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ENGLISH SUMMARY 

A new trend in the variable speed drives (VSDs) is to develop fully integrated systems, 

which lead to low-cost products with shorter design cycles. Motor Integrated design of 

VSDs will reduce cable length to connect drive with machine windings and installation 

time for end user. The electric drives are expected to have minimum effect on grid and 

motor connected to it, i.e. currents drawn from grid should be within specified limits 

and currents injecting in to machine should not overheat the machine windings to 

avoid insulation failure due to harmonics. It is also necessary that electric drives should 

not disturb other loads connected to the point of common coupling (PCC). Diode 

rectifier followed by a voltage source inverter (VSI) is well accepted by the industry, 

and it has low losses and high reliability, but it requires big and bulky passive elements 

to ensure total harmonic distortions (THDs) in input currents to be within specified 

limits of present standards. Improving the quality of input currents of a three-phase-fed 

VSD is a requirement that needs cheap and competitive solutions for implementation. 

High efficiency, small volume and low cost are nowadays basically the first three 

aspects mentioned when it comes to the development of any kind of power converter 

topology for power electronic applications. Concerning the use of a power converter in 

motor integrated VSDs, the first two mentioned aspects receive an even greater im-

portance. Power converter design for integrated drives poses a host of significant 

challenges that originate both from the limitations on available space and the need to 

adapt the power converter to the thermal, vibration, and electromagnetic field stresses 

inside the motor housing. Losses in the motor can heat up the motor environment to a 

significant temperature above ambient. The high operating temperature of the power 

electronics in integrated drives seriously limits the power they can dissipate, which 

decreases the power handling capability of the converter. In motor integrated VSDs, the 

main challenge, as mentioned above, is to reduce the power converter losses and its size 

so it can fit inside the motor housing.  

Weight and volume of a filter inductor has to come down drastically to make it a 

suitable power converter for motor integrated variable speed drives. Introduction of 

active power electronic switches can ensure very high performance and small size of 

such an inductor. Such an arrangement is usually referred to as “Electronic Smoothing” 

techniques. The electronic smoothing inductor (ESI) based converter is easy to integrate 

in the existing power circuit of a VSD and does not demand too many changes either in 

the power circuit or in the control. Volume and weight of these drives with ESI are 

smaller and it is very much suitable for integration with an electrical motor. 

Converter topologies with reduced size of passive components will provide a compact 

power converter for integrated drives. In research, efforts have been made to replace 

the traditional limited-lifetime electrolytic capacitors with film capacitors. The voltage 
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source inverter (VSI) with a small dc-link capacitor is getting more and more attention 

from the research community and industry.  

Impact on the utility of VSI with smaller DC link filter and standard three phase diode 

bridge rectifier at the front end is presented in this thesis and requirements of a buffer 

stage in the form of ESI is explained in detail. An equivalent circuit and linear model 

are developed to give the transfer function and control of the ESI based three-phase 

rectifier. In this thesis a power converter with ESI is designed and tested with standard 

induction motor to verify functionality of a working drive.  

One modified version of the ESI based converter has also been looked into to reduce 

losses of converter, but because of difficulties in reducing the bus-bar inductance in that 

design, further investigation was not carried out. The ESI based converter successfully 

brought down total harmonic distortions (THDs) in grid current to 31% level and 

improved power factor to 0.95 by employing a small converter with estimated losses of 

23W for a 4kW system. Hence, there is a significant improvement in the performance of 

the drive.  



 

     vi 

DANSK RESUME 

En ny tendens for frekvensomformer-styrede motordrev er at udvikle fuldt integrerede 

løsninger som giver billigere produkter og ”hurtige” design. Ved fysisk at integrere 

motor og frekvensomformer reduceres både kabellængde mellem motor og omformer 

samt installationstiden for slutbrugeren. De integrerede elektriske drev forventes at 

have minimal indvirkning på såvel forsyningsnettet som på motoren. Dvs. strøm 

trukket fra forsyningsnettet skal være inden for specificerede grænser og 

motorstrømmene skal have et lavt harmonisk indhold således motoren ikke 

overophedes hvormed viklingsisolationen ødelægges. Ligeledes er det også 

nødvendigt, at elektrisk drev ikke forstyrrer andre belastninger, der er forbundet til det 

samme knudepunkt i forsyningsnettet. En diode-ensretter efterfulgt af en 

spændingsstyret vekselretter er en klassisk løsning for frekvensomformere som giver 

lave effekttab og en høj pålidelighed. Omvendt så kræver denne løsning 

volumenmæssige store passive elementer (kondensatorer og spoler) for at sikre at den 

samlede harmoniske forvrængning i net-strømmene er inden for de specificerede 

grænser i nuværende standarder. For at forbedre kvaliteten af net-strømmene for 

frekvensomformere er det et krav at løsningerne er konkurrencedygtige og nemme at 

implementere.  

Høj virkningsgrad, lille volumen og lave omkostninger er typisk de tre første parametre 

der nævnes når det kommer til udviklingen af enhver form for effektelektronisk 

omformer. Når det gælder motorer med integreret frekvensomformer er det de to første 

parametre der er de vigtigste.  Design af motorintegrerede frekvensomformere giver 

betydelige udfordringer mht. plads, temperatur, vibrationer og elektromagnetisk 

stråling. Effekttab i motoren giver anledning til betydelige temperaturstigninger som 

gør at effektelektronikken der integreres sammen med motoren kommer til at arbejde i 

et varmere miljø. Et varmere miljø vil reducere den effektelektronikkens 

arbejdsområde, hvorved hovedudfordringerne, som nævnt ovenfor, er at reducere 

omformerens effekttab samt størrelse. 

Vægt og volumen af omformerens filter-spole skal reduceres kraftigt for at lave et 

brugbart motorintegreret drev med variabel hastighed.  Ved anvendelse af 

effektelektronik kan spolen laves meget mere kompakt og ydeevnen af drevet 

forbedres. En sådan løsning omtales normalt som en ”elektronisk induktor-konverter” 

(eng. Electronic Smoothing Inductor ESI). Den elektroniske induktor-konverter kræver 

ikke ret mange ændringer i effektkredsen og styringen og er således nem at integrere i 

eksisterende frekvensomformere.  Da volumen og vægt af den elektroniske induktor-

konverter også er mindre er denne løsning derfor velegnet til et motorintegreret 

frekvensomformer-drev.     

Frekvensomformer-topologier med en lille DC-kondensator har fået opmærksomhed 

fra såvel forskning som industri. Idéen er at udskifte de levetidsbegrænsede elektrolyt-
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kondensatorer med filmkondensatorer hvorved størrelsen af omformeren kan 

reduceres. En sådan løsning med en mindre omformer er derfor velegnet til 

motorintegrerede drev.    

Resultaterne for en frekvensomformer med en standard tre-faset ensretterbro og et 

mindre DC mellemkredsfilter er præsenteret i denne afhandling og kravene til den 

elektroniske induktor- konverter er gennemgået i detaljer. Ækvivalente 

kredsløbsmodeller og lineariserede modeller er udviklet for at kunne opstille en 

overføringsfunktion og designe en styring af ensrettertrinet i den elektroniske induktor-

konverter. En frekvensomformer med den elektroniske induktor- konverter er ligeledes 

designet og testet sammen med en asynkronmotor for at verificere funktionaliteten.      

For yderlige reduktion af effekttabene er en modificeret elektronisk induktor-konverter 

blevet undersøgt. Pga. vanskeligheder med at reducere bus-bar induktansen kunne den 

eksperimentelle del dog ikke udføres. Endeligt kan det konkluderes, at en lille 

elektronisk induktor konverter med et estimeret tab på 23W i et 4 kW drev med succes 

har nedbragt forsyningsnettets totale harmoniske forvrængning til 31 % og forbedret 

effektfaktoren på indgangen til 0.95. Dette er en signifikant forbedring af drevet. 
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Chapter 1. Introduction 

The research documented in this thesis examines aspects of integration of power 

converter and electrical machines for variable speed drives (VSDs) used in 

different applications such as pump and compressor. Integration of power 

converter and electrical machine has been an interesting research area in aca-

demics and as well as in industry for last two and half decades. It is a very 

challenging task as it involves multi-disciplinary engineering work to overcome 

several issues like vibrations and thermal problems along with electrical issues 

associated in the motor integrated variable speed drives. 

In particular this research is focused mainly on modelling and control of a 

compact power converter, which is based on electronic smoothing technique. 

The electronic smoothing inductor based power converter offers reduced size of 

passive components usage in drive and it paves a way for high performance and 

compact variable speed drive solution for motor integrated variable speed 

drives applications. 

This chapter includes motivation and background, objective and structure of the 

thesis. 

1.1 Motivation and background 

1.1.1 Three phase electric drive 

Power electronics and electric motor drives are the two enabling technologies 

crucial for industrial competitiveness in the world market place in the present 

situation. One of the most valuable achievements in power electronics is to 

introduce variable voltage and variable frequency from the fixed voltage and 

fixed frequency of the generated electrical power supplies. Now a days over 60 

percent of the total generated energy globally is consumed by different kind of 
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electric motors [1]. The loads in which the use of speed controls in by variable 

speed electric drives can bring the largest energy savings are mainly the fluid 

handling applications (pumps, compressors and fans) with variable flow re-

quirements. Other applications that can also benefit from the application of the 

VSDs include conveyors, machine tools, lifts, centrifugal machines, etc. [2]. 

Variable speed drive (VSD), which regulates the speed of the motor by control-

ling the stator terminal voltage and its frequency applied to electrical machine 

windings, can significantly reduce the energy consumption. High energy prices 

and limited resources to generate the required electrical energy in the current 

scenario are the major concerns in front of the world these days, and therefore, 

improvements in efficiency of the drive systems are one of the most effective 

measures to reduce the primary energy consumption [1]. 

1.1.2 Essential and desired features of drives 

Electric drives are expected to operate from a fixed voltage and fixed frequency 

grid (source) to feed electric motor with variable voltage and variable frequency 

to produce desired torque and speed for a given application. In most of the 

applications, it is highly desirable to operate these motors in wide range of 

speed and torque without loss of much energy in the energy conversion unit 

(power converter). The electric drives are expected to have minimum effect on 

grid and motor connected to it, i.e. currents drawn from grid should be within 

specified limits and currents injecting in to machine should not overheat the 

machine windings to avoid insulation failure of the machine. 

It is also necessary that electric drive should not disturb other loads connected to 

the point of common coupling (PCC). These electric drives should require 

minimal maintenance and service after the commissioning of the system as it 

involves resources to allocate for this purpose [2]. 

The globally accepted and widely used prominent speed control technology - 

electronic VSDs coupled with alternated current (AC) 3-phase motors (mostly 
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squirrel cage induction motors) - have practically replaced other technological 

solutions: mechanical, hydraulic as well as direct current (DC) motors. The 

speed of the rotating electrical field created by the induction or synchronous 

motor stator windings is directly linked with the frequency of the supply ap-

plied to the stator windings. Electronically powered VSDs can produce variable 

frequency, variable voltage waveforms which can be utilized to control the 

motor speed and torque at the shaft. 

The adjustment of the motor speed through the use of VSDs can lead to better 

process control, less wear in the mechanical equipment, less acoustical noise, 

and importantly significant energy savings. However, VSDs can have some 

disadvantages such as electromagnetic interference (EMI) generation, current 

harmonics introduction into the supply and the possible reduction of efficiency 

and lifetime of motors [3]. 

1.1.3 Integration of power converter with electrical motor 

There are increasing demands for compactness and high power density of 

power converter used in industry. In industry and commercial applications, 

integrated motor drives are becoming very popular in textile drives, motive 

mining machinery, spindles of machine tools, hermetic pumps, and motion 

controls in the power range of fractional kW to 25 kW. Also, in today's hybrid or 

all-electrical vehicle and more-electrical aircraft applications, the integrated 

motor drive is an interesting technology for achieving compactness and re-

duced-weight design to meet more stringent requirements of on-board power 

and actuator control systems.  

Machines with high torque density are required for many applications, includ-

ing automotive and aerospace, and a high electric loading is often employed to 

increase the torque density [4]. For a particular application designer can design 

the most suitable drive system from all the possible choice. In this thesis com-
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pressor application is one of the targeted applications for a motor integrated 

VSD. 

Development of high-speed electrical drive systems is needed for new emerging 

applications, such as generators/starters for micro gas turbines, turbo-

compressor systems, drills for medical applications, and spindles for machining. 

Typically, the power ratings of these applications range from a few watts to 

kilowatts, and the speeds from a few tens of thousands rpm up to a million rpm 

[5]. Recently, high-speed centrifugal turbo-compressors have been under inten-

sive research and development [6]. Since, compared to conventional 

compressors, high-speed centrifugal compressors have numerous qualities such 

as simple structure, light weight, small size, and high efficiency.  

The advantages of variable speed electrically driven HVAC compressor include 

the followings: 

1) Efficient operation as the compressor speed is independent of the engine 

speed unlike conventional belt driven units; 

2) Improved packaging as the location is not restricted to the accessory 

drive side of the engine; 

3) Elimination of the rotating seals reduces the leakage of the refrigerant in-

to atmosphere [6]. 

Integration of electric motor and of load has been already done and resulted 

energy efficient operation of overall system in HVAC compressors. Motor 

integrated VSD will be one step further and will improve overall performance of 

total system in these applications. 

Motor integrated VSD offers many desirable features, such as high compactness, 

reduced material cost, reduced engineering time for installation or integration, 

lower system losses, more effective cooling arrangement and better protection 

against short circuiting and over-voltage due to dv/dt induced voltage reflec-

tion waves [4]. 
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The major technological obstacle for the elevated temperature high power 

density power converter for motor integrated VSD is the unavailability of high 

temperature power components, such as high power semiconductor switching 

devices, large value of dc-link capacitors, as well as control electronics devices 

and passive components. Consequently, challenges presented to the designers 

for the next level of innovations include alternative power devices, total optimi-

zation of circuit topology and whole system (machine + frequency converter), 

thermal management and cost-effective design. 

1.2 Objective of the thesis 

1.2.1 Problem statement 

It is possible to make a high performance motor integrated variable speed drive 

utilizing new advanced compact power converter topologies that are very 

efficient and small in size combined with optimized designed motors with or 

without permanent magnet operating at relatively higher efficiency and good 

thermal stress handling capabilities. Using the advanced control method it is 

also possible to improve and optimize performance of the motor integrated VSD 

system in all aspects compared to a traditional VSD system powering up the 

electrical machines. 

1.2.2 State of the art for motor integrated variable speed drive 

Power converter of a typical VSD comprises two stage of power conversion, first 

AC to DC by a rectifier and then DC to AC by an inverter. Many rectifier topol-

ogies have been developed so far by various researchers from different part of 

the world. Active rectifiers are one of the solutions to reduce harmonics and 

volume of the passive components of the power converter, i.e. current can be 

actively controlled and bulky passive components are not necessary with the 

help of power semiconductors. A purely sinusoidal current can be provided 

with the help of the active rectifiers. However, in many applications, a high 
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input current quality is not required [7]. For instance, rectifiers drawing rectan-

gular or quasi square wave currents are widely applied in motor drive 

applications in various industries. In case of the active rectifiers, a high switch-

ing frequency (around 10kHz) is also required in order to obtain a pure 

sinusoidal input current, i.e. unity power factor at input and to reduce the 

volume of passive components (filter inductor and dc-link capacitor), which 

ultimately reduces the system efficiency by 2% to 3% because of high switching 

losses of the power converter [8].  

Cost and kVA rating of power electronic devices in the active rectifier is also 

relatively higher. The practical realization of the active rectifiers is also high 

because the control and EMI filter designs are relatively complicated and costly. 

The other advantages of the active rectifiers of the front end include bidirection-

al power flow and controlled dc-link voltage, which allow regeneration of 

energy from a load to the mains power source. Although it is a very good fea-

ture, but regeneration is not needed/required in many applications. Passive 

rectifier fed electric drive can be useful in some, if not many areas of electrically 

driven loads.  

Quasi square wave input currents may be a compromise in order to improve the 

quality of the input current while keeping drives cost low and, therefore, may 

constitute an intermediary development stage from the uncontrolled diode-

rectifier towards fully controlled sinusoidal input current drives. VSD topolo-

gies with an auxiliary power converter inserted between the output of the diode 

bridge and the dc-link capacitor can provide continuous conduction of the 

current into the dc-link capacitor and to obtain a square-wave shape of the input 

currents [9].  

This kind of VSD offers the following benefits: the input current THD decreases 

to a new level of about 30%, the VSD becomes more robust to unbalanced 

voltage supply (up to 10%), and it is possible to decrease the physical size of the 

inductors than used previously for passive filtering.  
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To decrease physical size of DC inductor, an intermediate electronic stage is 

required. Such arrangement generally referred as Electronic smoothing inductor 

(ESI) performs the function of an inductor that has controlled variable imped-

ance. The ESI can control output current of a three phase diode bridge to a dc 

value and makes it possible to reduce not only mains current harmonics but also 

reduces the output voltage ripple [10]. The ESI consists of a high frequency dc 

inductor, two power MOSFETs, two fast switching power diodes, and a DC-link 

capacitor. This arrangement can be compared to a passive smoothing inductor 

which is having infinite inductance, if its losses are neglected, also behaves like a 

pure energy storage element.  

The ESI realizes the energy storage characteristic required for smoothing by the 

dc-link capacitor of the switch-mode power stage instead of only by employing 

an inductor alone. Electrolytic capacitors, however, being usually applied for 

this reason show a very high specific energy storage density as compared to the 

magnetic energy storage capability of an inductor. Output capacitor of the 

rectifier is film capacitor with high lifetime and very good reliability. 

A new power converter topology utilizing electronic smoothing concept where 

power circuit is slightly modified from standard ESI has been presented but not 

evaluated in past [8]. This modified electronic smoothing inductor (MESI) is also 

able to control a diode bridge output current and makes it possible to reduce not 

only mains current harmonics but also output voltage ripple [8]. The MESI is 

connected to the output capacitor in series. In this case average load current will 

not flow through active switches. In order to charge and discharge the DC-link 

capacitor, the bidirectional current must be controlled. Therefore, four switches 

are employed.  

MESI based power converter is an emerging and promising converter topology 

which may be able to deliver a compact and robust power converter for inte-

grated VSDs. Although it has advantages of lower losses, but there is a challenge 

in the circuit layout as inductance associated with the connection of MESI 
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converter with the main inverter of the drive can cause flow of high frequency 

current with high amplitude in the system. 

Different types of machines including induction machine, reluctance machine 

and permanent magnet machine have been studied to find suitability for motor 

integration purpose. Detailed study of the state of the art of the machine types 

and converter topologies is given in next chapter. 

1.2.3 Research areas 

This thesis is focused on three phase motor integrated variable speed drives. 

Several types of machines and different circuit topologies related to power 

converter of the electric drives are studied during this research and documented 

in this thesis.  

The thesis deals with modeling and control of ESI based power converter topol-

ogy for electric drive which will enable easy integration of power converter in 

electrical machine. 

This research also deals with power converter with reduced size of passive 

components used in electric drive for VSDs applications. 

1.2.4 Limitations 

This research is mainly focused on medium power range of 1kW to 10 kW. 

Three phase input power supply is being utilized in circuit topologies discussed 

in the thesis. The thesis considers several assumptions and limitations that 

simplify the analysis and design. 

The variable speed drive for motor integrated system is modelled as a front-end 

three phase diode bridge rectifier followed by voltage source inverter. This 

assumption is fair enough as most of the drives in low power to medium power 

range use traditionally this type of circuit topology in various industrial applica-

tions. 

Three phase line to line voltage of 400V and 50 Hz is considered as input supply 

and referred as mains in this thesis. This voltage can have +10% and -15% 
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variations on either single phase or all the phases. Although other voltage 

ranges and frequencies (like 60 Hz) have not studied or considered in this thesis 

but they can be used with some modifications. 

1.3 Structure of the thesis 

This thesis is divided in three different parts. First part presents the background 

and different ways and means to design motor integrated variable speed drives. 

This part includes chapter one and chapter two. In second chapters state of the 

art for the power converter suitable for motor integrated VSDs is discussed in 

detail. In this chapter work done by other researchers has been reviewed in 

context of the integration of motor and power converter. 

Second part is focused about electronic smoothing inductor based three phase 

rectifier for motor integrated variable speed drive. This section ranges from 

chapter three to chapter seven. In this section third chapter is dedicated for 

different filter schemes and response of three phase rectifier operating with 

different type of loads connected at the output of the rectifier. Need of electronic 

smoothing technique instead of passive filter is established in this chapter. In 

next three chapters, electronic smoothing inductor (ESI) and its linear and non-

linear modelling, different transfer functions and control schemes of the ESI 

based converter are discussed in detail. 

Last part of thesis includes chapter 8 and chapter 9. Chapter 8 is about a modi-

fied topology of ESI and advantages of this topology. This chapter also includes 

some practical issues related its implementation in three phase electric drive for 

motion control applications. This part also includes conclusion and contribution 

of this thesis in last chapter of the thesis. 
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Chapter 2. Motor integrated variable speed 

drives 

2.1 Background 

Electric motors are found in practically every branch of industry for all sorts of 

applications. They are cheap to manufacture, reliable and require little or no 

maintenance in operation. However when electric motor is powered from fixed 

frequency, some limitation arises about change in speed of the shaft. Frequency 

converter i.e. inverter allows the frequency of stator current and therefore shaft 

speed of the motor to be adjusted, allowing the drive system to operate in wide 

speed range. In Figure 1., block representation of an electric drive system is 

presented. Although grid and loads are out of the scope of this study, but im-

pact of drive on the system performance has been studied in this thesis. 

 

 

Figure 1. Block representation on an electric drive system. 
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Power flow takes place from grid to load via electric motor with the help of a 

power converter. Intermediate dc link essentially is a filter comprising passive 

components. These types of drive require knowledge of both the motor and the 

converter performance to the user. The motor integrated VSDs will come into 

one package and will eliminate such a need.  

This chapter is a review on the different attempts of motor integration with 

power converter, study of different type of loads in which VSDs can bring 

significant energy saving, sate of the art for converter topology and machine 

type suitable for integration purpose. In this chapter, discussion on advantages 

associated with motor integration and concerns associated with reliable opera-

tion of the VSDs has been included. 

2.2 Previous work in the direction of integration of 

electric drive and electrical machine 

Research on integration of electrical motors and power converter was carried 

out in the laboratories even before the 1990’s, and pump manufacturing compa-

ny Grundfos in Denmark combined an induction motor and an inverter for their 

pumps already in 1991 [11]. However, the plastic module producer Franz Morat 

KG in Germany was probably one of the first to produce integrated motors 

commercially for industrial use in 1993 [11]. 

These days many different integrated electrical motors are available in the 

market. Various electrical machine manufacturers like GE, Siemens, VEM Motors, 

Bosch Rexroth, Rockwell Automation etc. have integrated motors on their product 

list, and research on the integration of power electronics and motor to one 

package is very much in focus in industrial and academic world. The current 

research area in motor integrated VSDs covers both the induction motors, as 

well as the permanent magnet motors [11]. The main focus of research in motor 

integration has been for low power applications. The integrated motors concep-

tualized by several researchers in the past had output powers below 2.2 kW.  
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The integrated drive for induction motors is commercially available and normal-

ly they have an output power below 7.5 kW (i.e. about 10 hp). This is not the 

absolute power limit for integration of induction machine but around this power 

the thermal problems start increasing, according to some manufacturers [11]. 

