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 English Summary 1

Walking recovery is one of the main goals after a spinal cord injury (SCI), although almost never 

attainable in subjects with complete lesion it’s a realistic object for subjects with incomplete 

lesions, among which recovery of walking is rated at first place among rehabilitation objectives1. 

Epidemiological studies indicate in the last years a progressive increase of incomplete lesions 

among SCI in the last years (e.g., with chances of walking recovery)2 and recovery of ambulation 

has become the target of several rehabilitative approaches3.  

In subjects with SCI, age and lower extremity muscle strength have been commonly considered 

the main factors affecting walking function4. Consequently, most rehabilitation approaches aimed 

at reinforcing the lower extremities. However, as recently reported by our group, many factors 

besides muscle strength influence the recovery of walking function5. In particular, we 

demonstrated that balance and spasticity, as well as weight and distance from the lesion, are key 

factors affecting walking performance in SCI subjects 5. From this statistical evidence derived the 

hypothesis that weight unloading as well as balance and spasticity specific treatments might 

improve gait performance in SCI. In this line, the present study aimed at testing different 

approaches to improve gait and at investigating gait effects of body weight reduction due to a 

water environment in subjects with SCI:  

i) Efficacy of task-specific biofeedback balance training in supporting walking functions:  

Recently it has been demonstrated that balance is a key factor of walking recovery. The object of 

the study was to assess parameters and indexes for balance testing in subjects with SCI and to 

determine the efficacy of visual biofeedback task-specific balance training (vBFB) in improving 

balance performance and gait compared with conventional over-ground rehabilitation. Two 

different studies designs have been employed. A serial cross-sectional study paradigm was 

employed to assess reliability, validity, and responsiveness of balance platform parameters while 

an open-case study with retrospective control was used for the vBFB training study. Results 

allowed to focus reliable, valid, and effective parameters for balance assessment in SCI subjects 

and demonstrated that vBFB training is effective in improving balance and gait in chronic motor 

incomplete SCI subjects.  

ii) Efficacy of neuromuscular Kinesio Taping (KT) in decreasing spasticity and improving 

gait: 

In recent years, the application of Kinesio Taping has been proposed to enhance sensory inputs, 

decreasing spasticity by proprioception feedback and relieving abnormal muscle tension; 

therefore our goal was to analyze the effects of ankle joint KT on spasticity, balance, and gait in SCI 

subjects. A randomized crossover case control design was used to compare the effects of KT and 

conventional non elastic silk tape in 11 chronic SCI subjects, AIS level D. Data demonstrated that 

short-term application of KT reduces spasticity and pain and improves balance and gait in chronic 

SCI subjects.  
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iii) Effect of water buoyant force on gait characteristics of SCI subjects: 

Aim of this study was to characterize gait features of subjects with incomplete SCI walking in water 

and on land in comparison with healthy controls to identify the specificity of water environment 

on influencing gait in SCI subjects. Kinematic gait parameters and range of motion of joint angles 

of 15 SCI subjects and 15 controls were analyzed. Data indicated that gait in water of the SCI 

subjects is associated with kinematic parameters more similar to those of the CTRLs, particularly 

regarding speed, stride length, and stance phase, supporting the idea that walking in a water 

environment may be of rehabilitative significance for SCI subjects. 

Balance, somatosensory inputs and body weight are clearly closely related in influencing gait 

functions. Weight, spasticity and impaired balance are also the chief limitations to over-ground 

ambulation in subjects with SCI5. Balance impairment is obviously associated with an increase in 

the prevalence of falls and subsequent injuries6; ankle spasticity is rated as one of the major gait 

impairment in incomplete SCI5;6 and there is general consensus on considering water environment 

useful for gait recovery in SCI7. Present study addresses these three factors by specific approaches 

demonstrating the transfer of balance improvement into gait improvement, by opening a new line 

of spasticity treatment by taking advantage of somatosensory inputs trough KT, and by 

characterizing the effects of water environment on gait from a kinematic point of view.  

Gait control mechanism are multifarious including spinal, suprapsinal and peripheral inputs, it is 

conceivable that treatments aiming at restoring gait would take advantage of all the systems 

involved. Present study demonstrate the importance of defying the contribution of the different 

system in affecting gait after SCI and of developing specific patient centred protocols to improve 

gait  by selectively targeting the impaired systems.  
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 Danish summary / Dansk sammenfating  2

 

Titel: Genoprettelse af gang for forsøgspersoner med rygmarvsskader: Fra klinisk erfaring til 

forskningsudvikling 

Genoprettelse af gang er et af hovedmålene efter rygmarvsskader. Selv om det næsten aldrig 

opnås af forsøgspersoner med komplette læsioner, er det et realistisk mål for forsøgspersoner 

med ukomplette læsioner, for hvem genoprettelse af gang det første blandt træningsmålene1. 

Epidemiologiske studier indikerer en stigende andel af ukomplette læsioner blandt 

rygmarvsskader (dvs. med en chance for at genoprette gangevnen)2, og genoprettelse af gang er 

blevet målet for flere rehabiliteringsteknikker3.  

Blandt forsøgspersoner med rygmarvsskader har alder og muskelstyrke i benene almindeligt set 

været hovedfaktorerne, der påvirker gangfunktionen4. Som følge heraf forsøger de fleste 

rehabiliteringstilgange at styrke musklerne i benene. Som tidligere påvist af vores gruppe har 

mange andre faktorer ud over muskelstyrke dog indflydelse på genoprettelse af gangevnen5. Især 

demonstrerede vi, at balance, spasticitet såvel som vægt og distance mellem læsionen og benene 

er hovedfaktorer, der påvirker gangevnen hos forsøgspersoner med rygmarvsskader. Baseret på 

disse statistiske resultater blev følgende hypotese opstillet: Aflastning af kropvægt såvel som 

balance- og spasticitetsspecifikke behandlinger kan forbedre gangevnen hos rygmarvsskadede 

forsøgspersoner. Som følge heraf forsøgte dette studie at teste forskellige tilgange til at forbedre 

gang og at undersøge effekterne af vægtreduktion som følge af et akvatisk miljø på 

rygmarvsskadede forsøgspersoners gang evne: 

i) Effektivitet af opgave-specifik biofeedback balancetræningtil at understøtte gangevne: 

For nyligt er det blevet påvist, at balance er en hovedfaktor for genoprettelse af gangevnen. Målet 

med studiet var derfor at vurdere passende parametre og indekser for balancetræning for 

rygmarvsskadede forsøgspersoner og bestemme effektiviteten af opgave-specifik visuel 

biofeedback balancetræning (oVBBT) til at forbedre balanceevne og gang i sammenligning med 

konventionel rehabilitering på fast underlag. To forskellige forsøgsdesigns blev anvendt; et serielt 

tværsnitsundersøgelsesparadigme blev brugt til at estimere rehabiliteringen, validiteten og 

følsomheden af balance-platformsparametre, mens et åbent casestudie med retrospektiv kontrol 

blev brugt til studiet af oVBBT-træning. Resultaterne gjorde det muligt at definere pålidelige, 

valide og effektive parametre til at evaluere balanceevnen hos rygmarvsskadede forsøgspersoner 

og demonstrere, at oVBBT-træning er effektiv til at forbedre balance og gang  for forsøgspersoner  

med kronisk ukomplet rygmarvsskade.  
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ii) Effektivitet af neuromuskulær kinesiotaping (KT) til at reducere spasticitet og forbedre 

gang: 

I de senere år er KT blevet foreslået anvendt til at forstærke sensorisk input, reducere spasticitet 

fra proprioceptiv sansefeedback og aflaste anormal muskelspænding. Vores mål var at analysere 

effekterne af KT anvendt på ankelled for spasticitet, balance og gang hos rygmarvsskadede 

forsøgspersoner. Et randomiseret crossover case-kontrolstudie blev anvendt til at sammenligne 

effekterne af KT og konventionel ikke-elastisk silketape på 11 kroniske rygmarvsskadede 

forsøgspersoner. Resultaterne viste, at kortsigtet brug af KT reducerer spasticitet og smerte samt 

forbedrer balance og gang hos kronisk rygmarvsskadede forsøgspersoner. 

iii) Effekten af vands opdriftskraft på gangkarakteristik hos rygmarvsskadede forsøgspersoner: 

Målet med dette studie var at karakterisere gangegenskaber hos forsøgspersoner med ukomplet 

rygmarvsskade, der går i vand og på land, i forhold til raske kontrolforsøgspersoner for at 

identificere, hvordan af det akvatiske miljø påvirker gangevnen hos rygmarvsskadede 

forsøgspersoner. Kinematiske gangparametre og bevægelseområderne for ledvinkler for 15 

rygmarvsskadede forsøgspersoner og 15 kontrolforsøgspersoner blev analyseret. Resultaterne 

indikerer, at gang i vand for rygmarvsskadede forsøgspersoner var associeret med kinematiske 

parametre og mere lig de raske kontrolpersoners gang, især i forhold til hastighed, skridtlængde 

og standfase, hvilket understøtter hypotesen, at gang i vand kan være signifikant for 

rehabiliteringsprotokoller for rygmarvsskadede forsøgspersoner. 

Balance, somatosensoriske input og kropsvægt er tydeligvis tæt relaterede i påvirkningen af 

gangfunktioner. Vægt, spasticitet og nedsat balance er også begrænsende faktorer for normal 

gang hos forsøgspersoner med rygmarvsskade5. Balancenedsættelse er tydeligvis associeret med 

en stigning i prævalensen for fald og efterfølgende skader6; ankelspasticitet anses for at være en 

af de hyppigste forstyrrelser af normal gang hos ukomplet rygmarvsskade5;6 og der er en generel 

konsensus om, at træning i akvartisk miljø er brugbart til genoptræning af gang efter 

rygmarvsskade7. Dette studie undersøgte disse tre faktorer ved hjælp af specifikke tilgange og 

demonstrerede videreførelsen af forbedring i balancen til forbedring af gang; ved at følge nye veje 

til spasticitetsbehandling, ved at udnytte somatosensoriske input via KT og ved at karakterisere 

effekten af et akvartisk miljø på gang fra et kinematisk synspunkt. 

Gangkontrolmekanismer er mangfoldige og inkluderer spinale, supraspinale og perifere inputs, og 

det er tænkeligt, at behandlinger, der sigter mod at genoprette gangevnen, burde udnytte alle 

involverede systemer. Dette studie demonstrerede vigtigheden af at definere forskellige 

systemers bidrag til gangnedsættelsen efter rygmarvsskade samt vigtigheden af, at udvikle 

patientcentrerede protokoller, som selektivt målretter en passende behandling til det skadede 

system.  
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 List of abbreviations 3

 

- 6MWT: Six Minute Walking Test 

- A: area of the ellipse encompassing 90% of COP samples 

- AIS: ASIA Impairment Scale  

- AIS A: complete spinal cord lesion 

- AIS B: sensory incomplete spinal cord lesion 

- AIS C: motor incomplete spinal cord lesion 

- AIS D: motor incomplete spinal cord lesion 

- AIS E: normal 

- ASIA: American Spinal Injury Association  

- BBS: Berg balance scale 

- BBS: Berg Balance scale  

- BWS: body-weight support  

- BWSTT: supported treadmill training  

- CE: eyes closed 

- CI: coactivation index 

- COM: body's center of mass  

- COM: centre of mass 

- COP: he center of pressure 

- COP: the center of pressure  

- CPG: central pattern generators  

- CV: coefficient of variation  

- DTS: double-time support phase 

- EHL: extensor hallucis longus 

- EMG: electromyographic  

- ES: effect size 

- FA: feet apart at a comfortable distance 

- FES: functional electric stimulation 

- FT: feet together  

- G: gastrocnemius  

- GPS: Global Pain Scale  

- HD: heel distance 

- ICC: intraclass correlation  

- KT: KinesioTaping  

- L: COP path length 

- LEMS: lower extremities motor score 

- MAS: Modified Ashworth Scale  

- MDC95: minimal detectable change 

- MVC: maximal voluntary contraction 
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- NTSCI: non-traumatic spinal cord injury 

- OE: eyes open 

- PSFS : Penn modified Spasm Frequency Scale 

- RGO: reciprocating gait orthosis 

- ROM: range of motion  

- RMS: Root mean square 

- S: soleus  

- SA1 and SA2: length of A semiaxes  

- SCATS : Spinal Cord Assessment Tool for Spastic Reflexes subscale for clonus assessment 

- SCI: spinal cord injury 

- SEM: the standard error of measurement  

- SOA: state of the art 

- SP: stabilometric platform 

- Spearman correlation coefficient (  

- ST: non elastic silk tape  

- TA: tibialis anterior  

- TMWT: Ten Meters Walk test 

- TS: Tinetti scale  

- TSCI: traumatic spinal cord injury 

- TUG: Timed Up and Go test 

- V: COP mean velocity  

- VAP: COP anteroposterior velocity  

- VAS: visual analog scale  

- vBFB: visual biofeedback  

- VLL: COP laterolateral velocity  

- WHO: World Health Organization 

- WISCI: walking index for SCI 

- WISCI: Walking Index for Spinal Cord Injury 

- WL: walking on land   

- WW: walking in water 

- X: mean position of COP along the planar laterolateral coordinates on the platform  

- Y:  mean position of COP along the planar anteroposterior coordinates on the platform  
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 INTRODUCTION  4

The Edwin Smith papyrus, an ancient Egyptian physician textbook, described, in 1700BC, Spinal Cord 

Injury (SCI) as an ‘‘ailment not to be treated’’8.  Actually SCI can be defined as lesion that occurs in 

any portion of the spinal cord and results in complete or incomplete impairment in motor, sensory 

and autonomic functions below the injury level8. SCI aetiology may be traumatic or non-traumatic. As 

recently reported by Lee et al. 9 “traumatic spinal cord injury (TSCI) is a catastrophic event that is 

sudden and unexpected and can be devastating and costly in human and social terms. TSCI in 

developed (high income) and developing countries primarily affects males aged 18–32 years, and in 

developed countries, due to an ageing population, males and females over the age of 65 years. 

Globally, knowledge on the number of people living with TSCI (prevalence) as well as the number of 

new cases annually (incidence) is minimal, particularly in developing countries, hindering injury 

prevention, health care and other social planning”. Also New at al.10 reported that “damage to the 

spinal cord can arise from many causes other than trauma, often referred to as non-traumatic spinal 

cord injury (NTSCI). Compared with TSCI, there are relatively few publications on NTSCI. It is 

anticipated that with the aging of the global population in coming decades the incidence of NTSCI will 

increase substantially”.  

Depending on the lesion level and severity, SCI may impact sensorimotor and/or autonomous 

functions. In affected subjects the overall goal of rehabilitative interventions is the regaining of 

independence associated with a good quality of life. Quality of life can be scored quite differently. 

From patient’s perspective targeting restoration of bladder and bowel function is the principal gals in 

subjects with paraplegia, while subjects with tetraplegia consider recovery of upper limb function as 

prominent 11. However, recovery of locomotor ability is also of high priority by SCI subjects 

independently from severity, time after injury and age at the time of injury11. Walking recovery is a 

realistic goal for subjects with incomplete lesions, among which recovery of walking is rated at first 

place of rehabilitation objectives1. 

 

Consequently, walking recovery has become the target of several rehabilitation approaches. SCI gait 

rehabilitation is based on the re-organization of pre-existing and new neural circuits12 by optimising 

those parts of sensorimotor system still intact13, 14. Recent studies underlined the crucial role of task-

specific sensory cues to favour the recruitment of both spinal circuitries and spared supraspinal 

connections during rehabilitation. Even if standardized rehabilitation procedures became established 

in the past 20 years, there is still no full consensus on the most effective approaches.   

 

Worthy to note that in subjects with SCI, age and lower extremity muscle strength have been 

commonly considered the main factors affecting walking function4. Consequently, most 

rehabilitation approaches aimed at reinforcing the lower extremities. However, as recently reported 

by our group, many factors besides muscle strength influence the recovery of walking function5. In 

particular, we demonstrated that balance and spasticity, as well as weight and distance from the 

lesion, are key factors affecting walking performance in SCI subjects5. From this evidence derived the 
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hypothesis that weight unloading as well as balance and spasticity specific treatments, might 

improve gait performance in SCI. In this line, the present thesis aimed at testing different approaches 

to improve gait and at investigating effects on gait of body weight reduction in water environment in 

subjects with motor incomplete SCI. 
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 SPINAL CORD INJURY LESION 5

 

The spinal cord is situated within the spinal column (Figure 1), it extends down from the brain to 

the L1−L2 vertebral level, ending in the conus medullaris.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Longitudinal organization of the spinal cord (with cervical, thoracic, lumbar and sacral segments 
shaded), spinal vertebrae, and spinal nerves and a rough representation of major functions of the spinal 

cord. 

 

Continuing from the end of the spinal cord, in the spinal canal, is the cauda equina (or “horse’s 

tail”). The spinal cord itself has neurological segmental levels that correspond to the nerve roots 

that exit the spinal column between each of the vertebrae. There are 31 pairs of spinal nerve 

roots: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral and 1 coccygeal. Owing to the difference in length 



SPINAL CORD INJURY LESION 

19 
 

between the spinal column and the spinal cord, the neurological levels do not necessarily 

correspond to the vertebral segments8.  

