . pdf (visited
on 05/02/2014).

[37] Atul P. Godse and Deepali A. Godse, Microprocessors And Interfacing, 1st
Edition. Pune, India: Technical Publications, 2009, 1SBN: 81-8431-125-7.

[38] Karlston D’Emanuele, “DMA Controller”. URL: http://members . tripod.
com/~Eagle_Planet/dma_controller.html (visited on 05/02/2014).

[39] Frank Durda IV, “DMA: What it Is and How it Works”, FreeBSD Handbook,
Jul. 7, 1998. URL: http://www.pl.freebsd.org/handbook/handbook320.
html (visited on 05/03/2014).

[40] Chatchai Jantaraprim, “An asynchronous DMA controller”, Master’s thesis,
University of Manchester, United Kingdom, Jan. 1999.

[41] Intel Corporation, “High Definition Audio Specification”, Jun. 17, 2010. URL:
http://www.intel.com/content/www/us/en/standards/high-definition-
audio-specification.html (visited on 05/19/2014).

[42] Realtek Semiconductor Corp., “Datasheets (Computer Peripheral ICs > PC
Audio Codecs > High Definition Audio Codecs > 2-Channel)”. URL: http://
www.realtek.com.tw/downloads/downloadsView.aspx?Langid=1&PFid=27&
Level=5&Conn=4&ProdID=166&DownTypeID=1&GetDown=false&Downloads=
true (visited on 05/19/2014).

[43] alsa-project.org, “Test latency.c - AlsaProject”, Sep. 18, 2013. URL: http:
//www.alsa-project.org/main/index . php/Test _latency.c (visited on
05/24/2014).

G101—335

http://kom.aau.dk/group/05gr506/report/node21.html
http://kom.aau.dk/group/05gr506/report/node21.html
http://alumnos.elo.utfsm.cl/~yanez/alsa-sample-programs/
http://alumnos.elo.utfsm.cl/~yanez/alsa-sample-programs/
http://www.alsa-project.org/main/index.php/FramesPeriods
http://www.alsa-project.org/main/index.php/FramesPeriods
http://alsa.opensrc.org/Frame
http://alsa.opensrc.org/Frame
http://jan.newmarch.name/LinuxSound/index.html
http://0pointer.de/blog/projects/pulse-glitch-free.html
http://0pointer.de/blog/projects/pulse-glitch-free.html
http://people.redhat.com/drepper/cpumemory.pdf
http://members.tripod.com/~Eagle_Planet/dma_controller.html
http://members.tripod.com/~Eagle_Planet/dma_controller.html
http://www.pl.freebsd.org/handbook/handbook320.html
http://www.pl.freebsd.org/handbook/handbook320.html
http://www.intel.com/content/www/us/en/standards/high-definition-audio-specification.html
http://www.intel.com/content/www/us/en/standards/high-definition-audio-specification.html
http://www.realtek.com.tw/downloads/downloadsView.aspx?Langid=1&PFid=27&Level=5&Conn=4&ProdID=166&DownTypeID=1&GetDown=false&Downloads=true
http://www.realtek.com.tw/downloads/downloadsView.aspx?Langid=1&PFid=27&Level=5&Conn=4&ProdID=166&DownTypeID=1&GetDown=false&Downloads=true
http://www.realtek.com.tw/downloads/downloadsView.aspx?Langid=1&PFid=27&Level=5&Conn=4&ProdID=166&DownTypeID=1&GetDown=false&Downloads=true
http://www.realtek.com.tw/downloads/downloadsView.aspx?Langid=1&PFid=27&Level=5&Conn=4&ProdID=166&DownTypeID=1&GetDown=false&Downloads=true
http://www.alsa-project.org/main/index.php/Test_latency.c
http://www.alsa-project.org/main/index.php/Test_latency.c

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

References

Intel Corporation, “High Definition Audio Energy Efficient Buffering: Spec”,
Apr. 27, 2011. URL: http://www.intel.com/content/www/us/en/chipsets/
high-definition-audio-energy-efficient-audio-buffering.html (vis-
ited on 06/09/2014).