Rockwell Automation claimed that thermal problems arise already at 3.7 kW (5 

hp), while Siemens saw a possible increase to 15 kW before the end of 2001. One 

exception is VEM Motors, which already offers integral motors up to 22 kW. 

Their smaller integral motors are equipped with drives from Danfoss in Den-

mark, while the larger sizes use drives from Emotron in Sweden.  

Integration of higher powers motors needs more complex designs regarding e.g. 

the heat sink(s) and thermal management. Also the amount of copper and the 

iron quality of the motor, and the amount of silicon in the converter have to be 

increased. This leads to more expensive motor integrated products [12]. 

 

Figure 2. Levels of integration of the magnetically levitated pump system [13]. 

A level of integration of the magnetically levitated pump system is schematical-

ly depicted along with timeline in Figure 2. The integration of the power 

electronics (signal processor and power inverter unit) and the motor and pump 
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as separate working units into one casing with compact design and minimized 

cabling distances brings several advantages. By doing so, the space inside the 

case can be used more efficiently and the cabling effort is reduced significantly. 

However, in this integration, the power electronics and the motor and pump are 

still separate modules of the system. In one another attempt, Wisconsin Electric 

Machines and Power Electronics Consortium (WEMPEC) presented an Integrat-

ed Modular Motor Drive (IMMD) [14] as shown in Figure 3., which comprises of 

five stator coils and a six-pole surface permanent magnet rotor. 

 

Figure 3. Illustration of integrated modular motor drive [14]. 

The IMMD concept is based on the adoption of a modular motor phase-drive 

unit for the stator assembly that includes the following key components: 

1. A segmented stator pole piece fabricated from either conventional mag-

netic steel laminations or soft magnetic composite (SMC) material; 

2. A concentrated coil winding on the stator pole; 

3. An autonomous power converter dedicated to the motor pole that in-

cludes the required power electronics and controller to excite the pole 

winding in a coordinated fashion with the other stator phase-drive units. 
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The trend towards more-electric aircraft creates a need and challenge for power 

electronic modules, converters, and motor drives that can operate in environ-

ments that are different from conventional industrial applications. In many 

aerospace applications, such as electric actuation systems and aircraft power 

conversion and conditioning systems, it is desirable to have a new grade of 

power modules and converters that can operate safely in an elevated tempera-

ture environment, with reduced weight and size [15].  

 

Figure 4. Illustration of compact integrated electronics connected inside the motor for slim-line 

actuator [15]. 

An illustrative example of employing a compact integrated electronics motor for 

slim-line actuator is given in Figure 4. As shown in Figure 4., the actuation 

application calls for a very compact and low-weight power converter. On the 

other hand, the temperature of a hydraulic system used in aircraft can be at a 

level of 85 deg C to 90 deg C, which makes it difficult to use the available liquid 

flow for cooling the power electronics devices and converters that are based on a 

conventional design, thus requiring additional cooling mechanism with a penal-

ty of added size and weight of the cooling unit [15]. 
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The evolving markets of industrial integrated motor and drive also present 

similar design challenges because the power converter circuit must be joined 

with the motor in an increasingly compact package, and is often located in a hot 

housing or compartment. This is because the maximum allowable p-n junction 

temperature of today’s silicon based solid-state power devices is limited to 175 

deg C and gives insufficient margin over the local operating ambient tempera-

tures. Although, employing an advanced silicon carbide (SiC) power device can 

improve the capability of high temperatures, it unfortunately brings a significant 

penalty of high cost of fabrication of power module and other auxiliary circuit 

requirement such as gate drive circuit. 

The SiC devices are very useful when converter is operating at high voltage 

(more than 1.2kV) and high frequency (more than 20 kHz) as compare to Si 

power devices, and another big advantage in SiC based converter is smaller 

filter size. In VSDs switching frequency is around 5 to 10 kHz and output filters 

are normally not used as stator windings have sufficient inductance for filter 

purpose. In these scenarios SiC based converter does not provide major ad-

vantages, but still if high temperature operation is required then it is necessary 

to go for SiC based converter. 

Motor efficiency upgrades can achieve potential savings of about 19.8 billion 

kWh per year. Improved methods of rewinding failed motors can contribute an 

additional 4.8 billion kWh. Energy savings from system efficiency improve-

ments are potentially much larger: 37 to 79 billion kWh per year as studied in 

year of 2005 [2]. 

2.3 Potential of energy saving in different applications 

utilizing variable speed drive 

Different types of electric motors are used to provide mechanical motive power 

for a wide range of end users for different applications in domestic and indus-

trial world. Most of these electric motors are designed to run at 50% to 100% of 
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rated load during their normal operation. Maximum efficiency of the motor 

used for these purpose is generally achieved near 75% of rated load. If the 

operation uses equipment with motors that operate for an extended periods 

under 50% of rated load, modifications in the governing system (control) will 

improve the total energy consumption of the system. Sometimes these electrical 

motors are designed as overrated because they must accommodate peak condi-

tions, such as when a pumping system must satisfy occasionally high demands 

by the users.  

Different available options for the end user to meet variable loads include two-

speed motors, variable speed drives, and load management strategies that 

maintain loads within an acceptable range are provided by the different indus-

trial manufacturers. 

Variable speed drives (VSDs) are typically considered or perceived as an extra 

component to ‘common’ systems or machines. They are typically acquired either 

directly by the end-user from the VSD supplier or through intermediate parties 

such as OEM and installers. A relatively small number of the potential end-users 

are willing to actively search for a VSD related solutions for their system [15]. 

These end-users typically are early market clients. VSDs have to move further 

with a greater pace to main market clients. The distribution of electrical energy 

usage for different types of loads is shown in Figure 5. 

 

Figure 5. Motor Electricity Consumption for different applications [15]. 
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Variable speed drives are being applied to a wide range of loads of different 

applications. Examples of the different types of loads in which significant ener-

gy savings can be achieved by adding VSD are described as follows: 

2.3.1 Single pumps 

In comparison with a traditional throttling valve to control the flow rate of the 

pump, the variable-speed driven pump can result in significant energy conser-

vation where reduced flow rates are required for long periods of time as 

described in [2]. The centrifugal pumps without lift (e.g. closed loop circuit), 

respect the cube power law, i.e., the consumed power is proportional to the cube 

of the speed, as shown in Figure 6. 

 

Figure 6. Input power for different flow control methods of a centrifugal pump [2]. 
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The overall efficiency of the pumping system depends on the efficiency of the 

different components of the system. For the same output flow, the inefficient 

system absorbs more than twice the power absorbed by the optimized system, 

showing the importance of integrated motor systems design. 

2.3.2 Staged pumping plants 

In many pumping applications several pumps are used in parallel to produce 

the required flow. Operating all pumps at reduced speed rather than cycling the 

pumps on/off according to the demand, significant energy savings can be 

reached [2]. Water hammer has the potential to rupture valves, pipes, and 

fittings. It is easy to control this effect by controlled acceleration/deceleration 

using VSDs. Use of VSDs can make the operation easy to control and will have 

smooth transition along with the significant energy saving. 

 

Figure 7. Input power for different flow control methods of a centrifugal fan [2]. 
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2.3.3 Fans 

Energy savings from adding variable speed control to fans can be significant. 

The illustration of the energy savings potential with a VSD versus common 

throttling methods is shown in Figure 7. High amounts of energy are wasted by 

throttling the air flow versus using adjustable speed [2]. The worst method is 

outlet dampers, followed by inlet vane control. The energy consumption in these 

loads is so sensitive to the speed that the user can achieve large savings with 

even modest speed adjustments.  Compared with an on/off cycling control, is a 

more stable temperature in the controlled space and more efficient operation, by 

typically decreasing the fan energy in the range 25-50%. 

2.3.4 Compressors 

Rotary screw and piston air compressors are essentially constant torque loads 

which can also benefit from the application of variable speed control. The ener-

gy savings related to the use of variable speed control are dependent on the 

control system that is being replaced by VSDs. The energy savings achieved by 

fitting a VSD to a rotary screw compressed air unit, compared to other methods 

of flow control at partial load, can be seen in Figure 8.  

Energy savings in constant torque loads is typically considerably less than with 

centrifugal pumps or fans, which obey the power cube law, and so to retrofit a 

VSD to a compressor it is less likely to be economic on the grounds of energy 

savings alone. Additionally, care needs to be taken to ensure adequate lubrica-

tion at reduced speeds. However, the introduction of screw compressors with 

integrated motor and speed control has enabled the additional price of variable 

speed control to be significantly reduced, will lead to typical energy savings of 

15-20% as compared to previous solution. The use of VSD for temperature 

control (floating head operation) in the refrigeration pumps/compressors can 

eliminate the on/off cycling losses and decrease the temperature difference 

between the condenser and the evaporator, with large energy savings. 
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Figure 8. Energy saved by using a VSD on a rotary screw air compressor [2]. 

2.3.5 Lifts 

New VSD topologies (active front end) allow the braking energy to be injected 

back to the source/grid – VSDs with regenerative capability. This feature can be 

a way of saving a significant amount of energy in applications with frequent 

braking operations, namely, lifts. This is only possible if the motor mechanical 

transmission allows this mode of operation. When the lift is going down, and 

the load weight (people inside) is larger than the counterweight, then the motor 

torque is in opposite direction to the speed, i.e., the motor is braking. In the 

same way, when the lift is going up unloaded, energy savings can be reached if 

the motor is controlled with a regenerative VSD. By using VSD in lifts lots of 

different functionality can be incorporated.  

2.3.6 Centrifugal machines and machine-tools 

In high inertia loads (e.g. machine-tools) or/and high speed loads (e.g. centrifu-

gal machines), with frequent accelerating/braking operation, it is possible to 
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save significant amounts of energy. When running, this type of loads has a large 

amount of kinetic energy, which in a braking process, can be regenerated back 

to the grid, if a regenerating VSD is used [2]. A more efficient acceleration 

technique uses a VSD that will significantly reduce the energy consumption, 

comparatively to the other mentioned techniques. Such machines are normally 

operated with intermittent duty as nature of the work, and there is huge poten-

tial to save electrical energy utilized in centrifugal machines and machine-tools. 

2.3.7 Conveyors 

In the constant torque device, the required torque is approximately independent 

of the transported load (is only friction dependent). Typically, the materials 

handling output of a conveyor is controlled through the regulation of input 

quantity, and the torque and speed are roughly constant [2]. But, if the materials 

input to the conveyor is changed, it is possible to reduce the speed (the torque is 

the same) with the help of a VSD, and, significant energy savings will be 

reached, proportional to the speed reduction. 

2.4 Motor selection for integrated drive 

Interest has grown significantly in the development of electrically-powered 

accessories to replace conventional hydraulic and mechanically-powered 

equipment during last two decades in different industrial applications. This 

trend has been motivated by opportunities for energy savings and customer 

friendly features. Nearly all accessory systems present in today’s industrial 

equipment are candidates for electrical conversion. These include a variety of 

pumps, blowers, and actuators that can benefit from the introduction of varia-

ble-speed motor drives. However, key barriers impeding the widespread 

introduction of such electric accessories include cost and reliability of the electri-

cal equipment. Challenges include the harsh environment where temperatures 

can reach as high as 150 degC [16-18]. However, cost remains the overriding 
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challenge facing the developers of such type of electrical accessory equipment. 

The principle of operation of any rotating electric motor is derived from Lorenz 

force. A current carrying conductor placed in a magnetic field is acted upon by a 

force by way of the Lorenz force BLI rule. 

To minimize the total thermal losses and reduce the requirement for heat dissi-

pation, a high efficient motor is very desirable for the integrated motors. 

Reducing the dc-link capacitors needs to minimize the reactive load current 

circulating between the motor magnetizing inductor and the dc-link capacitor. 

This can be achieved by using an optimally designed electrical motor operating 

at high power factor. 

In this section different types of electrical motors are investigated to find their 

suitability for motor integration with VSDs. 

2.4.1 Induction motor 

The induction motor is by far the most widely used choice for development 

application in industry as compared to other type of motors. Being both rugged 

and reliable, it is also a preferred choice for the variable-speed drive applica-

tions. Low cost, high reliability, fairly high efficiency, coupled with its ease of 

manufacture, makes it readily available for development application in any 

location of the globe. The cage-rotor induction motor requires minimal mainte-

nance when commissioned in the system. When operating at the normal utility 

ac supply, the motor speed is essentially constant, and for fixed-speed applica-

tions, the cage-rotor induction motor has become the industry workhorse. Rotor 

of an induction machine is very simple, squirrel-cage rotor consists of copper or 

aluminium bars placed in the slots and short circuited at the endrings. These 

bars are normally skewed to prevent torque ripple and to reduce noise.  

Balanced supply with sinusoidal distributed stator winding produces a sinusoi-

dal magnetomotive force (MMF) rotating at synchronous speed, which is 

proportional to the frequency of supply and inversely proportional to the num-
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ber of stator poles. This MMF results in rotating magnetic field at the synchro-

nous speed. This rotating flux wave sweeps past the conducting rotor bars, and 

generates an EMF in them which causes current flowing in the short-circuited 

rotor bars.  

These induced rotor currents interact with the airgap field to produce a torque 

which causes the rotor to rotate in the same direction as the rotating airgap field. 

Rotor speed is slightly less than the synchronous speed of the rotating magnetic 

field. Because of the low resistance of the shorted rotor bars, only a small rela-

tive speed difference between the rotating flux wave and the rotor bars is 

required to produce the necessary rotor EMF and current. Normally, the rotor 

rotates at a speed Nr rpm, which is slightly lower than the synchronous speed 

Ns.  

The fractional slip s is defined as: 

s

rs

N

NN
s

)( 
           2-1 

If the load is increased, rotor speed will fall, which means slip will increase, the 

stator magnetic field cuts through the rotor bars at an increased rate. This in-

duced greater voltage and current in the rotor bars at a higher frequency. The 

current in the rotor bars creates a magnetic field in the rotor that rotates syn-

chronously with the stator magnetic field, but at an angular displacement to it. 

The magnitude of each magnetic field, along with the angular displacement 

between the stator and rotor, produces torque that resists the slowing down of 

the rotor.  

When this torque equals that of the load, steady state is reached. In short, cur-

rent in the rotor in the rotor bars changes in magnitude and frequency (along 

with slip) as necessary to produce the required load torque. The slip is equal to 

the rotor copper losses divided by the power across the air gap, PCu/Pgap, so as a 

result, for a given output power, slip is proportional to PCu. For a given design, 

slip is also proportional to output power, but PCu as I2R losses will vary as the 
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square of the load current. Therefore, the greater the rotor-bar resistance, the 

greater the slip required to produce rated load. Subsequently, the temperature 

rise will be higher and the efficiency will be lower.  

The wound-rotor has a polyphase winding similar to the stator winding with 

the same number of poles. The winding are connected to slip rings in order to 

connect external impedance, limiting starting currents, improving power factor 

and controlling speed. Traditionally, the squirrel-cage rotor induction motor has 

been regarded as constant-speed motor when operating on the normal utility ac 

supply. However, modern developments in power electronics and microelec-

tronics enable the induction motors to compete with dc motors in torque/speed 

regulation required field. In induction machine, there are significant losses 

occurs in rotor, and it is relatively difficult to remove losses from rotor as com-

pared to stator and therefore for motor integrated VSDs application, induction 

machine with lower losses on rotor side will be a preferred choice. This can be 

achieved either by reducing airgap between stator and rotor by introducing 

another converter to control rotor side losses.  By adding converter to rotor side 

will make it doubly fed machine and will not be a cost effective solution for low 

and medium power level. 

2.4.2 Switched reluctance motor 

The structure of the switched reluctance motor is simple, robust and very relia-

ble in operation. The machine has a salient pole stator with concentrated 

windings and a salient pole rotor with no winding (electric conductors) or 

permanent magnets [19]. Recently, developments of the Switched Reluctance 

Motors (SRMs) have been active in the world for various applications. Due to 

the impact of enabling technology of power electronics, variable speed drivers 

based on SRMs have become affordable. There are several advantages in SRMs 

such as rotor robustness, low cost and possible operation in high temperatures 

or high rotational speeds. Cooling is easy because most of the heat generation 
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occurs in the stator. Salient rotor structure provides an opportunity higher 

torque/inertia ratio. Thus, fast acceleration and deceleration can be realized 

with low load inertia. These motors have been in mass-production in the appli-

cation of oil pressure pumps and vacuum cleaners. 

It is recognized that efficiency of SRM is rather low, in general, compared with 

the permanent magnet machines. Improving the motor efficiency is an im-

portant goal for machine designers for promoting applications of SRMs [20]. It 

can be noticed that efficiency is high in high power motors. In a few kW motors 

efficiency is generally less than 85%. However, the efficiency of IPM machines in 

a range of 0.7kW-2kW is quite high, i.e., about 95% [20]. These machines are 

used in air-conditioners and general purpose drives. Realizing these efficiencies 

by SRM is still challenging. Many test machines have been built and tested in a 

power range of 1-4kW since 1990. Efficiency improvement is achieved by some 

techniques such as a contribution of low iron loss materials, machine design, 

increased winding slot fill factor and optimized voltage waveforms, etc. The 

efficiency of SRM has been improved about 95.6%as it is reported by some 

authors [20]. 

2.4.3 Permanent magnet motor 

Permanent Magnet (PM) Motors have a stator winding configuration which is 

similar to a three phase induction motors, but these machines use permanent 

magnets in the rotor instead a squirrel cage rotor or a wound rotor as it is used 

in induction machine. The permanent magnet rotor tracks with synchronism the 

stator rotating field, and therefore, the rotor speed is equal to the synchronously 

rotating magnetic field produced by the stator. 

The advancements of permanent magnet materials, power electronic based 

converter and microelectronics based control have contributed to energy effi-

cient, high performance electric drives which use modern PM brushless motors 

utilizing rare-earth permanent magnets. These rare earth permanent magnet 
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based motors are advantageous compared to induction motors concerning the 

performance and cost with benefits of increased efficiency, reduced time con-

stant, higher power volume/weight ratio, and cost effective production.  

There are several disadvantages as well, for instance requirement for position 

sensors for low speed, cost of rare earth magnets and its mounting constraints 

and so on. The majority of PM machines employ an interior rotor, the perma-

nent magnets (PMs) being surface-mounted on the rotor. The magnets usually 

need to be protected from the centrifugal force by employing a retaining sleeve, 

which is made of either stainless steel or non-metallic fiber. The rotor tempera-

ture rise may create a problem due to poor thermal dissipation, which may lead 

to irreversible demagnetization of the magnets and ultimately limit the power 

density of the permanent magnet machine. 

Recent developments in PM machines technology include availability of im-

proved PM material, varying construction for motor and generators such as 

axial field, radial field, two phase, three phase, higher phases with different 

rotor geometries, hybrid configuration, rectangular fed motor, sinusoidal fed 

motor, improved sensor technology, fast semiconductor modules, low cost high 

performance microelectronics devices. New control approaches have been 

proven to use these machines suitable for position control in machine tools, 

robotics and high precision servos, speed control and torque control in various 

industrial drives and process control applications. In spite of being most promis-

ing nature of these machines they have faced many hurdles to come to their 

present stage in terms of cost, torque ripple, noise, vibration, reduce reliability 

due to large number of components, operational constraints such as temperature 

rise [21-23]. 

Permanent magnet synchronous motors with concentrated windings have many 

advantages. The motor size can be reduced because of the short end-windings. 

In addition, not only the copper loss but also the copper cost can be reduced 

[19]. However, the rotor losses, which are the rotor core loss and magnet eddy 
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current loss, may increase because of the harmonic magnetic field due to the 

wide stator slot pitch. The thermal demagnetization of the magnet by the eddy 

current loss is one of the biggest problems in the motor. It can be seen that the 

magnet eddy currents in the concentrated winding motor is much larger than 

the distributed winding motor. The rotor core loss also increases. On the other 

hand, the stator core loss and the torque decrease.  

To understand these characteristics, the losses are decomposed into harmonic 

components and classified due to their origins. The stator core loss can be 

decomposed into the losses caused by the fundamental rotational field, harmon-

ic magnetomotive forces of the permanent magnet, and carrier harmonics of the 

PWM inverter. On the other hand, the rotor core and magnet loss can be de-

composed into the losses caused by the stator slot harmonics and carrier 

harmonics. These different losses are listed below [24]: 

1. The stator core losses caused by the fundamental field: In both motors 

(distributed or concentrated windings). The loss of the distributed wind-

ing motor is larger. It is for the same reason why the toque is larger. 

2. The stator core losses caused by the harmonic magnetomotive forces of 

the permanent magnet: The loss of the distributed winding motor is sev-

eral times larger than the loss of the concentrated winding motor 

3. The rotor losses caused by the slot harmonics: The loss of the concentrat-

ed winding motor is several times larger than the loss of the distributed 

winding motor. Especially, the magnet eddy current loss is more than 10 

times larger, even though the rotors are identical. 

4. The carrier harmonic losses of the stator and rotor: The difference of the 

losses between the concentrated and distributed winding motor is slight.  

5. In case of the distributed winding motor, the stator core loss caused by 

the harmonic magnetomotive forces of the permanent magnet is relative-

ly large. On the other hand, in the case of the concentrated winding 
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motor, the rotor losses caused by the slot harmonics, especially the mag-

net eddy current loss, are significant.  

In low-speed high-torque applications, a multipole PM motor is an attractive 

solution. The advantage is a low iron mass per rated torque due to rather low 

flux per pole. A high pole number in conventional distributed winding motors 

leads to a high slot number, which increases costs and, in the worst cases, leads 

to a low copper fill factor. The fractional-slot concentrated-winding solution 

does not require many slots although the pole number is high, which reduces 

both the iron and copper mass in the motor.  

The fractional-slot winding allows a longer stator stack in the same frame length 

than conventional windings, since the axial length of end winding is typically 

smaller. As the stator yoke can be manufactured very thin, the larger airgap 

diameter in a certain limited stator outer diameter is possible. These lead a 

remarkable potential to increase the torque density. Therefore, the multipole PM 

motor with fractional-slot concentrated windings is selected as the direct-drive 

motor.  Interior permanent magnet (IPM) synchronous motors possessed special 

features for adjustable speed operation which distinguished them from other 

classes of ac machines. They were robust high power density machines capable 

of operating at high motor and inverter efficiencies over wide speed ranges, 

including considerable range of constant power operation. 

2.4.4 Flux switching permanent magnet motor 

Flux-switching permanent magnet (FSPM) machines have been a popular 

research topic due to high power density and robust rotor structure similar to 

SRM [25]. With both PMs and armature windings on the stator and a robust 

single piece rotor similar to the switched reluctance machine, the FSPM ma-

chines are well suited to high speed applications. Cross-section of a FSPM is 

shown in Figure 9. The use of high energy PMs on the stator and the flux focus-

ing effect of the ‘U’-core modular stator topology result in high airgap flux 
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density, together with bi-polar winding flux-linkage, which is desirable in 

torque dense machines. The operation principle of the FSPM machine is be 

explained in Figure 10. 