Spinal cord injury lesion (SCI) may be traumatic (TSCI) or non-traumatic (NTSCI). Traumatic SCI can 

result from many different causes – including falls, road traffic injuries, occupational and sports 

injuries, and violence. Non-traumatic SCI, on the other hand, usually involves an underlying 

pathology – such as infectious disease, tumour, musculoskeletal disease such as osteoarthritis, and 

congenital problems such as spina bifida, which is a neural tube defect that arises during 

development of the embryo.  

The symptoms of spinal cord lesion depend on the extent of the injury or non-traumatic cause, but 

they can include loss of sensory or motor control of the lower limbs, trunk and the upper limbs, as 

well as loss of autonomic (involuntary) regulation of the body. This can affect breathing, heart 

rate, blood pressure, temperature control, bowel and bladder control, and sexual function.  

In general, the higher up the spinal cord the lesion occurs the more extensive the range of 

impairments will be. Cervical SCI commonly causes sensory and motor loss (paralysis) in the arms, 

body and legs, a condition called tetraplegia (the alternative term quadriplegia is now less used). 

Someone with C4 or higher lesions may require a ventilator to breathe because the lesion directly 

interferes with autonomic control. Thoracic SCI commonly causes sensory and/or motor loss in the 

trunk and legs, a condition called paraplegia. Lumbar SCI typically causes sensory and motor loss in 

the hips and legs. All forms of SCI may also result in chronic pain15.  

The extent and severity of sensory, motor and autonomic loss from SCI depends not only on the 

level of injury to the spinal cord, but also on whether the lesion is “complete” or “incomplete.” 

According to the International Standards for Neurological Classification of SCI, with the American 

Spinal Injury Association (ASIA) Impairment Scale (AIS), an SCI is considered complete if there is no 

sensory and motor function at S4−S5. While some sensory and or motor function is preserved 

below the level of injury in incomplete SCI, including the lowest sacral segments S4-S5, it is no less 

serious and can still result in severe impairments 15. 

 

5.1 Understanding spinal cord injury 

SCI is medically complex and life-disrupting condition. Historically, it has been associated with very 

high mortality rates. Yet today, in high-income countries, SCI can be viewed less as the end of a 

worthwhile or productive life and more as a personal and social challenge that can be successfully 

overcome. This change reflects better medical provision, which means that people are able to 

survive, live and flourish after injury. For instance, people who develop SCI can now usually benefit 

from improved emergency response, effective health and rehabilitation interventions, and 

technologies such as respirators and appropriate wheelchairs, together with more extensive social 

services and more accessible environments. As a result, lives can be saved and functioning can be 

maximized. Many people with SCI can now anticipate not just a longer life, but also a fuller and 

more productive life, than they would have had in previous generations15. 

In low-income countries the situation is very different. Traumatic SCI often remains a terminal 

condition. Most people with SCI in a country such as Sierra Leone die within a few years of injury. 
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In low-income countries, and in many middle-income ones, the availability of quality assistive 

devices such as wheelchairs is very limited, medical and rehabilitation services are minimal, 

and opportunities to participate in all areas of personal and social life are constrained. The 

situation in many developing countries today is comparable to what it was in Europe and North 

America in the 1940s. Poverty makes life even harder for people with SCI. Yet the fact that such 

dramatic progress in survival and participation has been seen in high-income countries over a 

relatively short period of time should be a reason to be optimistic for other parts of the world. 

With the right policy responses, it should be possible to live, thrive and contribute with SCI 

anywhere in the world 15. 

 

5.2 Spinal cord injury classifications 

The neurological damage caused by both traumatic and non-traumatic SCI prevents sensory and 

motor information from travelling to and from the brain below the level of the injury. The impact 

of SCI on function will depend on the level and severity of injury and the available health care. The 

International Standards for Neurological Classification of Spinal Cord Injury are often used in 

health-care settings to describe the extent of injury (including type and level of injury) on the basis 

of a systematic sensory and motor examination of neurological function 15.  

SCI can be divided into two types of injury on the basis of severity , namely:  

- Complete injury − people who experience a complete injury have no sensory or motor 

function below the level of the SCI and specifically at S4–S5.  

- Incomplete injury – people who experience an incomplete injury retain some function  

 

(i.e. sensory and muscular) below the neurological level of injury, including at the lowest 

sacral segments S4–S5. There are different types of incomplete SCI, such as anterior, 

central and posterior cord syndrome, and Brown-Sequard syndrome, which can influence 

residual function.  

 

The level at which the spinal cord is damaged determines which parts of the body may be affected 

by paralysis, i.e. loss of muscle function and sensation15:  

- Paraplegia – refers to an injury to the thoracic (T2−T12), lumbar (L1−L5) or sacral (S1−S5) 

segments of the spinal cord, which includes the conus medullaris (distal bulbous part of the 

spinal cord) or to the cauda out from the spinal cord at L1−L2). It results in a loss of varying 

degrees of control of the lower limbs and trunk without involvement of the upper limbs. 

For example, people with complete injuries between T2 and T8 will have poor trunk 

control, due to a lack of abdominal muscle control, and total loss of function in the lower 

limbs; people with complete lower level injuries between T9 and T12 will have good trunk 

and abdominal control and total loss of function in the lower limbs; while people with 

lumbar and sacral injuries will have some control over their lower limbs. Figure 1.1 in 

Chapter 1 shows the location of the different segments of the spinal cord.  
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- Tetraplegia – is used to describe an injury to the cervical segments of the spinal cord, i.e. 

between C1 and T1. Depending on the severity and level of injury, tetraplegia results in 

varying degrees of functional loss in the neck, trunk, and upper and lower limbs. For 

example, people with complete C1−C3 injuries will require the assistance of a ventilator to 

breathe; people with complete C5 injuries will have shoulder/upper arm control but no 

wrist/hand control; people with complete C6 injuries will have wrist extension but no 

hand/finger function; and people with complete C7−C8 injuries will be able to control their 

upper limbs but will experience problems with hand/finger dexterity.  

 

In addition to the motor-sensory loss, SCI affects the autonomic neurologic function of the body, 

resulting in multiple impairments such as loss of bowel, bladder and sexual functions. People with 

SCI also experience a range of activity limitations and participation restrictions in areas such as 

mobility (e.g. changing body position, transferring, walking), self-care activities (e.g. bathing, 

dressing, toileting, eating), domestic activities (e.g. cleaning, cooking, caring for others), education, 

employment, maintenance of  social relationships, and participation in leisure activities15.  
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5.3 Traumatic spinal cord injury  

5.3.1 Incidence  

In a very recent literatur review Lee et al. 9 updated the global maps for TSCI. A global-incident 

rate (2007) is estimated at 23 TSCI cases per million (179 312 cases per annum). Regional data are 

available from North America (40 per million), Western Europe (16 per million) and Australia (15 

per million). Extrapolated  regional data are available for Asia-Central (25 per million), Asia-South 

(21 per million), Caribbean (19 per million), Latin America, Andean (19 per million), Latin America, 

Central (24 per million), Latin America-Southern (25 per million), Sub-Saharan Africa- Central (29 

per million), Sub-Saharan Africa-East (21 per million) 9 (Figure 2).  

 

 

 

Figure 2: Spinal cord injury by World Health Organization (WHO) Global Regions from traumatic causes 
1959–2011 [Lee et al. 2014]. 
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5.3.2 Causes  

It is estimated that globally in 2007, there would have been between 133 and 226 thousand 

incident cases of TSCI from accidents and violence. The proportion of TSCI from land transport is 

decreasing/stable in developed but increasing in developing countries due to trends in transport 

mode (transition to motorised transport), poor infrastructure and regulatory challenges. TSCIs 

from low falls in the elderly are increasing in developed countries with ageing populations. In 

some developing countries low falls, resulting in TSCI occur while carrying heavy loads on the head 

in young people. In developing countries high-falls feature, commonly from trees, balconies, flat 

roofs and construction sites. TSCI is also due to crush-injuries, diving and violence 9 (Figure 3).  

 

 

Figure 3: SCI by country from traumatic causes [Lee et al. 2014]. 
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Based on available evidence on the etiology of TSCI across World Health Organization (WHO) 15 
regions, the three most common causes are transport (road traffic crashes in particular), falls and 
violence (Figure 4) and is evident the higher incidence of falls among the elderly (Figure 5) 

 

 

Figure 4: Distribution of TSCI by WHO region [International Perspectives on Spinal Cord Injury, ISCOS, 2013] 

 

 

Figure 5: Aetiology of SCI by age group [International Perspectives on Spinal Cord Injury, ISCOS, 2013] 

 

Errore. L'origine riferimento non è stata trovata.) Figure 4: Distribution of TSCI by WHO region 
[International Perspectives on Spinal Cord Injury, ISCOS, 2013] 
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5.4 Non-traumatic spinal cord injury  

5.4.1 Incidence  

There are far fewer studies on NTSCI incidence than TSCI incidence10. Global and regional 

incidence rates cannot be estimated because existing studies are not representative or 

comparable, owing to methodological issues such as different inclusion/exclusion criteria, 

incomplete case ascertainment, or inadequacies in reporting population at risk. The NTSCI 

incidence rate in Canada is estimated to be 68 per million. Australian estimates, using data from 

the State of Victoria, report an incidence of 26 per million . Data from a hospital with a specialized 

SCI unit in Spain report 11.4 per million.  The incidence of NTSCI varies by both age and sex. As 

with TSCI, incidence rates of NTSCI are higher among males than females. In contrast to TSCI, 

NTSCI incidence increases steadily with age, with risk probably influenced by the increase of ill 

health with increasing age. Since NTSCI is more common in older age groups, and given global 

ageing, NTSCI incidence will increase and may overtake that of traumatic TSCI in the next decades.  

Recently New et al. 10 reviewed 377 publications and 45 reports from 24 countries in 12 of the 21 

lobal regions including informations on the incidence, prevalence, survival, level of injury and 

aetiology of NTSCI. There was a paucity of quality population-based incidence data on NTSCI. 

Global maps of NTSCI epidemiological outcomes (1959–2011) are presented by WHO global 

regions (Figure 6) and countries  (Figure 7).  

Figure 6: Global maps of NTSCI epidemiological outcomes (1959–2011) by WHO global regions [New et al. 2014]. 
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Figure 7: Global maps of NTSCI epidemiological outcomes (1959–2011) by country [New et al. 2014]. 

 

 

 

5.4.2 Aetiology  

There are few reliable national data concerning the etiology of NTSCI, but studies suggest that the 

leading causes are neoplastic tumours and degenerative conditions of the spinal column, followed 

by vascular and autoimmune disorders . In countries such as India, Peru and Sweden, where there 

are high levels of tuberculosis and other infectious diseases, these dominate all causes of NTSCI 

except tumours . Congenitally and genetically caused cases such as spina bifida are not recorded in 

these studies, as these are typically collected in different settings.  
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5.5 Mortality and life expectancy  

Improvements in SCI recognition, evaluation, pre-hospital management, trauma care services, 

general clinical care and rehabilitation service have resulted in longer life expectancy for people 

with SCI in high-income countries, alongside a decreased risk of mortality from secondary 

conditions. People with SCI remain more likely to die – and to die earlier – than people without 

SCI. They are also more likely to die from certain health conditions than people in the general 

population. In most cases, the first year after injury holds the highest risk of death for people with 

SCI, and many people with SCI in low-income countries are dying from preventable secondary 

conditions15..   

- People with SCI die earlier than people without SCI. Overall, studies have indicated that 

people with SCI are 2 to 5 times more likely to die prematurely than people without SCI. 

Another way to assess the effect of SCI is to consider its impact on life expectancy, how 

long a life someone can expect to live. Few studies compare people with SCI to the general 

population. However, one Australian study showed that individuals with a spinal cord 

lesion level between C1 and C4 have only 70% of the life expectancy of the general 

population at the age of 25 (Figure 8). The first year after injury has the highest risk of 

mortality for people with SCI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Life expectancy in Australia by attained age for people with SCI in comparison to general 

population [International Perspectives on Spinal Cord Injury, ISCOS, 2013]. 

 



SPINAL CORD INJURY LESION 

28 
 

- Among people with SCI, mortality risk depends on the level and severity of the injury. 

Tetraplegics die earlier than A Finnish study found that the SMR for paraplegia was 2.3 as 

compared to 3.0 for tetraplegia, while in Australia the SMR for paraplegia is 1.7 as 

compared to 2.2 for tetraplegia. The Finnish study also showed that mortality is higher in 

people with complete lesions as compared to incomplete, with a complete injury nearly 

doubling the mortality rate of people with paraplegia,  and nearly tripling it for those with 

tetraplegia. 

- Secondary conditions of SCI are no longer the main cause of death of people with SCI in 

high-income countries. In high-resource co untries, there has been a shift in principal 

causes of death from urologic complications, such as urosepsis or renal failure, to causes of 

death similar to the general population, such as respiratory problems, especially 

pneumonia and influenza. Some studies have found high rates of mortality caused by heart 

disease, suicide, and neurological problems. People with SCI however die of these 

conditions more frequently than people in the general population. In low-income 

countries, people with SCI continue to die from preventable secondary conditions, e.g. 

urologic complications and pressure sores. In low-resource countries, although there are 

few data because of the extremely high rate of “lost to follow-up”, evidence indicates that 

urologic complications remain a common cause of death. Fatal infections from untreated 

pressure ulcers, because of the absence of adequate medical care, are a common cause of 

death in low-income countries.  

 

5.6 Spinal cord injury as a challenge to health systems and to society  

The complexity of the lived experience of SCI and the variations in that experience around the 

world mean that, despite being a comparatively low-prevalence condition, SCI has wider 

implications for monitoring health care. In principle, an individual with SCI will experience nearly 

every clinical setting that his or her country provides: emergency services, intensive care, surgery, 

stabilizing medical care, and particularly rehabilitation, including return to the community, 

vocational rehabilitation and ongoing primary care. SCI care thus provides evidence about the 

adequacy of a country’s services, systems and policies. It can also help clinicians, health 

professionals, researchers and policymakers to understand the strengths and weaknesses of their 

health-care system. SCI care is a good indicator of how the overall health system works – or fails to 

work15..  

Beyond the health sector, the individual with SCI will require services, resources and access to the 

social, educational and economic sectors to lead a full and rich life. Turning to civil society, self-

help groups, patient groups and other advocacy and disabled people’s organizations play a crucial 

role in offering knowledge, advice and support, and in lobbying for policy change.  

If governments and societies fail people with SCI, it is likely that they will fail people with other 

health conditions as well. Research and data on the experience of SCI is generally relevant to 

sound public health policy and to wider efforts to remove barriers to care. researchers can benefit 

from research into other more prevalent conditions that share some or many of the impairments 
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and daily challenges that confront people with SCI. Given that research into, for instance, 

accessible public transportation or return-to-work services will tend to concentrate on higher-

prevalence health conditions and disabilities, the best evidence available may not involve SCI 

directly but may focus on people with “mobility problems” or “wheelchair users.” This report takes 

advantage of all relevant highquality research, whether directed specifically at SCI or taking a 

broader disability focus.  

Estimated global SCI incidence is 40 to 80 new cases per million population per year, based on 

quality country-level incidence studies of spinal cord injury from all causes. This means that every 

year, between 250 000 and 500 000 people become spinal cord injured15..  

Studies that report incidence data for both traumatic and non-traumatic causes of SCI pro-vide 

information about the overall constitution of SCI populations. This information is important to 

collect since the resource needs and characteristics of traumatic and non-traumatic populations 

are different. The proportion of TSCI varies within a wide range and appears to differ across 

regions. Historically, up to 90% of SCI has been traumatic in origin, but data from the most recent 

studies indicate a slight trend in recent years towards an increase in the share of NTSCI. The NTSCI 

population is generally older, with progressive diseases requiring more expensive care, although 

for a shorter period.  

Most studies of SCI incidence cover either TSCI or NTSCI, perhaps because of differences with data 

sources and data collection methods. The incidence and etiology of TSCI and NTSCI are therefore 

examined separately below. Data for NTSCI are limited compared to those for TSCI15.. 
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 PREDICTING OUTCOMES IN SPINAL CORD INJURY 6

6.1 Assessment of spinal cord injury lesion 

SCI can disrupt upper and/or lower motor and sensitive pathways and it results in either a 

complete or an incomplete lesion. Although recent advances in primary damage healing, 

rehabilitation and prevention of complications have improved the prognosis of SCI16, the 

consequences are still traumatic and disabling.  The need to predict outcome based on expected 

neurological recovery and associated functional recovery has been emphasized as essential for 

health care planning17 and this need is partially unmet. 

A better knowledge of the course and prognosis of recovery after SCI and an understanding of 

the underlying mechanisms would help in the development of strategies and treatments to 

enhance neurological recovery.  

Prognostic data are essential to evaluate the efficacy of new drugs and therapies (for example 

to distinguish between the natural recovery and the effect of treatments) and to project the 

clinical trials (for example to calculate the number of patients needed to obtain statistical 

power)18. 

The initial neurological examination is the most important instrument for the assessment of 

the severity and level of the injury. For optimal reliability of the initial examination, the patient 

must be able to cooperate and follow the instructions of the examiner and should not have 

major distracting injuries such as a complicated tibia midshaft fracture19. Since its introduction 

in 1969, the Frankel scale, a 5-point severity scale, has commonly been used to determine the 

severity of the SCI 20(Table 1). 