Alan Horstmann, “PortAudio - SVN Commit 1897: Alsa: Fix handling of
poll descriptors in PaAlsaStream_WaitForFrames()”, Aug. 13, 2013. URL:
https://www.assembla . com/code/portaudio/subversion/commit /1897
(visited on 06/09/2014).

Compaq Computer Corporation, Hewlett-Packard Company, Intel Corpora-
tion, Lucent Technologies, Inc., Microsoft Corporation, NEC Corporation,
and Koninklijke Philips N.V., “Universal Serial Bus Revision 2.0 specification
(usb__20.pdf)”, Mar. 11, 2014. URL: http://www.usb.org/developers/docs/
usb20_docs/usb_20_042814.zip (visited on 06/23/2014).

Jay Senior, “USB Client Driver Etiquette”, Microsoft Corporation, presenta-
tion, May 10, 2001. URL: http://www.usb.org/developers/presentations/
pres0501/Senior_Driver_Etiq_Final.ppt (visited on 06/28/2014).

sigrok Wiki, “Saleae Logic - sigrok”, Jul. 28, 2013. URL: http://sigrok.org/
wiki/Saleae_Logic (visited on 06/13/2014).

Future Technology Devices International Limited, “FT232R USB UART IC
Datasheet”, Mar. 2012. URL: http: //www . ftdichip . com / Documents /
DataSheets/ICs/DS_FT232R.pdf (visited on 06/15/2014).

arduino.cc, “Arduino Duemilanove (2009) Schematic”, Oct. 17, 2008. URL:
http://arduino.cc/en/uploads/Main/arduino-duemilanove-schematic.

pdf (visited on 06/20/2014).

Future Technology Devices International Limited, “ AN232B-04 Data Through-
put, Latency and Handshaking”, Feb. 2006. URL: http://www.ftdichip.
com/Documents / AppNotes / AN232B - 04 _DatalLatencyFlow . pdf (visited on
06/23/2014).

linux-usb mailing list, “FTDI USB-to-UART converters and tcdrain()”, Oct. 2,
2012. URL: http://thread.gmane.org/gmane . linux.usb.general/72004
(visited on 07/01/2014).

——, “Using both usbmon and ftrace?”; Dec. 25, 2013. URL: http://comments.
gmane.org/gmane.linux.usb.general/100774 (visited on 07/04/2014).
Ubuntu: “kst” package: Bugs, “Bug #1258878: Weird interpolation for vectors
in different time base”, Dec. 8, 2013. URL: https://bugs.launchpad.net/
ubuntu/+source/kst/+bug/1258878 (visited on 07/07/2014).

Jonathan Corbet, “On DTrace envy”, Aug. 7, 2007. URL: http://lwn.net/
Articles/244536/ (visited on 07/10/2014).

alsa-project.org, “XRUN Debug - AlsaProject”, Jul. 15, 2010. URL: http:
/ / www . alsa- project . org /main / index . php / XRUN _ Debug (visited on
07/10/2014).

G102—336

http://www.intel.com/content/www/us/en/chipsets/high-definition-audio-energy-efficient-audio-buffering.html
http://www.intel.com/content/www/us/en/chipsets/high-definition-audio-energy-efficient-audio-buffering.html
https://www.assembla.com/code/portaudio/subversion/commit/1897
http://www.usb.org/developers/docs/usb20_docs/usb_20_042814.zip
http://www.usb.org/developers/docs/usb20_docs/usb_20_042814.zip
http://www.usb.org/developers/presentations/pres0501/Senior_Driver_Etiq_Final.ppt
http://www.usb.org/developers/presentations/pres0501/Senior_Driver_Etiq_Final.ppt
http://sigrok.org/wiki/Saleae_Logic
http://sigrok.org/wiki/Saleae_Logic
http://www.ftdichip.com/Documents/DataSheets/ICs/DS_FT232R.pdf
http://www.ftdichip.com/Documents/DataSheets/ICs/DS_FT232R.pdf
http://arduino.cc/en/uploads/Main/arduino-duemilanove-schematic.pdf
http://arduino.cc/en/uploads/Main/arduino-duemilanove-schematic.pdf
http://www.ftdichip.com/Documents/AppNotes/AN232B-04_DataLatencyFlow.pdf
http://www.ftdichip.com/Documents/AppNotes/AN232B-04_DataLatencyFlow.pdf
http://thread.gmane.org/gmane.linux.usb.general/72004
http://comments.gmane.org/gmane.linux.usb.general/100774
http://comments.gmane.org/gmane.linux.usb.general/100774
https://bugs.launchpad.net/ubuntu/+source/kst/+bug/1258878
https://bugs.launchpad.net/ubuntu/+source/kst/+bug/1258878
http://lwn.net/Articles/244536/
http://lwn.net/Articles/244536/
http://www.alsa-project.org/main/index.php/XRUN_Debug
http://www.alsa-project.org/main/index.php/XRUN_Debug