 

Figure 9. Cross-section of three phase, 12/10 FSPM [25]. 

 

Figure 10. Operating principle of FSPM [25]. 

At the position in left half of Figure 10., the PM flux which is linked in the coil 

goes out of the coil and into the rotor tooth. When the rotor moves forward to 

the direction in right half of Figure 10., the PM flux goes out of the rotor tooth 

and into the stator tooth, keeping the same amount of flux-linkage whilst revers-

ing the polarity, i.e., realizing the “flux-switching”. 
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Consequently, as the rotor moves, the flux-linkage in the windings will change 

periodically, and back-EMF will be induced. Both the PM flux-linkage and back-

EMF can be sinusoidal versus the rotor position as long as the machine is 

properly designed, thus it can be driven in the blushless ac (BLAC) mode. The 

FSPM machine is supplied with an inverter. When the machine is operated in 

the constant torque region under the current limit of the inverter, the inverter is 

able to supply a sufficiently high voltage to the machine. In contrast, when the 

machine is operated above the base speed, as the back-EMF rises, the inverter 

voltage will be lower than back-EMF, thus energy cannot be into the machine, 

namely entering constant power region. Then, the machine is operated under 

flux-weakening control to reach higher speed. 

 

Figure 11. Cross-section of three phase, 12/8 DSPM [26]. 

Other doubly-salient machine types having permanent magnet include doubly-

salient PM machines (DSPM), is shown in Figure 11., and flux-reversal PM 

machine (FRPM) is shown in Figure 12. The operation principle of DSPM ma-

chines can be simply described by assuming that the fringing is negligible and 

the permeability of the core is infinite, therefore a linear variation of flux-linkage 

with rotor position and consequently a trapezoidal back-emf is induced in the 

stator windings on no-load in these type of machines. 
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Figure 12. Cross-section of three phase, 6/8 FRPM [28]. 

This indicates that the DSPM machine is also suitable for brushless DC opera-

tion. Due to the existence of the PMs, a very high reluctance path for the 

armature reaction flux and thus the inductance of phase winding is small at both 

aligned and unaligned positions. Consequently, unidirectional torque can be 

achieved by applying a positive current when the PM flux is increasing and a 

negative current when the PM flux is decreasing to the corresponding winding. 

The torque is dominated by the permanent magnet excited torque, and the 

resultant reluctance torque as well as cogging torque are negligible. They share 

the traits of FSPM machines, in that they have a salient pole rotor without any 

coil or PM, and a salient stator containing the PMs and armature windings. The 

electromagnetic performance of FSPM and DSPM machines has been compared 

in past by some researchers [27]. It shows that the FSPM machine can have 

significant higher torque density than that of the DSPM machine in which the 

flux-linkage is uni-polar. 

The operating principles of the FRPM and FSPM are very similar in that each 

stator pole has a “north” and a “south” that provides a bipolar flux linkage in a 
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concentrated coil. Although they operate on the same principles, existing FSPM 

and FRPM machines have different stator to rotor pole combinations, e.g. 

Ns/Nr =12/10 for FSPM and Ns/Nr =12/16 for FRPM for 3-phase topologies 

according to the design guidelines set out in [26]. The FRPM machine can be 

compared on a like to like basis of a 12/16 and 12/10 machines. From the design 

of both topologies it can clearly be seen that the FSPM machine will have the 

advantage of flux focusing. Flux linkage and back-EMF constant of FSPM are 

higher as compare to the FRPM machine, therefore a higher torque density for 

the FSPM machine is possible. However the FRPM machine has the advantage 

of being able to reduce its electrical frequency by halving the number of stator 

and rotor poles to 6/8 providing a reduced fundamental frequency, which is not 

possible with the FSPM 12/10 machine without introducing the unbalanced 

rotor force in the 6/5 FSPM machine. However, as both machines operate on the 

same principles, an increase in rotor pole number of the FSPM machine from 10 

to 16 so that 6/8 FSPM can be realized without any inherent unbalanced mag-

netic force. 

In terms of FSPM machine, both the value and polarity of the PM flux linkage in 

a coil vary with the rotor position. The rotor pole aligns with one of two stator 

teeth over which a coil is wound and the PM flux which is linked with the coil 

goes out of the coil and into the rotor tooth. When the rotor moves forward to 

align with the other stator tooth belong to the same coil, the PM flux linked goes 

out of the rotor tooth and into the stator tooth. Consequently, as the rotor 

moves, the flux linkage in the windings will change periodically. Hence, when 

the alternating currents are applied to the windings in accordance with the PM 

flux linkage, the motoring torque will be produced. Because the waveforms of 

the flux-linkage and thus the back-emf are essentially sinusoidal, it makes the 

FSPM machine an excellent candidate for brushless AC drive operation. 

In addition, since a high per-unit winding inductance can readily be achieved, 

such machines are eminently suitable for constant power operation over a wide 
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speed range. Since the armature reaction flux in a FSPM machine does not pass 

through the magnets, the irreversible demagnetization withstand capability of 

the magnets is high, which makes it particularly suitable for flux weakening 

operation. In addition, flux focusing can be utilized and low cost magnets, such 

as ferrites, may be employed. In the case of adopting high energy magnet mate-

rials, such as samarium cobalt (SmCo) and neodymium-iron-boron (NdFeB), the 

ideal sinusoidal PM flux-linkage and back-emf may be distorted due to magnet-

ic saturation. Using Ferrite (Fe) magnets, instead of NdFeB magnets, may reduce 

the total cost of the PM motor. Ferrites have lower remanent flux density than 

NdFeB. Reduced flux density will cause a decrease in efficiency, prolong the 

pay-off time and decrease future monetary savings. The flux switching motor 

offers improved performance and lower power electronic cost than an equiva-

lent switched reluctance drive. The flux switching motor had a lower peak to 

peak value of radial force than the switched reluctance motor. The total change 

in radial force is therefore less in the flux switching motor. The flux switching 

motor allows a smoother transition of the magnetic flux from one set of stator 

poles to the next [29].  

Lesser no. of rotor poles allow the consideration of three-phase FSPM topology 

in high speed applications with regards to lower losses without the torque 

ripple penalties of using single or two-phase FSPM topologies. With the 6/8 

FSPM topology an improved torque output can be achieved while maintaining 

the high torque density of the 3-phase FSPM topology [30]. 

2.4.5 Multiphase electric machines 

VSDs are nowadays invariably supplied from power electronic converters. Since 

the converter can be viewed as an interface that decouples three-phase mains 

from the machine, the number of machine’s phases is not limited to three any 

more. Nevertheless, three-phase machines are customarily adopted for variable 

speed applications due to the wide off-the-shelf availability of both machines 
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and converters. Such a situation is expected to persist in the future and 

multiphase variable speed drive utilization is always likely to remain restricted 

to specialized niche applications where for one reason or the other, a three-

phase drive does not satisfy the specification or is not available off-the-shelf 

either. 

Due to the sixstep mode of three-phase inverter operation, one particular 

problem at the time was the low frequency torque ripple. Since the lowest 

frequency torque ripple harmonic in an n-phase machine is caused by the time 

harmonics of the supply of the order 2n±1 (its frequency is 2n times higher than 

the supply frequency), an increase in the number of phases of the machine 

appeared as the best solution to the problem. Hence, significant efforts have 

been put into the development of fivephase and six-phase variable-speed drives 

supplied from both voltage source and current source inverters.  

This is an advantage of multiphase machines that is nowadays somewhat less 

important since pulsewidth modulation (PWM) of voltagesource inverters 

(VSIs) enables control of the inverter output voltage harmonic content. The other 

main historical reasons for early developments of multiphase drives, better fault 

tolerance and the possibility of splitting the motor power (current) across a 

higher number of phases and thus reducing the per-phase (per switch) converter 

rating, are nowadays still as relevant as they were in the early days. 

The types of multiphasemachines for variable-speed applications are in 

principle the same as their three-phase counterparts. There are induction and 

synchronous multiphase machines, where a synchronous machine may be with 

permanent magnet excitation, with field winding, or of reluctance type. Three-

phase machines are normally designed with a distributed stator winding that 

gives near-sinusoidal MMF distribution and is supplied with sinusoidal currents 

(the exception is the permanent magnet synchronous machine with trapezoidal 

flux distribution and rectangular stator current supply, known as brushless dc 
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machine, or simply BLDC). Nevertheless, spatial MMF distribution is never 

perfectly sinusoidal and some spatial harmonics are inevitably present. 

2.4.6 Challenges in motor design suitable for integration 

One of the most important physical constraints that limit the minimum size of 

each machine is its ability to dissipate its thermal losses without overheating. 

This thermal constraint is represented in the machine design optimization 

programs by setting a maximum limit on the stator winding current density. 

More specifically, most of the machines are sized using the same limiting value 

of stator current density (7A/mm2) appropriate for machine cooling using hot 

pressurized water as the coolant (110 degC). Higher current density values 

would normally be used for water-cooled machines. Thermal management is 

one of the necessary areas to increase the operating life and to reduce the risk of 

failure. Lower losses in electrical machine will be enabler for motor integration 

with power converter. 

2.5 Power converter topologies for integrated drives 

High efficiency, small volume and low cost are nowadays basically the first 

three aspects mentioned when it comes to the development of any kind of 

converter topology. Concerning the use of a converter in a motor with integrat-

ed electronics, the first two mentioned aspects receive an even greater 

importance. The trend to an increased integration level of the power electronics 

and the motor leads first of all to the demand of very compact converter solu-

tions simply because the available space is quite limited [31].  

A problem in this respect is the DC link capacitor in an AC/AC converter. 

Today's mostly used electrolytic capacitors are large, expensive and have a short 

expected life time in comparison to the semiconductor devices. Decreasing the 

capacitor size would lead to an increase of the ripple current per unit volume. 

This implies higher loss density and it may cause a breakdown of the capacitor. 
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Most promising for this purpose is the metalized polypropylene capacitor. It 

was shown that the use of such a capacitor can reduce the DC bus capacitor size 

significantly [32].  

The new trend in variable speed drives (VSD) is to integrate the inverter and the 

motor into a single unit in order to reduce the production cost, the commission-

ing time, and the physical size of the equipment. In the new generation of 

integrated motor drives, the lifetime of the converter as well as the improved 

interaction with the grid (lower THD of the current, more robust to voltage 

unbalance) will be very important [9]. In the last twenty years, several industry 

attempted to design a VSD topology (the integrated frequency converter motor) 

to reduce the production and commissioning costs and also to improve the EMC 

compatibility of the whole package. 

The application area for motor integrated variable speed drives is limited to the 

low-power range due to the problems that appear in the high-power range such 

as vibrations and the difficulties of dissipating a higher amount of energy in 

dusty environments.  

In research, efforts have been made to replace the traditional limited-lifetime 

electrolytic capacitors with film capacitors. Also, new frequency converter 

topologies are currently being investigated: the voltage source inverter (VSI) 

with a small dc-link capacitor or the matrix converter (MC), which has the 

advantage of the bidirectional power flow [32].  

Improving the quality of input currents of a three-phase-fed VSD is a require-

ment that needs cheap and competitive solutions for implementation. Sinusoidal 

input current is desired, but the cost is still prohibitive. Square-wave input 

current may be a compromise in order to improve the quality of the input 

current while keeping its cost low and, therefore, may constitute an intermedi-

ary development stage from the uncontrolled diode-rectifier towards fully 

controlled sinusoidal input current drives. Additionally, the robustness to 

unbalanced voltage supply may be increased and, optionally, boosting and 
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regulation capability of the dc-link voltage to fully decouple the functionality of 

the inversion stage from the rectification stage may be achieved [33].  

The drive reliability depends on the operating conditions and on the require-

ments for the used components. However, because the diode bridge offers the 

most reliable solution for interaction with the power grid and because voltage 

sensors are needed on the grid side for the matrix converter or active front end 

converter, this solution is not able to compete with the classical diode-bridge VSI 

solution regarding the reliability. 

2.5.1 Converter topology of VSD drawing sinusoidal current from grid 

The best situation for utility or power distributor is when the VSD is able to 

provide sinusoidal input currents, and this may be considered as one of the 

important feature of the VSD, but it is more expensive as compare to square 

wave input current topologies. Currently, there are no compulsory regulations 

to force the manufacturers to produce sine wave input current drives. In this 

category, input side has to be modified. For three-phase ac–ac converters, such 

as industrial motor drives, the two-level pulse width modulated (PWM) voltage 

source inverter (VSI) with six-pulse diode front-end rectifier has become the 

topology of choice, due to its simplicity and relatively low cost. One drawback 

of the diode front-end topology is the low-order, low-frequency harmonics on 

the dc link and ac input line, which, consequently, requires a bulky dc-link 

capacitor and inductor (ac or dc) filters. In order to improve converter perfor-

mance and achieve higher power density, many topologies for three-phase ac–ac 

converters or motor drives with active front-end rectifiers have been proposed 

and studied in past. 

2.5.1.1 VSD converter topologies DCM boost converter 

In VSD, by using a Discontinuous Conduction-Mode (DCM) boost converter 

[34] in the dc-link of a diode-bridge VSI, the input currents (low THD) and dc-

link voltage level (boost capability) are controlled. The DCM provides continu-
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ous utilization of all the three line currents, which provides better waveform 

than square wave. Due to a higher current ripple higher ratings for the semi-

conductor devices and for the magnetic are necessary. The converter circuit 

topology is shown in Figure 13.  

Lboost

Motor

Cdc

Lin

 

Figure 13. VSD converter topologies DCM boost converter [34]. 

It has one extra active switch and one power diode as compared to traditional 

drive. In order to achieve DCM, the inner inductors Lboost have a smaller value 

compared to a continuous conduction mode (CCM) boost converter. Turn-on of 

the IGBT is soft and soft reverse recovery for the boost diode takes place for this 

circuit topology. This compensates somehow for the IGBT increased turn-off 

switching losses caused by switching a much higher current than in a CCM 

boost converter. In order to provide lower input current THD, the magnitude of 

the input current vector is controlled instead of the dc-link current. Also, a 

higher transfer ratio of the boost converter is needed, which reflects in a higher 

dc-link voltage reference (near 700 V). This type of converter offers unity power 

factor at the mains. 

2.5.1.2 A Vienna rectifier based VSD 

A Vienna rectifier [34], which is shown in Figure 14., needs only three IGBTs to 

control the input currents derived from the three phase grid. The boost induct-

ances are usually smaller, and the semiconductor devices have a lower voltage 

rating compared to a standard two-level PWM rectifier since they switch only a 

half of the dc-link voltage.  
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Figure 14. VSD topology with a Vienna rectifier [34]. 

The conduction losses are high because the current path on each input line 

consists of two diodes or two diodes and an IGBT. Independent control on each 

input-phase current is possible by providing the proper switching to its corre-

sponding IGBT on and off.  

The input currents of this circuit topology are sinusoidal with a lower THD at 

rated power. Because of full control of the active front-side stage, it is possible to 

fully compensate the influence of unbalanced voltage supply in the input-

current quality, but this will cause a 100-Hz ripple in the dc-link voltage. How-

ever, this imposes a restriction on the size of the two dc-link capacitors that have 

to maintain the voltage ripple within safe operation limits. 

2.5.1.3 A three-level PWM rectifier with bidirectional switches build with 

reverse blocking (RB) IGBTs 

This requires lower consumption of semiconductors as compare to Vienna 

rectifier: only six fast recovery diodes (FRDs) and six RB-IGBTs with half-

voltage ratings. Circuit topology of a three-level PWM rectifier with bidirection-

al switches build with reverse blocking (RB) IGBTs based VSD is shown in 
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Figure 15. Functionality and performance of this drive are similar to the previ-

ous case, but as the conduction path for the currents consist only of a FRD or a 

RB-IGBT, therefore it will cause lower conduction losses. Switching losses will 

not change because the intrinsic diode of the RB-IGBT is not experiencing re-

verse recovery [35]. The input currents are sinusoidal with a lower THD at rated 

power. Because of full control of the active front-side stage, it is possible to fully 

compensate the influence of unbalanced voltage supply in the input-current 

quality, but this will cause a 100-Hz ripple in the dc-link voltage. 
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Figure 15. Three-level PWM rectifier with bidirectional switches build with reverse blocking (RB) 

IGBTs [35]. 

2.5.1.4 Three-phase Buck Converter Rectification Stage Directly Connected to 

VSI 

This topology [36] is shown in Figure 16., and it consists of a three-phase buck 

converter as a rectification stage directly connected to and a standard B6-VSI. 

An LC input filter is necessary to reduce the input current ripple. The rectifica-

tion stage has to apply at any instant an input line-to-line voltage with the right 

polarity to the dc-link, which is then inverted by the VSI to produce the desired 
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output PWM voltages. In order to obtain the proper sharing of the constant 

output power on the input currents in order to provide sinusoidal waveform, at 

two line-to-line voltages have to be mixed into the dc-link with the proper duty-

cycle during the switching period. Even though the consumption of diodes is 

smaller compared to the topology of Vienna rectifier, three film capacitors with 

high pulse current capability are needed in the input filter, compared to two in 

the previous case. 

Cclamp
Motor

Lboost

Lin

 

Figure 16. Three-phase buck converter [36]. 

A clamp circuit consisting of a diode and a capacitor provides a freewheeling 

path for the inductive load currents in case the converter is turned off. Regenera-

tive operation, as well as operation with highly inductive load which causes 

negative dc-currents is not possible. The voltage transfer ratio is limited to 0.86 

as in any direct power converter that allows for sine-wave-in sine-wave-out 

operation [48]. The input currents are sinusoidal with a lower THD at rated 

power. Because of full control of the active front-side stage, it is possible to fully 

compensate the influence of unbalanced voltage supply in the input-current 

quality, but this will cause a 100-Hz ripple in the dc-link voltage. Multilevel 

converters when used as rectifiers have the advantage to provide a low switch-
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ing voltage ripple across the boost inductance that allows for smaller size of the 

input filter and lower voltage ratings of the switching devices. A three level 

rectifier will therefore halve the size of the boost inductance compared to a two-

level rectifier. As it may use switching devices rated at half the voltage com-

pared to a two level rectifier, it may be able to switch faster and losses associated 

to switching will also be lesser. 

2.5.1.5 Three-phase Back to back voltage source converter 

This circuit topology is shown in Figure 17., and it consists of a three-phase 

boost converter as a rectification stage directly connected to and a standard B6-

VSI through an intermediate dc link. An LC input filter is necessary to reduce 

the input current ripple. 

Cdc
Motor

Lin Lboost

 

Figure 17. Back to back voltage source converter. 

Efficiency of this topology is poor but it can ensure unity power factor at input 

and bidirectional power flow, which can be used in braking and improving 

dynamic response of overall drive. Requirement of input filter makes drive 

bulky which does not fit for motor integrated VSD application. Lower efficiency 

will result higher losses and therefore heat removal from integrated system will 

add difficulty in overall system design. 
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2.5.2 Converter topology of VSD drawing rectangular current from grid 

This category of circuit topologies consists of VSD topologies that are based on 

the front end diode-rectifier followed by VSI topologies but have an auxiliary 

converter inserted between the diode bridge and the dc-link capacitor in order 

to provide continuous conduction of the current into the intermediate dc-link 

capacitor and to obtain a square-wave shape of the input currents. This category 

offers the input current THD decreases to about 30%, and the ASD becomes 

more robust to unbalanced voltage supply (up to 10%). Problem of unbalanced 

input voltage is very common and it is reflected in the intermediate dc link 

voltage and in low voltage condition it force VSI to operate in over-modulation. 

The trend to an increased integration level leads to the demand for very compact 

inverter solutions. The aim is to design the converter in such a way, that it can 

be integrated into the motor (integral motor). 

Several topologies presented in this thesis are dedicated only for general pur-

pose integrated motor drives, only unidirectional power flow drives will be 

analyzed seven candidate topologies are shown. During comparison between 

candidates for VSDs the following assumptions have been taken. 

1. Constant current ripple magnitude in the boost inductor: 

.. const
V

f
L

ripple

SW
boost           2-2 

2. Constant switching losses in the semiconductors: 

.... max_ constIVfN swrippleSWIGBT         2-3 

Where Lboost is the boost inductance value in front end rectifier circuit, fsw is the 

switching frequency, Vripple is the switching voltage ripple equal also to the 

forward voltage the switching device should withstand, NIGBT is the number of 

IGBTs that switches in a switching period and Isw is the average current that is 

handled by the switches at rated power. In the following, the four candidates 

will be briefly introduced with highlight on their advantages and drawbacks. 
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2.5.2.1 Diode rectifier and an electronic dc-link inductor with a small dc-link 

capacitor connected to VSI 

This circuit topology [37] is shown in Figure 18. By using a low-kVA asymmet-

rical H-bridge inverter in the dc-link between the diode-bridge and the dc-link 

capacitor it is possible to achieve continuous conduction of the dc-link current 

with the effect on improving the shape of the input currents.  
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Figure 18. VSD converter topology with electronic inductor in dc-link [37]. 

The asymmetric H-bridge inverter and the series inductors form a controlled 

current source which has functionality similar to the dc-link inductor in a stand-

ard drive, but since it is controlled, it may achieve high and constant attenuation 

of the low-frequency ripple in the dc-link current with a bandwidth going up to 

kilohertz range. As the voltage in the H-bridge dc-link is small (40-60V), fast 

components as MOSFETs and Schottky diodes that allow operation above 100 

kHz with low losses may be used. The higher switching frequency in conjunc-

tion with the lower switching voltage across the boost inductance will allow the 

reduction of the size of the passive components Lin, Cdc-in and Ldc which have to 

limit only the switching ripple. Grid voltage unbalance may be successfully 

compensated. 31% at rated power and remain almost unchanged under 5% 

unbalance [33], proving that this topology is more robust. 

In this circuit topology, a disadvantage is that the average dc-link voltage de-

creases to 490 V, which means that the voltage transfer ratio is around 0.9. As in 
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an integrated motor drive the converter and the motor are designed as a single 

unit, winding the motor for a smaller rated voltage may overcome this draw-

back. This problem can be addressed by better control of DC link voltage and 

also with some modification in topology. 

2.5.2.2 Diode rectifier and a CCM boost converter with a small dc-link capaci-

tor connected to VSI 

The circuit topology of diode rectifier and a CCM boost converter [38] is shown 

in Figure 19. This circuit topology consists of a Continuous Conduction-Mode 

(CCM) operating boost converter connected between at the output of the three 

phase diode-bridge rectifier and the dc-link capacitor.  This controls the dc-

current (rectangular input current shape) and the dc-link voltage (boost up 

capability).  
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Figure 19. VSD converter topology with CCM boost converter [38]. 

This is already industrially implemented as a PFC stage providing sinusoidal 

input current and regulation of the dc-link voltage, but a large dc-link capacitor 

is needed for this purpose. 

Only one active device is needed, but the voltage stress of this active device is 

equal to the full dc-link voltage and the current stress is equal to the peak value 

of the dc-link current, which means it has to switch the rated power of the VSD. 

As the voltage ripple across the inner filter inductors is equal to the dc-link 

voltage and the switching frequency is smaller previously, a larger boost in-
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ductance is needed that will experience higher core losses. Two control loops, a 

slow one for the dc-link voltage and another one faster for the dc-link current, 

are needed. Measurements of the dc-link voltage and of the current through the 

boost inductor are needed. The input current THD will be around 34 % at the 

rated power. 