 

Table 1: The Frankel Scale for Spinal Cord Injury That Classifies the Extent of the Neurological/Functional 

Deficit into Five Grades 

 

 

Patients are classified as complete (grade A), sensory only (grade B), motor useless (grade C), 

motor useful (grade D), or no neurological deficit/complete recovery (grade E). This scale 

provided a simple, though nonspecific, scheme for the categorization of SCI. Two major 

limitations of this scale have been identified: (1) the level of the injury is not incorporated into 

the classification and (2) the scale’s inherent subjectivity in judging what constitutes “useful” 

motor strength. Moreover, the Frankel scale has limited responsiveness to subtle neurological 

improvements during recovery. These methodological shortcomings of the Frankel scale were 

recognized by the classification committee of the American Spinal Injury Association and a 
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major revision of the International Standards for Neurological and Functional Classification of 

Spinal Cord Injury Patients (International Standards) was published in 2014. Today, the most 

recent revision of the International Standards21 are used worldwide for the assessment of the 

severity and level of the injury (Figure 9,Figure 10). 

 
 
 
 

 Figure 9: The scoring form of the International Standards for Neurological and Functional Classification  
of Spinal Cord Injury Patients. 

 

 

Based on this examination it is possible to establish the neurological level of injury, as well as 

the severity of the lesion (impairment). Components also include a rectal examination for 

voluntary anal contraction and anal sensation.  According to the ASIA Impairment Scale (AIS), 

patients are considered to have a complete lesion (AIS A), in the absence of sensory or motor 

function at the lowest sacral segments. Incomplete lesions are defined when sensation and/or 

motor function are preserved below the neurologic level of injury, and in particular in the 

lowest sacral segments (anal sensation, including deep anal pressure and voluntary external 

anal sphincter contraction).  
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AIS scores are considered essential when classifying persons with SCI as to their neurological 

status as follows: 

 

- A: complete. No sensory or motor 

function is preserved in the sacral segments S4-S5. 

- B: sensory incomplete. Sensory but not 

motor function is preserved below the neurological level 

and includes the sacral segments S4-S5 (light touch, pin 

prick at S4-S5 or deep anal pressure), AND no motor 

function is preserved more than three levels below the 

motor level on either side of the body. 

- C:  motor incomplete. Motor function is 

preserved below the neurological level and more than 

half of key muscle functions below the single 

neurological level of injury) have a muscle grade less 

than 3. 

- D: motor incomplete. Motor function is 

preserved below the neurological level and at least half 

of key muscle functions below the NLI have a muscle 

grade of 3 or greater. 

- E: normal. If sensation and motor 

function as tested with are graded as normal in all 

segments, and the patient had prior deficits, then the 

AIS grade is E. Someone without an initial SCI does not 

receive an AIS grade. 

 

 

 

Figure 10: AIS scores for neurological status classification. 

 

 

Generally as concerns neurological improvement:  

- Overall patients who present with AIS A at initial evaluation have a chance of AIS grade 

improvement of 11% at discharge and of 15% at one year 
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- For AIS B the respective chances of improvement are 58% and 80%, with 33% of the patients 

improving to AIS D at one year  

- For AIS C subjects the percentages are 57% at discharge and 75% at one year and 67% reach 

an AIS D grade.  

- Finally, only 4.2 % of AIS D subjects improve due to a ceiling effect 

- The percentage of patients with complete lesion who become incomplete is reduced if, in 

addition to the presence of sensory or motor activity in the anal level, motor activity is 

required in at least one of lower extremities key muscles. 

- Most of the neurological recovery occurs in the first 2-3 months after injury. 

Neurologic recovery is of fundamental importance for the patients, as the completeness or 

incompleteness of the lesion are one of the most relevant determinant of the functional 

outcomes. The general picture of recovery after spinal injury is well known. A proportion of 

patients with severe sensorimotor loss will achieve a partial or almost complete neurological 

recovery, particularly if they have some retained neurological function below the level of 

injury. Overall about 30% of the patients achieve an improvement of their AIS grade; 19% 

improve by one AIS grade, 8% by two grades and 3% of 3 grades22. 

When talking about neurologic improvement, several issues must be taken into account: the 

conversion of AIS grade and its nature, the improvement of motor scores, the improvement of 

lesion level in tetraplegic patients, the timing of recovery and the relationship with the zone of 

partial preservation below the level of injury. 

 

6.2 State of the Art (SOA) on gait recovery prediction 

Walking recovery is one of the main goal of patients after SCI: walking is rated at first place by 

patients with incomplete lesions1. Furthermore, epidemiological studies show an increase of 

the number of patients with incomplete lesions (e.g. with chances of walking recovery)23. 

Therefore, the recovery of ambulation has become the target of several pharmacological and 

rehabilitative approaches. Consequently a precise evaluation of the natural recovery of walking 

and of the prognostic factors influencing this function has become mandatory5;24.   

Furthermore, for the selection of people with SCI who might profit most from a locomotor 

training programme, an early prediction of ambulatory function is helpful. For example, 

rehabilitation of people with an (almost) complete SCI and an unfavourable prediction, 

rehabilitation should be focused on wheelchair driving and on other neurological deficits rather 

than on the lost stepping ability. Using clinical and electrophysiological assessments, a reliable 

prediction of stepping ability can be made that consequently allows the planning of rehabilitation 

procedures, e.g. locomotor training, within 4 weeks after a SCI. The essential criteria for a such a 

stratification are the initial lower limb motor scores combined with preservation of spinal impulse 
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conductivity (i.e. presence of tibial somatosensory potentials) or, combined with lower limb light 

touch sensation25.  

 

Walking recovery is defined as the regained ability to walk independently in the community, 

with or without the use of devices and braces. This is also defined “functional walking” and has 

been described as the capacity to walk reasonable distances both in and out of the home 

unassisted by another person 26. Crucial factors for walking recovery are described below.  

6.2.1 AIS grade  

For a long time AIS grade conversion has been considered the basis to predict the possibility of 

achieving functional walking27. Patients with AIS A (motor and sensory complete lesion) at 

their first examination have very few chances of neurological recovery below the lesion (2.5-

20% depending on the time of first examination) 28. Accordingly, the possibility of patients with 

AIS A of achieving functional walking is very limited too. Furthermore, also between the 

patients who converted to an incomplete lesion only 14% recovered some walking function 29. 

AIS A patients who achieve some walking function usually are low thoracic or lumbar levels 

(T12-L3) and usually need braces and devices to walk 30. Finally these patients are usually 

limited ambulators, with slow average velocities and great energy expenditure 31. 

AIS B patients usually show some motor recovery and they can convert to AIS C or even AIS D 

grade. However, the overall recovery of ambulation is considered to be about 33% 29;32. The 

percentage of walking recovery may vary depending on the modality of the sensation spared at 

the lowest sacral segments. Several studies reported a relationship between light touch and 

pinprick preservation and walking recovery in AIS B patients compared to light touch 

preservation only. AIS grade B patients with light touch and pinprick preservation have a better 

walking recovery than those with light touch only 32;33. This finding has an anatomical basis at 

the spinal cord level. The preservation of pin-prick and light touch sensation, indicates the 

integrity of spino-thalamic as well as posterior columns tracts. These structures are relatively 

close to the corticospinal tracts; therefore, the preservation of  the sensitivity structures could 

indicate some possible sparing of the motor pathways 34. 

Motor incomplete (AIS C) patients have a better prognosis for walking recovery than sensory 

incomplete ones. The overall rate of recovery is about 75% 4;35. This percentage includes both 

the patients who converted to AIS D and those who remained AIS C but achieve at least some 

walking function29; these patients probably have low thoracic or lumbar lesions and walk with 

braces and devices.  In these patients several characteristics are of prognostic value for walking 

recovery: lower extremity strength and upper extremity strength for tetraplegics patients, 

motor recovery timing and age are the most important ones4;35. With regard to the 

relationship  between lower extremity strength at first examination and walking recovery  in 

incomplete paraplegics all patients with an initial (1-month) lower extremity motor score of ≥ 

10 points ambulate in 1 year compared to 70% of those with an initial motor score between 1 
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and 9 33. Furthermore, all patients with an initial hip flexor or knee extensor Grade ≥ 2–5 

ambulated in the community at 1 year 29. In incomplete tetraplegics, although the relationship 

between initial lower extremity motor score and walking hold true, the odds of walking 

recovery are lower than for paraplegics36. In addition, Waters stressed the relationship 

between upper extremities strength and ambulation recovery in tetraplegics: patients who are 

community or household ambulators have significant higher motor scores. The author linked 

this datum to the importance of upper extremities strength for devices use during walking 36. 

With regard to the timing of recovery, early recovery of quadriceps strength is an excellent 

prognostic factor for ambulation 35. All patients with an initial quadriceps strength of at least 

grade 2/5 who attain a grade of ≥ 3/5 in at least one quadriceps by 2 months post-injury, 

achieve functional ambulation at follow-up. However, only 25% of those who do not recover 

quadriceps strength of 3/5 within 2 months are able to walk at follow-up. With regard to the 

relationship between age and walking recovery, it will be examined in the paragraph on age 

effects. 

Finally, AIS D  patients at admission have very good ambulation prognosis at one year post-

injury 37. All patients, regardless of age, who initially are classified as AIS D (within 72 hours) 

are able to walk at the time of discharge from inpatient rehabilitation 38.  

6.2.2 Strength  

Lower extremity muscle strength is the factor most studied in SCL in relation to both functional 

independence and walking39. Early recovery of muscle strength has been identified as a 

predictor of ambulatory capacity. Waters et al 33 reported that lower extremity motor recovery 

1 month postinjury was a good predictor of whether an individual would become a community 

ambulator at the 1-year follow-up. Moreover, Crozier et al35 found that individuals who 

recovered good strength in the less affected quadriceps (greater than grade 3) in the 2 months 

after SCI had an excellent prognosis for ambulation.  

Lower extremity muscle strength has been found to correlate with gait speed and ambulatory 

capacity in people with both acute and chronic SCI40. Kim et al 41 found a correlation between 

lower extremity muscle strength and gait speed and endurance and with functional 

classification of community walking. In agreement with these data, in the present study the 

total motor score and the lower extremity motor score were significantly related to both 

walking level (Walking Index for Spinal Cord Injury: WISCI) and walking performances assessed 

at the time tests. Greater muscle strength (particularly of the proximal muscles in the lower 

extremities) produces lower Timed Up and Go test (TUG) performances, better endurance 

(distance walked in 6 minutes at Six Minute Walking Test: 6MWT), and a higher walking speed 

(Ten Meters Walk test: TMWT). Worthy of note is the relationship between upper extremity 

level and WISCI and 6MWT, which has been demonstrated for the first time in this study. It 

appears that the use of the upper extremities is particularly relevant for walking, particularly in 

tests requiring the use of walking aids.  
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The only study in the literature dealing (indirectly) with the importance of upper extremity 

strength was carried out by Wirz et al, who found that patients with tetraplegia require 

substantially more lower limb strength to obtain the same walking function as paraplegic 

patients 42. The author attributed this phenomenon to the need to compensate for postural 

instability because of the upper extremity and trunk  weakness 42. This is in agreement with 

Waters et al 43, who indicated that subjects with cervical lesions must be more neurologically 

intact to ambulate because they may have upper  extremity weakness that limits their ability 

to use crutches or walkers. 

6.2.3 Age 

The negative effect of age on the walking abilities of SCI patients has already been reported in 

the literature: Burns et al4 found that walking recovery in patients with incomplete SCI 

depends on age and is more frequent in young patients in 2003, Scivoletto et al 37 studied 2 

cohorts of patients over or under 50 years of age, assessing walking with the WISCI, and 

showed that the younger patients reached the walking function more frequently. According to 

previous data, age is correlated with TUG (positively) and with 6MWT (negatively); in the 

regression analysis, the relationship emerged only with 6MWT. It appears, therefore, that age 

particularly affects tests requiring long distance walking. This finding is probably associated 

with the different resistance of elderly patients to physical effort: the 6MWT, in fact, is the test 

that requires resistance and it might be affected by energy consumption and muscle fatigue, 

twofactors that can condition performance in the elderly. 

6.2.4 Balance  

No studies in the literature have dealt with the issue of balance alone in SCI patients. In 2003, 

Adegoke 44et al. studied balance in a group of patients with SCI, but took into account only 

non-standing patients performing a functional reaching test. In 1993, Kralj 45et al highlighted 

the issues of balance control during functional electric stimulation (FES) assisted gait in SCI 

patients and proposed a rehab approach based on statically unstable dynamic weight-transfer 

phases. In 2006, Leroux 46et al studied the postural adaptation of SCI patients during walking 

and concluded that this posture could lead to a loss of balance or a fall. 

Our group demonstrated that good balance allows walking with fewer aids and enables 

patients to have lower times (to walk faster) in the timed test and to walk for longer 

distances5. In a very recent report47 the authors claimed similar finding in a randomized clinical 

trial where balance was used together with walking speed, 6MWT, WISCI, and TUG as outcome 

measures.  

6.2.5 Spasticity 

The relationship between spasticity and walking has been debated for a long time. In 1975, 

Norton48 et al found no significant correlation between spasticity and gait speed in subjects 
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with hemiplegia. Furthermore, on an empirical base it has been conjectured that spasticity 

could be an advantage in patients with a lower limb strength deficit because it might increase 

the support function. However, more recent studies have demonstrated the negative 

relationship between spasticity and walking ability in patients with neurologic lesions of 

various aetiology (e.g., cerebral palsy )49. Furthermore, in patients with stroke and other 

neurologic pathologies it has been shown that treating spasticity is associated with an 

amelioration of walking performances 50;51.  

Studies on the relationship between spasticity and walking in SCI patients are scarce and 

mainly focused the issues of the mechanisms of spasticity during ambulation52-54 and of the 

effects of several therapeutic approaches for spasticity on walking55;56. These latter studies 

concluded that spasticity treatment is correlated with amelioration in walking and indirectly 

demonstrated that spasticity affects negatively walking performances in SCI patients. Elevated 

muscle tone impairs the fluidity of movements and, therefore, constitutes an obstacle in timed 

tests in which patients are asked to get up, walk, and sit down in the shorter time possible 

(TUG) or to walk at maximum speed (TMWT). Furthermore, the inability to perform fluid 

movements and the need to overcome spasticity (which also tends to increase with an 

increase in physical work) causes an increase in effort and energy consumption during walking; 

this becomes more evident as distances increase and, therefore, may lead to a reduction of the 

distance walked5. 
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 SPINAL CORD INJURY GAIT REHABILITATION 7

7.1 THE PHYSIOLOGICAL BASIS OF GAIT REHABILITATION 

SCI is an event that, depending on the level and severity, impacts sensorimotor and autonomous 

function. In affected subjects the goal of rehabilitative interventions is the regaining of 

independence and thus a good quality of life. From the patients perspective this is probably best 

achieved by targeting restoration of bladder and bowel function, and in tetraplegic subjects 

upper limb function11. However, recovery of locomotor ability is also of high priority by SCI 

subjects independently from the severity, time after injury and age at the time of injury 11.   

Walking recovery is one of the main goals after SCI, although almost never attainable in subjects 

with complete lesion it’s a realistic object for subjects with incomplete lesions, among which 

recovery of walking is rated at first place among rehabilitation objectives1. 

Gait rehabilitative interventions to harvest such potential must take into consideration 

fundamental aspects of motor skill learning, as these motor tasks become computationally 

demanding on spinal cord circuits once severed from supraspinal input57. Designing effective 

neurorehabilitation after SCI depends on having knowledge about the neuronal mechanisms 

involved in normal and pathological movement conditions, such as the interactions between 

central programs and afferent feedback as well as the coordination of human locomotion.  

 

7.1.1 Neuronal basis of human locomotion 

The question, how does the central nervous system coordinate limb movements during 

locomotion in a seemingly “simple” and automatic manner challenged neuroscientists for more 

than a century. At the beginning of the last century Graham-Brown postulated his “half-center” 

hypothesis based on the demonstration of the intrinsic capacity of the mammalian spinal cord to 

generate rhythmic motor patterns without descending or sensory inputs. Subsequently Grillner 

defined these spinal neuronal circuitries central pattern generators (CPGs). CPGs are embedded 

within the lumbosacral spinal segments and are capable of generating stepping-like activation 

patterns 58.  

However, CPGs alone are not sufficient for overground walking. Gait is achieved through 

interactions among innate patterns and environmental requirement which require continuous 

modulation of central circuits. Feedback from a variety of sources, e.g., visual, vestibular and 

proprioceptive systems, is interpreted by and then integrated into the activity of the CPG 59. The 

CPG can open and close reflex pathways in a context- and task-dependent manner. The sensory 

feedback and the context-specific requirements of the motor task determine the mode of 

organization of muscle synergies. Additionally, supraspinal control is needed to provide both the 

drive for locomotion as well as the coordination to interact with a complex environment. 

Corticospinal access to locomotion control in humans is phase-dependent. Brain centres can 

initiate CPG activity but the fundamental rhythmicity is hard-wired11. It is important that the 

neuronal mechanisms underlying human locomotor control in the normal and pathophysiological 
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condition are understood, as it is only then that it is possible to maximize the recovery of 

locomotion in patients following central nervous system damage. 

 

7.1.2 Clinical aspect of rehabilitation: the role of neuroplasticity  

Neuroplasticity comprises the adaptive (including maladaptive) changes within spared neuronal 

circuitries and thus reflects the reorganization of the nervous system after it has been injured. 

