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I 

CV 

Federico Gabriel Arguissain was born in Concepción del Uruguay, Argentina in 

1985. He obtained his degree as Bioengineer in 2010 at the Faculty of Engineering 

of the National University of Entre Ríos (Argentina). His main areas of research are 

biomedical signal processing with focus on electroencephalography and 

electromyography in the study of pain and rehabilitation. 

PREFACE 

This Ph.D. thesis is the result of work carried out at the SMI center, Aalborg 

University between February 2011 and August 2015. During the period between 

October 2012 and April 2013 the work was performed at the University College of 

London as part of collaboration between these institutions. 
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ENGLISH SUMMARY 

Pain research in humans has systematically involved the application of different 

experimental painful stimuli and the assessment of the elicited responses in order to 

investigate mechanisms of pain processing and the efficacy of treatments. 

Particularly, applying electrical stimulation to the skin elicits two synchronous 

electrophysiological responses that reflect spinal and supraspinal sensory 

processing: the nociceptive withdrawal reflex (NWR) and the somatosensory 

evoked potentials (SEPs). These responses have been traditionally assessed using 

features that are measured from the averaged signals across several repetitions of 

the eliciting stimulus (i.e. across trials). The averaging procedure has been typically 

applied to reduce the inherent across-trial variability of these two responses with the 

purpose of improving their signal-to-noise ratios. However, an increasing body of 

work suggests that across-trial variability should be considered by researchers not 

as a source of noise, but as a functional property of the nervous system that could 

index modulatory effects, task performance and different clinical conditions. In this 

Ph.D. project, the Information Theory (IT) framework is proposed as a viable 

approach to integrate single-trial data and to characterize signal variability which 

may be useful to analyze simultaneous spinal and supraspinal responses and to 

provide more insight about the mechanisms involved in pain processing. 

In line with this, the main objectives of the present dissertation were to investigate 

the feasibility of using single-trial values extracted from both NWR and SEPs and 

to introduce IT as an alternative approach to assess these simultaneous spinal and 

supraspinal signals. 

Study I assessed the level of agreement between two automatic methods and two 

human observers in the detection and estimation of single-trial SEP features. Study 

II quantified the amount of information about graded electrical stimulation that is 

carried by NWR and SEP features. Furthermore, the information carried jointly by 

pairs of these features was also assessed. Study III assessed the modulation exerted 

by two cognitive tasks over SEPs and the NWR during repeated electrical 

stimulation. Results emphasized the importance of the selection process of single-

trial detection/estimation methods within the particular experimental protocol. 

Furthermore, it was shown that the IT framework can be used to quantify the 

information carried by NWR and SEP features simultaneously. Finally, it was 

found that the cognitive modulatory tasks were accompanied by changes in the 

variability of the NWR and SEPs, and this was reflected by differences in the 

amount of information they carried over repeated presentations of the stimulus. 

In conclusion, the IT framework is an appropriate and promising methodology to 

quantify the relation between spinal and supraspinal activity in pain research. 
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DANSK RESUME 

Human smerteforskning har systematisk anvendt forskellige eksperimentelle 

smertefulde stimuli og vurdering af de fremkaldte smerteresponser til at undersøge 

de mekanismer, der ligger til grund for smerter, samt virkningen af behandlingerne. 

For eksempel er der anvendt elektrisk stimulation på huden, som udløser to 

synkrone elektrofysiologiske responser, der afspejler spinale og supraspinale 

sensoriske processer: den nociceptive afværgerefleks (NWR) og somatosensorisk 

evokerede potentialer (SEP). Traditionelt er disse blevet vurderet som 

gennemsnittet af signalerne over adskillige gentagelser af stimuli (f.eks. over flere 

forsøg). Denne procedure er typisk anvendt for at reducere den naturlige variabilitet 

i de to responser på tværs af forsøgene for at forbedre deres signal-støj forhold. Et 

stigende antal studier viser dog, at variabilitet på tværs af forsøg ikke skal anses 

som en kilde til støj men som en funktionel egenskab i nervesystemet, som kan 

indeksere modulatoriske effekter, opgaveudførelse samt forskellige kliniske 

tilstande. Denne ph.d.-afhandling foreslår en ramme af informationsteori (IT) som 

en realistisk tilgang til at integrere data fra enkeltforsøg og karakterisere 

signalvariabilitet, hvilket vil kunne anvendes til at analysere samtidige spinale og 

supraspinale responser og til at give mere indsigt i de mekanismer, der ligger til 

grund for smerter. 

I henhold til ovenstående var hovedformålet med denne afhandling at undersøge 

muligheden for at bruge værdier fra enkelt-forsøg fra både NWR og SEP samt at 

introducere IT som en alternativ tilgang til at vurdere disse samtidige spinale og 

supraspinale reflekser. 

Studie I vurderede niveauet af overensstemmelse mellem to automatiske metoder 

og to observatører ved påvisning og vurdering af SEP-karakteristika fra enkelt-

forsøg. Studie II kvantificerede mængden af information om graderet elektrisk 

stimulation, som bæres af NWR- og SEP-træk. Endvidere blev de informationer, 

der bæres i fællesskab af par af disse funktioner, vurderet. Studie III vurderede den 

modulation, som påvirkes af to kognitive opgaver over SEP og NWR under 

gentagen elektrisk stimulation. Resultaterne understregede vigtigheden af 

udvælgelsesprocessen af vurderingsmetoder til detektion i enkelt-forsøg. Endvidere 

blev det påvist, at IT-rammen kan anvendes til at kvantificere de informationer, der 

inderholdes i NWR- og SEP-karakteristika samtidigt. Endelig blev det påvist, at 

kognitive modulatoriske opgaver ledsages af ændringer i variabiliteten af NWR og 

SEP, hvilket blev afspejlet i forskellene mellem den mængde information, de 

inderholdte over gentagne påføringer af stimulussen. 

Det kan konkluderes, at IT-rammen er en passende og lovende metode til 

kvantificering af spinal og supraspinal aktivitet inden for smerteforskning. 
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CHAPTER 1. INTRODUCTION 

Chronic pain is a serious burden for society that implies suffering for patients and 

high economical costs to the health care system. In Denmark, it is estimated that 

chronic pain has a prevalence of approximately 20% within the adult population 

(Sjøgren et al., 2009). Similar values of prevalence of chronic pain have been found 

across Europe with reported percentages 15-30% (Breivik et al., 2006; Raftery et al., 

2011; Häuser et al., 2013). Chronic pain has also been associated with a negative 

impact on the quality of social and working activities. Altogether, the importance of 

the study of pain and the translation of new knowledge to improve diagnosis and 

treatment is clear. 

As stated by the definition given by the International Association for the Study of 

Pain (IASP), pain is a multidimensional experience that involves various sensory 

and emotional aspects. These observations have led researchers to apply various 

experimental pain modalities in order to investigate the different aspects of pain and 

the efficacy of pain relieving drugs (Arendt-Nielsen, 2007). This multi-modal 

approach comprises the assessment of pain responses that are evoked by different 

stimuli (e.g. mechanical, electrical, thermal, and chemical). Among these modalities, 

electrical stimulation has certain characteristics that made it a widely used technique 

in pain research. Electrical stimulation applied to the skin elicits synchronous 

electrophysiological responses that can be recorded non-invasively along the neural 

axis. Particularly, two commonly assessed responses are the nociceptive withdrawal 

reflex (NWR) and the somatosensory evoked potentials (SEPs). 

The NWR is a spinal polysynaptic reflex elicited by noxious stimuli that evokes an 

involuntary withdrawal of the limbs in order to avoid potential tissue damage 

(Andersen, 2007). The elicitation and recording of the NWR is a standard 

electrophysiological technique regularly used in the study of spinal nociceptive 

pathways in both pharmacological and non-pharmacological interventional studies 

of acute pain and in healthy volunteers (Sandrini et al., 2005). Recently, the NWR 

has been used as a tool in human research for the assessment of spinal nociceptive 

excitability in chronic pain patients (Neziri et al., 2010; Lim et al., 2011, 2012; 

Biurrun Manresa et al., 2013).  

The SEPs are transient responses observed in the continuous 

electroencephalographic (EEG) recordings elicited by a stimulus applied to the skin 

(Babiloni et al., 2004; Garcia-Larrea, 2006; Perchet et al., 2008). When elicited by 

high-intensity electrical stimulation, SEPs reflect the concomitant activation of both 

nociceptive and non-nociceptive fibers (Garcia-Larrea, 2006). This lack of 

specificity led to a gradual decrease on the use of electrical stimulation for 

assessment of nociceptive pathways in clinical settings in the past years, being 

replaced by other more nociceptive-specific stimuli such as those generated by 
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lasers (Cruccu et al., 2008). Nevertheless, recent studies that focused on the 

cognitive modulation of SEPs in particular, and event-related potentials (ERPs) in 

general, suggest that ERPs reflect mostly processes of detection and reorientation of 

attention to sensory stimuli rather than the modality of the stimulation (Legrain et 

al., 2012). These findings have given a new perspective of the functional 

significance of ERPs, suggesting that they reflect cortical processes related to 

detection of potential threats to the body. 