2.5.2.3 Diode-Rectifier and two interleaved CCM Boost Converters with a 

Small dc-link Capacitor Connected to VSI 

This circuit topology [39] is shown in Figure 20., and it is another solution to 

decrease the size of the magnetic by using two interleaved the boost converters. 

Each inductor will carry only half of the total dc-link current while its switching 

voltage is the full dc-link voltage. Even though the current ripple through the 

boost inductors is higher, it partially cancels when they sum while the equiva-

lent frequency of the switching ripple doubles. This decreases the size of the 

input filter compared to the previous topology. The input current THD will be 

around 35 % at the rated power. 
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Figure 20. ASD converter topology of interleaved CCM parallel boost converter [38]. 

2.5.2.4 A three-level CCM boost converter 

This circuit topology [38] is shown in Figure 21. The lower switching stress due 

to the three-level approach allows the increase of the switching frequency by a 
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factor of two, which in conjunction with halving the voltage ripple across is an 

important size reduction factor for the boost inductor.  
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Figure 21. VSD converter topologies three-level CCM boost converter [38]. 

A split dc-link capacitor and two CCM boost converters mounted between each 

dc-link terminal and its middle point. Even though there are two transistors in 

the boost stage, the installed power is similar to the previous case. Only one 

transistor is working at a time depending on the potential of the split capacitor 

middle point. Conduction losses are higher, since an extra diode appears in the 

conduction path compared to the previous case. Since the semiconductors are 

chosen to withstand only a half of the dc-link voltage, faster devices may be 

used. 

An extra voltage sensor is needed, and an extra dc-link capacitor, even the 

though energy is similar. Additionally, the voltage unbalance of the two dc-link 

capacitors has to be controlled. The grid side behavior is typically same for all 

the CCM boost topologies, under normal and 5% unbalanced voltage supply 

[33]. The input current quality is preserved, while the unbalanced supply re-

flects in the 100-Hz ripple of the dc-link voltage, which is not critical, as its level 

can be boosted up. 

2.5.3 Slim DC-link drive for VSD 

Small dc-link capacitances have been applied in ac drives equipped with active 

rectifiers, where both the rectifier and the inverter can be used to control the 
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power balance of the dc link. These capacitors are MKP type film capacitor 

having low ESR and increased operating lifetime.  

Commercial drives equipped with a diode rectifier and a small dc-link capaci-

tance, are available, a small capacitance is advertised by manufacturer to reduce 

the mains harmonics, while the dynamic performance of the drive has not been 

used as an argument. In research publications, the concept of a diode rectifier 

and a small dc-link capacitance has not received a lot of attention, with the 

exception of very few recent studies: pulse-width modulation (PWM) was 

studied in [40], and control issues relating to 2.2-kW and 37-kW drives were 

studied in [44]. 

Three phase AC-drives for HVAC applications (Heating, Ventilation & Air-

Conditioning) are designed to meet moderate demands on shaft-torque dynam-

ics and high demands on acoustic noise, efficiency and harmonic distortion at 

the line-side. Also, compatibility with long motor cables is a typical requirement. 

Traditional AC drives employing diode rectifiers, chokes and electrolytic capaci-

tors have been used for decades. Recently, commercial HVAC drives have 

emerged, where all traditional DC-link components are replaced with a “small” 

film capacitor. These are referred to as slim DC-link AC-drives by several au-

thors in literature. The aim of these studies [39-47] was to analyse consequences, 

if going for a slim DC-link AC-drive over traditional types.  

Typical fields of usage of slim dc-link based drive can be found in applications 

such as closed-loop speed control of fans for ventilation and extraction, as well 

as in circulation pumps for heating and cooling systems and pumps for boosting 

the pressure and control levels [48]. 

The slim dc-link drive employs an integrated RFI-filter at the line-side, a diode 

bridge for converting three line voltages (50Hz or 60 Hz) to a pulsating DC-link 

voltage and a film capacitor bank (Cdc) to attenuate the 300Hz pulsations in 

order for the inverter to give ideal PWM output voltages. Cdc is large enough to 

provide enough storage energy for the internal switched-mode power supply 
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(SMPS), ensuring a proper shutdown of the control circuitry in case of a mains 

failure. The power circuit of the slim DC-link AC-drive is shown in Figure 22. 
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Figure 22. Circuit topology of slim dc-link drive. 

This drive offers a compact and low-cost approach towards low line-side har-

monics. This drive is similar to the traditional types, except for the intermediate 

DC-link. A MKP type film-capacitor bank can be used, which in rough figures 

exhibits the same physical size as the capacitor bank in traditional drive, while 

giving a much smaller Cdc value and a much better life time. MKP capacitors 

intended for slim dc-link drives are available on the market. The small Cdc 

enables the drive to obtain a rated THDi around 30-35% at the line-side [40].  

The drive also includes a secondary electrolytic DC-link capacitor bank Cb to 

ensure a sufficient hold-up time of the SMPS during a mains failure. Also, the 

SMPS-supply branch may improve the robustness against line transients as 

defined by EN61000-4-4/5 and provide sufficient damping support for the main 

capacitor bank, which is an issue on soft lines. 

Benefits of a slim DC-link AC-drive relative to traditional AC-drives are a low-

cost and compact design giving a low THD in phase currents at the line-side 

along with a good life time of the DC-link storage element. Else, the topology 

suffers from a reduced performance level in general. The drive is claimed to 

exhibit friendliness towards the grid in terms of reduced low-frequency current 

harmonics, but IEC1000-3-12(2) compliance requires installation of external AC-

inductors. This emulates a soft line, giving potential stability problems of the 
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drive. If the technology penetrates the market substantially, one may predict 

increasing grid problems in the switching-frequency range. Especially, large 

slim DC-link AC-drives may impact significantly on small high-capacitance 

electronic equipment, if installed at the same PCC via a low impedance link. 

In terms of smooth operation of the motor load, the slim DC-link AC drive 

exhibits a substantially larger 300Hz torque ripple, which is less desirable for 

some applications. Also, spurious tripping due to under/over voltages will be 

more frequent compared to traditional drives, regardless of what modern 

control algorithms can achieve. Instability of the dc link may occur in 

conventional drives (having a low dc-link natural frequency), if the inductance 

of a choke is large relative to the dc-link capacitance. The dc link can be 

stabilized by manipulating the reference of the torque-producing current 

component [45]. 

 

Figure 23. Input currents in steady state at nominal load for slim dc-link drives in simulation. 

If a small dc-link capacitance without an additional choke is used, the dc-link 

natural frequency becomes high and dependent on the mains inductance. 

Especially in large-power drives, the mains inductance relative to the dc-link 
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capacitance may be large enough to cause instability in the dc link, while the dc-

link natural frequency is above the bandwidth of the current-control loop. Mains 

current in simulation are shown in Figure 23. Hence, conventional stabilization 

methods relying on the current controller cannot be used. It becomes neccesary 

to stablize dc-link through active control of PWM inverter. 

2.5.4 Modifications in VSI design for electric motor 

Some modifications in inverter design can help to reduce the losses associated 

with inverter and will have big impact in the integration process of power 

converter and the electrical machine. Two possible changes in inverter design 

are discussed in this section. 

2.5.4.1 SiC or Hybrid IGBTs (Si+SiC) based inverter 

Silicon Carbide (SiC) has significant advantages over Silicon (Si) in power 

applications requiring low losses, high frequency switching, and/or high tem-

perature environment conditions because of their lower switching losses. 

Powerex/Mitsubishi offers a full line of Silicon Carbide (SiC) modules to serve a 

wide range of applications. SiC hybrid modules (Si IGBT + SiC Schottky diode) 

and full SiC modules (SiC MOSFET + SiC Schottky diode) are available in 

market for high efficiency designs or to achieve significant loss reduction in 

existing designs [49].  

A 45% decrease in inverter losses result from this modified design by using SiC 

hybrid module, whereas if Full SiC module will be used, it can result around 

70% loss reduction as shown in Figure 24. All components and interconnects are 

isolated from the heat sinking baseplate, offering simplified system assembly 

and thermal management. SiC diodes have no effect on IGBT Eoff but reduce 

IGBT Eon And Err.  

A lower Rg reduced IGBT Eon by up to 85% but will excited a turn-on oscillation 

problem due to possible faster dv/dt and lower energy damping loss at turn-on 

attributed to VCE-IC power loss.  
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Figure 24. Comparison of inverter losses in Si module with SiC hybrid and Full SiC module [50]. 

2.5.4.2 Multi-level Inverter for VSD 

Three or higher level inverters have been used in drive applications. These 

inverters offer many advantage over traditional two-level VSI, such as less 

common mode voltage and lower bearing currents. These converters require 

higher no. of power semiconductor and gate drive circuitries and therefore may 

not be suitable for low voltage VSDs. For medium voltage drive applications, 

such converters are suitable as one has to connect several devices to achieve that 

much voltage capability. 

2.5.5 Challenges in power converter topology suitable for integration 

Power converter design for integrated drives poses a host of significant chal-

lenges that originate both from the limitations on available space and the need 

to adapt the power converter to the thermal, vibration, and electromagnetic field 

stresses inside the motor housing. Continued advances in power electronics 

component and packaging technologies, including the development of high-

temperature power semiconductor materials such as silicon carbide and gallium 

nitride, will help make it possible for the power converter to meet these envi-

ronmental demands. There are many options for the front-end converter that 
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offer advantages for the integrated drives, but they each come with the price of 

added converter complexity, size, and cost [13]. For example, an active front-end 

power converter stage offers the opportunity to absorb the current ripple from 

the inverter stage by coordinating the dc link input current with the output 

current.  

Research in past has shown that this approach can be used to minimize the 

required dc bus capacitance value. Control schemes can also be introduced to 

cope with the reduced dc bus capacitance, although they generally limit the 

fractional percentage of the dc bus voltage that can be used to excite the motor. 

There are also significant issues surrounding machine-drive dynamics with 

reduced dc link capacitance. Design of the control strategies for the front-end 

and motor must be carefully performed to avoid potential instabilities or de-

structive dc link voltage transients. These issues suggest that the entire motor 

drive must be designed as an integrated system to insure that reductions in the 

dc link capacitor volume are not offset by increased passive component re-

quirements elsewhere in the converter. 

Many of today's existing integrated motor products are restrained in a mechani-

cal repackaging, where the power inverter is physically mounted onto or inside 

the motor housing frame. The concerns arise primarily from new power con-

verter design constraints, including elevated ambient temperature inside the 

motor housing, more confined space volume, and geometric dimensions. 

2.6 Advantages with integration of power converter into 

electrical machine 

There are several advantages of motor integrated of variable speed drives, some 

of them are mentioned as follows: 

1. Lower installed system cost (wiring, installation, and control panel space 

savings); 
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2. Short motor leads eliminate standing wave dv/dt failures and reflected 

voltage spikes; 

3. Possibility of built-in prevention of voltage peaks at the motor terminals; 

4. Optimum motor-inverter match; 

5. No design problems with motor-inverter rating, filters or power cable 

length; 

6. Guaranteed electromagnetic compatibility by the manufacturer; 

7. Compact design and more efficient operation. 

2.7 Reliability issues of VSD fed motors 

The Three-Phase Induction Motors fed by VSDs based on Voltage Source Invert-

ers with Pulse Width Modulation (VSI-PWM) may have to support three main 

additional stress factors that are described next, namely, internal temperature 

increase, partial discharges and breakdown of the stator windings insulation 

system and bearing currents 

2.7.1 Internal temperature increase of the electric machine 

The internal temperature increase of the electric machine is mainly due to the 

harmonics increase which leads to an increase of iron and copper losses and, 

therefore, the overall losses will increase typically between 15% and 35% with 

load factors higher than 60%. Based on the Arrhenius law, a 10ºC increase in the 

operating temperate will lead to a 50% and 35% decrease for the insulations and 

lubricants lifetime, respectively [2].  It is very important to properly size the 

motor for loads requiring speeds lower than nominal. For low speeds (below 

70% of the nominal speed) an external cooling arrangement may be required to 

avoid motor overheating. 
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2.7.2 Partial discharges and breakdown of the insulation system 

If the voltage transient exceeds the insulation dielectric strength, short-circuit 

can occur with/without the partial discharge effect. Because of the temperature 

increase, partial discharge and voltage stress, the insulation system of older 

motors (in particular) with long cable runs may have a significant shortened 

lifetime when fed by VSI-PWM VSDs. 

2.7.3 Bearing currents 

Because of the induction motor parasitic capacitances between the windings and 

frame, windings and rotor, rotor and frame, and inside the bearings, high 

frequency currents can circulate in the bearings of motors fed by VSI-PWM 

VSDs. The currents have two main different modes, but the same primary cause 

which is the common mode voltages generated in the VSD output due to the 

unbalance of the three output PWM voltage waveforms. The first current mode 

is a consequence of the generated voltage between the shaft and the ground due 

to the referred parasitic capacitances. The presence of a shaft-ground high 

frequency voltage leads to the circulation of capacitive and resistive high fre-

quency currents through both bearings. The second high frequency current 

mode is a consequence of the voltage between the shaft ends, induced by the 

circulation of a high frequency common mode current in the windings and 

between them and the frame. These bearing currents can significantly decrease 

the lubricant and bearing lifetime. 

2.7.4 Harmonics and electromagnetic interference 

Current harmonics in the VSD input stage can also feed back into the power bus 

grid, and can disrupt other types of equipment in the premises. Harmonics can 

also cause supplementary losses and temperature-rise of all the elements in the 

supply system (rotating machines, transformers, cables, capacitors banks). In the 

case of three-phase diode rectifiers being used in the input stage, the negative 

sequence harmonics (5th and 11th) are particularly worrying in terms of increase 
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of the losses. Harmonics can also produce electromagnetic interference (EMI) 

both as high frequency airborne radiated interference mostly in the inverter to 

motor cable, as well as the conducted noise in the supply cables. 

2.7.5 Mitigation strategies 

Manufacturers should specify the maximum transient voltage and dV/dt, which 

the motor windings can withstand. To mitigate the described undesirable prob-

lems, common mode and high frequency filters and special shielded cables 

(acting as a distributed filter), can be used between the VSD and the motor, 

keeping the link between as short as possible. Common mode voltage cancella-

tion electronic devices connected between the VSD and the motor can be also a 

good solution. Also, proper grounding and shielding should be made. Several 

alterations can be made in the motor to increase its reliability. For example, use 

of magnetic wire with reinforced insulation, use of impregnation techniques that 

minimize the air cavities in the insulation system, use of insulated bearings in 

both sides (e.g. with external insulation coating or ceramic balls), connection of 

the shaft to the ground using a contact brush and install an electrostatic shield in 

the stator slot openings connected to the ground. 

2.8 Total harmonic distortions 

Harmonics are voltage and current frequencies in an electrical system those are 

multiples of the fundamental frequency (50 or 60 Hz). The harmonics are associ-

ated with non-linear loads such as magnetic ballasts, saturated transformers and 

power electronics [51-62]. The most common sources of power electronics 

harmonic distortion are found in computers, office equipment, electronic 

equipment using switch-mode power supplies, VSDs, arc furnaces and high-

efficiency electronic light ballasts. Harmonics often come, too, from poor-quality 

line power - an increasingly important issue for many utilities. Harmonics can 
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affect the equipment performance and are both caused by and can interfere with 

the function of VSDs.  

Harmonics increase equipment losses and have also raised concerns about 

excessive currents and heating in transformers and neutral conductors. Harmon-

ic waveforms are characterised by their amplitude and harmonic number. All 

power electronic converters used in different types of electronic systems can 

increase harmonic disturbances by injecting harmonic currents directly into the 

grid. When harmonic currents flow through the impedances of the power 

system they cause corresponding voltage drops and introduce harmonics onto 

the voltage waveform. This causes the system voltage waveform to become 

distorted and since this voltage is distributed to other users on the power system 

it causes harmonic currents to flow through otherwise linear loads. 

A non-sinusoidal periodic function f(t) in an interval of time T could be repre-

sented by the sum of a fundamental and a series of higher orders of harmonic 

components at frequencies which are integral multiples of the fundamental 

component. The series establishes a relationship between the function in time 

and frequency domains. This expression is called Fourier series representation. 

A distorted waveform can be analyzed using Fourier series representation given 

as the following equation: 
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The harmonic current on the three phases power distribution system is defined 

as frequency components which is an integer multiple of the fundamental 

frequency. A pure sine wave does not contain harmonic. When a wave becomes 

distorted, it means harmonics current are present in this distorted waveform. 

The harmonics current generated by three phase converter in three phases three 

wires power distribution system are 5-th, 7-th, 11-th, 13-th, 19-th and so on. 
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2.9 Filter for improving current quality drawn from mains  

The harmonics of a voltage source AC drive can be significantly reduced by 

connecting a large enough inductor in its AC input or DC bus. The trend has 

been to reduce size of converter while the inductor size has been also reduced, 

or in several cases it has been omitted totally. Filters can be classified broadly in 

three different category namely passive, active and hybrid filter. These different 

filter arrangements are discussed in following section. 

2.9.1 Passive filter 

The passive filter consists of two components: a coupled inductor and a capaci-

tor. These are energy storage element and provide smoothing to voltage and 

current. Together, they form a ripple cancellation circuit. The structure of the 

passive filter is shown in Figure 25. To understand this filter topology, a coupled 

inductor and a method commonly referred to as the “zero ripple,” “ripple 

cancellation,” or “ripple steering” are addressed. 
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Figure 25. Illustration of a coupled inductor based passive filter. 

This method, known and used in different applications for many years, employs 

a coupled inductor as the main filtering component. The general structure of a 

coupled inductor is shown in Figure 25. 

The use of inductors in frequency converters is a known practice often used to 

smooth the high inrush currents and reduce the harmonics. Manufacturers may 

include dc-link coils in frequency converters to reduce harmonic currents or for 
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smoothing the dc current but this can be done only during the frequency con-

verter’s manufacture. Once the frequency converter is installed in the field it is 

impossible to add or remove the dc-link coil. The simplest, fastest and non-

invasive solution is to install ac-coils in front of the drive. The biggest advantage 

of the ac-coil is the simplicity. As the ac-coil is a passive harmonic solution, there 

is no need of special setup when commissioning, and the downtime at installa-

tion is relatively short. 

For the first 25 harmonic components the theoretical THD minimum is 29%. 

That value is practically reached when the inductance is 100 mH divided by the 

motor kW or 10 mH for a 10 kW motor (415 V, 50 Hz). Practically sensible is 

about 25 mH divided by motor kW, which gives a THD of about 45%. This is 2.5 

mH for a 10 kW motor. The voltage distortion with certain current distortion 

depends on the Short Circuit Ratio (Rsc) of the supply, which is defined by ratio 

of  maximum short circuit current (ISC) and the maximum demand load current 

(IL) at the point of common coupling (PCC). The higher the ratio, the lower will 

be the distortion in voltage at PCC. 

Sometime Passive filters are connected to the parallel to drives at PCC. These 

filters are tuned to particular frequency and termed as selective harmonic filter. 

They supply harmonic current for particular harmonic. 5th and 7th order har-

monic filter are very common to use in 6 pulse diode rectifier based drive in 

order to meet the standard of EN 61000-3-12. 

Passive filters consisting of a LC bank of tuned filters and/or a high-pass filter 

have been broadly used to suppress harmonics because of low initial costs and 

high efficiency. However, passive filters have the following drawbacks: 

1) Filtering characteristics are strongly affected by the source impedance. 

2) Amplification of currents on the source side at specific frequencies can 

appear due to the parallel resonance between the source and the pas-

sive filter. 
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3) Excessive harmonic currents flow into the passive filter due to the 

voltage distortion caused by the possible series resonance with the 

source. 

2.9.2 Active filter 

The task of the active filter is to improve attenuation in the low-frequency range, 

where the attenuation provided by the passive filter is insufficient. To allow 

suitable voltage control, the active filter should be capable to receive or release a 

sufficient amount of energy to preserve the capacitor voltage constant irrespec-

tive of low-frequency load current fluctuations. The filter energy storage 

components can thus be considered as one of the most affecting parts of the 

active filter. Different topologies can be used to achieve the desired energy 

storage capability. 
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Figure 26. Illustration of an active filter. 

A filter with its own energy storage enables its independence, although addi-

tional components are needed in such case, commonly resulting in weight 

and/or cost increase of the application. Usually, an inductor, capacitor, or 

additional source (battery) is selected as an energy storage element. If only 

passive components are used, connection to the main power grid is required. 

Such connection is symbolized with a dotted line.  
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Figure 27. Active filter connected in dc link. 

In a steady state situation, the active filter has to provide a current which is 

opposite to the current flowing through coupled inductor iac, and therefore; 

0 LacF iii              2-5 
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Figure 28. Three phase electric drive with active harmonic filter rectifier. 

With such a measure, the excessive change in the capacitor voltage is compen-

sated. Active filter can be installed at the point of common coupling, where 

drive is connected to grid. In this case such active filter will provide only the 

harmonics currents other than fundamental. Sometime these filters are referred 

as active harmonic filter in literature and circuit topology grid side connected 

AHF is shown in Figure 28. Grid sees a resistive kind of load connected to it and 
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gives power at unity power factor. Such active filter requires power electronic 

devices and energy storage passive components and control strategy and cir-

cuitry to provide harmonic currents to drive. 

2.9.3 Hybrid filter 

Hybrid filter are those topology where behaviour of large passive component is 

achieved by combination of small passive components and electronic devices. 

With control of these electronic devices, current coming out from the grid is 

controlled and only limited magnitude of harmonic current is allowed to go 

through it. Such topology can limit low order harmonic to certain level. To meet 

the standard of EN 61000-3-12, one may need some filter at the input of drive, 

but filter size is reduced now as compare to passive solution. This type of hybrid 

circuit topology is termed as electronic smoothing inductor and studied quite a 

few times by different researchers in past. 

2.10  Summery and conclusion 

Nowadays, VSDs are considered as one of the most important tools for Motor 

Management and Energy Saving. Most motor efficiency upgrades can be achieved 

fairly easily by selecting the most efficient available motor for the application 

available in the market at hand. Diode rectifier followed by VSI is well accepted 

by the industry, and it has low losses and high reliability, but it requires big and 

bulky passive elements to ensure current THD within specified limit of present 

standards. Improving the quality of input currents of a three-phase-fed VSD is a 

requirement that needs cheap and competitive solutions for implementation. 

The trend to an increased integration level of the power electronics and the 

motor leads first of all to the demand of very compact converter solutions 

simply because the available space is quite limited. A problem in this respect is 

the size power converter which is large due to requirement of big passive com-

ponents in a power converter utilized in motor integrated drive. 
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In Future we may see constraints to have sinusoidal current at the utility end 

with unity power factor, and then active front end topologies and direct power 

conversion scheme will come into real existence, but as of now traditional drive 

with uncontrolled rectifier is in big demand. 

Many applications do not require bidirectional power flow or four quadrant 

operation of VSD. In such cases, Vienna rectifier or three-level PWM rectifier 

with no dc link capacitor (Sparse Matrix converter) can be useful topology. 

Many times VSD does not operate at full load condition, in such cases these 

topologies provides efficient performances of power processing unit.  