Neuroplasticity after SCI occurs at several anatomical and physiological levels of the central 

nervous system, i.e. spinal cord, brainstem and cortex 25. It includes changes in synaptic 

formations and synaptic strength, axonal sprouting and changes of intracellular properties60; 61. 

There is also a spontaneous recovery of sensorimotor functions within the first few months after 

a SCI because of factors such as the resolution of neuropraxia 62 and remyelination of spared 

axons. It is hard to distinguish the relative contributions of these factors to recovery and there 

might be an overlap of mechanisms involved in the recovery of neuronal excitability61. 

Changes in sensorimotor system function can be reliably determined by assessing the 

neurological status (clinical and functional examinations) and electrophysiological recordings 

(impulse conductivity of the spinal cord and of peripheral nerves by recordings of somatosensory-

evoked potentials and neurographic examinations, respectively63). According to these 

assessments, performed over 1 year in individuals with SCI, most of the recovery of sensorimotor 

deficits and of somatosensory evoked potentials takes place over 12 to 15 weeks62  . At later 

stages after the acute injury, a stable phase dominates during which training-induced changes 

can still be initiated (64; 65; 66).  

Recovery of motor functions does not solely rely on neuroplasticity, but also on compensation 

and adaptation. For example, through the assistance of the non-affected or less affected limbs 62. 

In the case of locomotor function, the affected leg shows little change in the leg muscle EMG 

pattern despite a gait recovery 67. In particular at an early stage restoration of function is 

achieved by adaptive changes that are based on neural plasticity and, therefore, can hardly be 

separated. Nevertheless, compensation and adaptation can be viewed as a form of motor 

learning and thus, by definition, as neuroplasticity.  

 

7.1.3 Functional training approach to enhance plasticity in incomplete SCI 

For individuals with SCI, functional training is the most effective approach to direct and enhance 

plasticity as a mean to recover motor function. Functional training can be defined as the 

direct/task specific training of a motor function. The mechanisms underlying the effects of 

facilitating neuroplasticity by functional training have been explored in rodent and cat models of 

SCI 25. Using these animal models, rehabilitation of sensorimotor function after SCI is directed 

toward training lost/impaired movements68. Among others, these studies demonstrate that 

training rats or cats with a transected spinal cord on a moving treadmill leads to a partial recovery 

of locomotor ability.  Thus, neuronal circuits for locomotion in the spinal cord can ‘learn’ by 
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training independently of the connection to the brain. The mechanisms underlying this training-

induced plasticity that lead to an improved recovery of locomotion include, among others, the 

adaptation of neurotransmitter systems within the spinal cord (glycinergic and GABAergic 

systems) and enhanced collateral sprouting69. Based on these animal studies, training of 

functional movements (e.g. stepping) was successfully translated to individuals with incomplete 

SCI70;71 .  

Worthy to note that plasticity promoting approaches, such as functional training to improve 

outcomes, are restricted to people with incomplete SCI (Figure 11).  

 

 

Figure 11: Rehabilitation of a SCI. Schematic overview of actual perspectives of rehabilitation approaches 
(circular borders) to influence the outcome of a spinal cord injury (angular borders). The individual 

impairment depends not only on the ‘lesion severity’ but also on the level of lesion. The selection of an 
appropriate approach has to be based on an early prediction of outcome and the completeness of injury, 

respectively. Solid lines indicate currently applied approaches, interrupted lines indicate interventions 
being on translation to human application [Dietz V. and Fouad K. 2014].  

 

7.2 FACILITATION OF PLASTICITY BY LOCOMOTOR TRAINING  

Spinal neuronal circuits below the level of lesion can be activated by an appropriate afferent 

input leading to the generation of a locomotor EMG pattern and, consequently, to training effects 

(Dietz 2014) (Figure 12). This evidence is crucial  to sustain functional recovery after an SCI59.  In 

contrast, typical movement disorders after SCI, e.g., spastic movement disorder, are due to the 

defective utilization of afferent input in combination with secondary compensatory 

mechanisms72. It has been shown that neuronal networks underlying the generation of locomotor 
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patterns of cats and humans have an impressively high level of flexibility after SCI 11 and that the 

plasticity of spinal neuronal circuits is task specific and use-dependent.  

 

 

. 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12:  Neuroplasticity after spinal  cord injury. Schematic drawings showing the mechanisms 
underlying neuroplasticity after spinal cord injury [Dietz V. and Fouad K. 2014] 

 

Rehabilitative interventions after SCI should therefore focus on exploiting the plasticity of 

neuronal circuits, i.e., at supraspinal and/or spinal level, rather than focusing on improving 

isolated clinical signs, such as muscle tone or reflex excitability.  

Comparable with what has been shown in animal studies, locomotor training following SCI can 

improve locomotor ability even in individuals with a low motor score73. Also in chronic 

incomplete SCI, when no more spontaneous recovery can be expected, an improvement in 

mobility can be achieved by functional training 64,11. The gain in function achieved during such a 

specific training in the stable phase of a SCI might mainly be attributed to plasticity.  

7.2.1 Timing of locomotion training   

The question regarding the early timing of a training therapy after SCI is still unresolved. Animal 

models indicate that there might be a ‘therapeutic window’ for rehabilitation after an injury 74;75. 

In subjects with a SCI such a therapeutic window has not yet been defined although there is 

evidence that an early onset of training might be favourable 76;77;65. Of course, spinal shock 

associated with flaccid paresis and problems in circulation prevents a locomotor training 
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programme in the acute/early stage after trauma. However, this might not necessarily be a 

disadvantage as rodent experiments indicate that training onset that is too early might be 

deleterious to motor recovery78.   

For the selection of people with SCI who might profit most from a locomotor training programme, 

an early prediction of ambulatory function is helpful, in order to focus rehabilitation of people 

with an (almost) complete SCI on wheelchair driving (see 6.2: State of the Art (SOA) on gait 

recovery prediction) 

 

7.2.2 The role of appropriate sensory cues to facilitate plasticity  

Training effects depend on a number of physiological prerequisites (Figure 12 and Table 2) 

necessary to evoke a pattern of muscle activation similar to that found in individuals without 

injury of the nervous system as this is required to facilitate meaningful plasticity.  

 

 
Table 2:  Factors influencing training effects. In this table the factors that might influence training effects 

are listed. They concern locomotor and/or hand/arm training after a SCI. The evidence differs considerably 
between the factors. The validity of the effects are indicated: (?) some evidence from animal experiments, 

no evidence in humans; ( + ) moderate evidence from human experiments/studies (evidence grade I); ( + + ) 
stronger evidence from human experiments/studies for positive effects of the approach (evidence grade II) 

[Dietz V. and Fouad K. 2014]. 

 

 

After an incomplete SCI, spared corticospinal and/or propriospinal pathways can play an active 

role in the recovery of locomotion. However, under these circumstances the intrinsic capacity of 

spinal locomotor circuitries and the sensory feedback information still remains as the basis for 

generating a locomotor pattern. The spinal locomotor circuitries interact dynamically with 

specific afferent inputs from receptors located in muscles, joints, and skin, and this interaction 

shapes the locomotor output 59.  
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The sensory input most relevant for locomotion comes primarily from stretch- and load-sensitive 

mechanoreceptors located in the muscles and skin. Furthermore, skin receptors on the dorsal 

foot play a role during the swing phase of walking over obstacles in humans 79. 

Load information is provided for proprioceptive input from leg extensor muscles, namely Ib 

afferent signals from Golgi tendon organs, and probably also from mechanoreceptors in the foot 

sole 80. This information is thought to be integrated into polysynaptic spinal reflex pathways that 

adapt the autonomous locomotor pattern to the actual ground condition and it is assumed that 

the Ib afferent input from leg extensors during the stance phase inhibits the flexor activity.  

A crucial factor that is needed to trigger a locomotor EMG pattern in individuals with SCI is 

afferent input from load receptors 81;82. This statement is based on the observation that without 

loading the sole of the foot during the stance phase no meaningful leg muscle activation occurs in 

individuals with complete SCI during supported stepping. Proprioceptive inputs from leg extensor 

muscles, and probably from mechanoreceptors in the sole of the foot, provide load-related 

afferent informations82. The role of this specific afferent input is to generate and shape the 

locomotor pattern, to control phase-transitions and to reinforce ongoing activity. 

In addition, corresponding to studies in cats 83, hip extension movements, i.e. hip-joint related 

afferent input (but less knee or ankle joint excursions) are essential for the initiation of the swing 

phase and the generation of a locomotor EMG pattern in people with incomplete SCI84. Besides 

load receptor informations, a hip joint-related afferent input was shown to be required for the 

generation of a locomotor pattern, as it was shown to be also the case for stepping in human 

infants84. 

The observations that in motor complete paraplegic subjects assisted stepping movements within 

a driven gait orthosis and restricted movements of the hips (blocked knees) induces a patterned 

leg muscle electromyographic (EMG) activity, highlights the significance of hip joint receptors in 

the generation of locomotor activity85. Such that assisted stepping movements restricted to 

imposed ankle joints were followed by no, or only focal reflex responses in the stretched 

muscles85.   

Body un-loading and re-loading are considered to be of crucial importance to induce training 

effects upon the neurological locomotor centres, because the afferent input from receptors 

signalling contact forces during the stance phase (corresponding to the initiation of new-born 

stepping by foot sole contact) is essential for the activation of spinal neuronal circuits underlying 

locomotion. 

 

 

7.2.3 Limitations of training-induced plasticity 

In humans, the amount of sensorimotor deficits and the consequent chances for a recovery of 

function after SCI are determined by the level and severity of spinal cord damage25. In individuals 

with chronic incomplete SCI that are severely affected [ASIA Impairment Scale (AIS) C] some 

locomotor function can be re-established by intensive training 64;11. Nevertheless, even after such 

training, patients still need support (e.g. braces and/or manual assistance) to compensate for their 



SPINAL CORD INJURY GAIT REHABILITATION 

44 
 

limited stepping abilities. In contrast, individuals with less severe SCI (AIS D) usually learn to walk 

without support. In other words, the amount (and location) of spared spinal neural tissue determines 

the effectiveness of training. In the future, individuals with (almost) complete lesions might profit 

from a combination of training and epidural stimulation to facilitate the initiation and performance 

of stepping movements 65. 

There is also a limitation of changes in cortical structures after SCI. This is reflected in the observation 

that there is little remapping in the representation of limb function after SCI. In people with chronic 

para/low tetraplegia, somatotopical representation during movements of non/moderately affected 

body parts is preserved or only slightly expanded86. In line with this, little cortical expansion towards 

more denervated lower body parts occurs when cortical areas of preserved limb function are 

stimulated 87. From a clinical point of view, these results are not surprising as upper limb function 

hardly profits from cortical areas denervated from lower limbs during rehabilitation.  

Age also limits plasticity and the subsequent restoration of function after SCI. Although similar results 

were obtained regarding the recovery of neurological deficits in young and older individuals, older 

patients have greater problems in translating this recovery into improvements of daily life activities 
88. Therefore, older individuals would probably profit from  age-adapted rehabilitation programmes, 

e.g. to focus the training on a limited number of everyday functions at home. 

Also, biological rehabilitation confounders have to be considered. Co-morbidity, in particular 

infections, can have a limiting effect on the neurorehabilitative potential not only for 

neuroimmunological processes and stroke but also, as shown recently, for SCI 25.  

 

Another limitation of training found in animal models is the observation that specific training can 

interfere with untrained tasks 89;90. Training effects are known to be fairly task-specific91. The finding 

that the training of one task limits another has, however, not yet been described in the clinical 

setting. Further investigations of the interaction of training paradigms appear warranted. Lastly, 

following complete thoracic SCI, training focuses on motor skills relevant to the individual, including 

wheelchair propulsion, transfer and muscle strength. In such a condition, adaptations of the nervous 

system can hardly overcome the lack of descending control. 
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7.3 REHABILITATION APPROACHES FOR GAIT RECOVERY 

The main aims for rehabilitation of an individual with SCI are compensating for functional loss and 

use those parts of sensorimotor system that are still intact13. In general cortical re-organization 

occurs after SCI with evidence that sensory-motor cortex may play a role in the recovery function 

in SCI subjects92. This re-organization may be attributed to pre-existing and new neural circuits12. 

Additionally recovery function can be also related to the re-activation of parts of sensory motor 

system that are still intact14 and it can be optimized by using task-specific sensory cues and 

favouring the recruitment of both spinal circuitries and spared supraspinal connections during 

rehabilitation. 

Therefore, the aim of rehabilitation procedures should concentrate on the improvement of 

outcome by exploiting the plasticity of neuronal centres using a functional training. It should less 

be directed to the correction of isolated clinical signs, such as the reflex excitability or muscle 

tone.  

Some standardized rehabilitation procedures became established only in the past 20 years. 

Nevertheless, there is still no full consensus on the most effective approaches. In fact 

neurorehabilitative approaches are multifactorial, vary to some degree between rehabilitative 

centres and are frequently lacking evidence for their effectiveness 25.  

Today, clinical neurorehabilitative approaches in individuals with incomplete SCI are largely based 

on observations originally made in animal studies 93;90;94;89;95. These animal-based developments 

of neurorehabilitative approaches are an ongoing process aimed at improving rehabilitation 

procedures. They can generally be viewed as training of lost/impaired sensorimotor functions. It 

is, however, important to acknowledge that rehabilitation after SCI also involves the learning of 

new tasks. 

 

7.3.1 Functional locomotion training interventions 

With the amount of research growing, changes have also occurred in the management of SCI. 

Even though clear evidence is not available and mechanisms are not entirely understood, most 

rehabilitation strategies are based on the concept of central nervous system plasticity detailed 

above, facilitated by early, intensive, and task-specific therapies to enhance the natural recovery 

processes96. Actually locomotor training is defined as any “therapeutic program aimed at the 

recovery of walking through intense practice of the task of walking”97.   

Possible interventions included overground walking training with or without body-weight support 

(BWS), manual assistance and/or functional electrical stimulation (FES), treadmill training with or 

without manual assistance and/or FES, body-weighted supported treadmill training (BWSTT) and 

robotic gait training. 
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7.3.2 Non robotic locomotion training approaches 

Rehabilitation approaches, such as FES or bracing, enable a person to stand up and practice 

overground walking. Mechanical leg braces are also useful for supporting standing and walking, 

particularly for people with complete SCI. These range from single-joint braces (e.g. anklefoot 

orthosis, usually for individuals with low, incomplete spinal lesions), to whole-leg/longleg braces 

that extend from the lower back to the ankle. These devices must be used with a walking aid (e.g. 

crutches or walker) for functional ambulation. Several studies have examined the efficacy of 

combining these different therapies to further maximize functional ambulation. Systems that 

combine FES and bracing have been available for several years98. One example is the 

“reciprocating gait orthosis” (RGO), which is a long-leg brace with a reciprocal hip joint combined 

with FES to the thigh muscles. The rationale underlying these ‘hybrid’ systems (FES + bracing) is 

that while the brace provides postural stability, FES can be used to assist the leg movements 

required for functional ambulation98.  

 

7.3.2.1 Technology support for functional locomotion training 

As soon as the concept of plasticity-based functional training became established in the early 90s, 

the idea of the technical assistance of impaired limb movements was considered  99;100. These 

considerations were fuelled by the notion that longer and more intensive training with a high 

number of movement repetitions can best beachieved using robotic training devices and that this 

technology also allows for a monitoring of changes in movement performance over the course of 

rehabilitation 62;100.  

Robotic devices can promote recovery by facilitating plasticity101 and, corresponding to 

conventional training, they enable the performance of motor functions, which promotes 

activation and strengthening of neuronal pathways to a point where assistance is no longer 

needed. However, increased use of technology runs the risk of becoming uncritically applied. 

Considering that neuronal activity is a key for meaningful plasticity to occur, a robotic device 

should not overtake function. This requires an active involvement of the patient in movement 

performance. Just moving limbs does not lead to a meaningful muscle activity and, consequently, 

no training effect can be expected. Therefore, the robotic support provided has to be kept to a 

minimum so as to challenge the patient’s own effort for movement performance 102;103. 

Consequently, robotic-assisted training should be tailored to the individual patient’s needs in 

order to challenge his/her own contribution to movement performance and some patient groups 

Strategies that employ repetitive and intensive practice of gait (e.g. treadmill training) are 

thought to enhance walking through the provision of task specific sensory input associated with 

appropriate stepping movements. It has been more than a decade now since it was first 

demonstrated that BWSTT in animals can enhance locomotor activity after a SCI. In this approach, 

partial body weight support is provided by an overhead harness while leg movements are 

assisted by therapists and a moving treadmill belt. Since then, BWSTT strategies have been 

introduced as a promising approach to improve gait in people with SCI98.  
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By unloading the body and standing on a moving treadmill, individuals with SCI are enabled to 

perform rudimentary stepping movements. These movements evoke an appropriate afferent 

input to the spinal cord leading to leg muscle activation comparable with that during walking, 

which is the basis for the promotion of meaningful neuroplasticity 73. The benefit of such 

functional locomotor training does not depend on the approach used. That is, body weight 

supported treadmill training is equally effective as assisted over-ground walking 104;103.  However, 

compared with earlier rehabilitation approaches that were designed to influence physical signs, 

such as muscle tone, reflex activity or strengthening of muscle groups, locomotor training has 

been shown to be more effective in improving locomotor ability105. Such functional training leads 

to a task-specific improvement of leg muscle activation and, consequently of locomotor ability 

with only little increase in voluntary leg muscle force42. Even in subjects with severe SCI, 

locomotor  ability can be improved by training with assisted leg movements and body unloading. 