The quantitative assessment of the NWR and SEP responses has traditionally 

included several features extracted from these signals. For the NWR, it usually 

involves the onset latency, amplitude, area under curve and root-mean square 

amplitude (RMS) among others. With regards to ERPs, the detection of features 

such as peak amplitudes and latencies is the most common and straightforward 

procedure. Regardless of the type of feature being used, these measurements are 

usually performed in the averaged responses across trials. Across-trial averaging in 

the time domain (Dawson, 1954) is usually carried out in the analysis of ERPs to 

increase their signal-to-noise ratio (SNR). Although SNR is not a major concern in 

the NWR, across-trial averaging is still widely used to get rid of the trial-to-trial 

variability observed in the single-trial traces. However, this technique has its 

drawbacks (Mouraux and Iannetti, 2008). Across-trial averaging does not take into 

account across-trial variability of these relevant features, which could contain 

valuable information in relation to the stimulus (Iannetti et al., 2005) and/or related 

to other modulatory effects (Lazzaro et al., 1997; Edwards et al., 2001; Jarchi et al., 

2011b). Therefore, the averaging process can lead to a loss of vital information that 

could help understanding the different processes underlying these physiological 

responses. To overcome these issues, new single-trial methods have been proposed 

(Parra et al., 2002; Hu et al., 2010; Pernet et al., 2011), which provide additional 

information about brain mechanisms that could not be observed by only analyzing 

the averaged data. 

One approach that has been previously used for studying the way in which the brain 

encodes sensory information is Information Theory. The concept of mutual 

information (MI) developed in the mathematical theory of communication 

(Shannon, 1948) has been applied on the analysis of spikes trains in single neurons 

(Optican and Richmond, 1987; Panzeri et al., 1999). Its application to other 

electrophysiological signals has recently started to be investigated (Magri et al., 

2009; Ostwald et al., 2010), and its capabilities to extract the most informative 

features of a signal makes it a potential tool for studying different aspects of the 

neural activity. The information theory framework can be adopted to quantify the 

relation of simultaneously acquired signals from different modalities by taking into 

account the experimentally observed stimulus–response signal probability 

distributions. Mutual information can reveal which signal features are most 

informative regarding external stimuli or modulatory tasks, which signals are most 
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correlated to each other and which signals carry either the same or different 

information about the stimuli (Panzeri et al., 2008; Ostwald et al., 2010). 

Few studies have combined NWR and SEPs (Willer et al., 1987; Dowman, 1991), 

probably due to difficulties in the simultaneous acquisition and proper quantification 

of both signals. The present work was intended to introduce alternative methods for 

the analysis of simultaneously acquired signals in order to evaluate the possibility of 

obtaining additional insight about the mechanisms behind sensory processing of 

nociceptive stimulation. The proposed approach may potentially allow a better 

characterization of the descending control mechanisms from the brain over the 

spinal structures during pain processing. 

1.1. AIMS OF THE PH.D. PROJECT 

The aims of the present Ph.D. project were: 1) to evaluate the use of single-trial 

analysis in the assessment of spinal and supraspinal activity in response to graded 

electrical stimulation and 2) to introduce MI as a new way to evaluate simultaneous 

spinal and supraspinal responses. 

Therefore, the NWR was used as a measure of spinal activity and the SEPs as a 

measure of supraspinal activation, with the purpose of addressing the following 

specific research questions: 

1. What are the expected differences when choosing automatic single-trial 

detection methods in comparison to human observers? 

2. Is it possible to measure the mutual information carried by single-trial features 

extracted from both NWR and SEPs? 

3. How is the interaction between single-trial features from NWR and SEPs in 

relation to the evoking stimulus? 

4. Is it possible to derive a variability measure of NWR and SEP signals from 

MI? 

5. How is the variability of NWR and SEP signals affected by cognitive 

modulatory tasks? 

These questions were addressed in three main studies (Study I, II and III), published 

in three peer-reviewed scientific articles. 
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The three studies are: 

Study I 

Biurrun Manresa JA, Arguissain FG, Medina Redondo DE, Mørch CD, Andersen 

OK. On the Agreement between Manual and Automated Methods for Single-Trial 

Detection and Estimation of Features from Event-Related Potentials. PLoS One 10: 

e0134127, 2015. 

Study II 

Arguissain FG, Biurrun Manresa JA, Mørch CD, Andersen OK. On the use of 

information theory for the analysis of synchronous nociceptive withdrawal reflexes 

and somatosensory evoked potentials elicited by graded electrical stimulation. J. 

Neurosci. Methods 240: 1–12, 2015. 

Study III 

Arguissain FG, Biurrun Manresa JA, Mørch CD, Andersen OK, Iannetti GD. 

Spinal and supraspinal responses show opposing modulatory effects during 

attentional tasks. In preparation for Journal of Neurophysiology. 

1.2. DISSERTATION OVERVIEW 

The present thesis presents an evaluation of the use of single-trial measurements of 

simultaneous spinal and supraspinal responses with the objective of assessing the 

somatosensory pathways in humans and proposes mutual information as a 

methodology to objectively quantify their relationship. 

The thesis is structured in four chapters, of which the first is the present 

introduction. Chapter 2 presents an overview of the different aspects related to the 

two electrophysiological signals that are subject of this thesis (NWR and SEPs), 

toghether with the current methodology to measure these two responses separately 

and simultaneously. Within this chapter, an evaluation of the agreement of different 

single-trial methods for the estimation of SEP responses is included (Study I). 

Chapter 3 first introduces IT as a framework to study concurrent spinal and 

supraspinal responses. Second, it demonstrates how IT can be used to quantify the 

information carried by NWR and SEP features about the evoking stimulus (Study 

II). Lastly, it proposes MI as a tool to quantify the variability of NWR and SEP 

signals and gives an example by examining the effect of attention on the variability 

of these two responses (Study III). Finally, a synthesis with future perspectives is 

presented in Chapter 4. 
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CHAPTER 2. CLASSICAL APPROACH 

FOR SOMATOSENSORY RESPONSE 

ANALYSIS 

2.1. SPINAL RESPONSE: THE NOCICEPTIVE WITHDRAWAL 
REFLEX 

2.1.1. Definition and functional significance 

The NWR is a defensive polysynaptic reflex elicited by noxious stimuli that induces 

an involuntary fast movement, withdrawing the affected limb from the noxious 

source in order to protect the tissue from potential damage. This mechanism was 

first documented by Sherrington (Sherrington, 1910) after his observations in animal 

studies in the early 20th century. Sherrington described a stereotyped pattern, 

characterized by an ipsilateral limb flexion with a concurrent contralateral limb 

extension and defined the observed phenomenon as flexion reflex. Later studies 

performed in humans showed that the reflex can be elicited when the stimulus 

intensity is high enough to activate nociceptive fibers (Aδ) in the skin (Kugelberg, 

1948). The size of the reflex is dependent on the stimulus intensity (Shahani and 

Young, 1971), and different reflex patterns (i.e. the group of activated muscles to 

produce the movement) can be evoked depending on the site of stimulation 

(Kugelberg et al., 1960). A modular organization of the NWR has been described 

(Sonnenborg et al., 2000; Andersen et al., 2001), where a reflex module consists of a 

reflex receptive field (RRF) located in the skin and a group of synergistic muscles 

that provide an optimal movement to withdraw the affected skin site from the 

noxious source (Andersen, 2007). Besides its protective function, the neural circuits 

included in the NWR are also part of a complex network involved in posture and 

locomotion (Andersen et al., 2001; Spaich et al., 2004). 

In healthy subjects, there is typically a close relationship between the reflex 

threshold (RTh, the minimum stimulus intensity required to elicit a reflex) and the 

pain threshold (PTh, the minimum stimulus intensity reported as painful) (Willer, 

1977). In line with this observation, several researchers have used the NWR to study 

the components of the spinal nociceptive pathways and the function of different 

neurotransmitters involved in pain processing in both healthy volunteers and patients 

suffering from chronic pain or altered pain perception (Sandrini et al., 2005). 
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2.1.2. Methodology for elicitation and recording 

Electrical stimulation is the standard technique for eliciting the NWR (Andersen, 

2007). Natural stimuli are not suitable for human studies since the stimulus intensity 

necessary to elicit the reflex can produce tissue damage. Similarly, reflexes evoked 

by radiant heat delivered by lasers require high intensity stimulation close to causing 

skin a burn (Mørch et al., 2007). Furthermore, the heat receptors habituate to the 

heat stimulation and it is therefore difficult to achieve consistent reflexes across time 

(Willer et al., 1979b; Mørch et al., 2007). On the other hand, electrical stimulation 

bypasses the receptor organs and provides a direct and synchronous activation of 

both Aβ and Aδ fibers, producing a strong afferent volley that evokes reliable 

responses. Generally, the stimulus consists of a constant current burst of 4-5 square-

wave pulses, delivered by a computer-controlled electrical stimulator. Each pulse 

has a duration of 0.5-1 ms and the train of pulses is generally delivered at a stimulus 

frequency of 200-300 Hz which has been shown to be the most effective way to 

elicit NWR (Meinck et al., 1985). The electrical stimulations are applied with a 

random inter-stimulus interval ranging from 5 to 30 s to minimize habituation (von 

Dincklage et al., 2013). 

The NWR has mainly been studied in the lower limbs, probably due to the lower 

number of degrees of freedom in the joints compared to the upper limbs. Muscle 

activity is measured by surface electromyography (EMG) recordings, where 

different muscles are assessed depending on the stimulation site. The most widely 

used setting is stimulation in the sural nerve below the malleolus and recording from 

the hamstrings (Willer, 1977; Dowman, 1991; Sandrini et al., 1993), although 

stimulation of tibial and plantar nerves and recordings from tibialis anterior muscle 

(TA) have also been used (Kugelberg et al., 1960; Shahani and Young, 1971; 

Meinck et al., 1981; Kolb et al., 2007). The latter have the advantage that the 

stimulation of the foot sole targets a receptive field which consists only of plantar 

skin. On the other hand, sural nerve stimulation targets both dorsal and plantar skin 

areas which might potentially evoke antagonistic reflexes (Meinck et al., 1985). 