In motor integrated VSD, care need to be taken in selection of power converter 

and machine both and one need to optimize both for specific application. Inte-

gration of passive elements is possible in stator core of machine and value of 

passive components can be optimized. Diode bridge based front end converter 

is elected for the motor integrated VSDs for having lower losses, performance of 

this front end converter is analyzed in next chapter and much needed modifica-

tions to improve the grid side performance has also been studied. 
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Chapter 3. Three phase diode bridge rectifier: 

Operation and performance evaluation  

3.1 Background 

Three-phase standard rectifiers are widely used as front end converter in most 

of the industrial drives for variable speed applications as discussed in previous 

chapter. These drives equipped with standard rectifier suffer with low quality of 

input currents in terms of harmonic contents and poor power factor at the grid. 

High reliability and a low EMI/EMC solution as well as cost saving are the main 

advantages of these drives. High efficiency, small volume and low cost are 

nowadays basically the first three aspects mentioned when it comes to the 

development of any kind of power converter topology for power electronic 

application. Concerning the use of a power converter in a motor with integrated 

electronics, the first two mentioned aspects receive an even greater importance. 

 

Figure 29. Three phase electric drive with standard passive rectifier. 

A typical three phase electric drive is shown in Figure 29. It contains standard 

diode-bridge six-pulse rectifier (DB), an intermediate DC-link filter and a volt-
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age source inverter (VSI). Main purpose of having intermediate DC-link capaci-

tor is to support high frequency current ripple originating from the switching of 

VSI and also to have reasonable stable voltage in front of the VSI. DC-link filter 

comprises one inductor and one electrolytic capacitor. Weight and volume of 

such filter is roughly 10% of total drive [10]. 

These electric drives have very poor performance on the mains side. With 

change in load their current qualities drawn from the grid become worse. Power 

factor and total harmonic distortions on the mains side is a major concerns for 

these electric drives.  

3.2 Operation of a three phase standard diode rectifier 

Three phase diode bridge rectifier is most commonly used front end topology of 

many industrial drives. There are different type of loads are connected at the 

intermediate dc-link of these industrial drives either directly or indirectly 

through a voltage source inverter. Some of the common types of loads are 

discussed in this chapter later on. 
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Figure 30. A mains connected three phase diode bridge rectifier. 

Circuit schematic of a mains connected three phase diode bridge rectifier is 

shown in Figure 30. This figure shows a three-phase model of the mains, the 

diode rectifier, and the dc link. The mains resistance and inductance are denoted 
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by rg and Lg, respectively, and the dc-link inductance and capacitance are LDC 

and Co, respectively. The phase-to-neutral mains voltages are van, vbn, and vcn, 

having the angular frequency w. The current at the output of the rectifier is iL, 

while the current and voltage at the output are io and vo, respectively. 

The circuit model of three-phase rectifier is approximated by an extremely 

simplified model of an equivalent circuit as shown in Figure 31. In order to 

prepare this simplified linear model, two legs diode bridge is considered as out 

of three phases only two phases conducts at a given time if commutation is 

neglected, and output voltage of the diode bridge rectifier is represented by a 

voltage source which is combination of a dc and an ac voltage. Grid inductance 

is transferred to DC side. Total impedance of the conduction path is represented 

by equivalent impedance Zeq. Load connected to the intermediate dc bus is 

represented by a current source. Simplification and parameter details are dis-

cussed in modelling section of Chapter 5 in detail. 
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Figure 31. Equivalent circuit of three phase diode bridge rectifier. 

The source voltage vg is constructed from a function which gives maximum of 

absolute value of three phase line to line voltages i.e. six-pulse voltage of the 

diode bridge and having frequency of six times of the mains frequency. The 

ideal rectified voltage vg is given by the following expression: 

),,min(),,max( cnbnancnbnang vvvvvvv            3-1 

In the equivalent circuit of the three phase diode bridge rectifier as shown in 

Figure 31., re and Le are equivalent resistance and inductance of the current 
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conduction path respectively. The differential equation of the simplified linear 

model can be written as: 
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Assuming the output power is Po and then expression of output current io in 

terms of output voltage and power can be written as: 
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In above expression ov~ is the deviation of dc link voltage from its mean value ov . 

For a small ov~ approximation in the form of a first-order MacLaurin series 

expansion will hold [44]. 

Substituting expression of output current io in eq. (3-2), the following character-

istic polynomial in the Laplace variable (s) can be obtained: 
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For stable operation of this circuit all the coefficient of the above expression 

should be positive and therefore two necessary conditions derived from the 

above expression are as follow: 
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The equivalent resistance of the conduction path is normally very small. There-

fore second condition is normally true as output power is much lower than 
e

o
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whereas first condition is met by careful design of filter components. For a small 

value of the equivalent resistance re of the circuit, characteristic equation (3-4) 

can also be written as: 
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From the above differential equation undamped natural frequency and the 

damping ratio of the dc link are given by: 
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From the eq. (3-8), it is clear that damping ratio depends on several factors 

including the load power. Steady state and transient performance is influenced 

heavily from these factors and in next section evaluation of power factor and 

total harmonic distortions at grid side is given.  

3.3 Performance evaluation of a three phase diode 

rectifier 

Grid side performance of a three phase diode bridge rectifier is evaluated by 

total harmonic distortions of grid current and power factor at the grid. These are 

the two main important factors.  

Power factor is calculated by ratio of the rectifier input power (power contribu-

tion from fundamental component) and rectifier apparent power (Power from 

rms).  Power factor can also be obtained by ratio of rms value of fundamental 

component and rms value of input phase current. 
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The THDs of input current is defined as the root mean square (RMS) value of 

the total harmonics of the input current, divided by the RMS value of its funda-

mental component of the input phase current [62]. Expression of the THDs of 

the input phase current is defined as: 

F
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I
THD                3-10 

Where 2

1

22

rmsrmshH IIII    

Ih = RMS value of the harmonic h 

IF = RMS value of the fundamental current. 

Grid side performance of a VSD is judged by the quality of currents it draws 

from the grid and how it behaves towards the disturbances on the grid. It is very 

important to see what happens to the mains current during steady state and 

transient operation of the drive at different operating points. In order to im-

prove performance on the grid side of these drives, it is necessary to see how 

this standard rectifier performs in different situations and loading patterns. As 

we have seen equivalent inductance Le and output capacitor Co are two main 

components in this circuit, and therefore an analysis of power factor and THDs 

by varying one of these two components while keeping another one to fix value 

for three different type of load situation is carried out. Three different load 

patterns are resistive load, constant current type and constant power type load 

connected to the output of the rectifier. Average load power is fixed to 4 kW as 

only low to medium power drives have been studied in this thesis.  

Resistive load of 73 Ω and constant current load of 7.4A is considered in the 

simulation study. Line resistance (rg) and line inductance (Lg) have been as-

sumed to be resistance of 0.01 Ω and inductance of 1 mH. Fixed value of 1 mH of 

the DC side inductor LDC has been used in the simulation. Winding resistance of 
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DC side inductor is not considered in this simulation. Output capacitance is 

varied from 10 µF to 10 mF and power factor and total harmonic disturbances 

are compared at different output capacitor values for three different types of 

load. Power factor at the grid and THDs of input current for different types of 

load connected to output of the rectifier with the variation in output capacitor 

connected to the diode bridge rectifier are given in Table 1.  

Table 1. Power factor and THDi for different types of load connected to the output of the rectifier 

with variation in the output capacitor. 

 Resistive load 

 

Constant current 

Type load 

Constant power 

Type load  

PF THDi PF THDi PF THDi 

10 µF 0.949 33.03 0.898 48.83 0.678 108.38 

20 µF 0.908 45.97 0.882 53.37 0.697 102.91 

50 µF 0.8039 73.97 0.789 78.17 0.638 120.78 

100 µF 0.7293 93.81 0.721 96.01 0.715 97.79 

1 mF 0.8145 71.21 0.816 70.77 0.818 70.297 

10 mF 0.8328 66.46 0.8344 66.05 0.8361 65.603 

 

Power factor and total harmonic disturbances are also shown in Figure 32., at 

different output capacitor values of the three phase diode bridge rectifier for all 

the three different type of load. 

When the output capacitor value is large enough to filter the low frequency 

components, all the three different type of load behave pretty much in a similar 

way. The power factor is close to 0.83 and THDs level is 65% when a high value 

of output capacitor is used. To achieve this level of performance the size of filter 

components is significantly large. Almost similar behaviour is observed when 

DC side inductance value varied while keeping output capacitance to a fix value 

of 10 µF. 
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Figure 32. Power factor and THDs for different types of load. 

In order to improve performance of the front end converter of a VSD, it is neces-

sary to increase the power factor and bring down the THDs level to a 

comfortable range. If the load current can be modified in such a way that some 

of the harmonic content can go to load without affecting the average power 

flowing to the load, then it is possible to improve performance of the front end 

converter. 
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Figure 33. Three phase rectifier without the DC side inductor and operating with the load current 

modification to achieve stable output voltage. 

Circuit schematic is shown in Figure 33. When the load current is modified in 

such a way that high frequency ripples are allowed to pass to the load through 

active control, output power contains some high frequency oscillations, which 
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reflects in output voltage if an inverter is connected at the output of the rectifier. 

This modification in load current is possible when an active power converter is 

connected to rectifier as load. In low performance type VSDs, there have been 

some circuit topologies called as slim dc-link drive. In these drives the DC link 

filter is completely removed and the electrolytic capacitor is exchanged with 

MKP type film capacitor of a relatively smaller value.  

Power factor improves significantly and THDi levels also falls within the com-

fortable limit in slim dc-link type drive. Power factor and total harmonic 

disturbances for different values of the line side inductor with constant power 

load with load current modification are given in Table 2.  

Table 2. Power factor and THDi of a three phase rectifier for constant average power load with the 

load current modification to achieve stable output voltage. 

 Power 

factor 

THDi 

100 µH 0.86 60.4 

200 µH 0.95 32.5 

500 µH 0.95 32.0 

1 mH 0.93 38.4 

1.5 mH 0.93 38.9 

 

When line side inductor is 100 µH, power factor is low and THDi is not good, 

but as this inductance value increase significant improvement is observed. 

Earlier when line side inductance reaches close to 3 mH, output voltage was 

becoming unstable and a very high current flow from the mains.  

A comparison is done for the output voltage without and with load current 

modification and is shown in Figure 34. This is the worst case and line side 

inductor was 1.5 mH. Peak to peak ripple was almost 500V and by employing 

active balancing of DC voltage this ripple value comes to comfortable level of 

Parameters 

Line side 

inductor 
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150V. This voltage ripple is still very high and put extra stress on the power 

semiconductor connected to the intermediate dc-link of the VSD.  

 

Figure 34. Comparison of the output voltage with and without modification in load current at line 

inductance of 1.5 mH. 

Similar comparison was done for the mains current of phase ‘a’. The current 

waveforms from both the situations are shown in Figure 35. Earlier peak value 

of the phase current was touching 23A, and with load current modification the 

peak value of phase current is now less than 11A. 

 

Figure 35. Comparison of input current with load current modification and without its modification 

at line inductance of 1.5 mH. 

The peak current reduced significantly and it can also be seen earlier THD level 

was very high of 105%, after employing active balancing THD level falls to 35%. 
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This type of active control of load current, output power now contains high 

frequency ripple. Output power and its harmonics are shown in Figure 36. 

These harmonics are 6n times of the fundamental frequency. It will increase the 

losses in the loads associated to these frequencies. If an electrical machine is 

connected through an inverter, these high frequency will result high loses in the 

machine windings and poor shaft performance. Winding currents electrical 

machine will be having harmonics of 6n±1 times of the fundamental frequency. 

The low performance applications, this active stabilization of intermediate DC 

bus voltage scheme may be suitable and might work with limited variation in 

grid condition, but for high performance applications it is not a good idea. By 

doing this it is changing the location of the harmonic by moving high frequency 

components from input side to the load, and compromising load side perfor-

mance. 
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Figure 36. Output power and its harmonic spectrum when load current is modified to reduce the 

output voltage ripple. 

In order to get a better solution without disturbing the load performance, it is 

necessary to find a solution to reduce the distortions in mains current. If one 

variable (controlled) ac voltage source can be added in between diode-bridge 
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and output capacitor in such a way that output capacitor takes only the dc 

component of the rectified voltage and the added variable ac voltage source 

provides equal and opposite of the ac ripples in the rectified voltage. By doing 

so, it is possible to control output voltage to a DC value and to make output 

current of the diode bridge to constant value equal to dc value of load current. 

Circuit schematic of the three phase rectifier with such a controlled variable ac 

voltage source added at the output of the diode bridge rectifier in series with 

output capacitor and the load is shown in Figure 37.  
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Figure 37. Circuit schematic of a controlled ac voltage source added at the output of the diode 

bridge rectifier. 

Realization of such a controlled variable ac voltage source with a combination of 

active and passive elements is possible. Details analysis of such type of con-

trolled variable ac voltage source is given in next chapter. This type of voltage 

compensation for three phase rectifier works very well for all the three different 

type of loads. Mains current with two different line inductances for all the three 

different types of load are shown in Figure 38. In this figure two extreme values 

of line side inductors are used to see the behaviour of this circuit in all three 

different types of load. In all the situation mains current behaves in a similar 

way and remain perfectly rectangular. With such a variable voltage source all 

the disturbances either from input side or from the output side will not affect the 

performance of the rectifier. 
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Figure 38. Input phase ‘a’ current for three different type of load at two different line side induct-

ance. 

With this arrangement current coming out from the diode bridge can be con-

trolled to a dc value, it will make circuit to behave as diode bridge connected to 

a DC current type load. Phase current in such a theoretical case as shown in 

Figure 39., where the output current of the three phase diode bridge can be 

estimated as clean DC current, the harmonic current frequencies of a 6-pulse 

three phase rectifier are 6n±1 times the fundamental frequency. 

The line current is then rectangular in shape with 120° blocks. The order num-

bers h are calculated from the formula below: 

 )sin()sin()( 1 thItIti hl             3-11 

Where 
h

I
I k

h
1)1( ; and 16  kh  &  ,...3,2,1k  

The Total Harmonic Distortion block (in simulation package) calculates the total 

harmonic distortion (THD) of a periodic distorted signal.  
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Figure 39. Waveform and harmonic content in a theoretical rectangular current of a 

6-pulse standard rectifier. 

3.4 Summary and conclusion 

The three phase electric drives are used in variable speed drive application. 

Efficiency and quality of the currents drawn from the grid are two major issues 

with these variable speed drives. The diode bridge based rectifier fed drives are 

usually chosen for variable speed drive application as they can offer very high 

efficiency and comply with standards with the help of filter.  

Different types of loads have different impact on the performance of the front 

end converter connected to the grid. With the help of the standard rectifier it can 

be very difficult to operate three phase rectifier with high performance for wide 

range of load and with large variation in the grid side. In order to improve the 
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performance of these types of drives, some modification in the form of active 

filter is necessary while maintaining good performance at the load side as well. 

It is possible to achieve continuous conduction of the current which is coming 

out from the rectifier and also to control it to a dc value by adding one con-

trolled ac voltage source in between diode bridge and output capacitor. It will 

also allow controlling the output voltage to a dc value and reducing or eliminat-

ing ripples. This controlled ac voltage source may pave the way to use reduced 

size of passive components. 
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Chapter 4. Electronic smoothing inductor 

based three-phase rectifier 

4.1 Background 

Filter inductors are commonly used to reduce total harmonic distortions (THDs) 

level of input current as discussed in detail in the previous chapter. Weight and 

volume of filter inductor has to come down drastically to make suitable power 

converter for motor integrated variable speed drive. Introduction of active 

power electronic switches can ensure very high performance of such inductor 

with very small size. Such an arrangement is usually referred as “Electronic 

Smoothing” techniques. 

In previous chapter addition of a variable voltage source in between the output 

of the diode bridge and intermediate capacitor as a series arrangement was 

proposed. This variable voltage source is termed as electronic smoothing induc-

tor (ESI). The ESI can be compared to a passive smoothing inductor which is 

having infinite inductance to smooth current coming out of the rectifier. If losses 

of the ESI are neglected, then it behaves like a pure energy storage element. The 

ESI realizes the energy storage characteristic required for smoothing by the dc-

link capacitor of the ESI. Electrolytic capacitors, however, being usually applied 

for this reason show a very high specific energy storage density as compared to 

the magnetic energy storage capability of coils of dc inductor. 

The basic approach of the ESI based converter is the functional replacement of 

the passive smoothing inductor by a small power electronic unit whose output 

voltage in the steady state compensates the voltage ripple of the diode bridge 

and guarantees a well damped dynamic behaviour by proper control. 



 

     80 

4.2 Circuit topology of the electronic smoothing inductor 

based rectifier 

The basic circuit configuration of the ESI connected to the diode bridge output is 

shown in Figure 40. ESI consists of an inductor (LDC), two MOSFETs (T1 and T2) 

two diodes (D1 and D2), and a DC-link capacitor (C). The inductor current iL is 

controlled to a constant value by operating T1 and T2 with a variable duty cycle. 

The ESI behaves similar to an inductor that has controlled variable impedance. 

The ESI voltage is the difference between the rectified input voltage and the 

output voltage. The ESI realizes the energy storage characteristics required for 

smoothing by the intermediate dc-link capacitor of the ESI.  

Electrolytic capacitors, however, being usually applied for this reason show a 

very high specific energy storage density as compared to the magnetic energy 

storage capability of coils of the dc inductor. Losses because of high frequency 

current ripple flowing in these capacitors produce heat and increase the temper-

ature. Life of electrolytic capacitor reduces when continuously operated at an 

elevated temperature. 
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Figure 40. Circuit topology of the ESI based three phase rectifier. 

The ESI is able to control a diode bridge output current to a dc value and makes 

it possible to reduce not only the mains current harmonics but also the output 

voltage ripple. Ripple reduction in the inductor current and output voltage offer 

the size reduction of dc-link filter. The ESI helps to reduce size of passive com-
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ponents significantly by employing active components and one extra capacitor 

which is rated for low voltage. Size reduction of the passive components is 

necessary to achieve high power density while maintaining good quality of the 

input currents at the mains.  

The power circuit of the ESI has to be designed only for the voltage ripple of the 

diode rectifier and not with respect to the total dc output voltage. Therefore, the 

power circuit of the ESI for practical realizations typically shows a rated power 

of only 10% to 15% of the output power of the drive [7]. The higher conduction 

losses introduced by the bridge are offset by the improved diode rectifier per-

formance, the low voltage devices used in the bridge, and the use of smaller L-C 

filter components. Although switching frequency of the ESI H-bridge is high (70 

kHz), yet the switching losses of the ESI converter remains very low as the 

switching voltage is relatively low and energy loss associated with each switch-

ing is very small. 

It is also possible to utilize the same controller for the ESI converter which is 

already placed for drive control with slight modifications. High power density 

of the power converter enables integration of the power converter with electrical 

machines and makes a perfect case for motor integrated variable speed drives 

(VSDs). These motor integrated VSDs are suitable for several industrial applica-

tions like pumps, compressors, ventilators etc. 

4.3 Different voltage levels of the ESI based three-phase 

rectifier 

It is important to find a simplified model of the ESI based rectifier to understand 

different voltage levels and modes of operation. An ideal situation is considered 

to understand the output voltage of a three phase diode bridge rectifier. These 

three phase voltages connected to diode bridge rectifier are shown in Figure 41. 

A constant current source is connected at the output of the rectifier as with ESI it 
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is possible to control output current to a dc value, which is equal to the average 

value of the load current. 
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Figure 41. Three phase standard rectifier connected to a constant current output. 

If 𝑣̂𝑖 is the amplitude of the input phase voltage and 𝜔 is angular frequency of 

the grid voltage, then three input phase voltages of the grid can be written as 

follows: 
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In Figure 41., A and B are representing positive and negative rail respectively 

and VA and VB are representing voltage of positive and negative rail with re-

spect to neutral point of the grid respectively. Waveforms of these two voltages 

are shown in Figure 42. The normal operation of the diodes in the diode bridge 

in continuous conduction results in a positive output terminal voltage equal to 

the maximum of the all three phase voltages. 
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Figure 42. Voltage waveforms of positive and negative rails of an ideal three phase diode bridge 

rectifier. 

Similarly the operation of the diodes in the diode bridge in continuous conduc-

tion results in a negative output terminal voltage equal to the minimum of the 

all three phase voltages. 
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Both Fourier series expansions contain spectral components at multiples of 

tripled line frequency, i.e., at triples of the line frequency. The corresponding 

spectral components of VA and VB at odd triples of the line frequency at 3(2k 

−1)ω , where k ∈N , are the same, having the same amplitudes and the same 

phases. On the other hand, the corresponding spectral components at even 

triples of the line frequency, at 6kω, have the same amplitudes, but opposite 

phases. The rectified output voltage is nothing but the difference of the positive 

and negative rail voltages and it is shown in Figure 43. 
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Figure 43. Voltage waveform of output voltage of an ideal three phase diode bridge rectifier. 

 With the help of eq. (4-2) and eq. (4-3), the diode bridge output voltage vg can be 

expressed in Fourier series given by the following expression: 
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The rectified output voltage of the three phase diode-bridge rectifier vg can also 

be expressed by a simplified expression as: 
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This ideal rectified voltage vg, is shown in shown in Figure 44. It is periodic 

waveform with a frequency six times of the mains frequency. The rectified 

output voltage of the three phase diode-bridge rectifier vg, is a combination of a 

dc and many ac voltages. 

The dc value of the output capacitor voltage 𝑣̅𝑜 is expressed in (4-6).       

io vv ˆ
33


               4-6 

Different voltages of the ESI based three phase rectifier are shown in Figure 44.  

The ESI voltage is the difference between the rectified input voltage and the 

output capacitor voltage. The ESI voltage ve, is expressed in (4-7). 
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The ESI voltage ve is a periodic function in nature and is given by (4-7) and also 

shown in Figure 44. The ESI voltage ve is purely ac in nature and has zero aver-

age value over one period of the waveform. The ESI voltage varies in the range 

given by the following expression in (4-8). 
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Figure 44. Different voltage levels of the ESI based three phase rectifier. 

A low voltage rated (150V) dc-link capacitor C is connected to positive and 

negative rails of the ESI asymmetrical H-bridge and its voltage vc is utilized to 

construct the desired ac voltage of the ESI with the control of power semicon-

ductors (MOSFETs) of the ESI asymmetrical H-bridge. The inductor current of 

the ESI H-bridge, 𝑖𝐿 is controlled to a dc value (average load current) by operat-

ing T1 and T2 with a variable duty cycle with the help of proper control. 
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4.4 Different modes of operation of the ESI based three 

phase rectifier 

As it is discussed earlier, The ESI consists of two MOSFETs (T1 and T2) two 

diodes (D1 and D2), as power semiconductors. It is important to understand flow 

of current in different switching states of the converter. 

During the turn-off period of both T1 and T2, the ESI capacitor C is charged and 

current flows through the diodes D1 and D2, and inductor current iL decreases. 

On the other hand, C is discharged and iL increases when both transistors are 

turned on.  

(b) When T1 on and T2 off  

(d) When T1 off and T2 on  (c) When T1 and T2 on  

(a) When T1 and T2 off  
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Figure 45. Different modes of operations of the ESI based three-phase rectifier. 