This is associated with an increase in patterned leg muscle activity that enables a reduction of 

body unloading during stepping 70;106 and a strengthening of spared descending pathways 74. 

Besides facilitation of neural plasticity it is expected that also changes in muscle properties, 

associated with the training, contribute to the improvement of function. 

 

 

7.3.3 Effectiveness of different functional locomotion training interventions  

Several systematic reviews addressed the issue of the effectiveness of various forms of locomotor 

training after SCI also because different locomotor approaches might play a role at different 

stages in the rehabilitation process96. Recently Morawietz96 underlined that the effect of 

overground locomotor training is consistent with other locomotor interventions such as BWS or 

FES trainings, although it did show a trend for greater benefits with a chronic population. Because 

overground training requires the least resources in terms of equipment, this has an important 

implication for clinical practice. However, little is known about the optimal timing, intensity, and 

frequency of it.  
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 EXPERIMENTAL STUDIES 8

As previously described balance, spasticity and weight are the chief factors affecting gait in SCI 

subjects (Figure 13). Balance and muscle tone are routinely addressed in rehabilitation protocols 

for improving gait and body weight is often controlled by the implementation of BWS systems. In 

spite of the general accepted importance of these factors there is little scientific evidence on the 

efficacy of the different rehabilitation protocols or consensus in testing parameters. Within this 

framework we addressed gait in chronic motor incomplete SCI subjects focussing on new 

protocols to treat balance and spasticity and on the effects of BWS provided by the water 

environment on kinematic gait parameters (Figure 14).  
 

 

 

 

 

 

 

 

Figure 13: Factors influencing gait in chronic incomplete SCI subjects 

 

Figure 14: Experimental studies design 
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For each study different subjects affected by chronic motor incomplete SCI, with stable clinical and 

neurological features, have been enrolled. Controls groups have been used for Study 1 and 3. A 

specific statistical assessment of reliability, validity, and responsiveness of center of pressure 

(COP) parameters under different sensory conditions by means of stabilometric platforms (SPs), 

has been also conduced into Study 1. In Study 2 a cross over paradigm, non-requiring healthy 

controls, was employed.  

 

  



EXPERIMENTAL STUDIES 
 

50 
 

In the table below (Table 3) are reported subjects/healthy controls enrolled for each study, the 

goal and the classification of the study. For Study 1 and 2 a battery of clinical scales and  

instrumental assessment have been used to analyse patients’ improvements due to the task-

specific biofeedback balance training or neuromuscular KinesioTaping. As regards Study 3, an 

instrumental gait assessment has been performed one time for each patient/healthy control for 

both environments.  

 

Table 3: Study design and experimental groups  

  

STUDY DESIGN AND EXPERIMENTAL GROUPS 

 
Healthy 
Controls 

SCI 
Patients 

GOAL Type of the study 

Study 1 6 12 

Test the efficacy of task-
specific biofeedback 
balance training in 
supporting walking 

functions 

Open-case study 
with a prospective 

control 

Study 2 / 11 
Test neuromuscular 

Kinesio Taping  efficacy in 
improving gait 

Randomized 
crossover case 
control study 

Study 3 15 15 

Evaluate the effect of water 
buoyant force on gait 
charactirtistcs of SCI 

subjects 

Observational case 
control study 
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 Study 1: 9

 Efficacy of task-specific biofeedback balance training in supporting 

walking functions in chronic incomplete spinal cord injury patients 

 

As detailed above, impairments in balance have recently been proposed to be highly predictive of 

functional recovery in patients with SCI. In addition to common observational clinical scales, more 

objective evaluation methods of balance have been implemented by using stabilometric platforms 

(SPs)and thus analyzing center of pressure (COP) parameters. COP analysis has been used in 

various pathologies, although psychometric measures of COP parameters have only been assessed 

in healthy subjects. On the other hand it is well known that psychometric properties of COP 

parameters vary according to the target population39. Specifically, concerning subjects with SCI, 

few studies have reported COP parameters, and none has addressed the reliability, validity, or 

responsiveness of this measures.  

Therefore, to respond to the demand of defining psychometric properties and testing protocol for 

SCI subjects balance evaluation by SP we conducted a devoted serial cross-sectional study to 

define SCI testing protocol and to assess reliability, validity, and responsiveness of the different 

COP parameters in incomplete SCI subjects. 

 

9.1 Reliability, validity, and effectiveness of center of pressure parameters in 

assessing stabilometric platform in subjects with incomplete spinal cord 

injury: A serial cross-sectional study 

9.1.1 INTRODUCTION 

Balance is usually defined as preservation of the vertical projection of the 

body’s center of mass (COM) onto the support area that is formed by the 

feet 107. Human balance is typically modeled as an inverted pendulum, in 

which the body is controlled as a single rigid segment that supports a single 

mass point—the COM—which rotates around the ankle joint 108. The 

inverted pendulum is regulated through the development of ground-

reaction forces, the vector sum of which is applied to a point that is defined 

as the vertical projection of the COM onto the ground109: the center of 

pressure (COP)  (Figure 15).  

 

Figure 15: COP (Centre of Pressure) and COM (Centre of Mass) body representation 
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The body’s equilibrium is maintained by the central nervous system, which fixes the COM around a 

specific point—a goal that is under constant challenge by continuous perturbations to the COM by 

factors, such as breathing, heart rate, and muscle activity110. To maintain postural stability, several 

afferent inputs, such as visual, vestibular, and somatosensory, are integrated and converted into 

efferent motor outputs, which in turn are transmitted down to the spinal cord along various motor 

tracts 111. Postural sway, such as spontaneous shifts in the COP during quiet standing, represents 

the integrated output of complex interactions between systems 112. Damage to any of these 

systems can result in postural instability, affecting static and dynamic balance—ie, stance and gait. 

Spinal centers have a significant role in to  the postural control systems, suggesting the clinical 

relevance of postural control deficits in SCI113.  

Despite the availability of many technical instruments to assess balance, the most common clinical 

tools remain observational scales, such as the Tinetti 114 and Berg balance scales 115. Nevertheless, 

these scales are hampered by a lack of sensitivity and objectivity and are limited by floor-ceiling 

effects.115;116  

To overcome these drawbacks, stabilometric platforms (SPs), consisting of a rigid plate that is 

supported by force transducers, and COP analyses have been introduced in clinical settings112. 

Many studies have reported the use of various SPs to evaluate balance deficits in healthy subjects 
117and in several pathologies, including orthopedic diseases 118, neuropathic lesions 119, Parkinson 

disease119, multiple sclerosis120, muscular dystrophy 121, cerebral palsy 122, cerebellar ataxia123, and 

stroke124. Two recent studies assessed balance in SCI, examining recoveries after visual 

biofeedback rehabilitation by COP analysi113. Impaired balance is a significant limitation to 

overground ambulation in patients with SCI 115, and impairments in balance are predictive of gait 

recovery 5, thus meriting evaluation. 

Despite the growing interest in balance, the standardization of COP parameters with regard to 

measurements and the related quality domains 125;126 (ie, reliability, validity, and responsiveness) 
127is poor 128 and is absent from the SCI population. COP measurements have been examined in 

healthy elderly individuals 112;129 and in patients with Parkinson130 and orthopedic diseases 131. 

Data from healthy subjects can inflate the reliability estimates, because measurements can be 

made in them more easily than in patients112.  

Measurement errors, and hence the reliability of a measure, are not fixed but depend on the study 

population 132 and can vary between test conditions112. Thus, measurement properties must be 

specified for a study population and test conditions.  

No study has examined the properties of COP parameters by SP in subjects with SCI. Our serial 

cross-sectional study aimed to determine the reliability, validity, and responsiveness of COP 

parameters under various test conditions and define the protocol parameters that are suitable for 

specifically assessing balance in subjects with incomplete motor SCI.  
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9.1.2 METHODS 

9.1.2.1 Population 

This serial cross-sectional study included 23 subjects with incomplete motor SCI. The inclusion 

criteria comprised traumatic and nontraumatic etiology, subacute and chronic AIS D SCI, and the 

ability to maintain a standing position unsupported for at least 52 s. The exclusion criteria were 

the presence of cognitive impairments and any orthopedic or neurological pathology that could 

influence the assessment of balance. Neurological status was scored per American Spinal Injury 

Association (ASIA) standards, including the Impairment Scale (AIS)21. Patients’ demographics, 

lesion levels, and etiologies are reported in Table 4. 
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Table 4: Patients’ clinical and epidemiological features. TSCI: traumatic SCI; NTSCI: non traumatic SCI; 

Lesion level: C: cervical; T: thoracic; L: lumbar. Sensory test conditions: OF: open feet; CF: closed feet; OE: 

open eyes; CE: closed eyes; Y: assessment performed; N: assessment not performed. *: Patients with SCI 

who underwent at least 2 consecutive balance assessments, both clinical and instrumental 

 

  Age Gender Weight Height Aethiology 
Lesion 
Level 

Time 
since 
lesion 

(months) 

OF- 
OE 

OF-
CE 

CF-
OE 

CF-
CE 

PT1* 19 M 62 173 TSCI T7 6 Y Y N N 

PT2* 34 F 68 175 
NTSCI 

(Inflammatory) 
C5 24 Y Y Y Y 

PT3* 66 M 74 167 
NTSCI 

(Degenerative) 
T11 15 Y Y Y Y 

PT4 37 M 64 171 TSCI C6 13 Y Y Y Y 

PT5* 52 M 68 169 
NTSCI 

(Vascular) 
T12 10 Y Y Y Y 

PT6* 33 F 55 167 TSCI T11 8 Y Y N N 

PT7* 34 F 60 176 
NTSCI 

(Vascular) 
T8 6 Y Y Y Y 

PT8* 54 F 70 168 
NTSCI 

(Degenerative) 
L5 32 Y Y Y N 

PT9* 35 F 66 172 
NTSCI 

(Degenerative) 
L4 8 Y N Y N 

PT10 41 M 88 177 TSCI L3 5 Y Y N N 

PT11* 64 M 78 160 
NTSCI 

(Inflammatory) 
T5 13 Y Y N N 

PT12 84 M 53 165 
NTSCI 

(Inflammatory) 
L1 8 Y Y N N 

PT13 52 M 80 173 
NTSCI 

(Degenerative) 
C7 8 Y Y Y Y 

PT14* 30 M 65 173 TSCI L3   9 Y Y      Y Y 

PT15 40 M 73 178 TSCI L3 6 Y Y Y Y 

PT16* 29 M 65 181 TSCI T10 8 Y N N N 

PT17* 61 F 80 159 
NTSCI 

(Inflammatory) 
T7 14 Y N N N 

PT18* 33 F 85 182 TSCI C6 8 Y Y Y Y 

PT19* 59 F 60 158 
NTSCI 

(Degenerative) 
C5 72 Y Y Y Y 

PT20* 69 M 75 165 TSCI C5 13 Y Y Y Y 

PT21* 44 F 57 178 
NTSCI 

(Degenerative) 
D1 75 Y Y Y Y 

PT22* 51 M 74 173 NTSCI C7 9 Y Y Y Y 

PT23 60 M 65 170 
NTSCI 

(Degenerative) 
C7 8 Y Y Y Y 

Medium 
(s.d.) 

48,27 
(15,94) 

14M - 
9F 

69,22 
(9,37) 

163,45 
(32,65) 

60.9 % NT 
39.1 % T 

 
16.43  

(19,03) 
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Enrolled patients were assessed repeatedly. Specifically, 6 patients were evaluated once, and the 

remaining 17 patients were assessed 2 to 12 times for 1 year, with 2 weeks between sessions. 

Overall, 111 evaluation sessions were analyzed, all of which administered clinical and instrument-

based assessments of balance. The local ethics committee approved this study (Prot. CE/AG.4-

PROG.231-65), and all patients gave informed consent for participation. 

 

9.1.2.2 Clinical assessment of balance 

For each evaluation, the Berg Balance scale (BBS) and Tinetti scale (TS) were used to assess 

balance clinically, and the Walking Index for Spinal Cord Injury (WISCI) 133 was used to determine 

the functional level of ambulation. The BBS is a 14-item task-oriented test that was validated 

recently in SCI patients 115 and can be considered a reflection of functional activity. Total scores 

range from 0 to 56, with higher scores indicating greater balance and functional independence.  

The TS includes subscores for equilibrium (TSE) and locomotion (TSL)
114. Fourteen items on this 

clinical test measure balance characteristics (scored out of 24), and 10 items examine gait features 

(scored out of 16), for a total score of 40, with higher scores indicating greater balance.  

The WISCI has been validated specifically with regard to gait in subjects with SCI 47. Total scores 

range from 0 to 20, with higher scores reflecting greater independent locomotion133.  

 

9.1.2.3 Instrument-based stabilometric assessment of balance  

Stabilometric parameters were analyzed using a 320-cm by 75-cm (length x width) static force 

platform (Platform BPM 120, Physical Support Italia, Italy). The signals were amplified and 

acquired using dedicated software (Physical gait Software Vv. 2.66, Physical Support Italia, Italy). In 

assessing static stability, patients stood barefoot in a natural and relaxed position with their arms 

by their sides and with both heels lined up 112, under 2 sensory conditions: eyes open and facing a 

target 1.5 m away (OE) and eyes closed (CE).  

The feet were placed with the forefoot open 30 degrees and the heels in 2 positions: together (FT) 

or apart at a comfortable distance (FA). For the FA condition, heel distance (HD) was measured 

manually by the operator and fixed for the FA-OE and FA-CE conditions and during the recordings. 

For each evaluation, 4 conditions (FT-OE, FT-CE, FA-OE, and FA-CE) were tested. Under each 

condition, measures were recorded 3 times, per Ruhe 112. We selected 51.2 s as the testing time, 

per the platform manufacturer and other studies134;135. A slight pause was permitted between 

recordings to allow the arms to rest on bars, during which the patients were asked to maintain 

their foot position on the platform. During the data collection, subjects were asked to “stand as 

still as possible’’ while looking straight ahead, per Zok et al.136. 
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We considered the following quantitative COP parameters: 

- Length indicators: path length (L, mm), mean velocity (V, L divided by the trial duration), 

anteroposterior (VAP) and laterolateral (VLL) velocities (mm/s), and mean position of COP 

along the planar laterolateral (X) and anteroposterior (Y) coordinates on the platform (mm) 

- Surface indicators: area of the ellipse encompassing 90% of COP samples (A, cm2) and 

length of its semiaxes (SA1, SA2, cm).  

 

9.1.3 Data analysis  

9.1.3.1 Demographic features 

The influence of demographic features on COP parameters was analyzed using the Spearman 

correlation coefficient ( , applied to data from the first session of each subject. 

9.1.3.2 Measurement of COP parameters between test conditions 

The reliability domain contains various measures for continuous data125: test-retest and intrarater 

reliability, measurement error, and minimal detectable change. 

1. Test-retest reliability, or repeatability, reflects the reliability between tests by the same 

operator in the same session. Test-retest reliability was assessed using the coefficient 

of variation (CV). CV is a measure of data dispersion and was the standard deviation 

that was computed for the values in the 3 recordings, expressed as a percentage of the 

mean value. Because the ideal mean for planar coordinates is 0, CV was not computed 

for the Y or X COP.  

2. Intrarater reliability determines the reliability across the time of evaluations by the 

same operator. For continuous data, intraclass correlation (ICC) is the preferred 

method125, because it also takes systematic errors between repeated measurements 

into account. Of the various methods of calculating ICC, consistent with the Shrout and 

Fleiss reliability coefficients guidelines137, we adopted the ICC(3,1) form. We analyzed 

the ICC, with a confidence interval (CI) of 95%, for patients who underwent at least 2 

consecutive (within 15 days) assessments (17 subjects).  

3. Measurement error indicates the absolute error in measurement and was calculated as 

the standard error of measurement (SEM)125. SEM represents the standard deviation of 

repeated measures of the same subject (ie, within-subject variability) by the same 

operator (ie, within-rater variability) and is expressed in units of the measurement 

tool—in this case, SEM = SD *  (1-ICC).  

4. Minimal detectable change (MDC95) addresses the common problem of deciding 

whether results are significant or due to errors in measurement. MDC95 is defined as 

the minimal amount of change that is not due to the variation in measurement138. 

Calculated as SEM *1.65 * 2, MDC95 determines the magnitude of change that exceeds 

the threshold of measurement error at a 95% confidence level.  
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A 95% confidence interval, as with SEM, increases the precision of score estimates138. 

Further, the percentage of MDC95 that indicates the percentage of the minimal amount 

by which the results change versus baseline—not due to variations in measurement—is 

calculated per the following formula:  

% MDC95 = (MDC95*100)/ baseline assessment value. 

Reliability assessments were also performed for the BBS, TIN, and WISCI using ICC, SEM, and 

MDC95. 

 

The validity domain refers to the degree to which an instrument measures the construct that it 

purports to measure125 and is evaluated based on criterion and construct validity. 

1. Criterion validity indicates the degree to which the scores of a measurement 

instrument are an adequate reflection of a standard. The preferred method for 

estimating criterion validity is correlation coefficient, which should preferably exceed 

0.70125. For patients with SCI, the only validated tool for assessing balance is the BBS 
115, rendering it the standard tool for determining criterion validity by Spearman 

correlation coefficient ( ) . 