2.1.3. Supraspinal modulation of the NWR 

There are multiple convergences of ascending and descending tracts in the reflex 

circuitry at the spinal cord. The interneuronal populations involved in the NWR 

integrate multisensorial input from different peripheral afferents and from several 

supraspinal centers (Schomburg, 1990; Dietz, 2010). This organization of the spinal 

circuits allows them to coordinate the course of movements by combining the 

information about the current state of centrally induced motor patterns, descending 

modulatory signals and the peripheral conditions (Andersen, 2007; Nakajima et al., 

2014). 
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Evidence from animal studies suggest that several supraspinal structures such as the 

brainstem, cerebellum, basal ganglia and cortex modulate the NWR (Schomburg, 

1990; Carlson et al., 2005). In particular, electrical stimulation of the periaqueductal 

gray (PAG) and the rostroventral medulla (RVM) induced an inhibition of reflex 

responses evoked by noxious skin heating in rats (Heinricher et al., 1987; Carstens 

and Campell, 1992; Fields et al., 1995). Injections of glutamate or morphine in the 

PAG also produced changes in reflex excitability (Carstens et al., 1990). The 

presence of projections from these supraspinal structures to laminae I-II and V of the 

dorsal horn were early reported and confirmed (Wall, 1967; Fields et al., 1995). 

Since these laminae contain most of the nociceptive populations that are involved in 

afferent nociceptive transmission, it is believed that the supraspinal structures can 

modulate ascending nociceptive information and nocifensive responses by targeting 

directly the nociceptive neurons located in the dorsal horn (Fields, 2004). 

In humans, NWR elicited in spinal cord-injured patients usually result in a larger 

and longer-lasting response and expanded RRF compared to healthy subjects 

(Shahani and Young, 1971; Andersen et al., 2004; Biurrun Manresa et al., 2014), 

probably suggesting the presence of an inhibitory modulation exerted tonically by 

supraspinal structures in normal subjects. Patients with central nervous system 

disorders such as spasticity and Parkinson’s disease present abnormal excitability of 

the NWR (Milanov, 1992; Gerdelat-Mas et al., 2007; Mylius et al., 2009). 

The presence of descending control of the NWR pathways also arises from studies 

that investigated the impact of changes in the psychological/mental state on reflex 

excitability. Among the vast number of possible cognitive manipulations, one of the 

most investigated processes is attention. Many different strategies have been used to 

manipulate the focus and level of attention, either to incoming stimuli or away from 

them. Particularly, early studies employed mathematical tasks to divert attention 

away from stimulation (Bathien and Hugelin, 1969; Willer et al., 1979a). They 

reported a reduction of the NWR together with reduced pain ratings when 

participants performed the arithmetic task compared to when they focused on the 

electrical stimulation. Terkelsen et al. (2004) employed a paced auditory serial 

subtraction paradigm to distract also the participant from the nociceptive input. In 

this setup the volunteers experienced an altered autonomic activity and reduced pain 

ratings during the arithmetics but did not observe changes in the NWR. Edwards et 

al. (2006) replicated Terkelsen’s group findings in terms of pain ratings and 

increased arousal during a serial addition task, although they observed an increased 

NWR when compared to a resting condition. This group also investigated the effect 

of mental arithmetic on the modulation of the NWR that is normally observed 

during the cardiac cycle (McIntyre et al., 2006). The NWR is inhibited during 

systole and this effect is believed to be mediated by arterial baroreceptor activation 

(also known as baroreflex) (Edwards et al., 2001). The baroreflex arc includes 

afferent fibers that project to the brainstem areas involved in descending inhibition 
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of spinal transmission and this inhibitory effect appears to be modulated with 

increased arousal (McIntyre et al., 2006).  

Furthermore, recent studies used other types of demanding cognitive tasks such as 

computer game play (Edwards et al., 2007) and the Stroop test (Bjerre et al., 2011) 

to investigate its influence over the NWR. These authors reported a reduction of 

NWR thresholds and an expansion of the reflex receptive fields, respectively, when 

performing the tasks. Possibly the differences observed across the cited studies 

involving distraction paradigms could be related to the simultaneous changes in the 

subjects’ emotional state or arousal elicited by the stimulation and/or the distraction 

tasks (Villemure and Bushnell, 2009). Rhudy et al. (Rhudy et al., 2005) 

demonstrated that emotional picture-viewing produces a consistent modulation of 

the NWR and subjective pain ratings. Particularly, they observed that NWR and pain 

magnitudes were lower during pleasant emotions and higher during unpleasant 

emotions. In a subsequent study it was shown that when stimulation were 

predictable due to a cue this modulatory effect of emotion was only reflected in the 

pain ratings but not in the NWR (Rhudy et al., 2006). All in all, evidence suggests 

that the supraspinal modulation of the NWR is highly complex and many different 

experimental factors can influence its measurement.  

2.2. SUPRASPINAL RESPONSE: SOMATOSENSORY-EVOKED 
POTENTIALS 

Among all techniques applied today to study neural activity in the human brain, 

EEG is the most suitable to study the temporal sequence in which different cortical 

regions are activated (Apkarian et al., 2005). EEG has a temporal resolution in the 

order of milliseconds, which is unsurpassed compared to other methods such as 

positron-emission tomography and functional magnetic resonance imaging (fMRI) 

(Apkarian et al., 2005; Kakigi et al., 2005). In contrast, EEG spatial resolution is 

relatively low, as signals recorded by each scalp electrode reflect a spatially blurred 

summation of neural activities. EEG offers similar performance to 

magnetoencephalography (MEG) in terms of spatiotemporal resolution. However, 

EEG detects primarily electric sources that are radial to the scalp while MEG is 

more sensitive to magnetic fields generated by electric sources in tangential 

directions. Moreover, the complexity of MEG instrumentation makes its costs 

several times higher than EEG instrumentation (Hämäläinen et al., 1993; Wendel et 

al., 2009).  

Event related potentials (ERPs) are transient amplitude deflections in the continuous 

EEG recordings which are phased-locked to a sensory, motor or cognitive event. 

ERPs reflect the summed postsynaptic potentials generated by the synchronous 

firing of a large number of cortical pyramidal neurons (Peterson et al., 1995). 

Particularly, SEPs are transient changes in the ongoing EEG elicited by activation of 

the somatosensory pathways. ERPs have been widely used in experimental studies 
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to reveal different aspects of cerebral processing (Picton et al., 2000). Results 

support the idea that ERP components largely reflect the processes behind the 

detection and orientation of attention to the eliciting stimulus (Legrain et al., 2012). 

2.2.1. Methodology for elicitation and recording of SEPs 

SEPs can be elicited using non-invasive bipolar electrical stimulation of the skin and 

recorded using scalp electrodes following the 10–20 international system of EEG 

electrode placement. SEPs waveforms (and more generally ERPs) are composed by 

a set of waves or components which are typically characterized by their polarity (i.e. 

whether the voltage excursion is positive or negative), their amplitude, latency 

(measured as the time of peak deflection in relation to the time of stimulus onset) 

and scalp distribution (Picton et al., 2000). 

SEPs elicited by high current stimuli usually display 5 components whose sources 

were suggested by dipole source localization studies (Dowman, 2004) and supported 

by intracranial recordings (Dowman et al., 2007): 1) a positive early peak at 45 ms 

(P45) usually related to innocuous stimulation and located in the primary 

somatosensory cortex leg area; 2) a central negativity at 70–110 ms located in the 

somatosensory association areas in the medial wall of the parietal cortex; 3) a 

negativity over the contralateral temporal scalp areas at 100– 180 ms situated in the 

parietal operculum and insula; 4) a fronto-central negativity at 130– 200 ms possibly 

originated in the medial prefrontal cortex and primary somatosensory cortex foot 

area; 5) a positive peak P2 at 280–320 ms post-stimulus apparently originated in the 

anterior cingulate cortex, inferior parietal cortex, and probably the somatosensory 

association areas in the medial wall of the parietal cortex. It might also be possible 

to observe a P3a ERP at 320–400 ms. 

2.2.2. Use of SEPs in pain research 

When SEPs are elicited by transcutaneous low-current stimuli, they display early 

components which are widely used in clinical settings to examine the state of large-

diameter, low-threshold fast conducting afferents. Increasing the intensity of 

stimulation produces the activation of both low-threshold, non-nociceptive afferents 

and high-threshold, nociceptive fibers (Arendt-Nielsen, 1994). Although high-

current stimulation evokes an aversive painful response, the use of SEPs in clinical 

settings is limited since they do not reflect specific nociceptive responses. Thus, 

other stimulation techniques such as lasers which selectively activate nociceptive 

afferents have been used more predominantly for the past three decades (Cruccu et 

al., 2004). 