In the time period when only one of T1 and T2 is turned on, iL does not flow 

through the ESI capacitor C. In this mode of operation, the inductor current iL 

goes through the active switch which is in ON position and diode of other leg of 
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the ESI H-bridge and the ESI capacitor C is bypassed. The inductor current iL 

will increase if the output voltage of the diode bridge vg is higher than the 

output capacitor voltage vo, whereas it decreases if vg is lower than vo. The three- 

level operation can be achieved by shift in gate pulses by half of the time period 

of the switching frequency. Effective switching frequency through the inductor 

will be doubled if three level operation of asymmetrical H-bridge is utilized. 

Conduction path of the current in the ESI for different switching states is shown 

by red line in Figure 45. 

4.5 Summary and conclusion 

Diode bridge based rectifier fed drives are natural choice as they can offer very 

high efficiency and comply with current standards with the help of a hybrid 

filter such as electronic inductor based filter. To achieve high power density, this 

modification should involve power electronics and passive component which 

are rated for low voltage and losses involve in this system should also be low. 

By taking these things into account, Electronic smoothing inductor based drives 

appears to be a better choice.  

The ESI based converter is easy to integrate in the existing power circuit of a 

VSD and does not demand too many changes either in power circuit or in 

control. Volume and weight of these drive with ESI is smaller and it is very 

much suitable for integration with electrical motor.  
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Chapter 5. Modelling of the ESI based three-

phase rectifier 

5.1 Background 

Modeling of a power converter is one of the necessary steps to analyze transient 

and steady state behaviour of an electrical and electronic circuit. Modeling of a 

circuit is the representation of physical phenomena by mathematical means 

through simplified equations and transfer functions. In engineering, it is desired 

to model the important dominant behaviour of a system, while neglecting other 

insignificant phenomena to build a simplified linear model.  Modeling process 

involves use of approximations to neglect small but complicating phenomena, in 

an attempt to understand what is most important in the circuit behaviour. 

Approximate models are an important tool for gaining understanding and 

physical insight of the circuit topologies.  

Switching ripple in capacitor voltage and inductor current is small in a well-

designed converter operating in continuous conduction mode (CCM). Hence, 

one can ignore the switching ripple, and model only the underlying ac varia-

tions in the converter waveforms to create a linear model. For example, suppose 

that some ac variation is introduced into the converter duty cycle d(t), such that 

tDDtd mm cos)(                                   5-1 

Where D and Dm are constants and the modulation frequency wm is much small-

er than the converter switching frequency. The objective ac modelling efforts is 

to predict and analyse this low-frequency component.   

A simple method for deriving the small-signal model of CCM converters is 

explained in this chapter. The switching ripples in the inductor current and 
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capacitor voltage waveforms are removed by averaging over one switching 

period. Hence, the low-frequency components of the inductor current and 

capacitor voltage waveforms are modelled by means of mathematical equations. 

Average voltage of an inductor and average current flowing into a capacitor can 

be represented as given in the following equation: 
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Where 
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The averaged inductor voltage and capacitor current given in eqs. (5-2) are, in 

general, nonlinear functions of the signals in the converter, and hence these eqs. 

(5-2) constitutes a set of nonlinear differential equations. Indeed, the spectrum 

also contains harmonics of the modulation frequency wm. In most converters, 

these harmonics become significant in magnitude as the modulation frequency 

wm approaches the switching frequency ws or as the modulation amplitude Dm 

approaches the quiescent duty cycle D.  

Nonlinear elements are not uncommon in power electronic converters; indeed, 

all semiconductor devices do have nonlinear behavior. To obtain a linear model 

that is easier to analyze, it is advisable to construct a small-signal model that has 

been linearized about a quiescent operating point, in which the harmonics of the 

modulation or excitation frequency are neglected. So by employing the basic 

approximation of removing the high-frequency switching ripple by averaging 

over one switching period will help to create linear model. Yet the average value 

is allowed to vary from one switching period to the next, such that low-

frequency variations are modelled. 
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One should note that the principles of inductor volt-second balance and capaci-

tor charge balance predict that the right-hand sides of Eqs. (5-2) are zero when 

the converter operates in steady state. Equations (5-2) describe how the inductor 

currents and capacitor voltages change when nonzero average inductor voltage 

and capacitor current are applied over a switching period during the transient 

operation of the power converter. 

5.2 Modeling approach of the ESI based rectifier 

The basic circuit configuration of the ESI connected to output of the three phase 

diode bridge output is shown in Figure 46. In this circuit, three phase diode 

bridge is represented by a block. It contains three lags where each lag has two 

diodes connected one after another forming a bridge; joint of the diodes is 

connected to the phase of a grid. These diodes are naturally line commuted. This 

circuit also has the ESI circuit plugged into the rectifier. In order to analyze 

circuit behaviour, it is necessary to find simplified equivalent circuit model of 

the ESI based rectifier. 
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Figure 46. Circuit topology of the ESI based three phase rectifier. 

In order to develop equivalent circuit of the ESI based three phase rectifier, it is 

necessary to separate ESI H-bridge from standard three phase diode bridge 

rectifier for a while, later it will be plugged into the circuit once simplified linear 

equivalent circuit for rectifier is developed. For simplicity resistive load con-

nected to the rectifier is considered here. 
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Circuit simplification of a standard three phase diode bridge rectifier is shown 

in Figure 47. This circuit has three phase AC voltages with its line impedance on 

left side of three phase diode bridge and load with DC filter on right side. 
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Figure 47. Simplification of circuit of a three phase diode bridge rectifier. 
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5.2.1 Non-linear circuit model of standard three phase rectifier 

For simplifying the non-linear circuit model, impedance of two lines from mains 

side has been shifted to DC side.  

gDCe

gLe

LLL

rrr

*2

*2




                                        5-4 

The winding resistance of this inductor is rL. The front end of the three phase 

rectifier is connected to a three phase grid. The value of line resistance (rg) and 

line inductance (Lg) per phase is assumed to be 0.01 Ω and 1 mH respectively. 

This simplified circuit model holds true in case of continuous conduction and 

does not take care of commutation of diodes. There is difference in steady state 

output voltage in this model as compare to practical three phase diode bridge 

rectifier as it involves commutation of diodes, to accommodate this effect, eq. (5-

4) can be modified to the following equation. 
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The last term in the expression of equivalent resistance re, related to non-ohmic 

voltage drop due to natural commutation in the diodes of the front end rectifier. 

Effect of any change in input voltage on output voltage of the two circuit sche-

matic is same in steady state as well as in transient state in both the circuit. This 

circuit can be further simplified to last circuit as shown in Figure 47.  

Input to output transfer function of simplified linear circuit can be written as: 
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In order to prepare simplified non-linear model, two legs diode bridge are 

considered as out of three phases only two phases conducts at a given time if 

commutation is neglected. Grid inductance is transferred to DC side. Source 

voltage is constructed from a function which gives maximum of absolute value 
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of three phase line to line voltages i.e. six-pulse voltage which is given in equa-

tion (4-4) in previous chapter. Circuit representation of equation (5-6) is given in 

Figure 48. This is a linear circuit in which all the linear passive circuit elements 

are represented with the help of PLECS (circuit simulator). An equivalent volt-

age source vg is also applied to this circuit model. In this circuit an equivalent 

voltage source vg is used which represents the six-pulse voltage of three-phase 

ideal diode bridge rectifier.  

 

Figure 48. Linear circuit model in PLECS with all linear components from PLECS library. 

 

Figure 49. Response of linear circuit in PLECS and transfer function of output to input linear 

mathematical model. 
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Response of Output voltage from PLECS linear circuit is compared with the 

response of transfer function of Mathematical model of equivalent circuit of the 

standard three phase diode bridge rectifier is shown in Figure 49. 

In both situation, response matches exactly at large disturbance of 0.95 times of 

the full input at time t=0, and small disturbance at t=0.05 from 0.95 time to full 

input voltage. It is on expected line as circuit model is constructed from all linear 

elements of the component library of the PLECS package. 

 

Figure 50. Simplified non-linear model with diodes and impedances of conduction path are connect-

ed on DC side. 

In order to verify the steady state and transient behaviour of this circuit, an 

equivalent non-linear circuit is prepared in PLECS and it as shown in Figure 50.  

This is a linear circuit in which all the passive circuit elements are represented 

with the help of PLECS (circuit simulator). An equivalent voltage source vg is 

also applied to this circuit model. This nonlinear circuit is shown in Figure 50. In 

this circuit line inductance is moved to DC side from mains. Source voltage vg is 

equivalent voltage of six-pulse rectified voltage.  

It is one step further to include non-linear model of diodes and to observe the 

behaviour of the linear and the non-linear circuit models in the direction to 

achieve a better model. Comparison of response of output voltage in PLECS 

linear model and non-linear model is shown in Figure 51. In the beginning at 

time t=0, a large step is provided similar to previous case, response of two 

circuit model is different in transient but same in steady state. Diode current 
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goes into discontinuous, and because of inherent property of diode current can 

flow only in one direction, for large step transient response is not matching. But 

at time t=0.5 sec., a small step of 0.05 times is given (changed from 0.95 time to 

full input voltage), Both transient and steady state response matches exactly as 

non-linear characteristic of diodes does not play any role because diode current 

remain continuous. 

 

Figure 51. Comparison of response of output voltage from linear model and non-linear circuit model 

in PLECS. 

So far all the inductances of the conduction path are considered on the DC side 

of the circuit. As only two phases conducts at a given time in standard three 

phase diode bridge, if commutation time is not considered, therefore line im-

pedances of those two phases are moved to source side and non-linear circuit in 

PLECS is prepared. This non-linear circuit with commutation effect in PLECS is 

shown in Figure 52. Forward voltage drop of each diode is considered to be 

0.7V, which is a typical value. Response from two different non-linear circuits of 

Figure 50., and Figure 52., is shown in Figure 53.  
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Figure 52. Simplified non-linear model with diodes and line impedances of conduction path are 

connected on AC side. 

 

Figure 53. Comparison of response of output voltage from two different non-linear models with 

different position of line impedances. 

Response of output voltage in both the situations matches exactly, because 

conduction path in these two non-linear circuits remains same all the time. As 

earlier explained for large step, transient response is different from linear circuit 

but steady state response is still same, and for small step both transient and 

steady state response matches exactly to the linear circuit. Moving line imped-
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ance from DC side to AC side in this situation does not create any deviation in 

the response of output voltage. 

So Far, only two conducting phases are considered and comparison of linear 

circuit model with non-linear circuit model has been done. Now line side induc-

tors will be placed in its original positions i.e. in series with the phase voltages 

and effect of commutation of diodes will also be observed.  

In order to compare response of linear model and non-linear circuit behaviour of 

a three-phase diode bridge rectifier, circuit schematics of the linear and the non-

linear circuit are prepared. 

Non-linear circuit in PLECS is shown in Figure 54. This circuit contains three 

balanced voltages sources of a three-phase system, and line impedances con-

nected to standard three-phase diode bridge rectifier.  

 

Figure 54. Non-linear circuit model of standard three-phase diode bridge rectifier in PLECS. 

Response of the output voltage of the standard three-phase diode bridge rectifi-

er from linear and non-linear circuit model is compared in Figure 55. In this 

figure step response is presented, in the beginning at time t=0 sec, there is a big 

step of full input voltage is provided. It is observed that steady state and transi-

ent behaviour are slightly different in these two models. Reason for this small 

difference is diode commutation, in simplified model diode commutation doses 

not take place as conduction path never changes, but in case of standard three 

phase diode bridge rectifier, diode commutation takes place and has minor 

impact on its response which is visible in Figure 55. 
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Figure 55. Response comparison of actual non-linear circuit model (red) and simplified non-linear 

model (Green). 

 

Figure 56. Response comparison of actual non-linear circuit model (red) and mathematical model 

(green). 



 

     99 

Comparison of response of standard three phase diode bridge rectifier with 

output to input transfer function of the mathematical model based on the equiv-

alent circuit of the three phase diode bridge rectifier is shown in Figure 56. 

From Figure 56., It is clear that in steady state mathematical model shows good 

agreement with actual non-linear circuit model for the standard three phase 

rectifier. 

5.2.2 Non-linear circuit model of the ESI based three phase rectifier 

Asymmetrical H-bridge can be modelled as shown in Figure 57. Here DC-link 

capacitor voltage is assumed constant.  Voltage of asymmetrical H-bridge is 

represented by equivalent voltage source ve, given by following expression. 

))(21(*)( tdtvv ce                                    5-7 

A non-linear circuit of the ESI asymmetrical H-bridge is constructed and this 

non-linear circuit model of the ESI is plugged into three-phase diode bridge 

rectifier, the complete non-linear circuit model is derived as shown in Figure 58. 

This circuit receives gate signals from PWM generator block, which process the 

modulation signal.  

This non-linear circuit of the ESI based three-phase rectifier will be used to 

construct transfer functions and their verifications in next chapter. In order to 

find small signal ac model, an averaged circuit is required. 
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Figure 57. Simplification of asymmetrical H-bridge circuit of the ESI. 
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Figure 58. Non-linear circuit of ESI based three phase rectifier. 

5.3 The Basic AC Modelling Approach  

The analysis begins as usual, by determining the voltage and current waveforms 

of the inductor and capacitor. It is assumed that the converter is operating in 

continuous conduction mode; i. e. current in inductor is always flowing. 
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Figure 59. ESI converter circuit: (a) when both switches are ON, (b) when both switches are OFF. 
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When T1 and T2 are ON (position 1), simplified circuit is shown in Figure 59(a). 

Inductor voltage and current in ESI capacitor C is given by following equations: 

)()()()(
)(

)( tvtvtirtv
dt

tdi
Ltv ocleg

L
eL                          5-8 
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)( ti
dt
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c
c                             5-9 

We now make the small-ripple approximation. By replacing )(tvg , )(tiL  , )(tvc

( )cv t and ( )ov t with their low-frequency averaged values 
sTg tv  )( ,

sTL ti  )( ,

sTc tv  )(  and 
sTo tv  )( . Equations (4.8) and (4.9) then become 
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Hence, during the first subinterval, the inductor current iL(t) and the capacitor 

voltage vc(t) change with the essentially constant slopes given by Eqs. (5-10) and 

(5-11). When T1 and T2 are OFF (position 2), simplified circuit is shown in Figure 

59(b). Inductor voltage and current in ESI capacitor C is given by following 

equations: 
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Use of the small-ripple approximation, By replacing )(tvg , )(tiL  , )(tvc ( )cv t and

( )ov t with their low-frequency averaged values 
sTg tv  )( ,

sTL ti  )( ,
sTc tv  )(  

and 
sTo tv  )( . Equations (5-12) and (5-13) then become 

ssss ToTcTLeTg
L
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Ltv  )()()()(
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During the second subinterval, the inductor current and capacitor voltage 

change with the essentially constant slopes given by Eqs. (5-10) and (5-11).  

Circuit remain in position 1 for sdTttt  11

 

 

And circuit remain in position 2 for

 
ss TtdTt 1  

The low-frequency average of the inductor voltage is found by evaluation the 

inductor voltage during the first and second subintervals, are averaged: 
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This equation describes how the low-frequency components of the inductor 

current vary with time. 

In a similar way, averaging the capacitor current for the ESI capacitor C. 
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If we can define a modulation function ( )m t  in such a way that: 

)(21)( tdtm                                     5-18 

Average model for circuit can be constructed from these equations. Averaging 

the inductor voltage yields the following: 
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This is the basic averaged equation which describes dc and low-frequency ac 

variations in the capacitor voltage. Equivalent circuit representing by eq. (5-19) 
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and eq. (5-20) is analysed. A dc equivalent circuit is constructed by combining 

all the average circuit equations and it is shown in Figure 60. 
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Figure 60. Circuit equivalent to inductor loop equation. 

An equivalent circuit with the concept of ideal dc transformer for understanding 

the circuit operation for large signal is prepared and it is shown in Figure 61. 
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Figure 61. Equivalent circuit with ideal dc transformer.

 
5.3.1 Perturbation and Linearization 

In the perturbation and linearization step, it is assumed that an averaged voltage 

or current consists of a constant (dc) component and a small-signal ac variation 

around the dc component is added. In general, the linearization step amounts to 

taking the Taylor expansion of a nonlinear relation and retaining only the 

constant and linear terms.  

So far a nonlinear set of differential equations related to the ESI based rectifier is 

developed, and hence the next step is to perturb and linearize these differential 
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equations, to construct the converter small-signal ac equations which can be 

used to derive transfer function of the converter.  

It is assumed that average value of the converter input voltage 𝑣𝑔(𝑡) and the 

modulation function 𝑚(𝑡) can be expressed as quiescent values plus small ac 

variations, as follows:  

)(ˆ)(

)(ˆ)(
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tvVtv ggTg s
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                                              5-21 

In response to these inputs, and after all transients have decayed, the average 

converter waveforms can also be expressed as quiescent values plus small ac 

variations: 
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With these substitutions, the large-signal averaged inductor equation becomes 
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As usual, this equation contains three types of terms. The dc terms contain no 

time-varying quantities. The first-order ac terms are linear functions of the ac 

variations in the circuit, while the second-order ac terms are functions of the 

products of the ac variations.
 
Comparing DC terms, we get 
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Collecting first order linear terms, circuit equations become  
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From eq. (5-26) and eq. (5-27) an equivalent circuit in time domain is constructed 

and it is shown in Figure 62. 
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Figure 62. Equivalent circuit of ESI based rectifier in time domain. 

From time domain equivalent circuit, by converting quantities from time (t) 

domain to frequency (s=jw) domain, one will get equivalent circuit in frequency 

domain and it is shown in Figure 63. In the frequency based equivalent circuit 

model the ESI based three-phase rectifier contains two independent ac input: the 

control input )(ˆ sm  and, the line input )(ˆ svg , and the output capacitor voltage 

disturbance is )(ˆ svo .  
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Figure 63. Equivalent circuit of ESI based rectifier in frequency domain. 

5.4 Model parameters of the equivalent circuit 

5.4.1 Selection of input line impedance 

Input line impedance depends on various things such as distribution transform-

er connected in line or other equipment connected at point of common coupling 

(PCC). For verification of circuit behaviour it has been selected to 1 mH for each 

phase in this thesis for evaluation. Grid inductance varies from few hundreds of 
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µH to some mH, depending on no. of transformers connected in transmission 

and distribution system and their leakage inductances. 

5.4.2 Selection of output capacitor 

Output capacitor of 10 uF is constructed by putting two film capacitor of 5uF in 

parallel, these capacitors are rated to operate at 800V at 70 deg C and 700V at 80 

deg C. High frequency ripple current will flow in the output capacitor of the ESI 

based rectifier. RMS current rating of each capacitor is 5A at 10 kHz and ESR 

value is 7mΩ, So the effective rms current rating of output capacitor is 10A and 

ESR value is 3.5 mΩ.  

5.4.3 Selection of Inductor of ESI asymmetrical H-bridge 

The average value of duty cycle is 0.5 and therefore the current stress on the 

active switches and diodes is equal to half of the rated current and this is ex-

plained in detail in [7]. For an output power of 4kW, the dc inductor is chosen to 

be 40 µH, it is calculated on the basis of maximum allowed ripple current of 

20%. Effective ripple frequency will be twice of the switching frequency in case 

of phase shifted gate signals are applied to the active power semiconductors of 

the ESI asymmetrical H-bridge. By using phase-shifted gate signal a three level 

operation of the converter will be realized. Required inductance value of the ESI 

based converter is found by the following expression: 
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5.4.4 Selection of the ESI capacitor of asymmetrical H-bridge 

The ESI capacitor C stores the energy corresponding to the ac portion of the 

diode bridge output voltage and its voltage has a ripple corresponding to six 

time the frequency of the mains to perform good regulation on output voltage of 

the ESI based rectifier.  
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For two level operations when both the active switches are turned ON together 

and turned OFF together at the same time, rms value of the current through ESI 

capacitor is equal to the ESI inductor current, but this current is ac in nature as 

against the inductor current. For low voltage rated capacitor ESR value is rela-

tively higher and there will be significant losses in the ESI capacitor for two level 

operation of the ESI converter. The rms value of current through the ESI capaci-

tor is given by the following expression [54]: 
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For three level operation, rms value of the ESI capacitor current depends on the 

ratio of peak value of the diode rectified voltage and the ESI capacitor voltage.  

This expression of the rms value of the current flowing in the ESI capacitor can 

be simplified into the following:  
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v
II

ˆ
.186.0,                           5-30

  
 

The reference voltage for the ESI capacitor C is selected to 70V, which is higher 

than the lower limit of the ESI voltage ve. For 4 kW output power, rms value of 

the ESI capacitor is 3.91A. Current ripples depend on the PWM scheme used in 

control and it is discussed in detail in chapter 7.  

The output capacitor is selected to be 10 µF, and ESI capacitor is 200 µF. There is 

one film capacitor of 0.22 uF is connected in parallel to electrolytic capacitor for 

the high frequency ripple components of the current. Dissipation factor of a film 

capacitor is very small and in order of 10-3.  

In the selection of ESI capacitor C, one should note that it stores the energy 

which is because of ripple on output voltage of three phase diode-bridge. ESI 

capacitor C is rated to be 150V because it will hold low voltage of 70V. Peak to 

peak voltage ripple depends on the full load current as it will work as buffer to 

store the energy which has frequency six times of the mains frequency. This 
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peak to peak voltage should not be more than 20 V, otherwise in lower voltage 

of the ESI capacitor, it will not able to construct the required voltage difference 

for ESI bridge. 

5.5 Verification of the non-linear model of the ESI based 

three phase rectifier 

In order to analyze front end performance of this drive, three phase rectifier is 

operated to resistive load, schematic of this circuit is presented in Figure 64. 

Input side is fed through a three phase grid connected to rectifier by a three 

phase auto transformer. Line impedance of such arrangement is represented by 

series connected resistance of rg and inductance of Lg. Grid voltage is standard 

400V line to line at frequency of 50 Hz. One auto transformer is used to make 

variable grid voltage. Different circuit parameters used in the ESI based three 

phase rectifier are given in Table 3. 

Table 3. Circuit Parameters of the ESI based three phase rectifier. 

Equivalent resistance, re 0.34 Ω 

Equivalent inductance, Le 2.04 mH 

ESI Inductor, Ldc 40 µH 

ESI Capacitor, C 200 µF 

Output Capacitor, Co 10 µF 

Load Resistance, RLoad 71.5 Ω 

Switching frequency, Fsw 70 kHz 

ESI semiconductors ratings 200V/20A 

 

This lab setup was operated by different input voltage conditions (400V, 300V 

and 200V line to line rms voltages) with resistive load of 127 after bypassing 

the ESI bridge. Bypass arrangement was created with the help of an electronic 
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relay. Circuit schematic of the test arrangement of standard three phase diode 

bridge is shown in Figure 64. 
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Figure 64. Three phase rectifier operating with resistive load. 

Response of the output DC-link voltage is shown in Figure 65. The output DC-

link voltage vCo  has 300 Hz ripple in its waveform. Peak to peak ripple in output 

voltage is close to 15%. Similar circuit was simulated in MATLAB with the help 

of PLECS circuit simulator. Value of resistance of rg and inductance of Lg were 

selected as 0.1 and 1mH, obtained results of output voltage is presented in 

Figure 66. 