2. Construct validity estimates the consistency of measurement instrument scores under 

the assumption that the instrument measures the construct validity 125, which is 

calculated as convergent validity. Construct validity refers to the degree to which COP 

parameters correlate with the related scales (BBS and TSE)—not with other scales 

(WISCI and TSL) (ie, appropriateness). Convergent validity was analyzed using 

correlation coefficients (R for Pearson coefficient and  for Spearman coefficient.)  

 

The responsiveness domain reflects the sensitivity to changes and is frequently measured by effect 

size (ES)139. ES is based on the data distribution and is the mean difference between values in the 

first and second assessments, divided by the standard deviation of the baseline values (ie, the 

values in the first assessment). ES was calculated for patients who participated in at least 2 

sessions (17 patients) with regard to clinical and instrumental data.  

 

9.1.3.3 Effects of sensory conditions on assessment 

The optimal sensory conditions for balance assessment were analyzed by analysis of variance 

(ANOVA), with vision and support base as the main factors. Further, Pearson correlation between 

HD and clinical scales was analyzed to determine the influences of HD on balance in SCI subjects. 

Statistical analyses were performed using SPSS for Windows (version 9.0, Chicago, IL). Data were 

considered significant at p<0.05. Correlation analyses were performed per Munro’s 

classification132: 0.00–0.25: little, if any correlation; 0.26–0.49: low correlation; 0.50–0.69: 

moderate correlation; 0.70–0.89: high correlation; and 0.90–1.00: very high correlation.  
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9.1.4 RESULTS 

Not all subjects were tested under each sensory condition; subjects with more severe damage 

were unable to perform the most challenging tasks; CF or CE conditions. Overall, 111 OF-OE, 96 

OF-CE, 83 CF-OE, and 73 CF-CE evaluations were performed. 

By Spearman correlation analysis, no significant correlations between COP parameter and 

demographic features (age, height, weight, gender) were observed for any sensory condition (OE, 

CE, OF, CF) (p>0.05).  

 

9.1.4.1 Measurement properties of COP parameters between test conditions 

With regard to reliability, test-retest reliability was evaluated by CV for each COP parameter in 3 

trials under each condition. The CV of all parameters was minimally affected by sensory condition, 

indicating their lack of effect on the reliability COP parameters. The most repeatable parameters—

those with the lowest CV values—were L, V, and VLL. The least repeatable parameter was A, with a 

mean CV of approximately 50% over all conditions (Table 5). 
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Table 5: Test-retest reliability of COP parameters by coefficient of variation. The assessment conditions and 

mean coefficient of variation (CV) for each COP parameter between the 3 trials are reported. The mean 

values between conditions for each COP parameter (last column) or COP parameters for each condition 

(last row) are in grey. For abbreviations of COP parameters and sensory conditions, see list of 

abbreviations. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

The intrarater reliability was assessed by ICC for the clinical scales and COP parameters. Of the 

clinical scales, the BBS had the highest ICC value, whereas the TIN had the lowest. For COP 

parameters, averaged between sensory conditions, L, V, and VLL had the highest ICC values. In 

contrast, with regard to sensory conditions, averaged between COP parameters, the OF-OE and 

OF-CE conditions had the highest ICC values, whereas the CF-CE condition had the lowest ICC 

(Table 6). The ICC value of the BBS was the highest of all clinical scales and COP parameters.  

 

Parameter 
Coefficient of Variation [%] 

OF-OE OF-CE CF-OE CF-CE Mean (SD) 

A 46.4 46.7 47.2 42.4 45.7 (2.2) 

L 13.4 13.6 13.8 12.9 13.4 (0.3) 

SA1 27.7 24.9 22.6 26.0 25.3 (2.1) 

SA2 27.5 26.3 27.8 25.1 26.7 (1.2) 

V 13.3 13.6 13.8 12.9 13.4 (0.4) 

VLL 13.2 13.3 12.7 14.2 13.4 (0.6) 

VAP 16.2 15.6 18.0 13.3 15.8 (1.9) 

Mean (SD) 22.5 (12.3) 22.0 (12.2) 22.3 (12.3) 21.0 (11.1)  
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Due to differences between unit measures, percentage change in MDC95 between sessions was 

used instead of MDC95 for the statistical analysis. Of all clinical scales, the BBS and WISCI had the 

lowest percentage change due to measurement error, and L, V, and VLL had the lowest percentage 

change due to measurement error of all COP parameters (Table 6).  

Validity of the COP parameters was evaluated by correlation analysis with clinical scales, as 

reported in Table IV. Of the COP parameters, L, V, VLL, and VAP correlated significantly and 

systematically with the BBS, TS, and TSE. L, V, and VLL also correlated with the TSL but only under 

the OF-OE/CE conditions, with low R values. Notably, the highest correlations between COP 

parameters and clinical scales were observed with each parameter in the OF-OE condition. X and Y 

data did not correlate with the clinical scales (Table 7).  

Our evaluation of criterion validity by correlation of COP parameters with the BBS determined L, V, 

VLL, and VAP in the OF-OE condition to be the only parameters with R values over the validity 

criterion of 0.70. Convergent validity was assessed by comparing COP parameters with balance- 

and nonbalance-related clinical scales. The correlation coefficients of the COP parameters were 

higher for balance scale scores (BBS, TS, TSE) versus locomotion scale scores (TSL, WISCI).  
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Table 7: Validity of COP parameters. Statistically significant values are in bold (p<0.05:*, p<0.005:**, 

p<0.001:***). The grey tabs highlight R values >0.7. The mean values of absolute values of these 

coefficients between conditions are in grey font. For abbreviations of COP parameters and sensory 

conditions, see list of abbreviations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coefficient of 
Correlation 

Clinical Scales 

BBS TS TS-E TS-L WISCI mean(|R|) 

A 

OF-OE - 0.65*** -0.49*** -0.57*** -0.23* -0.09 0.41  

OF-CE -0.48*** -0.27** -0.42*** 0.07 -0.14 0.28 

CF-OE -0.55*** -0.44*** -0.52*** -0.25* -0.08 0.37 

CF-CE -0.31*** -0.17 -0.26*** -0.02 -0.16 0.18 

L 

OF-OE -0.73*** -0.58*** -0.64*** -0.23* -0.21* 0.48 
OF-CE -0.54*** -0.34*** -0.43*** 0.06 -0.21* 0.32 
CF-OE -0.61*** -0.54*** -0.54*** -0.23* -0.16 0.42 
CF-CE -0.39*** -0.24*** -0.32*** 0.01 -0.39*** 0.27 

SA1 

OF-OE -0.68*** -0.53*** -0.61*** -0.30** -0.11 0.45 

OF-CE -0.52*** -0.34*** -0.47*** 0.02 -0.19 0.31 

CF-OE -0.46*** -0.40*** -0.43*** -0.18 -0.09 0.31 

CF-CE -0.26* -0.20 -0.23* -0.10 -0.27* 0.21 

SA2 

OF-OE -0.66*** -0.48*** -0.57*** -0.21* -0.09 0.40 
OF-CE -0.50*** -0.30** -0.42*** 0.02 -0.06 0.26 
CF-OE -0.58*** -0.44*** -0.53*** -0.23* -0.05 0.37 
CF-CE -0.11 0.00 -0.11 0.07 -0.06 0.07 

Y 

OF-OE -0.02 -0.08 -0.08 -0.05 0.22* 0.09 
OF-CE -0.13 -0.13 -0.14 -0.13 0.02 0.11 
CF-OE 0.02 -0.12 -0.08 -0.18 0.29* 0.14 
CF-CE -0.09 -0.03 -0.04 -0.05 -0.31* 0.10 

X 

OF-OE 0.00 0.10 0.04 0.01 -0.13 0.06 

OF-CE -0.01 0.04 0.01 0.17 -0.11 0.07 

CF-OE -0.13 0.00 -0.10 -0.05 -0.18 0.09 

CF-CE -0.17 -0.15 -0.12 -0.01 -0.14 0.12 

V 

OF-OE -0.73*** -0.58*** -0.64*** -0.23* -0.22* 0.48 
OF-CE -0.52*** -0.30** -0.41*** 0.10 -0.24* 0.31 
CF-OE -0.61*** -0.54*** -0.54*** -0.23* -0.16 0.42 
CF-CE -0.39** -0.24* -0.32** 0.01 -0.39* 0.27 

VLL 

OF-OE -0.71*** -0.60*** -0.64*** -0.30** -0.22* 0.50 
OF-CE -0.54*** -0.34*** -0.44*** 0.04 -0.27* 0.32 
CF-OE -0.52*** -0.49*** -0.47*** -0.26* -0.18 0.38 
CF-CE -0.35** -0.24* -0.29* -0.07 -0.39*** 0.27 

VAP 

OF-OE -0.74*** -0.56*** -0.64*** -0.18 -0.20* 0.47 
OF-CE -0.53*** -0.28* -0.40*** 0.16 -0.19 0.31 
CF-OE -0.69*** -0.56*** -0.59*** -0.20 -0.13 0.44 
CF-CE -0.41*** -0.24* -0.32** 0.07 -0.35** 0.28 
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The evaluation of responsiveness, as measured by ES, is shown in Table V. The BBS was the most 

sensitive clinical scale, with an ES of 0.78. All COP parameters were more sensitive than the clinical 

scales, with nearly all ES values above 1. Averaging between sensory conditions, L, V, VLL, and VAP 

had the highest ES values. For the sensory conditions, averaged between COP parameters, the OF-

OE and CF-CE conditions had the highest ES values (Table 8). 

Table 8: Responsiveness of COP parameter assessment. Effect size (ES) between 2 sessions for 17 SCI 

patients. The mean values between conditions for each COP parameter (last column) or between COP 

parameters for each condition (last row) are in grey. The highest ES values among the clinical scales and 

COP parameters are in bold. For abbreviations of COP parameters and sensory conditions, see list of 

abbreviations. 

 

 Effect size (ES) 

Scale  

BBS 0.78 

TIN 0.18 

TINE 0.37 

TINL 0.17 

WISCI O.07 

Parameter OF-OE OF-CE CF-OE CF-CE Mean (SD) 

A 2.10 0.81 1.80 1.69 1.60 (0.55) 

L 1.87 2.41 1.39 2.96 2.16 (0.68) 

SA1 1.28 1.73 0.58 2.93 1.63 (0.98) 

SA2 2.72 0.91 1.25 1.05 1.48 (0.84) 

Y 1.36 2.29 1.53 1.43 1.65 (0.43) 

X 1.52 1.08 1.11 0.49 1.05 (0.51) 

V 1.87 2.41 1.39 2.96 2.16 (0.68) 

VLL 2.79 3.33 1.13 1.90 2.29 (0,97) 

VAP 2.60 1.39 2.56 2.88 2.36 (0.66) 

Mean (SD) 2.01 (0.58) 1.82 (0.85) 1.42 (0.54) 2.03 (0.98)  
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9.1.4.2 Effects of sensory conditions on assessment  

Considering the data above, the effects of sensory conditions were examined, focusing on V—the 

most sensitive, reliable, and valid COP parameter (Figure 16). Overall, foot position had little effect 

on V, whereas vision affected V significantly. By ANOVA of V values, with vision and support base 

as the main effects, only vision had a significant effect [F(1.346)=76.10; vision: p<0.001, support 

base: p=0.535, interaction not significant: p=0.445.] The COP data were lower for the OE versus CE 

condition, indicating better balance with vision (Figure 16). The lack of a support base effect 

suggests that the foot conditions have little influence. These data are consistent with the lack of 

an effect of foot position on COP parameters or scale score correlation data (Table 7).  

 

 

 

Figure 16:  Effects of conditions on stabilometry. Histograms of mean COP velocity (V ± standard deviation) 

versus assessment conditions, depending on support base [open feet (OF) versus closed feet (CF)] and 

vision [open eyes (OE) versus closed eyes (CE)]. 
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In contrast, in the OF condition, HD was self-selected, and patients used disparate HD conditions. 

By Pearson correlation analysis between HD and clinical scales, the BBS ( =-0.227, p=0.019), TINE 

( =-0.275, p=0.003), and TIN ( =-0.289, p=0.03) were significant, but TINL was not ( =-0.112, 

p=0.24) (Figure 17) ). 

 

Figure 17: Correlation analysis between heel distance and clinical scales. Correlation between HD and BBS, 

TIN, TINE, and TINLOC. 

 

The importance of the HD in assessing balance with regard to balance recovery was analyzed 

longitudinally for 17 patients who underwent rehabilitation by considering the HD during the 

evaluations over time. The mean R was high (R=-0.37, p<0.001), indicating a progressive reduction 

in HD of 3 cm for 150 days in patients who were assessed repeatedly. 
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9.1.5 DISCUSSION  

Reliability, validity, and responsiveness are the key components of determining the suitability of a 

measurement; these parameters can vary by characteristic of the target population132. Our data 

allow us to define the COP parameters and assessment conditions that are suitable in evaluating 

postural balance in subjects with incomplete SCI.  

9.1.5.1 Demographic features 

Demographic features have been claimed to affect the reliability of COP measurements112. 

Although few studies have addressed the effect of gender, all of them agree in disputing sex-

related influences on balance, consistent with our findings 140;141. Height and weight affect COP 

parameters142;143. In our study, we adopted the approach of Salavati et al.131  in mitigating the 

effects of height and weight by averaging COP measurements between 3 consecutive trials. 

Consequently, no correlations between height or weight data and COP parameters were observed. 

The influence of age is debated140;144. In our cohort, there were no significant correlations 

between COP parameter and age, supporting the hypothesis that age does not affect SP 

evaluations in the SCI population. Nevertheless, our study did not specifically aim to determine the 

effects of age, and no specific measures were taken to correctly evaluate confounding factors.  

 

9.1.5.2 Measurement properties of COP parameters between test conditions 

Reliability can be measured in several ways, of which ICC is the most common in SP studies 112. 

Independent of method (CV or ICC) and sensory condition (OF-OE, OF-CE, CF-OE, CF-CE), L, V, and 

VLL were the most reliable parameters. L is directly (ie, arithmetically) related to V and recording 

time, and L and V provide the same information, if the recording time has been standardized 118. 

Thus, all V and L measures should be considered related, because they are based on the same raw 

values. The reliability of V in SCI is consistent with findings on V in examining balance in young 

healthy112 and old healthy129 subjects and in patients with orthopedic diseases131. Current studies 

agree that V is the most reliable parameter in assessing balance. 

When examining a patient population and possible treatment effects, the significance of a 

detected change—ie, whether a change is reliable or due to variations in measurement—must be 

determined112. This step is commonly addressed in clinical studies by SEM and MDC95 129;131, the 

latter of which is most frequently used in SCI 145;146. Notably, of the COP parameters, V and the 

related COP parameters L and VLL had the lowest MDC95 scores. 

As discussed and consistent with Scholtes 125et al. , in addition to reliability, the quality of the 

instruments’ measurements must be established by considering validity and responsiveness—2 

parameters that are seldom reported in SP studies. Validity is established by reference to the gold 
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standard measurement in this field and by taking into account that the instrument measures the 

desired construct. BBS is the only balance scale that has been validated specifically for the SCI 

population115. Thus, we analyzed criterion validity by correlation analysis between BBS and COP 

parameters.  

When dealing with validity measures, correlation coefficients that exceed 0.70 are considered 

significant125; in our data, V, L, VLL, and VAP were the only measures that had correlation 

coefficients above 0.70. High V validity was also evidenced by the results on convergent validity. 

Our comparison of correlation coefficients between V and the related COP data and clinical 

scale—with the same (BBS and TSE) or different (TSL and WISCI) constructs—demonstrated high 

correlation values for BBS and TSE but not for TSL or WISCI. Overall, these findings implicate V as a 

valid parameter in assessing balance in SCI subjects. Such evaluation methods are unavailable for 

healthy subjects and other clinically relevant populations. Thus, the validity of V in populations 

other than SCI patients must be determined.  

Responsiveness is the ability of an instrument to detect changes in the construct that is measured 

over time147. Whereas validity refers to a single score, responsiveness reflects the validity of a 

score that has changed147. There is an ongoing debate about the ideal method for evaluating 

responsiveness148;149. It has been suggested that all responsiveness measures are measures of 

longitudinal validity or treatment effects and that, specifically for responsiveness, assessing 

longitudinal validity should be the preferred method148;149. However, no longitudinal validity 

assessment tool is available for SP. Based on the limitations that were discussed recently by 

Mokkink et al.147, we used the most common method, ES, in evaluating responsiveness in SCI 

subjects. Consistent with previous domains, higher responsiveness was recorded for V and the 

related L, VLL, and VAP measures. 

It could be argued that a high intersession ICC score is inconsistent with high intersession 

responsiveness, unless all subjects undergo similar changes between sessions, as was the case in 

our cohort—all patients had well-stabilized clinical profiles. Thus, very few changes were expected 

and recorded in the 2-week intersession period.  

  

9.1.5.3 Effects of sensory condition on assessments 

In a recent review, Ruhe et al. reported the absence of standardized methods for COP 

measurements and implicated trial duration, repetition, and visual and foot conditions as critical 

factors for obtaining reliable COP datasets112. Attempts to provide recommendations on the 

length and number of trials for assessing balance correctly have failed to reach a consensus.  