Using infrared laser stimulators, numerous studies have shown a strong correlation 

between the intensity of perceived pain and the magnitude of the laser-evoked 

potentials (LEPs) (Arendt-Nielsen, 1994). This consistent observation led some 
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researchers to consider LEPs as a direct index of pain intensity coding in the human 

brain (Tracey and Mantyh, 2007). On the other hand, a number of studies have 

shown that the manipulation of stimulus saliency (Iannetti et al., 2008; Mouraux and 

Iannetti, 2009; Ronga et al., 2013) (i.e. its ability to capture attention) produces 

dissociation between pain perception and LEP magnitudes. These observations 

brought a new perspective on the functional significance of LEPs, suggesting that 

these responses reflect neural activity that is not necessarily nociceptive-specific. 

Instead, LEPs (and more generally ERPs) reflect mechanisms of arousal or 

attentional reorientation regardless of the stimulus modality (Iannetti et al., 2008; 

Legrain et al., 2012). 

2.2.3. Single-trial assessment of SEPs 

SEP components measured at scalp-surface are accompanied by ongoing neural and 

non-neural activity which is generally considered as background noise. Although the 

size of the SEPs elicited by high-current stimulation is considerably larger than the 

size of ERPs from other modalities (e.g. visual, auditory, laser), the magnitude of the 

signals of interest is still a fraction of the magnitude of the background EEG. 

Therefore, signal processing methods are required to enhance the signal-to-noise 

ratio (SNR). This is often performed by considering the mean response over several 

repetitions of the eliciting event, and therefore assuming that the resulting waveform 

is constant across trials (Dawson, 1954). However, the use of this procedure does 

not consider the across-trial variability of SEPs which could be attributed to ongoing 

activity (Arieli et al., 1996). Across-trial variability of SEPs could contain relevant 

information regarding the actual state of the cortical networks, possibly reflecting 

fluctuations in expectation, attention or other cognitive processes (Haig et al., 1995; 

Iannetti et al., 2005; Jarchi et al., 2011a). The averaging process may therefore 

distort the estimated ERP features and consequently eliminate vital information that 

could help to explain the different processes underlying the observed physiological 

responses (Mouraux and Iannetti, 2008).  

This current interest in across-trial variability has led to  the development of 

numerous single-trial methods for reliable automatic detection and estimation of 

ERP features (Mayhew et al., 2006; Hu et al., 2011b). The outcome of these 

automatic methods is usually validated against the expertise of a human observer 

(Hatem et al., 2012). Nevertheless, there are two main concerns related to the 

validity of automatic methods that have not been explored in depth: 1) the 

categorical agreement which evaluates the concordance between humans and 

algorithms on the presence (or absence) of an SEP component; 2) the quantitative 

agreement which quantifies the variation on the estimated features between 

methods. These aspects can be assessed using the following approaches: 

 Categorical agreement: the presence/absence of a SEP component can be 

assessed using a group of indexes that describe different characteristics of the 
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level of agreement. The overall percent agreement (po) represents the sum of 

all trials in which the methods agree divided by the total number of trials. The 

positive percent agreement (ppos) is derived from the number of positive trials 

(i.e. presence of an SEP component) in which both methods agree on divided 

by all of the positive trials for both methods. The negative agreement (pneg) is 

calculated from the number of negative trials (i.e. a peak is absent) in which 

both methods agree on divided by all of the negative trials for both methods. 

These last two indices determine in which type of decision (i.e. presence or 

absence of a peak) there is a bigger disagreement between methods. Chance 

percent agreement pe can be computed as the sum of the joint positive and 

negative responses, and represents the level of agreement that would still be 

present if the methods decided randomly on the presence/absence of a peak. 

Cohen’s kappa (κ) is calculated as the ratio between the overall percent 

agreement corrected for chance (po – pe), divided by the maximum possible 

percent agreement corrected for chance (100% – pe). Normally, κ ranges from 

0 (no agreement beyond chance) to 1 (perfect agreement), although it could be 

possible to obtain negative values of κ (if the agreement between methods is 

worse than what would be expected by chance). 

 Quantitative agreement: the absolute variation of a particular SEP feature (e.g. 

peak amplitude and/or latency) between a pair of methods can be assessed 

using Bland-Altman’s analysis. The method takes into account the single-trial 

differences between the quantities estimated by two methods. The mean 

difference is called bias, which gives a measure of systematic error. The 

standard deviation of these differences provides a reference of the absolute 

variation between methods, and gives a measure of random error. Normal 

distributions of the differences implies that 95% of the differences fall between 

±1.96 standard deviations, and the limits of this span are considered the limits 

of agreement (LoA). The LoA therefore give a reference of the maximum 

differences that can be expected between methods when measuring the same 

quantity. Additionally, there are two other indexes that are frequently used to 

assess quantitave agreement. These are the coefficient of variation (CV), 

defined as the typical error divided by the average measurement, and the intra-

class correlation (ICC), defined as the ratio between the variation observed 

within measures to the total observed variation between measures.  

In Study I, the aim was to determine the categorical and quantitative agreement 

between manual and automatic methods for detection and estimation of SEP 

features. In this regard, a single experimental session with sixteen healthy volunteers 

was performed in which SEPs were elicited using electrical stimulation at six 

different stimulus intensities applied to the sole of the foot. Single-trial SEPs were 

defined by their characteristic peaks, named according to their latency and polarity: 

N1 (~70-110 ms), N2 (~100-180 ms) and P2 (~280-320 ms) (Treede et al., 1988). 

Two human observers performed the manual and blinded detection of single-trial 
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peaks. Additionally, two different automatic algorithms were also included, which 

consisted of an algorithm based on the derivative of the signal that classifies using 

fuzzy logic (DRIV) and an algorithm based on wavelet filtering and multiple linear 

regression (WVLT) (Hu et al., 2010). An example of the performance of the 

different detection methods can be observed in Figure 1. 

 

Figure 1. Single-trial somatosensory evoked potential (SEP) peaks detected by different 
methods. Panels display the average SEP signal (AVG SEP) elicited by electrical stimulation 
of a particular participant and the different single-trial SEP peaks detected by two different 
human observers (Observer 1, A) and (Observer 2, B) and two automatic algorithms (DRIV, 
C) and (WVLT, D). Crosses, circles and asterisks represent single-trial N1, N2 and P2 
features, respectively, while the blue trace is the average of 20 trials elicited with the highest 
stimulation intensity.  

The presence/absence of a SEP peak (categorical outcome) was assessed in each 

single-trial recording, together with the variation in the corresponding amplitude and 

latency (quantitative outcome) found by the four different strategies. Results of 

Study I showed that human observers generally displayed the highest categorical 

and quantitative agreement, and that there were significantly large differences 

between detection and estimation of quantitative features among methods. 

Concerning the categorical agreement, results of Study I showed that there was an 

overall agreement ranging from good to excellent in all cases (the median po was 

higher than 80% for all possible pairings). The highest agreement was particularly 

observed in the decision of the presence/absence of the P2 peak (median po higher 

than 90%), since there was only one peak involved in the window of interest (unlike 
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the detection of N1 and N2). The main issue with the overall agreement given by po 

is that it is highly influenced by an imbalance in the presence-absence of the 

outcome. For example, if the number of trials in which a peak is present is large 

compared to the number of trials in which a peak is absent, then po will be ruled by 

the trials in which a peak is present. It is therefore necessary to also assess ppos and 

pneg, which quantify the relative agreement when a peak is present and absent, 

respectively. Indeed it was observed that although po was similar to the ppos, (i.e., 

when a peak is present), there were large differences in the assessment of the 

absence of a peak, as reflected by the low pneg values. Particularly, the categorical 

agreement regarding the presence/absence of all SEP peaks yielded significantly 

higher pneg between human observers compared to any other pairing. Furthermore, 

all pairings between both human observers and the DRIV algorithm yielded 

significantly higher pnegfor N1 and P2 peaks compared to all pairings between both 

human observers and the WVLT algorithm. 

When correcting for the agreement expected by chance, it was observed through the 

κ statistic that the agreement was very low, particularly in the cases involving the 

WVLT approach (Figure 2). This gives the idea that most of the agreement in those 

cases was probably due to chance. Moreover, the median level of agreement for the 

pairings involving the two human observers was significantly higher than the level 

of almost all other pairings, with a median κ ranging from 0.4 to 0.7. Overall, the 

observed differences could be mainly explained by the intrinsic differences of each 

detection approach, e.g., the WVLT algorithm is not designed to detect cases in 

which one or several peaks are not present. On the other hand, the DRIV algorithm 

purposely imitates the human decision-making process (Piater et al., 1995). 

 

 

Figure 2. Cohen’s kappa (κ) categorical agreement between different human observers 
(OBS1 and OBS2) and automatic algorithms (DRIV and WVLT). Horizontal lines on top of 
the bars represent statistically significant post hoc differences between pairings (Student-
Newman-Keuls, p < 0.05). 
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Regarding the quantitative outcome, statistically significant differences in bias 

between pairings were found for all SEP component amplitudes and N2 and P2 

latencies (Figure 3). In particular, it was found that the amplitude of the bias 

between human observers and the DRIV algorithm was irrelevant in practical terms 

(median bias < 1 μV in all cases). Pairings including the WVLT algorithm showed 

slightly larger amplitude bias with a median value around 5 μV. Similarly, the 

median latency bias was typically lower than 10 ms, although it was observed that 

that the maximum values could differ in up to 60 ms in cases in which the detected 

wave was N1 or N2 and the pairing included at least one of the algorithms. This was 

also observed in the quantification of P2, probably because the P2 wave is composed 

by a set of local maximae. On the other hand, the pairing between the two human 

observers showed a latency bias which was less than 20 ms with a final average 

latency difference close to zero (i.e. unbiased). In time, statistically significant 

differences in the LoA between pairings were found for SEP component amplitudes 

and for SEP component latencies, with the error being generally smaller for pairings 

between human observers and the DRIV algorithm (Figure 3). 