E-publication notice

Please note that the following papers from part II (original page range 159-232):

[II-D] “An analog I/0O interface board for Audio Arduino open soundcard
system”

[II-E] “Towards an open sound card — a bare-bones FPGA board in context of
PC-based digital audio”

[II-F] “Open soundcard as a platform for practical, laboratory study of digital
audio: a proposal”

... as well as the papers from part III (original page range 339-386), have been
left out from this online version. Please consult the original publication outlets.

ISSN (online): 2246-1248
ISBN (online): 978-87-7112-311-1 AALBORG UNIVERSITY/ERESS

	Front page
	Curriculum Vitae
	Abstract
	Dansk Resumé
	Contents
	Thesis Details
	Preface
	I Introduction
	1 Background
	1.1 Thesis outline
	1.2 Methodology

	2 Motivation: a labor of angst
	2.1 Baby steps
	2.2 Pedal to the metal
	2.3 Ridin' on the wings of inflation
	2.4 While my guitar gently weeps
	2.5 Digital audio arrives
	2.6 Genre expansion - folklore and electronic music
	2.7 A hip to the hop, and you just don't stop
	2.8 Design ideas emerge: electronic music instrument sessions
	2.9 Further developments and opportunities
	2.10 Reduction to soundcard

	3 On live performance paradigms in looped electronic music
	3.1 The classic rhythm/drum machine step sequencer
	3.2 The classic DJ set - two turntables and a mixer
	3.3 Proposals for user interface facilities merging
	3.3.1 A trivial mapping from rotational speed to tempo
	3.3.2 A sequence-rendering, double-buffered, mapping from rotational speed to tempo

	3.4 Discussion

	4 Contributions of the present work: the open soundcard in focus
	4.1 The soundcard as a didactic model for laboratory exercises in digital audio
	4.2 The soundcard as a research tool in media technology
	4.3 Open development perspectives

	5 Conclusion
	5.1 Future perspectives
	5.2 Acknowledgements

	Bibliography
	A Basic theoretical aspects of the classic rhythm/drum machine step sequencer

	II Papers on open soundcard development
	A Extending the soundcard for use with generic DC sensors
	A.1 Introduction
	A.1.1 Approach

	A.2 Problem outline
	A.3 Soundcard platform
	A.3.1 ISA hardware implementation
	A.3.2 Software

	A.4 Testing procedure
	A.4.1 Determining the ISA card sampling rate
	A.4.2 Test of analog switch functionality

	A.5 Results
	A.6 Discussion
	A.6.1 The soundcard platform

	A.7 Conclusion
	References

	B Minivosc - a minimal virtual oscillator driver for ALSA (Advanced Linux Sound Architecture)
	B.1 Introduction
	B.2 Premise
	B.2.1 Initial project issues

	B.3 Architectural overview of PC audio
	B.4 Concept of minivosc
	B.5 Driver structures
	B.6 Execution flow and driver functions
	B.6.1 Audio data in memory (buffers) and related execution flow
	B.6.2 The sound of minivosc - Driver execution modes