Trial duration varies between studies. The recommended trial duration is 90 to 120 s to effect 

acceptable reliability with correlation coefficients > 0.75 for most parameters 112. Nevertheless, 

early studies reported that a 10–60-sec duration was suitable for obtaining reliable COP data150;151. 

In our study, we did not examine the influence of differences in time on the reliability of COP 

parameters. The recording time was set to 51.2 per the platform handbook. Although it was short 
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compared with recent recommendations112, this duration yielded high correlation coefficients (> 

0.70) for most parameters.  

With regard to trial repetitions, there is a tendency to increase trial number to generate more 

reliable data. Although this pattern might be reasonable when examining young healthy subjects, 

it becomes impractical when recruiting disabled persons in a clinical setting. Thus, we did not 

determine trial repetition effects and set a low number of repetitions to permit averaging (3, per 

Ruhe) 112. 

Vision effects on the reliability of COP measures have been evaluated in several studies on 

population-related effects112. Recent studies have reported a trend toward higher reliability 

estimates under the eyes-closed conditions, prompting the recommendation to keep the eyes 

closed as the best practice. Our study subjects were tested with the eyes open (OE) and closed 

(CE), although not all subjects were able to perform under the CE condition, indicating the CE 

condition to be more challenging and discriminating. The significant effect of vision on V values 

also highlighted its significance.  

There were no differences between the 2 visual conditions with regard to the reliability of V. 

Conversely, vision affected the validity and responsiveness of V indexes. The highest validity was 

obtained under the OE condition, and the best responsiveness was seen under the CE conditions. 

The discrepancy between the effects of vision on the validity and responsiveness of V and the lack 

of an effect of vision on the reliability of V is notable and contrasts the findings of Ruhe112, 

suggesting that the eyes-closed condition should be applied, at least in healthy subjects. Validity 

and responsiveness refer to 2 different domains—ie, validity evaluates the construct that it 

purports to measure, whereas responsiveness reflects the sensitivity to patient changes. Thus, V 

can be evaluated with and without vision, at least in SCI subjects. 

Foot position affects passive stability, decreasing the request of active neural control 142;152, but no 

consensus exists on the more reliable foot position 112. Despite this lack of normative data, the 

best practice guidelines suggest standardization112. We tested subjects under 2 feet conditions: CF 

and OF. In the OF condition, subjects were asked to stand comfortably with their heels apart, and 

HD was recorded. This setting allowed us to test the closed versus open conditions and determine 

the effects of HD on COP reliability.  

In general, a narrow stance is at least as reliable as a comfortable stance112, but our findings 

indicate that foot position (CF or OF) does not affect the reliability of COP parameters. Conversely, 

the OF condition allowed us to record HD, for which the balance scales had high correlation 

values. The significance of changes in HD over time suggests that HD can be used to evaluate the 

effects of recovery and treatment on balance. Overall, OF in the comfortable position with HD 

recorded appears to be the ideal test condition for SCI subjects, consistent with the 

recommendations of Chiari 142 and Yoon 140 for healthy subjects.  
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Based on the limitations above, taking into account the V data, OF-OE is the most valid condition 

and OF-CE is the most responsive condition, suggesting that both should be implemented in 

testing SCI subjects.  

 

The comparison of reliability and responsiveness between the V value of COPs in the OF-OE and 

OF-CE conditions and the balance scales merits further examination. To facilitate the comparison 

between the V and balance scale results, the ICC, %MDC, and ES data are presented in Figure 18. 

Because BBS is the reference standard, the V results only approximate the BBS ICC data. Yet, 

greater changes in V versus BBS in patient balance are required to obtain improvements that are 

not due to instrument error.  

 

Figure 18: Comparison of ICC,%MDC, and ES results between balance scales and V data for OF-OE and OF-
CE conditions. 
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The most notable comparison concerns responsiveness. V ES, particularly in the OF-CE condition, 

was superior to all clinical scales. The difference between ES values was 0.78 for BBS and 2.41 for 

V in the OF-CE condition. Thus, the proposed SP protocol significantly increases the ability to 

detect changes in the balance of SCI subjects compared with BBS.  

Our study did not specifically evaluate the reliability, validity, and effectiveness of SP parameters 

for evaluating recovery after SCI. This aspect must be addressed in a devoted study, with repeated 

measures conducted during rehabilitation and balance recovery. 

9.1.6 Study Limitation 

Instructions to the patients, time of testing, and trial repetitions were present and were not tested 

experimentally. The reliability, validity, and effectiveness of COP parameters in assessing 

stabilometric platform were not been tested in healthy control subjects’ group. The psychometric 

properties of COP measurements in healthy individuals have been examined in several studies112, 

particularly in the elderly129;144. Nevertheless, the assessment of detailed data on healthy controls 

should be included in a devoted study. 

9.1.7 CONCLUSION 

For a reliable, validity and responsive balance assessment by SP in SCI subjects, COP V data must 

be acquired for OF-OE and OF-CE sensory conditions, reporting heel distance values for OF 

conditions. 
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9.2 Efficacy of task-specific biofeedback balance training in supporting walking 
functions in chronic incomplete spinal cord injury patients 

9.2.1 INTRODUCTION 

The body’s equilibrium is maintained by the central nervous system, which fixes the COM around a 

specific point—a goal that is under constant challenge by continuous perturbations to the COM by 

factors, such as breathing, heart rate, and muscle activity 110. To maintain postural stability, 

several afferent inputs, such as visual, vestibular, and somatosensory, are integrated and 

converted into efferent motor outputs, which in turn are transmitted down to the spinal cord 

along various motor tracts 111. Damage to any of these systems can result in postural instability.  

Lack of postural control is regarded as one of the main reasons for causing a fear of falling among 

the people with SCI during their rehabilitation programs that are designed to improve their ability 

to walk and stand 6;153. Brotherton et al. 154 stated that falls by individuals with SCI often occurred 

in the home, especially during the day. The incidence of fractures has been reported as being 18%; 

(5–6% greater than that experienced by healthy older adults). In addition, the incidence rate for 

falls in people with SCI is 75%, which is higher than the incidence reported for healthy subjects 

aged 65 and older (35%),7,9 and is also higher than those reported for subjects with neurological 

disease resulting in peripheral neuropathy (50%) or Parkinson’s disease (38–62%) 6.  

Balance has seldom been analyzed in SCI patients; nevertheless, various groups have addressed 

this issue, suggesting its importance in determining gait performance 5;47;104. Re-education of 

balance function in SCI patients by task-specific oriented training 155 has been examined, focusing 

on sitting balance recovery 155 156 110 and standing balance 113;157. Even if it has been recently 

demonstrated that balance is a key factor of walking recovery 5, no data are available on the 

efficacy of task-specific biofeedback balance training in supporting walking functions in chronic 

motor incomplete SCI patients.  

Thus, the object of this open-case study with a prospective control was to determine the efficacy 

of visual biofeedback (vBFB) task-specific standing balance training in improving balance 

performance and gait in subjects with chronic motor incomplete SCI compared with conventional 

over-ground rehabilitation.  
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9.2.2 MATERIAL AND METHODS 

9.2.2.1 Study design 

Six consecutive SCI subjects who were referred to the FSL spinal cord unit as outpatients between 

January 2009 and April 2010 and met inclusion criteria below were enrolled into the study as the 

experimental group (EXP). Subsequently, balance and gait data for 6 SCI patients with matching 

epidemiological, clinical, and neurological features, satisfying the same inclusion criteria, were 

extracted from our database 5, constituting the control group (CTRL). Balance and walking features 

were also collected from 6 healthy subjects who were comparable with regard to gender, height, 

weight, and age—constituting the healthy group (HEALTHY). The demographics and clinical 

features of the HEALTHY, CTRL, and EXP subjects are reported in Table 9. 

Table 9: Clinical features of HEALTHY, CTRL, and EXP SCI subjects (all patients are ASIA level D, according to 
the inclusion criteria of the study). Abbreviations: SCI, incomplete spinal cord injury; HEALTHY, healthy 

subjects; EXP: experimental SCI patients; CTRL: control SCI patients; M, male; F, Female; NT, non-traumatic 
SCI lesion; T, traumatic SCI lesion. 

 

 

 Age  
(years) 

Sex Height  
(cm.) 

Weight  
(Kg.) 

Aetiology Lesion 
Level 

Duration 
of injury 
(months) 

HEALTHY1 50 M 175 87    

HEALTHY2 39 F 176 61    

HEALTHY3 56 F 175 64    

HEALTHY4 61 F 168 65    

HEALTHY5 37 M 166 59    

HEALTHY6 59 M 167 73    

HEALTHY  
(mean ± sd) 

50.33 ± 
10.26 

3 M – 3 F 170.67 ± 
4.13 

68.17 ± 
10.40 

   

CTRL1 54 M 169 68 NT T 12 26 

CTRL2 36 F 177 58 NT T 9 24 

CTRL3 61 F 158 60 NT L 5 49 

CTRL4 63 F 159 80 NT T 7 23 

CTRL5 39 M 175 86 T L 3 29 

CTRL6 68 M 167 74 NT T 5 14 

CTRL 
 (mean ± sd) 

53.50 ± 
13.21 

3 M – 3 F 167.50 ± 
7.89 

71.00 ± 
11.08 

   

EXP1 52 M 169 68 NT T 12 29 

EXP2 37 F 176 60 NT T 9 24 

EXP3 54 F 168 70 NT L 5 51 

EXP4 66 F 172 66 NT L 4 28 

EXP5 40 M 177 88 NT L 3 26 

EXP6 63 M 160 78 T T 5 27 

EXP  
(mean ± sd) 

52.00 ± 
11.74 

3 M – 3 F 170.33 ± 
6.21 

71.67 ± 
9.91 
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9.2.2.2 Population 

The inclusion criteria comprised chronic SCI (at least 12 months post-injury), level D on the ASIA 

Impairment Scale21, the ability to maintain a standing position unsupported for at least 1 minute, 

and the ability to walk at least 10 meters 158. During the study, subjects did not participate in other 

rehabilitation or research interventions that might have influenced the outcome of this study. 

The local ethics committee approved this study, and all subjects gave informed consent to 

participate (Prot. CE/AG.4-PROG.231-65).  

 

9.2.2.3 Intervention: CTRL and EXP group training 

 

Fort CTRL and EXP patients, the rehabilitation program comprised an 8-week regimen, 5 times per 

week for 60 minutes each day. For the CTRL group, the entire 60 minutes was devoted to over-

ground conventional rehabilitation, including balance and walking training, per Dobkin et al.159 and 

Alexeeva et al.104. EXP participants underwent 40 minutes of the same rehab protocol as for CTRL 

patients, followed by 20 minutes of specific vBFB training .  

In the vBFB training, patients stood on the force plate with a monitor at eye level approximately at 

1.5 m away (Figure 19).  

 

 

 

 

 

 

 

Figure 19: Patients position during vBFB training/assessment 

 

The center of pressure (COP) position signal was used as visual biofeedback in real-time mode 

during the exercises. vBFB training addressed the 3 primary aspects of balance recovery for stroke 

patients per Nichols 160: steadiness (the ability to maintain a given posture with minimal 

extraneous movements), symmetry (equal weight distribution between the weight-bearing 

components), and dynamic stability (the ability to move within a given posture without losing 

balance). 
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For all SCI subjects, the exercises in the vBFB protocol were the same. In particular, postural 

steadiness was treated with activities that required maintenance of the COP within a narrow 

target or shaded area on the screen as weight was transferred from one target to the next (Figure 

20)  

 

 

 

 

 

 

 

 

Postural symmetry was rehabilitated by asking the subject to keep the correct weight distribution 

on each foot while standing to maintain the COP on the midline. Further, SCI subjects had to learn 

to maintain the COP on the midline during the postural and reaching tasks, such as 

closing/opening their eyes and reaching for an object that was in front of them (Figure 21).  

 

 

 

 

 

 

.  

 

 

 

 

 

 

Figure 20: Postural steadiness exercise 

Figure 21: Postural symmetry exercise 
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Dynamic stability was addressed by asking patients to shift weight along the anteroposterior or 

mediolateral plane or follow the COP guide that appeared on the screen (Figure 22). 

 

 

 

 

 

 

 

 

 

  

Figure 22: Dynamic stability exercise 
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9.2.2.4 Setup and evaluation of outcomes  

At baseline (T0) and at the end of the training session (T4) and every 10 vBFB sessions (T1, T2, T3), 

EXP subjects underwent a battery of clinical and instrumental evaluations. Follow-up examinations 

were performed 1 month (C1) and 2 months (C2) after the end of the training. From our database, 

we extracted clinical and instrumental balance and gait data for CRTL subjects at baseline (T0) and 

after 8 weeks of conventional rehab (T4) (Figure 23). HEALTHY subjects underwent the same 

clinical/instrumental assessment once, and their data were used as a reference of physiological 

balance and gait parameters. For all groups, the balance and gait evaluations were performed in 

the following order: instrumental balance and gait examinations and clinical assessments using 

scales and time tests. 

 

 

Figure 23: Rehabilitation intervention and evaluations schema for CTRL and EXP group 

 

Neurological status was assessed using the American Spinal Injury Association (ASIA) and ASIA 

Impairment Scale (AIS) 161, and balance impairments were evaluated using the Berg balance scale 

(BBS) 115. To examine walking level and performance, we used the walking index for spinal cord 

injury (WISCI) 133, 10-meter walk test (TMWT) 162, 6-minute walking test (6MWT) 163, and the timed 

up-and-go test (TUG) 164. 

 

9.2.2.4.1  Evaluation of balance 

Balance and vBFB training were evaluated using the same static force platform described for study 

“Reliability, validity, and effectiveness of center of pressure parameters in assessing stabilometric platform 

in subjects with incomplete spinal cord injury: A serial cross-sectional study” (BPM 120 - Physical Gait 

Software Vv. 2.66, Rome, Italy). During the assessment of static stability, as suggested by results of 

previous study (see 9.1.7) patients stood barefoot in a natural and relaxed position, arms at their 

sides, with the heels lined up and apart (OF) at a comfortable distance, fixed throughout the 



Study 1 
 

77 
 

sessions, and forefoot open to 30 degrees with eyes open (OE) facing a target 1.5 m away and 

eyes closed (CE). COP mean velocity (V, mm/s) was used as the highest reliable, valid and effective 

COP parameter to assess balance features (see 9.1.7).  To calculate the mean V values 3 trials were 

performed for both OE and CE conditions, each lasting 51.2 seconds  as suggested by results of 

previous study (see 9.1.7). 

 

9.2.2.4.2  Evaluation of gait 

Locomotion variables were recorded and analyzed by using the KineView Motion System® 

(Kineview, Hafnarfjordur, Iceland). In the experimental setup, we performed a bidimensional gait 

analysis of 3 strides on the sagittal plane. All subjects were instructed to walk OE at a comfortable, 

self-selected velocity 1, walking 2 m ahead of the mat and continuing 2 m past the end. Before 

data were collected, subjects performed the walking trials to familiarize themselves with the 

procedure. Kinematic data were recorded at 50 frames/s with a digital camera (Cyber-Shot DSC 

P73, Sony, Tokyo, Japan). Spatial movements of the lower extremity segments were determined, 

based on the position of passive markers that were placed per the Helen Hayes biomechanical 

model 165 modified to fit the bi-dimensional approach (Figure 24).  

 

 

Figure 24: Passive markers position for gait evaluation by KineView Motion System® 

 

 

 

 

 

Kadaba MP, J Orthop Res 1990



Study 1 
 

78 
 

Kinematic data were reconstructed offline using Matlab (Mathworks, Inc., version 7.1, Natick, 

Massachusetts, USA) after digitalization of the markers with the KineView Motion System. The 

following kinematic data were considered: speed (m/s); cadence (N° step/min); stride length 

(STRIDE: mean of right and left stride in m); stance phase (ST: mean of right and left stride); and 

double-time support phase (DTS: mean of right and left stride) expressed as the percentage of gait 

cycle. In this study, we defined STRIDE as the event between 2 successive instances of foot-ground 

contact, ST as the event from foot-ground contact to lift off, and DTS as the time for which both 

feet were in contact with the ground 166. Foot-ground contact and lift off were assessed using 

KineView. All gait variables were averaged from the kinematic data of the 3 trials. 

 

9.2.2.5 Statistical analysis 

No participant withdrew from the trial, and all outcome measures were obtained for all SCI and 

HEALTHY subjects. For each subject, the mean values of stabilometric parameters were calculated 

by averaging 3 trials for each visual condition (OE – CE). Gait variables were averaged from the 

kinematic data of the 3 trials. Descriptive statistics were performed for all variables. Before 

statistical comparisons were made, Kolmogorov-Smirnov test was performed to evaluate 

distribution of the data.  

One-way analysis of variance (ANOVA) was performed to compare balance and gait data between 

groups (with HEALTHY, EXP, and CTRL as independent variables) at T0 and T4. When the ANOVA 

results were significant, Bonferroni post hoc test was performed. K independent sample was 

applied at T0 and T4 to assess intergroup differences for nonparametric scale scores (BBS – WISCI).  

Paired t-test was used to compare the effects of rehab approaches, evaluated as T4-vs-T0 data, for 

the CTRL and EXP groups. For BBS and WISCI, we used Wilcoxon test. For each balance and gait 

parameter, the percentage of improvement between T4 and T0 data was calculated. To compare 

the percentages of improvement after training between the CTRL and EXP groups, independent T-

test was used. For BBS and WISCI, as nonparametric measures, group data were compared by 

Mann-Whitney U test.  