Another relevant question in Study I was related to the effect of stimulation intensity 

on the categorical and quantitative agreement between methods for ERP feature 

detection and estimation. In order to address this question, two representative 

indexes for categorical and quantitative agreement (Cohen’s κ and CV, respectively) 

were calculated from the best- and worst-performing pairings between manual and 

automated methods, and stimulation intensity was taken as a factor (with approx. 20 

trials per intensity per subject). 

Figure 4 represents the average SEPs across subjects for three levels of stimulus 

intensity. There were no differences in categorical agreement in relation to 

stimulation intensity, meaning that the number of peaks detected at each stimulus 

intensity did not change significantly between the human observers or between the 

algorithms. The quantitative agreement between the human observers was also not 

significantly different due to stimulation intensity for any of the peaks. However, 

there were some differences in quantitative agreement due to stimulation intensity 

when comparing the two algorithms. It was observed that the N1 peak amplitudes 

presented less variation at the highest stimulation intensity, whereas P2 peak 

latencies showed more variation at the lowest stimulation intensity. Nevertheless, it 

also has to be pointed out that the absolute differences were quantitatively small (7-

18% in the case of N1 peak amplitudes and 2-3% for P2 peak latencies). 
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Figure 3. Bias and limits of agreement (LoA) for the quantitative agreement of N1, N2 and P2 
peaks (n = 16 for each index). Horizontal lines on top of the bars represent statistically 
significant post hoc differences between pairings (Student-Newman-Keuls, p < 0.05). 
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Figure 4. Effects of stimulation intensity somatosensory-evoked potentials (SEPs). Each panel 
shows the average SEP signal of all available trials from each subject (color-coded) for a 
single stimulation intensity. The overlapping thick black line represents the grand average of 
all subjects (n = 16). RTh: nociceptive withdrawal reflex threshold. 

The results from Study I highlight the importance of having a criterion for detecting 

the presence/absence of a response. Particularly, studies interested in evoking 

responses near threshold might be in a situation where the physiological response 

might not be elicited. Therefore the single- trial estimation in the absence of that 

response could have a negative influence on the conclusions drawn.  

Study I also emphasized the impact of selecting different pre-processing methods on 

the quantification process. Particularly, the WVLT algorithm uses wavelet filtering 

to reduce background noise and the outcome measures are further estimated using a 

multiple linear regression approach (Hu et al., 2010). On the other hand, the DRIV 

algorithm makes it selection and quantification over the signal with no further pre-

processing.  

It has to be noted that the aim of Study I was not to elucidate which method is better, 

since agreement between two methods is not enough to make such a statement. 

Instead, it was intended to provide reference values to the maximum differences that 

can be expected if a particular method is applied instead of another. In the light of 

these results, the DRIV method was selected for use in Study II as it showed the 

closest resemblance to human detection with lower computational cost than the 

WVLT method. 

In summary, different detection/estimation methods may lead to substantial 

differences in the results; this implies that special care should be taken during the 

selection of the approach for feature extraction.  
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2.3. SYNCHRONOUS RECORDINGS OF SPINAL AND 
SUPRASPINAL ACTIVITY 

The electrical stimulus required to elicit a NWR also evokes a SEP response that can 

be measured at scalp level. The simultaneous recordings of both NWR and SEPs 

appeared as a suitable approach for investigating spinal and supraspinal processes 

related to pain mechanisms occurring in the same subject at the same time 

(Dowman, 1991). Although this methodology seems very promising to study the 

nociceptive processing across the neuraxis, simultaneous recordings have not been 

widely used. Only a few studies have combined these two methods and were mainly 

focused on grand-average responses. 

The modulatory factor that has been mostly used in experiments involving 

synchronous NWR and SEP recordings is the stimulation intensity. Early results 

showed that the reflex size was linearly correlated with stimulus intensity above the 

RTh, while the late SEP components amplitudes were maximal when the stimulus 

level reached the pain threshold and then remained plateaued (Debroucker and 

Willer, 1985). Dowman (1991) did pioneering research on concurrent NWR and 

SEPs using the current intensity that elicited the maximal sural nerve compound 

action potential (CAP) as normalization factor for selecting the different stimulus 

intensities (Dowman, 1991, 1994, 2001; Dowman and Darcey, 1994). Particularly 

for the relationship with stimulus intensity, Dowman (1991) reported a positive 

correlation between NWR and pain ratings when stimulus levels were above 1.5 

times the current necessary for eliciting the maximal CAP. It was also observed that 

the different SEP components changed their amplitude across all stimulation levels, 

therefore concluding that SEPs possibly reflect the neural processing of both 

nociceptive and non-nociceptive afferent information. These findings were 

supported with intracranial recordings (Dowman et al., 2007).  

Simultaneous recordings of NWR and SEPs have also been used in studies of the 

effect of modulatory tasks over the nociceptive system. Different cognitive 

approaches have been taken in the quest of understanding how and when supraspinal 

centers modulate spinal excitability. Most notably, Dowman (2001) investigated the 

effect of attention on NWR, SEPs and subjective magnitude ratings elicited by non-

painful and painful sural nerve stimulation using an attention-ignore paradigm. A 

cue was given before each trial to inform the subjects that they had to focus to either 

a visual identification task or a somatosensory rating task. Twenty percent of the 

trials were invalidly cued and the participants had to rate the stimulus intensity 

regardless its validity. Whereas he observed changes in the perceived magnitude of 

the stimulus when the subjects directed their attention to it in the validly cued 

condition and away from it in the invalidly cued condition, he did not observe 

differences in the NWR magnitude between the two conditions. This differs with 

other studies that looked into the effects of attention on the NWR, where changes in 

reflex amplitudes were observed when the subjects were engaged in a distraction 
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task (see Section 2.1.3). Probably the difference between Dowman’s study and the 

others cited in Section 2.1.3 is task relevance: whereas in Dowman’s study the 

evoking stimulus is task relevant (i.e. rate its intensity) in both conditions (valid and 

invalid cue), in most of the other studies the evoking stimulus was only task relevant 

in the attend condition. 

Another interesting study investigated the influence of expectations on descending 

modulatory mechanisms and spinal nociceptive processing (Goffaux et al., 2007). 

Using a counterirritation technique (application of a second painful stimulus) they 

observed that differences in expectations affected the endogenous mechanisms that 

typically lead to a reduction of the amplitude of pain ratings, NWR and SEPs. More 

interestingly, the expectations of analgesia also reduced the subjective pain ratings 

in fibromyalgia patients but did not affect their observed spinal hyperexcitability 

(Goffaux et al., 2009), showing that in certain cases spinal and supraspinal responses 

to painful stimuli can be dissociated. These are particular examples of the 

importance of counting on techniques for the simultaneous assessment of spinal and 

supraspinal activity during painful stimulation, which will be further analyzed in the 

next chapter. 
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CHAPTER 3. MUTUAL INFORMATION 

ANALYSIS 

3.1. CONVENTIONAL ANALYSIS AND INTERPRETATION OF 
SPINAL AND SUPRASPINAL RESPONSES 

The most used methodology to analyze the relationship between stimulus intensity 

and NWR and SEP amplitudes has been to measure signal covariance (e.g. 

correlation coefficient or general linear model), a model which assumes linearity and 

homogeneity of variance (Debroucker and Willer, 1985; Dowman, 1991). One of the 

main concerns regarding these methods is that the required assumptions to apply 

them are not always accomplished (Kisley and Gerstein, 1999; Osborne and Waters, 

2002). Physiological variables such as the reflex size might have highly skewed and 

kurtotic distributions with large outliers (Figure 5A), resulting in non-normally 

distributed data. Although data transformation might solve these issues, the 

interpretation of the results might become difficult. Removal of outliers could 

improve the accuracy of the regression analysis, although it is not always 

appropriate to remove outliers unless the real origin/cause of the extreme outcome is 

known. In addition, it is common to observe non-linear relationships with the 

dependent variable (e.g. stimulation intensity). Another assumption which impacts 

in the result of statistical tests is the homogeneity of variance across different levels 

of the predictor variables, also known as homoscedasticity. When a random variable 

such as the reflex size shows a variable dispersion of its errors across different 

values of the predictor then it is said to be heteroscedastic (Figure 5B). 

 

Figure 5. A) Histogram of the reflex amplitudes measured in terms of the interval peak z-
score (Rhudy and France, 2007) (n=16). Only trials with elicited reflexes are included. B) 
Residuals obtained from the difference between observed values of all reflex Z-scores and the 
estimated linear regression function with the normalized stimulation intensity as predictor 
(NWR-zscore ≈ C + intensity). 
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Another aspect that might be interesting in studies involving several outcome 

measurements is the evaluation of interaction among these responses. Alternative 

methods such as multivariate outcome analysis can explain this relationship, 

although similar assumptions about the data hold for this approach. Nevertheless, 

several questions remain unanswered in relation to how modulatory effects influence 

each response independently, or if there is an interaction of any nature (linear or 

non-linear) between these responses that could provide more information than the 

analysis of each response individually. It is therefore of interest to apply a method 

which can be used to integrate simultaneously acquired data and that does not 

assume a specific signal distribution or linearity. 