 

Figure 65. DC link voltage at different input voltage conditions from lab setup. 
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Figure 66. DC link voltage at different input conditions from non-linear PLECS simulation model. 

In simulation results along with 300Hz ripple there are high frequency ripples, 

which are corresponding to resonating frequency of output capacitor and input 

inductor. It should be noted that peak to peak ripple matches very closely in 

experimental result and simulated result.  

 

Figure 67. Verification of DC link voltage with higher damping. 

In order to get rid of high frequency ripple in output voltage, grid inductance is 

increased from 1mH to 8mH and grid resistance also increased from 0.1 to 0.8 
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to achieve better damping. In experimental setup one auto transformer was 

connected in between the grid and diode-bridge based rectifier. 

In this situation which is shown in Figure 67., although high frequency ripples 

are disappeared but peak to peak voltage ripple increased from 15% to 25%. 

Similar measurements and simulations have been performed on inductor cur-

rent in three different input conditions.  

Although Output voltage of lab setup contains only 300Hz ripple, but inductor 

current has very small and much damped high frequency ripples, it can be seen 

very clearly in Figure 68. 

When simulation results obtained from increased value of grid impedance peak 

to peak ripple in inductor current increased significantly and high frequency 

ripples were eliminated totally. Verification of the circuit model for the inductor 

current is shown in Figure 68.  

 

Figure 68. Verification of inductor current with higher damping in grid side. 

Response of the inductor current is very similar in non-linear simulation model 

and lab prototype. The non-linear simulation circuit model was operated at 

different input voltages and response of the output voltage is shown in Figure 

69. As compared to earlier response of Figure 67., now high frequency terms 
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from the output voltage are disappeared. Peak to peak voltage ripple is now 

increased 15% to 30%. Now simulation results matches to experimental results 

as obtained in Figure 65. 

 

Figure 69. DC-link voltage at different input conditions from PLECS simulation model with high 

damping. 

Response of the inductor current in this situation of different input voltages is 

shown in Figure 70.  

 

Figure 70. Inductor current at different input conditions from lab setup. 
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At lower voltage high frequency components in inductor current are not domi-

nating, but at high input voltage condition, they can be clearly seen. Response of 

the inductor current in non-linear simulation model without additional inductor 

is presented in Figure 71.  

 

Figure 71. Inductor current at different input conditions from PLECS simulation model without 

additional line side inductor. 

 

Figure 72. Inductor current at different input conditions from PLECS simulation model with 

additional line side inductors. 

This response is at lower damping and contains high frequency terms and to get 

rid of these terms one should increase damping. After improving damping by 
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introducing more resistance in grid impedance, improved response of the 

inductor current in non-linear PLECS circuit model is shown in Figure 72. 

In order to analyze behaviour of this circuit topology of the ESI based power 

converter, a lab prototype has been build and plugged in a commercially availa-

ble standard drive. When modulating signals, which used to generate gate 

pulses for MOSFETs of ESI are generated from a fixed frequency and magnitude 

level, similar response is observed from the power converter. 

In Figure 73, modulation signal was 25Hz sine wave with amplitude of 0.1. It 

can be seen clearly that ESI capacitor follows the similar behaviour in voltage. 

Similar signal is passed to simulation circuit and it was observed that although 

frequency of ESI capacitor voltage is same but its magnitude is not same, it can 

be seen in Figure 74. It is also seen that in Lab setup ESI capacitor voltage was 

with an offset. Ripple in ESI capacitor voltage seems to be same magnitude. In 

lab setup there is dead-band in gate pulses of two MOSFETs of the same leg of 

the ESI bridge, it may be a reason why voltage is with an offset. In lab setup four 

MOSFETs were placed in the circuit, although only the diodes of two MOSFETs 

were used in the operation of the circuit. 

 

Figure 73. DC-link voltage of output and ESI capacitor. 
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When frequency of modulating signal is increased from 25Hz to 50Hz peak to 

peak ripple in ESI capacitor voltage reduced. This effect can be seen in both 

experimental and simulated results which are presented in Figure 75., and 

Figure 76., for 50 Hz sinusoidal modulating signal used in experimental and 

simulation respectively. Response of the ESI capacitor voltage is mot matching 

each other. 

 

Figure 74. DC-link voltage of output and ESI capacitor in PLECS simulation. 

 

Figure 75. DC-link voltage of output and ESI capacitor. 
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If Dead-band compensation of the active switches is included in modulating 

signal than the inductor current waveform looks very similar to simulating 

result and it is shown in Figure 77.  

 

Figure 76. DC-link voltage of output and ESI capacitor in PLECS simulation. 

 

Figure 77. DC-link voltage of output capacitor and the ESI capacitor with dead-time compensation. 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

10

20

30

40

50

60

Time (sec.)

C
a

p
a

c
it
o

r 
v
o

lt
a

g
e

 (
V

o
lt
)

DC-link voltage of output and ESI capacitor

 

 

Output capacitor

ESI capacitor

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

10

20

30

40

50

60

70

Time (sec.)

C
a

p
a

c
it
o

r 
v
o

lt
a

g
e

 (
V

o
lt
)

DC-link voltage of output and ESI capacitor

 

 

Output capacitor

ESI capacitor



 

     117 

Modulating signal in lab setup was tested with an offset of 0.13. One should 

note here, now experimental results match with simulation very closely. It 

verifies the non-linear circuit model of the ESI converter in PLECS is closely 

representing the actual circuit.   

When extra inductance of 3mH is inserted at input side of rectifier then peak 

value of inductor current is increased and resonating frequency is decreased. 

The inductor current with and without an external inductance of 3mH in the 

individual phases of the mains is shown in Figure 78. With introduction of an 

additional inductances in the mains high frequency components of the inductor 

current are very well damped.  

 

Figure 78. Inductor current with and without external inductance of 3mH in mains. 

A three phase 400V line to line voltage source was used in non-linear simulation 

model and experimental test set-up. An external three phase inductor of 3mH 
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ance, as this impedance value is higher than the grid impedance. Experimental 

test results are stored in data format and reproduced with the help of MATLAB. 

 

Figure 79. Inductor current in simulation and lab setup with external inductance of 3mH in mains. 

 

Figure 80. Output voltage in simulation and lab setup with external inductance of 3mH in mains. 

In Figure 79. and Figure 80., both the inductor current and the output voltage 

are same in shape and magnitude in the simulation model and the experimental 

lab setup. Damping in experimental setup is slightly higher than the simulation 

results of both the output voltage and the inductor current. 
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Figure 81. Step load on uncontrolled three phase rectifier without ESI. 

A load step response of a three phase standard rectifier is shown in Figure 81. 

Step in load is performed from 4A to 12A at time instant t=0.05sec, and from 

12A to 2A at time instant t=0.075 sec in the simulation. The output voltage 

shows natural response of a second order system and it takes long time to come 

back in steady state.  
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5.6 Summary and conclusion 

Since most of the power electronics based switching converters are nonlinear 

systems, it is desirable to construct small-signal linearized models to have a 

better understanding of its behaviour. This task is accomplished by perturbing 

and linearizing the averaged model about a quiescent operating point. When the 

switches are the only time-varying elements in the power converter, then circuit 

averaging affects only the switch network of the converter.  

Based on different switching states of the ESI based rectifier, a small signal and a 

large signal equivalent circuit is prepared. This equivalent linear circuit model 

paves a way forward to find out different transfer functions of the ESI based 

three-phase rectifier stage of the drive and allows the design of control scheme. 

In next two chapters transfer functions and control will be presented, and then 

response of controlled circuit will be presented. 
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Chapter 6. Transfer functions of the ESI 

based rectifier 

6.1 Background 

An objective of this chapter is the construction of Bode plots of the important 

transfer functions of the ESI based three phase rectifier. A Bode plot is a plot of 

the magnitude and phase of a transfer function or other complex-valued quanti-

ty, vs. frequency. Magnitude in decibels, and phase in degrees, are plotted vs. 

frequency, using semilogarithmic axes.  

The magnitude plot is effectively a log-log plot, since the magnitude is ex-

pressed in decibels and the frequency axis is logarithmic. The Bode diagram of a 

transfer function containing several pole, zero, and gain terms, can be construct-

ed by simple addition. At any given frequency, the magnitude (in decibels) of 

the composite transfer function is equal to the sum of the decibel magnitudes of 

the individual terms. Likewise, at a given frequency the phase of the composite 

transfer function is equal to the sum of the phases of the individual terms. 

6.2 Reduced circuit model of the ESI based rectifier 

The small-signal equivalent circuit model of the converter from previous chapter 

is shown in Figure 62. Two equivalent circuits of ESI topology one with ideal dc 

transformer and another small signal ac average circuit model are shown in 

Figure 82. In the equivalent circuit m is modulation signal which is used to 

generate gate pulses for T1 and T2. If D is duty cycle of T1 and T2 then value of m 

will be 1-2D. This modulation index is similar to the full bridge inverter. Value 

of ESI capacitor C is much higher than the output capacitor Co, and in one 
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switching period ESI capacitor C is subjected to charging and discharging both, 

therefore its voltage 𝑣𝑐 is considered as constant and 𝑣̅𝑐, while deriving the 

transfer functions for the output voltage 𝑣𝑜  and the inductor current 𝑖𝐿. Control 

objective is to reduce the ripple of output capacitor voltage and to make the 

inductor current to a constant value which is equal to the load current. In Figure 

82(b), a linearized small signal equivalent circuit is presented. From the linear-

ized equivalent circuit transfer functions for the output voltage and the inductor 

current have been derived. 

 

Figure 82. Equivalent circuits of ESI based rectifier. 

Where M is input as modulation signal which is function of duty cycle for active 

switches T1 and T2. gv is equivalent voltage, re and Le are equivalent resistance 

and inductance. Small signal ac model of the ESI based three-phase rectifier is 
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shown in Figure 83. This is simplified linear circuit and will be used to find out 

different transfer functions. 

Le
ˆ ( )CV m sre

+

-
Co R

ˆ ( )gv s
ˆ ( )ov s

 

Figure 83. Small signal circuit representation of ESI. 

6.3 Derivation of converter open loop transfer functions 

Small signal ac model of the ESI based three-phase rectifier contains two inde-

pendent ac input variations: control input )(ˆ sm , and line input )(ˆ svg .  

The ac output voltage variations of the output capacitor voltage )(ˆ svo can be 

expressed as the superposition of terms arising from these two independent 

inputs: 

)(ˆ)()(ˆ)()(ˆ smsGsvsGsv vmgvgo                        6-1 

Hence, the transfer functions )(sGvg and )(sGvm can be defined as: 
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In above equation, )(sGvg is called input (line) to output voltage transfer function 

whereas )(sGvm is called control to output voltage transfer function. 



 

     124 

6.3.1 Input to output voltage transfer function 

The input to output transfer function )(sGvg is found by setting control input 

control input )(ˆ sm  variations to zero, and then solving the circuit for the transfer 

function from reduced circuit as shown in Figure 84. Transfer function )(sGvg is 

calculated by solving this simple circuit using standard circuit equations. 
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-
Co R

ˆ ( )gv s
ˆ ( )ov s

 

Figure 84. Manipulation of circuit to find input to output voltage transfer function. 
















RrRCrLsRCLs

R

sv

sv
sG

eoeeoesmg

o
vg

)()(ˆ

)(ˆ
)(

2

0)(ˆ

    6-4 

This transfer function describes how variations or disturbances in the applied 

input voltage )(ˆ svg lead to disturbances in the output voltage )(ˆ svo .  

It is important in design of an output voltage regulator to control the output 

capacitor voltage in the specified limits.  

Step response of )(sGvg is shown in Figure 85. In the beginning a large step of 

95% of the rectified dc voltage (540V) was given, then at t=0.05 sec, additional 

small step of 5% of the rectified dc voltage was provided to transfer function. 

Transfer function )(sGvg is second order function with double pole and its step 

response also confirms the same. 
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Time (sec.)

Step response comparison of linear model

 

Figure 85 Step response of input to output voltage transfer function (Gvg) with large and small step 

at two different time instance. 

6.3.2 Control to output voltage transfer function 

The control to output voltage transfer function )(sGvm is found by setting line 

input variations )(ˆ svg to zero, and then solving for the transfer function from 

reduced circuit as shown in Figure 86. 
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Figure 86. Manipulation of circuit to find control to output voltage transfer function. 
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This transfer function describes how control input )(ˆ sm variations influence the 

output voltage. In an output voltage regulator system, )(sGvm is a key compo-

nent of the loop gain and has a significant effect on regulator performance. 

Control to output voltage transfer function )(sGvm is similar to line to output 

transfer function )(sGvg in nature, although its gain is different. Response of 

control to output transfer function )(sGvm will be similar to line to output volt-

age transfer function in nature but in this case step will be very small as value of 

control parameter can vary from -1 to +1 only. 

Inductor current iL is another state variable, which need to be controlled in order 

to achieve rectangular current from mains. Now, transfer function of inductor 

current will be investigated. To find these transfer functions, variations of the 

inductor current, )(ˆ siL can be expressed as the superposition of terms arising 

from these two inputs: 

)(ˆ)()(ˆ)()(ˆ smsGsvsGsi imgigL         6-6 

Hence, the transfer functions )(sGig  and )(sGim can be defined as: 
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In above equation, )(sGig is called input to inductor current transfer function 

whereas )(sGim is called control to inductor current transfer function. 
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6.3.3 Input to inductor current transfer function 

The input-to-inductor current transfer function )(sGig is found by setting line 

input variations  to zero, and then solving for the transfer function from the 

manipulated circuit as shown in Figure 87. 
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Figure 87. Manipulation of circuit to find input to inductor current transfer function. 
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6.3.4 Control to inductor current transfer function 

The control-to-inductor current transfer function )(sGim is found by setting line 

input variations )(ˆ svg to zero, and then solving for the transfer function from 

reduced circuit as shown in Figure 88. 
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Figure 88. Manipulation of the equivalent circuit for control to inductor current transfer function. 
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The Linear mathematical model of the ESI based converter is constructed from 

different transfer functions and shown in Figure 89. 
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Figure 89. Block representation of open loop transfer functions. 

This model has two inputs, one from input(mains) and another from con-

trol(modulation index). This model contains different transfer functions derived 

earlier in this chapter. The load current io, is derived by from the linear relation-

ship of the output voltage and the load current. The current through the ESI 

capacitor C can be calculated by the equivalent circuit as it is multiplication of 

inductor current and the modulation function of the ESI. To get a linear func-

tion, the average value of the inductor current is assumed to be equal to the 

average load current Io. It is a fair assumption as there is no loss of energy in the 

output capacitor in ideal case. To calculate the voltage across the ESI capacitor, 

linear relationship of its voltage and current has been used. 

For simplicity, the load side disturbances and its effects have not been consid-

ered for designing the control, if it is needed to include them, those disturbances 

can be accommodated by adding these to the transfer functions. Load connected 

to output capacitor affects the steady state and transient behavior of circuit. 
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If disturbance of load side need to take care, then block diagram of circuit in 

open loop, will be modified as shown in Figure 90. This model has three inputs, 

one from mains, one from the control and other form the load side disturbances. 

In this model Gvo and Gio are the transfer functions for the load disturbances to 

the output voltage and the inductor current respectively. 
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Figure 90. Block representation of transfer functions after including the load side disturbances. 

6.4 Summary and conclusion 

In this chapter transfer functions of the ESI based three-phase rectifier are 

derived from the small signal ac circuit model. This small signal ac circuit model 

was constructed with the help of state space averaging technique. Based on 

these transfer function a linear mathematical model is constructed. This model 

will be useful to develop a control scheme in order to achieve control objective. 
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In next chapter control scheme of the ESI based three-phase rectifier will be 

discussed.  
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Chapter 7. Control of electronic smoothing 

inductor 

7.1 Background 

For the ESI based rectifier, voltage control has to be performed such that the 

output voltage 𝑣𝑜 is equal to the dc component of the diode bridge output 

voltage 𝑣𝑔, i.e., that the global average value of 𝑣𝑒 (with reference to the funda-

mental component) is controlled to zero. A two-stage control is applied where 

the duty-cycle of the switch is determined by an inner current control loop and 

the constant dc output voltage by a superimposed voltage control. 

In all switching converters, the output voltage is a function of the input line 

voltage the duty cycle, and the load current as well as the converter circuit 

element values. Stability is another important issue in feedback systems. Adding 

a feedback loop can cause an otherwise well-behaved circuit to exhibit oscilla-

tions, ringing and overshoot, and other undesirable behaviour. An in-depth 

treatment of stability is not considered in this thesis; however, the simple phase 

margin criterion for assessing stability is used here. When the phase margin of 

the loop gain is positive, then the feedback system is stable. Moreover, increas-

ing the phase margin causes the system transient response to be better behaved, 

with less overshoot and ringing. It is well known that adding a feedback loop 

can cause an otherwise stable system to become unstable [63-65]. Even though 

the transfer functions of the original converter, as well as of the loop gain T(s), 

contain no right half-plane poles, it is possible for the closed-loop transfer 

functions to contain right half-plane poles. The feedback loop then fails to 

regulate the system at the desired quiescent operating point, and oscillations are 
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usually observed. It is important to avoid this situation. And even when the 

feedback system is stable, it is possible for the transient response to exhibit 

undesirable ringing and overshoot. 

7.2 Control scheme  

Let’s now consider how to design a regulator system, to meet specifications or 

design goals regarding rejection of disturbances, transient response, and stabil-

ity. Two different control schemes have been discussed in this section. 

7.2.1 Two level Hysteresis control  

A calculation of the losses based on the relationships given in the previous 

section results for the switch-mode stage on total in less than 1% of the rectifier 

output power. Without any counter-measures these losses would have to be 

covered by an auxiliary power supply feeding the DC link voltage vc. However, 

by application of a proper control it is possible to cover the losses out of the 

power flow through the electronic smoothing stage. The hysteresis control is 

shown in Figure 91. The loss compensation value P, which is the gain for the 

current control, is adjustable in order to control the current shape of IL. A high P-

value produces a low six times mains frequency current ripple on the DC-link. 
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Figure 91. Two level hysteresis control. 

In this simulation, the current flowing to the ESI is limited to within ±5% by the 

hysteresis control. Therefore, the drawbacks of the hysteresis control are varia-

ble switching frequency, which brings difficulties in design and/or attenuate 

switching ripple. With this simple control no free-wheeling states are used 
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which results in a comparatively high switching frequency for a given width of 

the control error. In the case of the PWM control, frequency of current ripple is 

double the switching frequency. 

A drawback of the hysteresis control is variable switching frequency, which 

brings difficulties in design to attenuate switching ripple. With this simple 

control no free-wheeling states are used which results in a comparatively high 

switching frequency for a given width of the control error. In the case of the 

phase shifted PWM control scheme, the frequency of current ripple is twice of 

the switching frequency. However, the hysteresis control causes two-level 

operation because the power transistors T1 and T2 are driven by the same signal. 

Therefore, a higher switching frequency ripple and/or a higher switching 

frequency are present if compared to the PWM control. The essential drawback 

of the hysteresis current control as described before is the two-level switching 

characteristic. Therefore, the PWM control (3-level behavior) is advantageous 

and focused on in this thesis. 

7.2.2 Three level PWM control  

The basic control scheme including the DC-link voltage control and the active 

damping for reducing resonances is described in this section. The control block 

diagram is shown in Figure 92. 
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Figure 92. Three level control of the ESI based rectifier. 
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The ESI can be placed in the negative DC rail to allow measuring all the currents 

required for the control implementation by shunt resistors which are cheaper 

and of smaller volume compared to current transducers. The ESI input current 

IL is controlled to reach the output current IO by using a feed forward control. 

There, a low-pass filter LPF1 has to be employed for attenuating high frequency 

components present in the case of pulsating load current such as when the 

rectifier is supplying a PWM inverter or a DC-DC converter. To detect the 

average output current, several low pass filters are connected in series in LPF1 in 

order to achieve a sufficient attenuation of pulsating load currents as well as 

minimizing the detection delay time when the load is dynamically changed. In 

this case, two low- pass filters, each with a cut-off frequency of 5.3kHz, are 

employed, which has enough attenuation for a pulsing signal higher than 

10kHz. It is noted that the number of series connections of the low pass filter can 

be increased if a higher attenuation is required instead of impairing load dy-

namic response.  

The loss compensation value P, which is the gain for the current control, is 

adjustable in order to control the current shape of IL. A high P-value produces a 

low six times mains frequency current ripple on the DC-line. However the 

detected signal of IL has a ripple and the ripple is multiplied by the P-value. For 

the 5kW ESI, the control circuit P-value is set to 30 in order to keep the low 

ripple in the control signal line and to achieve sufficient current controllability. 

For attenuating the equivalent switching frequency ripple, a low pass filter LPF2 

should be employed in the main control loop. The cut-off frequency is selected 

around 400Hz, which should be higher than the sixfold the mains frequency 

(300Hz or 360Hz) and enough to reduce the equivalent switching frequency 

(100kHz) ripple to a sufficient level.  

For controlling the DC-link voltage vc, a PI-type controller is used and connected 

in parallel to the main control loop. This allows adjusting offset of control signal 

vm. If no loss is generated in the DC-link capacitor C, the offset should be zero. 
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However, an offset is needed to increase the charge current into C because the 

loss in C is not zero in practice.  

Resonant currents that normally occur at times of diode bridge commutations 

are detected by using a high-pass filter and are actively damped by feeding back 

into the main control loop. The high pass filter, HPF, is used to sense the reso-

nant currents and to block the low frequency components of the rectifier current 

such as the six fold mains frequency. The cut-off frequency is adjusted to 723Hz. 

Finally, the gate signals Tg1 and Tg2 are determined by intersecting the control 

signals and a triangle waveform. 

 

Figure 93. Comparison of a complete linear model of a non-linear circuit of the ESI based three 

phase rectifier. 



 

     136 

Due to the tighter voltage approximation and the doubling of the effective 

switching frequency the maximum current ripple is reduced to 1/4 as compared 

to two-level control. 

For two level control operation: 

sDC

c

fL

V
I

2
max                       7-1 

For three level control operation: 

sDC

c

fL

V
I

8
max                               7-2 

In Figure 93., approximated linear model of non-linear circuit is presented with 

the help of open loop transfer functions. 

 

Figure 94. Block representation with simple proportional control for the ESI based three phase 

rectifier. 
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This model is compared against a non-linear circuit simulation model construct-

ed in PLESC circuit simulator. Linear and non-linear models of three-phase 

rectifier are placed in the same simulation. It is easier to compare the response of 

both the models. Both the models show similarity in its behaviour. 

Open loop behaviour of linear and non-linear model has been verified in previ-

ous chapter. Integrity of linear model has been already stabilised by verifying its 

steady state and transient responses.  

In order to test controller performance for simple proportional control, the linear 

and non-linear models have been used are shown in Figure 94. Block representa-

tion of complete system is shown in Figure 94.  This system is derived from 

standard three phase voltage source and control variable is produced through 

closed loop control. 

Time (sec.) Time (sec.)

Step response comparison of linear model and non-linear circuit

 

Figure 95. Step response of output voltage from linear and non-linear model of the ESI based three 

phase rectifier. 