	B.7 Conclusions
	B.8 Acknowledgments
	References

	C Audio Arduino - an ALSA (Advanced Linux Sound Architecture) audio driver for FTDI-based Arduinos
	C.1 Introduction
	C.2 Previous work
	C.3 Degrees of freedom
	C.4 Concept of AudioArduino
	C.5 Quantifying throughput rate - duplex loopback
	C.6 Microcontroller code
	C.7 Driver architecture
	C.8 Analog I/O
	C.9 Conclusions
	C.10 Future work
	C.11 Acknowledgments
	References

	D An analog I/O interface board for Audio Arduino open soundcard system
	D.1 Introduction
	D.2 Premise
	D.3 Analog I/O audio level standards
	D.4 PWM as analog signal representation
	D.5 Board design / implementation
	D.5.1 PWM to analog (SH) conversion
	D.5.2 Speaker amp, H-bridge and Class-D
	D.5.3 Analog filters and input preamplification

	D.6 Conclusions
	D.7 Acknowledgments
	References

	E Towards an open sound card — a bare-bones FPGA board in context of PC-based digital audio
	E.1 Introduction
	E.2 Working with FPGA
	E.3 Hardware Concept
	E.4 Hardware implentation
	E.5 HDL Design and Issues
	E.6 Conclusions
	E.7 Future work
	E.8 Acknowledgments
	References

	F Open soundcard as a platform for practical, laboratory study of digital audio: a proposal
	F.1 Introduction
	F.1.1 Soundcard as a device

	F.2 A brief review of our open soundcard work
	F.3 An open soundcard as laboratory exercise in context of engineering education
	F.3.1 Related work: current use of soundcard in the student laboratory
	F.3.2 The conflict between basic theory and laboratory demonstration in engineering
	F.3.3 A PBL perspective
	F.3.4 Potential for extension of our work as laboratory exercise

	F.4 Example use case: open soundcard as laboratory capstone course topic
	F.4.1 Suggested research methodology

	F.5 Discussion
	F.5.1 Degrees of freedom
	F.5.2 A low-cost approach
	F.5.3 On practicality and obsolescence

	F.6 Conlusion
	References

	G Comparing the CD-quality, full-duplex timing behavior of a virtual (dummy), hda-intel, and FTDI-based AudioArduino soundcard drivers for Advanced Linux Sound Architecture
	G.1 Introduction
	G.2 A basic understanding of Linux kernel operation and preemption
	G.3 Standard vs. high-resolution timers in the Linux kernel
	G.4 The effect of period-long timer function jitter, with streaming data rates as parameter
	G.4.1 Visualizing and sonification of timestamped log files with numStepCsvLogVis

	G.5 Developing a virtual, CD quality, ALSA driver
	G.5.1 Yet another overview of an ALSA-based audio system
	G.5.2 Frames, periods, and the meaning of full-duplex
	G.5.3 ALSA, DMA and timers: comparing HDA intel and dummy drivers
	G.5.4 Solving the virtual, full-duplex, CD-quality ALSA driver: Visualizing and animating ftrace kernel log files with gnuplot

	G.6 Profiling the CD-quality, full-duplex operation of FTDI FT232RL USB-serial IC
	G.6.1 A closer look at USB and full-duplex
	G.6.2 An elusive overrun error, and the FT232 FIFO buffers
	G.6.3 An inconclusive analysis - ftdi_profiler and visualization using multitrack_plot.py

	G.7 Debugging facilities - overview
	G.8 A note on obsolescence
	G.9 Conclusion
	References

	III Papers on related media technology research
	H A simple practical approach to a wireless data acquisition board
	I Combining DJ Scratching, Tangible Interfaces And A Physics-Based Model Of Friction Sounds
	J Developing block-movement, physical-model based objects for the Reactable
	K Audio-haptic physically-based simulation of walking on different grounds
	L Preliminary Experiment Combining Virtual Reality Haptic Shoes and Audio Synthesis
	M Identification of virtual grounds using virtual reality haptic shoes and sound synthesis

	E-publication notice
	Blank Page