3.2. INFORMATION THEORY FRAMEWORK 

The Information Theory (IT) framework was first introduced by Shannon  in the 

middle of 20
th

 century (Shannon, 1948). The concepts developed under this 

framework have been extensively applied in the study of the information 

transmission in neuronal populations (Quian Quiroga and Panzeri, 2009). The IT 

framework allows the quantification of stimulus-signal and signal-signal 

relationships based on the estimated stimulus-response signal probability 

distributions and without linear and Gaussian constraints, which makes it a 

promising approach to study biological processes (Ostwald et al., 2010). The use of 

the IT framework has been increasingly extended to other types of 

neurophysiological signals and fields (Ince et al., 2010). 

The fundamental quantity provided by the IT framework to characterize the relation 

between two variables is defined as mutual information (MI). The main aspects that 

makes MI so attractive are (Schneidman et al., 2003): 1) it provides a general 

measure of correlation between stimulus and responses, taking into account 

correlations at any order; 2) it does not make prior assumptions on the relevance of 

the signal features in question, neither stimulus- nor response-related; 3) it meets 

various properties such as additivity of information for completely independent 

signals. 

In order to interpret its concept, let’s consider an experimental setup where the two 

variables are defined as the stimulus set S = {s1, s2, s3…, sn} (controlled by the 

experimenter) and a consequent response R to be recorded. The response R would 

generally be a quantifiable, discrete signal that can take different values. MI 

therefore quantifies the level in which different response values discriminate 

between different stimuli. The information I(S; R) between S and R can be expressed 

as the difference between the response entropy H(R), a measure of the overall 

variability of the response, and the noise entropy H(R|S), a measure of the variability 

exclusively attributable to trial-by-trial noise (Shannon, 1948; Cover and Thomas, 

2006): 



MUTUAL INFORMATION ANALYSIS 

29 

𝐻(𝑅) =  − ∑ 𝑃(𝑟)𝑙𝑜𝑔2𝑃(𝑟)𝑟     (1) 

𝐻(𝑅|𝑆) =  − ∑ 𝑃(𝑠)𝑠 ∑ 𝑃(𝑟|𝑠)𝑙𝑜𝑔2𝑃(𝑟|𝑠)𝑟    (2) 

𝐼(𝑆; 𝑅) = 𝐻(𝑅) − 𝐻(𝑅|𝑆) =  ∑ 𝑃(𝑠) ∑ 𝑃(𝑟|𝑠)𝑙𝑜𝑔2
𝑃(𝑟|𝑠)

𝑃(𝑟)𝑟𝑟  (3) 

P(s) represents the probability of presenting a stimulus s, P(r|s) is the conditional 

probability of observing a response r when a stimulus s is presented. P(r) is the 

probability of observing a response r across all trials of all stimuli. Hence, I(S; R) 

quantifies the overall reduction of uncertainty that is achieved by observing a single-

trial value of the response in relation to which stimulus was presented (Borst and 

Theunissen, 1999). I(S; R) is expressed in bits, where zero can be interpreted as a 

completely random stimulus response relationship and where the maximum 

information will be given by the entropy of the stimulus H(S) or the entropy of the 

response H(R), depending on which one is smaller. 

The MI expression can be generalized to calculate the information about the 

stimulus carried by the joint observation of two or more features. The response set 

can thus be considered as an array R. Particularly, the MI conveyed jointly by two 

responses Rx and Ry about the stimulus can be expressed as: 

𝐼(𝑆; 𝑅𝑥, 𝑅𝑦) = 𝐼(𝑆; 𝐑) = ∑ 𝑃(𝑠) ∑ 𝑃(𝑟𝑥 , 𝑟𝑦|𝑠)𝑙𝑜𝑔2
𝑃(𝑟𝑥,𝑟𝑦|𝑠)

𝑃(𝑟𝑥,𝑟𝑦)𝑟𝑥𝑟𝑦𝑠  (4) 

where P(rx,ry|s) is the probability of observing the responses rx and ry in a single trial 

when stimulus s is presented; P(rx,ry) is the probability of observing both rx and ry 

across all stimuli. 

When two or more responses are considered, it is possible to describe I(S; R) as 

number of sub-terms that allow to quantify how correlations between signals 

contribute to information transmission (Pola et al., 2003): 

𝐼(𝑆; 𝑹) = 𝐼𝑙𝑖𝑛 + 𝑠𝑦𝑛  (5) 

The linear term Ilin represents the sum of the information by each of the response 

signals in R as if they were completely independent. The synergy term syn 

represents the information carried jointly by the two or more responses in R. 

Positive values of syn means that the joint observation of the responses carries more 

information about the stimulus than their individual contributions. Alternatively, 

negative values of syn imply that the combination of signals provides less 

information that their individual contributions, an effect also described as 

redundancy. If each response conveys independent information, the term syn is then 

zero and all the information would be a linear sum of the information conveyed by 

each individual signal, as expressed by the term Ilin. Although the synergy can be 
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further decomposed in a new subset of terms describing the possible contributions of 

correlations to information transmission (Pola et al., 2003), the present dissertation 

is only focused on the aforementioned terms. 

3.2.1. Practical issues - Bias correction procedures 

The computation of I(S; R) involves the usage of the probability distributions P(r), 

P(r|s) and P(s). Since these probabilities are not known in advance (except for P(s), 

which would normally be controlled by the experimenter), it is necessary to estimate 

them from the data samples. This procedure can be performed by building a 

histogram of the experimental frequency of each response value across the available 

trials. Nevertheless, the estimation of the probabilities from a limited amount of data 

causes a systematic error (or bias) which is a key practical issue for the accurate 

application of the IT framework. Fortunately, several advanced methods have been 

developed to amend this problem and specific guidelines are available to help in the 

selection of an appropriate procedure for computing information and to produce 

accurate results (Panzeri et al., 2007). 

The empirical estimation of the probabilities requires the discretization of the 

responses through a binning process. The number of bins is a free parameter which 

is determined in a tradeoff between the information that is lost due to discretization 

and the distortion caused by the limited size of data samples. The number of bins 

(i.e. the number of possible values that the response R can take, |R|) is constrained 

by the minimum number of stimulus |S| and the maximum number of trials per 

stimulus Ns, where vertical bars denote cardinality of the sets (Golomb et al., 1997). 

3.3. APPLICATION OF MUTUAL INFORMATION IN THE 
ASSESSMENT OF SIMULTANEOUS SPINAL AND 

SUPRASPINAL ACTIVITY 

In Study II, the aim was to quantify the amount of information about electrical 

stimuli carried by simultaneous electrophysiological responses in humans using MI 

analysis. Simultaneous NWR and SEPs were assessed in sixteen subjects during 

repeated electrical graded stimulation and different features were extracted from the 

acquired signals to quantify their information transmission in relation to the eliciting 

stimuli. Four NWR features were extracted per trial: the root mean square (RMS) 

amplitude (NWR RMS), interval peak z-score (NWR Z-score), latency (NWR 

latency) and duration (NWR duration). Additionally, six single-trial features were 

extracted from the SEPs at the vertex using the DRIV algorithm from Study I: N1, 

N2 and P2 amplitudes and latencies, respectively. The six stimulation intensities 

applied were grouped into three subgroups that defined the stimuli set as S = {1, 2, 

3}: 1; subthreshold intensities (0.5x, 0.75x RTh), 2; near threshold intensities (1.0x, 

1.25x RTh) and 3; above threshold intensities (1.5x, 2.0x RTh). This grouping 

yielded a total of Ns=40 trials per stimulus group (120 trials in total per subject). 
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Each extracted feature was taken individually to calculate its univariate information 

about the stimulus and presented as I(S;Rx). The maximal information value that was 

expected was the entropy or self-information of the stimulus, which was in this case 

1.58 bits for a stimulus set S consisting of 3 stimulation intensity groups. 

Moreover, a bivariate analysis was performed using pairs of features to calculate the 

information carried jointly and shown as I(S; Rx, Ry). The bivariate analysis included 

the synergy and linear term quantities for each response feature pair. Only the two 

most informative features of each modality (NWR and SEP) were paired with all the 

remaining features. Additionally, the parameters used in the calculation of the MI 

such as the number of bins and the performance of the bias correction methods were 

also validated. 

3.3.1. Univariate mutual information analysis 

Results from Study II showed that the information carried by the reflex features that 

quantify the NWR amplitude was significantly higher than information contained in 

the SEP features (Figure 6). 

 

Figure 6. Univariate information of spinal and supraspinal features about the stimulus. 
Median values of the information I(S;R) about the stimulus carried separately by single-trial 
features extracted from the somatosensory evoked potentials (SEPs) and the nociceptive 
withdrawal reflex (NWR) (n=16). *: p<0.05. Solid lines represent the median; box edges 
represent the 25 and 75 percentiles. 

These observations may result from the different concurrent processes occurring at 

spinal and supraspinal level which are reflected in the EMG and EEG signals, 

respectively. On one hand, the muscle was at rest prior to stimulation with minimal 

EMG activity compared to the high post-stimulus activation. On the other hand, the 

brain presents ongoing activity related to numerous brain states which is reflected at 

scalp level together with the evoked activity. It has been traditionally considered that 
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the ongoing activity is unrelated to the stimulus, which led to apply the 

aforementioned signal+noise model. However, it has been shown that these ongoing 

processes mostly explain the variability of subsequent evoked responses (Arieli et 

al., 1996; Pfurtscheller and Lopes da Silva, 1999; Engel et al., 2001; Busch et al., 

2009). Either way, the fact that the amplitude of the ongoing EEG activity can be as 

large as the transient evoked responses represents a clear element that increases trial-

to-trial variability and impoverishes the single-trial peak detection. 