Response of output voltage from non-linear circuit simulation and linear model 

is shown in Figure 95. In the initial transient both model are different but for 
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steady state both have the same behavior. Response of inductor current is 

presented in Figure 96. 

In non-linear circuit simulation high frequency noise are clearly visible, but one 

cannot see them in linear model. Linear model is average representation and 

therefore only average value is matching. 

 

Time (sec.) Time (sec.)

Step response comparison of linear model and non-linear circuit

 

Figure 96. Response of inductor current from linear and non-linear model of the ESI based three 

phase rectifier. 

Response of output voltage is Figure 95. Steady state response is very similar, 

but transient response is different. This difference is because of non-linear 

behaviour of diodes for large step. 

Similarly response of inductor current is shown in Figure 96. Inductor current 

from non-linear circuit is having high-frequency switching ripples. The linear 

circuit is an averaged representation and it is valid for low frequency. 

Frequency response in open loop of input to output voltage transfer function 

(Gvg) is shown in Figure 97.  Typical value of the grid resistance and the induct-

ance are 0.01 Ω and 1 mH respectively have been used, and load resistance has 

been chosen according to 4kW output power. 
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Figure 97. Open loop response of input to output transfer function (Gvg). 

There is a resonating peak corresponding to the characteristic impedance of 

input line. At very low frequency close to zero Hz, the magnitude is zero dB, i.e. 

amplification is unity. This means all the dc value will pass through, and other 

than dc, signals will either be amplified or damped according to their frequen-

cies. At 300 Hz, absolute magnitude is 1.06 (0.56 dB), which means ripple at this 
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frequency will be amplified and will be higher than the ac part of the theoretical 

value of rectified output voltage of three phase diode bridge. For the standard 

50 Hz, 400V line to line mains power, output ripple corresponding to 300 Hz 

will be approximately 89V. 

7.3 Control design for the ESI based rectifier 
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Figure 98. Block diagram of plant prepared by its transfer functions. 
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To make output voltage of the ESI based rectifier is constant, i.e. free from 

ripples of input voltage, to reduce ripple less than 3% of DC value. In the event 

of sudden change in load current, dip or overshoot in voltage should not be 

more than 10% and it must be settle to steady state value in less than 1 msec. 

Neglecting Load disturbance, i.e. ˆ ( ) 0oi s  , we can have linear mathematical 

model of the plant as shown in Figure 98. 

This model can be reduced to different levels and simplified. A feedback control 

( )CG s can be added and then the closed loop system will look like as shown in 

Figure 99. Here ( )Y s is admittance of output capacitor. In this control strategy 

idea is to estimate the ripple in output capacitor current and minimize this 

ripple by feedback control. It is assumed that ESI capacitor voltage 
CV  is con-

stant. 
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Figure 99. System with feedback control. 
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When ESI capacitor voltage required a separate voltage controller ( )VG s , Total 

system with separate ESI voltage controller is shown Figure 100. 

Current controller ( )CG s contains proportional (P) gain and a low pass filter. 

Voltage controller ( )VG s contains proportional and integral type control and a 



 

     142 

low pass filter. When the performance of controlled system requires checking 

against the disturbances at input side small signal linear model can be described 

as follows. 

The output voltage ripple can be further reduced by increasing the value of the 

gain P. A high P-value produces a low six times mains frequency ripple on the 

output voltage, but it introduce high frequency ripple in the inductor current. A 

high pass filter (HPF), is used to sense the high frequency components of induc-

tor current iL, and to block the low frequency components of iL. 
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Figure 100. System with feedback control and separate ESI voltage controller. 

To control the ESI capacitor voltage vc, a PI-type controller is employed and 

connected in parallel with the main control loop. The voltage controller is 

relatively slow and generates the required current reference for current control-

ler. The voltage controller works on energy balance. 
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In this reduced model, effect of different disturbance occurring at input and 

output side of the converter can be easily analyzed. From the linear mathemati-
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cal model, of the ESI based three phase rectifier, closed loop system is derived as 

shown Figure 101. The loop gain of the voltage controller GV(s) is termed T(s) 

and is multiplication of different blocks of the forward path of the voltage 

controller. 

   
sC

I
sGsT o

V                                7-6 

A reduction of the block diagram representation has also been done in Figure 

101. GC(s) is the current controller and it tries to smooth the inductor current iL to 

a dc value. Simplified closed loop control system has been derived. 
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Figure 101. Reduced Model of System with feedback control and separate ESI voltage controller. 

Effect of a separate voltage controller for the ESI capacitor voltage is shown in 

Figure 102. When no separate voltage controller is used, response of closed loop 

is damped throughout all the frequency range, But by adding a separate voltage 

controller there is amplification at low frequency range. By changing the gain of 

this separate voltage controller, the magnitude of the closed loop response can 
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be controlled. At two different gain of this voltage controller closed loop re-

sponse is shown in Figure 103. 

 

Figure 102. Effect of adding separate voltage controller. 
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shape of 𝑖𝐿. For attenuating switching frequency ripple, a low pass filter LPF2 
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produces a low six times mains frequency current ripple on the DC-line. One 

high pass filter, HPF, is used to sense the resonant current and to block the low 

frequency components of 𝑖𝐿. 

Response of a P+lpf type control on absolute scale is shown in Figure 104. When 

it is compared against the open loop transfer function, it can be seen that there is 

significant reduction in amplitude at 300 Hz. 

 

 

Figure 103. Response comparison of a controller at two different control gain of voltage controller. 
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At higher frequency P type controller can become unstable or oscillatory at 

frequencies around 3 kHz. To improve response at this frequency range instead 

of P type controller, a new PD type controller is proposed and its response is 

compared in Figure 105.  

This PD type controller is given by: 

 

25400

19050030

* 2
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Figure 104. Comparison of closed loop controlled response with open loop on absolute scale. 
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With PD type controller, it can be clearly seen that response of closed loop at 3 

kHz is sufficiently damped. PD type controller contains one pole close to 4 kHz 

and one zero close to 1 kHz, which are placed in such a way to that controller 

behavior remains good at lower frequency than switching frequency.  

 

Figure 105. Comparison of on two different controllers with open loop response on absolute scale. 

Forward gain of PD type controller is 30. The PD type controller behaves very 
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(Gvg) contains a resonating peak at 3kHz. The frequency response in open loop 

on db scale of the input to the output voltage transfer function (Gvg) is shown in 

Figure 106. There is a resonating peak corresponding to the characteristic im-

pedance of input line. At very low frequency close to zero Hz, the magnitude is 

zero dB, i.e. amplification is unity.  

 

Figure 106. Comparison of two different controllers with open loop response on dB scale. 
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1.06 to 0.17. This means the ripple at 300 Hz will be reduced by factor of 6.24.    

With PD type controller, it can be clearly seen that response of closed loop at 3 

kHz is sufficiently damped. PD type controller contains one pole close to 4 kHz 

and one zero close to 1 kHz, which are placed in such a way to that controller 

behavior remains good at lower frequency than switching frequency. Forward 

gain of PD type controller is 30. The PD type controller behaves very similar to 

lag-lead type controller. It offers higher damping in the vicinity of 3 kHz fre-

quency. The inductor current iL is controlled to a constant value (DC current 

with superimposed switching frequency current ripple) by operating T1 and T2 

with a variable duty cycle.  

In the turn-on period of both T1 and T2, the DC-link capacitor C is discharged 

and iL increases. On the other hand, C is charged and iL decreases when both 

transistors are turned off. In the period when either of T1 or T2 is turned on, iL 

does not flow in C. Therefore, a 3-level operation (C is discharged, bypassed, 

and charged) can be realized. A two-stage control is applied where the duty-

cycle of the switch is determined by an inner current control loop and the con-

stant dc output voltage by a superimposed voltage control. 
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Figure 107. Control scheme of rectifier with ESI. 

Control scheme is presented in Figure 107. There, a low-pass filter LPF1 has to be 

employed for attenuating high frequency components being present in case of 

pulsating load current. The gain P for the current control is adjustable in order 
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to control the current shape of iL. A High P-value produces a low six times 

mains frequency current ripple on the DC-line. One high pass filter, HPF, is used 

to sense the resonant current and to block the low frequency components of iL. 

For attenuating switching frequency ripple, a low pass filter LPF2 should be 

employed in the main control loop.  

 

 

Figure 108. Step load on uncontrolled three phase rectifier without ESI. 
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at the passive mode are shown. The comparison to the active mode as shown in 

Figure 109., makes us clearly understand that the output voltage ripple can be 

significantly reduced. The output voltage ripple is then reduced from 81.1Vpp  to 

14.1Vpp. This allows use of a much lower volume of output capacitor. In active 

mode, the power transistors must be driven. Therefore switching losses are 

generated and the core loss in the inductor is increased because of a high fre-

quency current ripple. Accordingly, the efficiency in the case of the active mode 

is reduced compared to the passive mode. However, the reduction of the effi-

ciency at the nominal output power is not much. It is also verified that the 

critical increased loss components such as the switching losses and the loss in 

the inductors are relatively low. Therefore, the efficiency is not reduced so much 

when ESI actively operates. 

 

Figure 109. Step load response of the ESI based three phase rectifier. 
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A load step responses of the output voltage and the inductor current of a three 

phase rectifier system with the ESI are presented in Figure 109. Without the ESI 

oscilation at 300 Hz are higher compared to system with the ESI and response of 

the output voltage towards load change is improved and it settels down quickly. 

It is possible that without the ESI, the output voltage will become unstable and 

put higher voltage stress on the power semiconductor. During unstability, when 

DC link voltage falls, It will be difficult for the drive to provide required stator 

volatges to the motor connected to it. It can also be seen in ESI based three phase 

rectifier, the output voltage is more or less controlled to a dc value and peak to 

peak voltage ripples corresponding to 300 Hz have been reduced significantly. 

Simillar improvement has been seen in the inductor current response. 

Load

Rectifier

ESI

 

Figure 110. ESI is plugged into a traditional drive. 
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The experimental setup of laboratory is shown in Figure 110. A traditional drive 

from Danfoss drive, is modified and the ESI based converter is plugged into this 

drive. A resistive load is connected to output dc-link capacitor of the modified 

drive. Auxiliary DC power supply was used to power-up the control and sens-

ing electronics. 
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Figure 111. ESI and its sensing and control board. 

Practical realization of the ESI and its other accessories are shown in Figure 111. 

In this figure inductor of 40 uH is connected in the negative rail of the three 

phase diode bridge rectifier. Size of this inductor is very small and in figure it 

can be compared against the LEM current sensor placed of the circuit PCB. The 
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ESI capacitor of 200 uF is connected along with the asymmetrical H-bridge 

formed by the power semiconductor. A relay was introduced in this circuit to 

bypaseed the ESI arrangement and to operate circuit only with the passive 

rectifier. Two current sensors are placed to measure inductor and load current 

individually. Voltage sensing of the ESI capacitor performed and processed 

through optically isolated OP-amp.  

Control scheme was implemented in a floating point digital signal controller 

F28335 provided by TI. Voltage of ESI capacitor, inductor current and load 

current signal were given to ADC port of the DSP after required signal condi-

tioning. DSP also generated the PWM signals for the ESI bridge, and these 

signals processed to gate drive circuit having opto-isolator in between the low 

voltage signals and high voltage power stage. 

 

Figure 112. Steady state output voltage with ESI (in blue) and without ESI (in red). 

Steady state waveform of output voltage is shown Figure 112. In this figure red 

colour waveform is obtain when ESI circuit is bypassed, i.e. only standard 

rectifier is in operation. The applied load was resistance of 127 Ω, i.e. load 

corresponding to 2.25 kW. It can be seen that peak to peak voltage ripple is 
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140V. Once ESI circuit is plugged in it controlled output voltage to a dc value, 

ripple voltage falls to around 20V. A three phase 400V line to line voltage source 

was used in non-linear simulation model and experimental test set-up. An 

external three phase inductor of 3mH per phase has been inserted between the 

grid and the front end of the system. These additional inductors are inserted to 

minimize the effect of grid impedance, as this impedance value is much higher 

than the grid impedance and therefore front end dynamics will be determined 

mainly by these inductors. Experimental test results are stored in data format 

and reproduced with the help of MATLAB.  

Steady state waveform of input phase current is shown Figure 113. In this figure 

red colour waveform is obtain when ESI circuit is bypassed, i.e. only standard 

rectifier is in operation. It can be seen that peak value of current ripple 7.5A. 

Once ESI circuit is plugged in, peak value of current falls to 5A. Only half cycle 

of mains is shown in figure. 

 

Figure 113. Steady state input phase current with ESI (in blue) and without ESI (in red). 

Experimental results confirm the reduction of the ripple in output voltage 
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to acceptable level. In practical circuit peak to peak ripple reduction in the 

output voltage is not as small as it is in simulation but it is reduced from 140V to 

20V, to reduce this value further gain of the current controller should be in-

creased and it will lead to instability during transient operation. There is some 

high-frequency oscillations present in the output voltage and in the mains 

current, these ripple do exist because of interaction of grid impedance with 

output capacitor. 

7.4 Summary and conclusion 

In this chapter control schemes of the ESI based three-phase rectifier are derived 

from the transfer functions based linear mathematical model. This linear model 

was very useful to develop a control scheme in order to achieve control objec-

tive. Two different control schemes were presented in this chapter. Comparison 

of these two different control schemes has been carried out in this chapter. PD 

type controller offers stable control for different type of loads connected at the 

output of the ESI based three-phase rectifier. 

Practical realization and implementation of the ESI based converter have been 

done. Performance improvement is significant as compared to traditional diode 

bridge based rectifier. Weight and volume reduction is very significant in ESI 

based power converter as compared to traditional power converters. If Front 

end of the power converter in motor integrated variable speed drive will be 

used, then integration will be easier and improved performance at the grid side 

as well as motor side will be achieved, because it decouples the grid side to load 

side disturbances and dynamics.  
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Chapter 8. Modified Electronic Smoothing 

Inductor based drive 

8.1 Background 

Although ESI offers reduced size of DC chock, but average load current has to 

pass through two more power semiconductor devices and therefore conduction 

losses in classical ESI based drive are slightly higher than traditional three phase 

drive. The placement of circuit can be in series with the main dc-link capacitor 

and then only high frequency ac current will flow through additional the power 

semiconductors. 

8.2 Circuit topology of Modified ESI 

A modified ESI topology is shown in Figure 114. In this circuit arrangement 

MESI is connected to an inverter that drives a motor. In this case average load 

current will not flow through active switches of the MESI. 
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Figure 114. Circuit topology of the three phase electric drive with the MESI. 

The MESI is a hybrid filter, it supplies only high frequency currents. In order to 

charge and discharge the DC-link capacitor C, the bidirectional current (imesi= 
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io−iL) must be controlled. Therefore, four switches are employed. Three-level 

voltage modulation (vc2− vc1, vc2, or vc2+ vc1,) is then present at the inverter 

input voltage vo . The DC current iL, which can be controlled by the MESI, is 

increased at vo= vc2− vc1 and decreased at vc2+ vc1. There exists a current path to 

bypass C [7]. Current flowing into positive rail of inverter, io, is discontinuous 

and also having stepped waveform. Current flowing in full bridge of MESI, imesi, 

is difference of   inverter current, io, and inductor current, io. Charging and 

discharging of capacitor of MESI is determined by the sign of imesi. The 3-level 

output voltage modulation would benefit the inverter. For instance, switching 

voltage of the IGBTs can be reduced by synchronizing an operational frequency 

of the MESI to an inverter switching timing.   

When Inverter is operating without MESI, voltage in front of inverter vO is equal 

to vc2 as shown in Figure 115. In the case that the MESI is bypassed, vo is always 

equal to vc2, neglecting the voltage drops on the MOSFETs, and the IGBT volt-

age stress is also vc2. However, the IGBT voltage can be reduced to vc2− vc1, 

which is lower than vc2, at the switching timings if the MESI operation is syn-

chronized to the IGBT switching behavior. These 3 levels of voltage are shown 

in  Figure 115., is possible because an operational frequency of the MESI can be 

much higher than that of the inverter e.g. the switching frequency of an inverter 

is normally set around 5 kHz and the switching frequency of the MESI could be 

in the range of 50 kHz to 100 kHz [7]. 

The lower switching voltage would bring some advantages. For instance, since 

switching loss depends on the switching voltage, switching losses of IGBTs and 

diodes in the inverter would be reduced. The peak of the spike voltage of IGBTs 

or diodes at a switching transition can also be reduced e.g. a sufficient voltage 

margin would be obtained. Therefore, a high switching speed could be realized 

by using a lower gate resistor without an overvoltage, which will also result in 

reduced switching losses. 
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Integration of MESI into main DC-link is a difficult task as in traditional VSI, DC 

link capacitors are directly connected to either bus-bar or two different plates 

corresponding to positive and negative DC rails. In order to integrate MESI, 

Main DC-link capacitor cannot be connected directly and MESI will be in series 

with that capacitor. Introduction of MESI will increase the inductance of high 

frequency current path of VSI. It will introduce high ringing and peak voltage 

stress across the IGBTs of the VSI. 

 

Figure 115. Three level operation of MESI converter. 

8.3 Control scheme for MESI based electric drive 

MESI has to support high frequency current demand of inverter, average cur-

rent flowing from positive rail of DC bus to inverter will not flow through MESI. 

Current flowing in MESI is bidirectional. In this case also, a two-stage control is 
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applied where the duty-cycle of the switch is determined by an inner current 

control loop and the constant dc output voltage is defined by a superimposed 

voltage control of voltage of capacitor of MESI. 
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Figure 116. control block diagram of MESI. 

The inductor current iL is controlled to a constant value (DC current with super-

imposed switching frequency current ripple) by operating four MOSFETs T1, T2, 

T3 and T4.  T1 and T2 operate by complementary gate signals, T3 and T4 also 

operate by complementary gate signals. In the turn-on period of both T1 and T4, 

inverter voltage vo is vc2− vc1. When both T1 and T4 are turned off inverter volt-

age vo  is vc2+ vc1. When only one out of T1 and T4 is on, then MESI capacitor is 

bypassed. It has to be noticed that one out of T2 and T3 will be on during this 

time. Control scheme is similar to ESI control, schematic of control is shown in 

Figure 116. Instead of two gate signals, it PWM block has to generate four 

signals. Gate signals Tg1 and Tg4 are determined by comparing the control signal 

d and a triangular carrier waveform. Gate signals Tg2 and Tg3 are complementary 

to Tg1 and Tg4 respectively [66].  

The simulated DC-link capacitor voltage of the MESI and input phase currents 

of drive in steady state, are presented in Figure 117. Input currents are very well 

controlled. Capacitor voltage of MESI contains 300Hz ripple in this case also, but 

as power flowing in MESI is very low, so ripple peak is not high. Total harmonic 
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distortion of input currents are close to 31% as 120 degree conduction occurred 

in three phase balanced mains. 

 

Figure 117. MESI capacitor voltage and input currents in simulation during steady state operation. 

 

Figure 118. MESI capacitor voltage and input currents in experiment during steady state operation. 
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The experimental results of modified ESI based three phase electric drive are 

shown in Figure 118.  

Capacitor voltage of MESI has 300Hz ripple. The waveforms of input phase currents 

are not very close to the simulation result, but THD is less than 40%. High frequency 

ripple in input currents are higher as compare to ESI, these ripple are because of inverter 

switching. 

The MESI contains four MOSFETs 10A/200V, one small inductor of 40µH and a 

capacitor of 150µF/200V. The Control implementation of MESI has been carried 

out with a digital signal controller. Current sensing of inductor current and load 

current and voltage sensing of MESI capacitor is required to control inductor 

current. Inverter current is discontinuous and stepped as it depends on the state 

of inverter switches. Low pass filter is necessary to get average value of load 

current in such cases. 

 

Figure 119. Experimental setup for MESI based drive. 

Experimental setup of modified ESI based converter is shown in Figure 119. In 

this figure left half is showing PCB of modified ESI plugged into a traditional 

drive and auxiliary power is supplied by a separate DC power supply. MESI 

converter requires two current sensors and one voltage sensing. One controller 

is required to control four active switches based full bridge converter. 
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8.4 Summary and conclusion 

In this chapter a modified ESI based three-phase rectifier for an electric drive 

was presented. This modified ESI is a full-bridge based converter instead of an 

asymmetrical H-bridge based ESI. Average load current does not pass through 

the full bridge which is connected in series with main dc-link capacitor. This 

topology has many advantages over traditional ESI, but control of this type 

converter involves difficulties. This converter also introduces an additional bus 

inductance in the series with dc-link capacitor to capacitor connected in the full 

bridge of modified ESI converter. Because of this inductance high frequency 

ringing takes place, and introduces high voltage stresses on the IGBTs connected 

to the main inverter. 
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Chapter 9. Conclusions 

Motor integrated variable speed drive is very attractive choice some of the 

industrial and consumer applications. It gives freedom to consumer plug and 

play with drive, and also enables efficient and simplified way to utilize available 

electrical energy. 

Motor and power converter, are two main components in any adjustable speed 

drive. Permanent magnet based motors have higher power density and im-

proved efficiency as compared to induction machine and switched reluctance 

motors. Flux switching permanent magnet motor is one such machine in which 

magnets are placed on the stator side and because of this property cooling of the 

machine becomes relatively simple. Flux switching permanent magnet is one of 

the most suitable candidates for motor integrated VSD and it also offers the 

brushless ac operation and motion control of such machine is very simple and 

straight forward. 

Many times VSD does not operate at full load condition, in such cases these 

topologies provides efficient performances of power processing unit. In motor 

integrated VSD, care need to be taken in selection of power converter and 

machine both and one need to optimize both for specific application. Integration 

of passive elements is possible in stator core of machine and value of passive 

components can be optimized. Because of vibration of the stator of machine 

passive component integration faces tough challenges, but by proper mechanical 

design it is possible without affecting the cost of overall system. 

Three phase electric drive are used in different variable speed drive application. 

Efficiency of drive and quality of input currents drawn from grid are two major 

issues with these drives. Diode bridge based rectifier fed drives are usually 

choice as they can offer very high efficiency and comply with standards with the 
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help of filter. By considering cost and efficiency of the drive together with such 

filter, Electronic smoothing inductor based drives appeared to be better choice. 

Volume and weight of these drives with the ESI is smaller and it is suitable for 

integration with electrical motor. By proper control of the inductor current of the 

ESI based converter it is possible to operate with large variation in grid imped-

ance and to minimize the effect of voltage variation of the grid on the 

performance of the motor integrated VSD. It is possible to use film capacitor for 

the main dc-link and it will have low ESR and high operating life. ESI capacitor 

will still be an electrolytic capacitor and one film capacitor with small capaci-

tance can be connected in parallel to that to handle high frequency ripple. 

Modified ESI based converter is an attractive option as losses associated with 

power semiconductors are reduced, but current control of such a filter and 

practical realization of the circuit is not simple. It also brings up issues by hav-

ing high frequency oscillation with dc bus inductance. To limit these oscillation 

an auxiliary circuit or further modification will be required and then attractive-

ness of this filter will be faded. 

Electronic smoothing inductor is a technique to reduce passive component size 

and therefore overall size of the power converter, and that works as an enabler 

to integration of motor and power converter. Performance of VSD having ESI is 

much better than the standard drive and it can handle small unbalance of the 

grid voltage.  
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