The differences found in the carried information may also arise from the different 

performance of the methods used for feature extraction. There are numerous 

methods for automatic single-trial detection of ERP components (Quian Quiroga and 

Garcia, 2003; D’Avanzo et al., 2011; Hu et al., 2011a; Jarchi et al., 2011b) which 

exert a strong influence in the quantification of the information contained in the 

signal of interest. In that matter, a potential strength of the MI metric is in fact that 

the MI analysis can be used as a measurement of performance for pre-processing 

and feature extraction methods (Ostwald et al., 2010). 

The analysis of the impact of the discretization presented information quantities that 

did not change considerably when the number of response bins increased over 6-8 

(Figure 7A). Likewise, the analysis of the performance of the bias correction 

methods showed that its application helped to obtain accurate information estimates 

with 40 trials per stimulus (log2(40)≈5.3), as these median values did not change 

considerably with larger amount of trials (Figure 7B). 

 

Figure 7. Validation of the parameters used in the calculation of mutual information for two 
response features. A) Univariate information I(S;R) of spinal (NWR RMS) and supraspinal 
(N1 amplitude) features about the stimulus as a function of the number of response bins. B) 
Monte-Carlo simulation of I(S;R) as a function of the number of trials. The information 
quantities are shown for corrected (PT+bstp) and non-corrected estimates. Solid line 
represents the median; shaded zones represent the 25 and 75 percentiles. 
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3.3.2. Bivariate mutual information analysis 

Results from Study II indicated that the information carried jointly by pairs of 

features was generally more informative than their individual contributions. 

Particularly, combining the NWR RMS with the remaining reflex features resulted 

to be significantly more informative than the combination of NWR RMS with the P2 

features (Figure 8A). Moreover, the combination of the N1 amplitude with the 

features that reflect the reflex amplitude (i.e. NWR RMS and NWR Z-score) 

provided more information about the stimuli than the combination of N1 amplitude 

with the other SEP features (Figure 8B). 

Further evaluation was performed on the effect of correlations between different 

pairs of responses and whether these correlations lead to an increase (synergy) or 

decrease (redundancy) in the conveyed information compared to the amount they 

would carry if they were independent. First, it was observed that the combinations of 

NWR RMS with the other reflex features were redundant (synergy<0, Figure 8A). 

When comparing the different synergies produced by the combination of NWR 

RMS with the remaining features it was particularly found that the combination 

NWR RMS  Z-score was more redundant than the combinations between the NWR 

RMS and the SEP features (Figure 9A). Second, the synergies given by combining 

the N1 amplitude with the remaining SEP features were not significantly different 

from zero (Figure 8B). On the other hand, the combination of the N1 amplitude with 

the NWR features was redundant. Finally the comparison between pairs containing 

the N1 amplitude as one of the responses did not show significant differences. 
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Figure 8. Bivariate information carried jointly by spinal and supraspinal features about the 
stimulus. Median values of the information I(S;Rx, Ry), synergy SYN(S;Rx,Ry) and linear term 
Ilin(S;Rx, Ry) about the stimulus that results from pairing single-trial values of NWR RMS 
(Panel A) and N1 amplitude (Panel B) with the remaining SEPs and NWR features,listed as 
Ry (n=16). Red * represent p<0.05 for Wilcoxon one sample signed rank test. Dark * 
represent p<0.05 for post-hoc Tukey test on the ranks. 
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As with the univariate analysis, we tested the validity of the MI measurements (I, Ilin 

and SYN) as a function of the number of bins when all features were combined in 

pairs with NWR RMS and N1 amplitude. Figure 9A displays the behavior of MI 

quantities as a function of the number of bins for a particular feature combination. It 

was generally observed for all the different combinations that the MI quantities did 

not vary substantially when they were estimated with responses discretized with 

more than 4 bins per response (16 response bins in total). Furthermore, the behavior 

of MI quantities (I and SYN) as function of the number of trials was evaluated using 

Monte-Carlo simulation (Figure 9B). Again it was observed that the bias correction 

procedures provided accurate estimates of the MI quantities using 40 trials per 

stimulus (log2(40)≈5). 

 

Figure 9. Validation of the parameters used in the calculation of mutual information 
quantities for a combination of response features. A) Median values of the information 
quantities I, Ilin and SYN provided by the combination of NWR RMS and N1 amplitude 
features (n=16) as a function of the number of bins. Solid line represents the median; shaded 
zones represent the 25 and 75 percentiles. B) Monte-Carlo simulation of bivariate 
information I(S;RNWR RMS, RN1 amplitude) and SYN(S;RNWR RMS, RN1 amplitude) about the stimulus as 
a function of the number of trials. Solid line represents the median; shaded zones represent 
the 25 and 75 percentiles for corrected (bstp) and non-corrected information. 
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Study II presented a novel approach that allows the quantification of information 

content carried by electrophysiological signals at single-trial level. The use of 

mutual information in other types of neurophysiological signals has increased 

steadily in the last years (Ince et al., 2010). Besides being used in 

electrophysiological studies, MI has been applied in other fields as e.g. the study of 

speech perception and the role of low-frequency phase information contained in 

MEG signals (Cogan and Poeppel, 2011). Additionally, MI has been employed in 

the integration of concurrent EEG and fMRI (Panzeri et al., 2008; Ostwald et al., 

2010). 

As expressed before, one of the main advantages of mutual information is that it is 

not constrained by parametric assumptions about the relationship between the 

signals of interest (Magri et al., 2012). MI considers linear and non-linear 

correlations at any order, although the calculation of higher-order correlations are 

limited by practical constraints related to the increasing number of variables and the 

limited number of trials in real experiments (Panzeri et al., 2007). In practice, real 

data from studies in humans which include painful manipulations are limited due to 

ethical and experimental constraints (e.g. habituation or sensitization to electrical 

stimulation). It is therefore vital to select the adequate parameters for MI estimation 

in order to make them fit within the experimental constraints, and validate them 

accordingly. 

3.4. MUTUAL INFORMATION AS AN INDEX OF VARIABILITY 

As mentioned in section 2.2.3, electrophysiological responses that reflect neural 

activation often display evident variability across repeated presentations of the 

stimuli that evoke them. The presence of this across-trial variability might have 

numerous different sources, possibly reflecting how sensory processing is shaped by 

neural network dynamics whose activity is often related to varying physiological 

and cognitive states (Arieli et al., 1996; Engel et al., 2001). Hence, a metric that can 

quantify the variability of these physiological signals might help to elucidate the 

different mechanisms behind the influence of interroceptive and/or exteroceptive 

factors in the perception of sensory processing. 

A possible way to identify how discriminative is a neurophysiological response to 

repeated stimulation and to assess the influence of ongoing activity is to measure the 

amount of information it carries over its time course. This approach has been taken 

before to investigate how local field potentials (Belitski et al., 2008, 2010; 

Montemurro et al., 2008) and EEG fluctuations (Magri et al., 2009) encode complex 

naturalistic visual and auditory stimuli. In Study III, the use of IT is proposed in 

order to study the effect of cognitive tasks over the NWR and the SEPs. 
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3.4.1. Using mutual information to study the modulatory effects of 
attention over NWR and SEPs 

Understanding the neural basis of attentional and emotional modulation of pain 

perception has been a relevant topic of several studies (Apkarian et al., 2005). Pain 

naturally captures attention, generally promoting the interruption of ongoing tasks to 

prioritize appropriate actions in order to avoid a potential threat (Legrain et al., 

2009). Still, this inherent capacity of pain to redirect attention might be detrimental 

in chronic pain conditions where patients can find it difficult not to focus on the pain 

at the expense of the rest of daily living (Crombez et al., 2005). Therefore, studying 

how nociceptive stimuli capture attention and how the processing of this input is 

influenced by top-down factors might help explaining the mechanisms involved in 

pain-related conditions. 

Electrophysiological responses such as the SEPs and NWR often exhibit variability 

which is typically associated to various unrelated factors and thus minimized on 

behalf of improving the SNR. However as explained above, trial-to-trial variability 

might contain information regarding ongoing physiological states which might be 

lost when signals are averaged across-trials (Arieli et al., 1996). Hence, the ability to 

measure across-trial variability of SEPs and NWR would allow incorporating the 

potential information contained in the variability of these responses to investigate 

how different emotional and cognitive processes can modulate somatosensory 

processing of nociceptive input. 

In Study III, an experimental setup was established to assess the modulation exerted 

by two cognitive tasks over SEPs and the NWR during repeated electrical 

stimulation. The experiment consisted of a single session of six stimulation blocks 

with two alternating experimental conditions. The different conditions consisted of 

two cognitive tasks that had to be performed while receiving electrical stimulation: 

1) attention to the stimuli (“attention”), where the subjects had to count the number 

of stimuli received; 2) distraction from stimulation (“distraction”), where subjects 

performed a modified version of the Stroop test (Stroop, 1935). Each block 

consisted of 24 stimuli (72 in total). Averaged responses for the two conditions are 

shown in Figure 10. 

In Study III, a different approach was taken to compute the information carried by 

the responses about the repeated presentation of electrical stimuli. Each time point 

of the correspondent window of interest was considered as a different “stimulus” 

and labeled by an index s (Belitski et al., 2008). Thus, the obtained responses (NWR 

and SEPs) were then quantified in each time point and each trial. Particularly, the 

NWR was quantified by taking the rectified signal amplitude; the SEPs were 

quantified using the instantaneous power and phase of the EEG by means of Hilbert 

transform. 
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Figure 10. (A) Averaged NWR responses across participants for the two experimental 
conditions (n=13). (B)Averaged waveforms of the SEP responses and scalpmaps accross 
participants (n=13) for the two experimental conditions: attention to the stimulation and 
distraction from stimulation. 

In order to estimate the probability distributions of NWR and SEPs, the response 

spaces where discretized by binning the NWR amplitude and the SEP instantaneous 

power into 12 equipopulated bins, and the SEP phase in 4 equipopulated bins. In 

total, one MI value was calculated for each subject, for each response (NWR 

amplitude and SEP power), for each channel and for each experimental condition 

(attention and distraction). 

Results regarding the information carried by the NWR amplitude are shown in 

Figure 11. It was observed that the NWR was more informative (i.e. more 

discriminative) during distraction than the attention. Obtaining high information 

content is the result of good discrimination between the different stimuli (here 

referred as the different time points); this benefits from both distinct mean responses 

and high trial by trial reliability (Belitski et al., 2010). It is thus possible that the 

increased information observed in the NWR during distraction reflects a reliable 

lack of descending inhibition of spinal reflexes across trials under a demanding 

visual task. Instead, the attentional task of counting stimuli was probably not 

challenging enough to fully engage the subjects. This could lead to a variable focus 
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of attention on the stimulus and consequently varying level of descending control. 

As a result, smaller and less reliable spinal responses were observed in the attention 

condition and this was reflected in a reduction of their carried information. 

The role of descending control from supraspinal centers over the NWR has been 

addressed in section 2.1.3. Descending control of spinal nociception is tonic, but 

there is a dynamical balance between inhibition and facilitation that depends on the 

behavioral, emotional and pathological state (Heinricher et al., 2009). It is possible 

that the lack of inhibition observed in the NWR during the distraction task in the 

present study is the result of descending modulatory control over the excitability of 

dorsal horn neurons. This mechanism might serve as an enhancement of nocifensive 

excitability advantageous for survival in situations where the attention is focused in 

another task.  

 

 

Figure 11. Mutual information analysis of the NWR for the two experimental conditions. 
Mean values of the information I(S;R) about the stimulus carried by the amplitude of the 
nociceptive withdrawal reflex (NWR). The length of the window of interest where to perform 
this calculation was 50-160 ms. Error bars represent 95% confidence interval. *: p<0.05. 
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Defining the stimulus set S by considering each time point as a different stimulus 

level s has the advantage that the information calculation considers the potential 

contributions of the effects of all time delays between the obtained response and the 

stimulus that evoked it. By using this definition, the observed response at eacth time 

point could be elicited by any sensory feature either occurring in that specific 

moment or in any previous time window (Belitski et al., 2010; Magri et al., 2012). 

Furthermore, it does not rely on any methods for extraction signal feature, e.g.  peak 

detection as in Study II. 

 

Figure 12. Mutual information analysis of the SEPs for the two experimental conditions. 
Mean values of the information I(S;R) about the stimulus carried by the amplitude of the 
somatosensory evoked potentials at 5 different channels. The length of the window of interest 
where to perform this calculation was 40-400 ms. Error bars represent 95% confidence 
interval. *: p<0.05. 
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On the contrary, information carried by SEP power was found to be less informative 

during the distraction task than the attention task (Figure 12) in Fz and contralateral 

to the site of stimulation (C3 channel). No significant differences were observed in 

the SEP phase between to the experimental conditions.  

It is possible that the differences in information on the SEP power are reflecting the 

changes in the cognitive load between the two experimental conditions. The 

observed changes in contralateral and fronto-central scalp areas could be related to 

two SEP components which might index activity at the somatosensory association 

cortex and medial prefrontal cortex; these components are thought to be involved in 

changes in attentional control (Dowman, 2007). 





SYNTHESIS 

43 

CHAPTER 4. SYNTHESIS 

The present dissertation described an evaluation of an alternative approach for the 

simultaneous assessment of single-trial spinal and supraspinal responses using 

Information theory. The present work introduced the first steps towards the use of 

mutual information for the integration of two electrophysiological methods (NWR 

and SEPs) that are widely used in the study of somatosensation. 

The Ph.D. project comprised two stages, the first of which was to establish a setup 

for the simultaneous recording of NWR and SEPs elicited by electrical stimulation 

at different intensities and to evaluate the possibility of using single trials to assess 

their relation with the stimulus. In regards to single-trial estimation, Study I 

investigated the impact of choosing different detection and estimation techniques in 

the assessment of SEP features. Results showed large differences in the agreement 

between the chosen methods which consisted of two automatic algorithms and two 

human observers. These results highlighted the importance of selecting an 

appropriate single-trial estimation method that suits the specific experimental 

conditions. Studies that include single-trial estimation should put special focus in the 

selection process of the detection/estimation method, since a particular choice may 

even sway the outcome (and consequently, the interpretation) of an experiment. 

Concerning the simultaneous elicitation of NWR and SEPs, stimulus intensity was 

the first obvious choice as an experimental parameter since it is a straightforward 

way to modulate the magnitude of these two responses. As shown before with 

averaged responses, it was observed in Study II that increasing stimulus intensity 

naturally modulated both single-trial NWR and SEPs to different degrees. 

Interestingly, stimulation intensity did not have a large effect on the level of 

agreement between manual and automatic methods, so the difference found could be 

attributed to other causes, most notably the different approaches taken to address the 

presence/absence of a response. 

The second stage evaluated the possibility of quantifying the information about the 

stimulus carried by features extracted from both NWR and SEPs. The analysis of the 

individual amount of information carried by the signal features showed that NWR 

features that encode the amplitude of the NWR were generally the most informative. 

These observations most likely reflect the difference in the number of concurrent 

neural sources being active at these two levels of the neuraxis. It was then shown 

that the information carried by NWR and SEP features can be assessed 

simultaneously, and that the information carried jointly between features of the two 

modalities was mainly redundant. This synergy/redundancy obtained from the MI 

calculation could be further divided in subsequent sub-terms which disentangle the 

possible impact of correlations between the variables on information transmission. 

Although these terms were available, they were not analyzed mainly because most 

SEP features already carried relatively low information about stimulation intensity. 
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Since the calculation of these sub-terms is more prone to be biased due to the limited 

amount of experimental data, making inferences on those results could lead to 

imprecise interpretations. Finally, MI was considered a way to assess the effect of 

cognitive modulatory tasks on the variability of both NWR and SEP signals. MI was 

therefore employed in Study III to quantify the amount of information about the 

repeated presentation of electrical stimuli contained in the time course of these two 

signals under two different experimental conditions: attention and distraction from 

the stimulus. It was found that during the distraction condition the NWR was more 

informative than the attention condition, possibly reflecting changes in the tonic 

control of supraspinal centers over the excitability of spinal pathways. Furthermore, 

the top-down modulation exerted onto the SEPs by ongoing cognitive processes 

such as the distraction task was reflected in a reduction of the information carried by 

the SEPs in relation to the stimulus. 

All in all, it is possible to conclude that the IT framework is an appropriate and 

promising methodology to quantify spinal and supraspinal responses and their 

relation in pain research. 

4.1. FUTURE PERSPECTIVES 

From a methodological perspective there are many challenges ahead towards the 

inclusion of information theory for the assessment of simultaneous NWR and SEPs. 

Particularly, the lack of specificity of electrical stimulation for activating nociceptive 

fibers logically reduced the use of SEPs in pain research in the past. However, new 

electrode configurations and stimulation patterns that aim to activate nociceptive 

fibers are continuously being developed, which might provide a new alternative in 

that matter. It is also of interest to use MI to analyze how the information carried by 

spinal and supraspinal responses is influenced by other stimulation techniques. 

Furthermore, MI could be also used to assess information transmission between 

different cortical areas (connectivity analysis) during somatosensory processing. 

As discussed in Study I, pre-processing methods can have big differences between 

their outcomes. In this regard, MI could very well be used to quantify how different 

pre-processing strategies affect the estimation of certain SEP or NWR features in 

order to further maximize the information they carry about a particular process. 

Overall, given the non-linear nature of sensory processing, the IT framework should 

be considered as a viable approach for understanding the non-linear mechanisms 

behind somatosensation.
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The nociceptive withdrawal reflex (NWR) and the somatosensory evoked 
potentials (SEPs) are two physiological responses that reflect spinal and 
supraspinal sensory processing, respectively. Although they can be elicit-
ed synchronously, its concurrent use in pain research is limited. Still, its 
assessment has mainly focused on the averaged signals across trials. Yet, 
an increasing body of work suggests that across-trial variability should be 
considered as a functional property of the nervous system that could index 
modulatory and clinical conditions.

In this Ph.D. project the aims were to study the viability of using single-tri-
al (ST) features from both NWR and SEPs and to introduce Information 
Theory (IT) as a viable approach to integrate ST data and to characterize 
signal variability of these two signals to provide more insight about pain 
processing mechanisms.

Results emphasized the impact of selecting different ST detection methods. 
Moreover, it was shown that the IT framework can be used to quantify the 
information carried jointly by NWR and SEPs. Finally, it was found that 
cognitive modulatory tasks were accompanied by changes in the variabili-
ty of the NWR and SEPs, and this was reflected in the information content 
across conditions.

In conclusion, the IT framework is a suitable and promising methodology to 
quantify the relation between spinal and supraspinal activity in pain research.
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