To identify improvements during rehabilitation, the effectiveness167 of each balance and gait 

parameter was calculated for both SCI groups per the following formula, using healthy data as 

reference scores, reflecting highest level of performance:  

Effectiveness = ((SCI data T4 – SCI data T0)/(medium HEALTHY data – SCI data T0))* 100. 

Differences in efficacy between the CTRL and EXP groups were analyzed by independent t-test or 

Mann-Whitney U test when appropriate.  

One-way repeated measures ANOVA was used to compare performance at T0 versus at the vBFB 

training steps (T1, T2, T3, T4, C1, C2) in EXP patients, followed by post hoc comparison by 

Bonferroni test.  
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Overall comparisons of balance and gait improvement were made at each training time point (Tn) 

by averaging the percentage of improvement in each index across all balance or gait indices per 

the following formula:  

Percentage of improvement = (index value at Tn / index value at T0) * 100. 

Pearson R and Spearman rho correlation coefficients for continuous and ordinal variables, 

respectively, were calculated to quantify the relationship between the improvement in each 

balance index and walking index in EXP and CTRL subjects, calculated as the difference between T4 

and T0 (Δ).  

For all tests, the significance was set at 0.05. Statistical analysis was performed using SPSS for 

Windows (version 9.0, Chicago, IL). 
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9.2.3 RESULTS 

9.2.3.1 vBFB training selectively  improves balance and gait performance 

Clinical and instrumental balance and gait assessment results are reported in Table 10.  

Table 10: Data (mean and sd values) of balance and gait clinical and instrumental evaluations for HEALTHY 
subjects, as physiological references, and EXP and CTRL subjects at baseline (T0) and after 8 weeks of 

treatment (T4). 

 

As expected by the matching criteria adopted, CTRL and EXP subjects had comparable clinical and 

instrumental balance and gait performance at the beginning of the training (CTRL vs EXP at T0 –

Table 10). The 8-week treatment (T4 vs T0) had a positive effect on the EXP and CTRL groups—but 

 

HEALTHY 
CTRL EXP 

 T0  T4 T0 T4 

Mean SD Mean SD Mean SD Mean SD Mean SD 

BALANCE           

BBS 56,00  31,00 8,97 33,00 8,00 26,00 10,69 41,00 7,80 

V OE 1,83 0,50 7,24 3,11 7,12 4,61 9,54 5,54 4,58 2,66 

V CE 1,98 0,65 14,11 3,33 13,84 4,94 16,86 5,84 9,95 6,99 

GAIT           

WISCI 20,00  12,67 0,82 12,67 0,82 14,17 1,83 17,15 1,64 

10MWT 12,00 1,16 28,79 15,80 27,01 12,32 21,02 9,53 19,31 9,18 

6MWT 167,33 20,19 178,28 78,09 177,35 75,54 8,05 68,08 259,64 82,84 

TUG 12,67 1,35 42,18 36,06 38,18 31,26 21,70 10,70 15,22 6,14 

SPEED 0,84 0,16 0,36 0,17 0,36 0,19 0,37 0,14 0,46 0,15 

CADENCE 83,99 10,37 55,09 21,60 54,99 23,09 56,10 12,12 65,47 16,77 

STRIDE 1,19 0,15 0,72 0,14 0,73 0,14 0,78 0,17 0,85 0,13 

ST 64,03 1,89 78,11 7,14 76,48 6,84 73,75 5,23 71,49 4,22 

DTS 13,92 2,21 24,57 6,34 24,55 6,34 25,16 5,65 23,77 5,77 
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significant only in EXP patients. In the EXP group, the treatment effect was significant for all 

indices, except for the 10MWT and DTS (CTRL T4 vs T0 and EXP T4 vs T0 – Table 3).  

Table 11: Statistical comparison between CTRL and EXP groups at T0 and T4 (CTRL vs EXP) and statistical 
comparison between T0 and T4 (T4 vs T0) for each EXP and CTRL group are reported.  Effectiveness values ± 

sd for CTRL and EXP gait and balance parameters and effectiveness comparison of EXP vs CTRL are also 
reported. Significant statistical values are underlined as bold-faced numbers. Sig: significance; n.s.: data not 

significant 

 

 CTRL vs EXP T4 vs T0 Effectiveness 

T0 T4 CTRL EXP CTRL EXP Sig. 

BALANCE        

BBS ns ns ns 0.028 8.54 ± 8.99 51.60 ± 9,21 0.000001 

V OE ns 0,0001 ns 0.00001 1.81 ±  48.06 62.67 ± 26.46 0.00003 

V CE ns ns ns 0.007 -5.97 ±  57.70 52.78 ± 40.16 0.003 

GAIT        

WISCI ns 0.020 ns 0.024 0,00 59.33 ± 19.02 0.031 

10MWT ns ns ns ns -0.78 ±  36.82 28.67 ±62.27 ns 

6MWT ns ns ns 0.017 -1.39 ±  17.79 25.29 ±16.6 0.023 

TUG ns ns ns 0.025 42.54 ± 73.24 196.04 ± 183.06 ns 

SPEED ns 0.015 ns 0.0003 0.27 ±  12.60 0.19 ± 26.95 ns 

CADENCE ns ns ns 0.001 -6.75 ±  26.02 39.29 ± 51.90 0.003 

STRIDE ns 0.010 ns 0.0001 1.10 ±  19.50 14.93 ± 12.57 0.007 

ST ns ns ns 0.018 18.58 ±  31 29 3.05 ± 43.67 ns 

DTS ns ns ns ns -26.31 ±  8.94 10.12 ± 35.73 0.026 
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The CTRL-EXP group comparison at T0 by one-way ANOVA failed to reveal a group effect on any 

index. Conversely, at T4 group effect was significant on most gait and balance indices (CTRL vs EXP 

at T4 -Table 11).   

The treatment effects on all indices, expressed as percentage of improvement from T4 to T0, are 

graphed in Figure 5 for the CTRL and EXP groups. EXP subjects experienced greater improvements 

than CTRL patients for all indices. The intergroup comparison was significant for all balance indices 

except V CE and the gait indices WISCI, TUG, SPEED, and CAD (Figure 25). 

 

 

 

  

Figure 25: Percentage of balance and gait indexes improvements for EXP and CTRL groups. In the figure are 
reported the % of balance and gait indexes improvements, for EXP , black columns, and CTL groups , white columns.  

Statistical comparison between groups is reported in the figure by asterisks (p<0.05:*, p<0.005:**, p<0.001:***) 
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9.2.3.2 Differences between HEALTHY and SCI subjects in gait and balance indices  

ait and balance indices are generally altered in subjects with motor incomplete SCI53. As expected, 

all indices in CTRL and EXP groups differed from HEALTHY data at T0 (p<0.001 for all EXP and CTRL 

data) and T4 (p<0.001 for CTRL data and p<0.005 for EXP parameters). Similarity with healthy data, 

expressed in terms of effectiveness 167, was used to assess the degree of recovery and 

improvement by rehab (Figure 26).  We observed significant differences in treatments between the 

CTRL and EXP groups with regard to the improvement due to rehab (Table 11). The treatment 

effects were significant for nearly all balance indices and gait parameters.  

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Effectiveness (%) of balance and gait indexes for EXP and CTRL groups. In the figure are reported 
the effectiveness (%) of balance and gait indexes compared between EXP , black columns, and CTL groups , 

white columns. Statistical comparison between groups is reported in the figure by asterisks (p<0.05:*, p 
<0.005:**, p <0.001:***). 

 

9.2.3.3 Balance improves before gait during vBFB  

 

Based on the gait and balance indices in the EXP group during the 8-week training period and at 

follow-up examinations, improvements in balance precede the amelioration of gait. The gait and 

balance parameters in the EXP group at all vBFB time points are reported in Table 12. One-way 

anova, with time as the main factor, demonstrated a patent effect of time on balance and gait 

parameters. By post hoc comparison, most balance indices reached significance before gait 

parameters. As detailed in Table III, most balance parameters reached significance at T1 and T2 

compared with T0 already, with the remainder doing so at T3. Conversely, improvements in gait 

indices became significant at T3, T4, and C1 (Table 12)  

V_OE V_CE 
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Table 12: Balance and gait clinical and instrumental data of EXP subjects at baseline (T0) and during vBFB 
training (T1, T2, T3, T4, C1, C2). To compare balance and gait evaluations at T0 vs T1, T2, T3, T4, C1, and C2, 
repeated measures ANOVA was used (*:p <0.05, **: p <0.005, ***: p <0.001). Bold-faced numbers indicate 

the first significant improvement compared with T0. 

 

 

 

 

 

 

 

 

 

 Evaluations 

Balance T0 T1 T2 T3 T4 C1 C2 

BBS 
26.00 ± 
10.69 

30.00 ± 
8.89 

34,67 (*) ±  
8.82 

37,5 ± 
8.68(***) 

40,83 ± 
7.78 (***) 

43,67 ± 
7.20 (***) 

39,66 ± 
9.13 (***) 

V OE 
9.54 ± 
5.54 

7,59 ± 
 4.69 (**) 

6,64 ± 
4.74(***) 

5,77 ± 
3.25 (***) 

4,58 ± 
2.66(***) 

5,75 ± 
4.26 (***) 

6,21 ± 
4.95 (**) 

V CE 
16.86 ± 

5.84 
12,41 ± 

6.18(***) 
12,65 ± 
7.88 (*) 

10,32 ± 
7.30 (*) 

9,95 ± 
6.99 (**) 

8,75 ± 
6.40 (**) 

7,53 ± 
4.88 (**) 

Gait 
parameters 

T0 T1 T2 T3 T4 C1 C2 

WISCI 
14.17 ± 

1.83  
14.17 ± 

1.83 
15.17 ± 

2.56 
15.17 ± 

2.56 
17.15 ± 
1.64 (*) 

17.15 ± 
1.64 (*) 

17.15 ± 
1.64 (*) 

10MWT 
21.02 ± 

9.35 
20.40 ± 
11.29 

20.48 ± 
11.10 

19,21 ± 
10.24 (*) 

19.31 ± 
9 9.18 (*) 

18,11 ± 
8.58(*) 

18,96 ± 
10.25 (*) 

6MWT 
193.18 ± 

68.08 
215.67 ± 

76.74 
227.23 ±    

79.53 
244,74 ± 
88.59 (*) 

259,64 ± 
82.84 (*) 

238.23 ± 
72.87 (*) 

245.63 ± 
86.95 

TUG 
21.70 ± 
10.70 

19.81 ± 
9.37 

21.64 ± 
15.69 

17,68 ±  
9.83 (*) 

15,22 ± 
6.14 (*) 

17,66 ± 
12.29 (*) 

20,30 ± 
19.06 (*) 

SPEED 
0.37 ± 
0.14 

0.39 ± 
0.12 

0.42 ± 
0.10 

0,47 ± 
0.17 (*) 

0,46 ± 
0.15 (***) 

0,51 ± 
0.13 (***) 

0,51 ± 
0.20 (***) 

CADENCE 
56.10 ± 
12.12 

61.12 ± 
15.02 

61,08 ± 
10.77 (*) 

65,25 ± 
20.63 (*) 

65,47  ± 
15.61 (***) 

68,22 ± 
15.95(***) 

68,12 ± 
18.64 (***) 

STRIDE 
0.78 ± 
0.17 

0.79 ± 
0.10 

0.82 ± 
0.11 

0.83 ± 
0.13 

0,85 ± 
0.13 (***) 

0,89 ± 
 0.08(*) 

0,88 ± 
0.18 (*) 

ST 
73.75 ± 

5.53 
73.38 ± 
34.70 

71.66 ± 
4.18 

72,88 ± 
4.12 (*) 

71,49 ± 
4.22(*) 

71,38 ± 
 3.01 (**) 

70,96 ±5.93 
(**) 

DTS   
25.16 ± 

5.65 
29.26 ± 
 13.06 

23.65 ± 
5.32 

25.37 ± 
5.64 

23.77 ± 
5.77 

19,6 ± 
 6.02 (*) 

25.39 ± 
7.03 



Study 1 
 

85 
 

To examine the relationships between changes in balance performance and gait indices during 

vBFB training, we calculated the overall percentage of improvement in balance and gait (see 

statistical analysis section for details) for all time points of vBFB (Figure 27) and noted parallel 

improvements in balance and gait indices. Further, balance indices reached significance earlier 

than improvements in gait.  

 

 

 

 

 

 

 

 

 

 

 

 

9.2.3.4 vBFB training: enhancements in balance and gait correlate 

 

The relationships between improvements in balance and gait over time are not conclusive of a 

direct influence of balance on gait. To identify the indices that predict improvements in both areas 

better, we analyzed the correlation factors for the T4/T0 improvement (Δ) for balance and gait 

data. There were no significant relationships in the CTRL data, but in the EXP group, several 

significant correlations were observed, especially for BBS and length parameters of balance data 

and DTS, 10MWT, and WISCI scores for g ait (Table 13). 

 

Figure 27: EXP Group: Percentage of improvement at T1, T2, T3, T4, C1, and C2 compared 
with T0 values. 
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 Table 13: EXP group: Pearson’s and Spearman’s correlations for continuous and ordinal variables (BBS and 
WISCI) respectively, between gait and balance improvements calculated as T4/T0 differences (Δ). Bold-
faced numbers indicate coefficients having p <0.05 (*), p <0.005 (**) or p <0.001 (***). 

 

  

Correlations between  improvements in balance and gait 

    
Δ  

SPEED 
Δ  

CAD 
Δ 

STRIDE 
Δ  
ST 

Δ  
DTS 

Δ   
WISCI  

Δ 
10MWT 

Δ 
6MWT 

Δ 
TUG 

Δ  
BBS 

C.C. .569(*) .276 -.117 .330 .599(**) .828(**) -.943(**) .314 .086 

Sig.  .014 .268 .644 .182 .009 .000 .000 .204 .735 

Δ  
V OE 

C.C. .678(**) .534(*) .040 .379 .589(*) .772(**) -.606(**) .240 -.248 

Sig.  .002 .022 .875 .120 .010 .000 .008 .337 .322 

Δ  
V CE 

C.C. .286 .529(*) -.036 .131 .445 .818(**) -.872(**) .378 .301 

Sig.  .250 .024 .887 .605 .064 .000 .000 .122 .225 
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9.2.4 DISCUSSION 

 

Our open case study with a prospective control indicates that vBFB training improves balance and 

gait in chronic motor incomplete SCI subjects. Further, inclusion of vBFB training effected greater 

improvements in gait than conventional gait rehabilitation alone.  

In the past 10 years, stabilometric platforms have been used widely to evaluate and rehabilitate 

balance. vBFB protocols have been used to rehabilitate individuals with neurological and non-

neurological disorders, including multiple sclerosis 168, stroke 160, cerebellar ataxia 169, cerebral 

palsy 170, Parkinson disease 169, and ankle instability 171. In these pathologies, vBFB training has 

been effective in improving balance. 

The effects of vBFB training on SCIs have only recently been addressed 113. SCI subjects learn to 

use visual cues and sensory inputs from the body and improve their standing balance 113. Our data, 

consistent with those of Sayenko 113, indicate that vBFB training promotes balance in chronic SCI 

subjects. Clinical and instrumental evaluation tools concur in demonstrating significant 

improvement in balance after training only in the vBFB-treated group (EXP), compared with minor 

changes in conventionally treated subjects (CTRL), highlighting the value of task-specific balance 

training in increasing balance in chronic SCI subjects.  

Classically, leg paralysis, reduced interlimb coordination, and impaired balance are the chief 

limitations to overground ambulation in SCI subjects 70, of which balance has recently been 

proposed to be highly predictive of gait recovery in SCI subjects 5, meriting specific targeting.  

Balance vBFB training is effective in improving gait in various pathologies. vBFB training also has 

beneficial effects on walking speed in multiple sclerosis subjects 168, and gait parameters in chronic 

ankle instability 171. In stroke, improvements in walking function after vBFB training was reported 

in one study 172 but not in another 173. Our study is the first to examine the effects of vBFB training 

on gait in SCI subjects. 

One of the chief problems in determining the efficacy of a rehabilitation protocol is the presence 

of spontaneous recovery. Spontaneous recovery from SCI has been well documented in subacute 

patients 62, whereas it seldom occurs in chronic lesions patients more than 1 year after 

development of the lesion 18. 

Tefertiller et al. recently reviewed 19 studies that reported the lack of efficacy of task-specific gait 

training in chronic SCI 174. Our data on the CTRL group are consistent with these findings. Subjects 

with chronic SCI who were treated with a conventional gait rehabilitation protocol without vBFB 

(CTRL group) experienced minor, insignificant improvements in gait. Conversely, the 

implementation of vBFB in the rehabilitation protocol drastically altered the effectiveness of the 

therapy. In the group that followed the rehabilitation protocol with vBFB training (EXP group), 

significant post-treatment improvements were observed for most gait parameters. The difference 

between the presence and absence of vBFB in the rehabilitation protocol was evidenced by the 

disparity in gait values at the beginning (T0) and end (T4) of training between groups, reaching 
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significance in most parameters only in the EXP group (Table 11). Worthy to note that only EXP 

group reached a reliable improvement of balance parameters (i.e BBS, V OE and V CE) and WISCI 

score not due to errors in measurement, as detailed by Tamburella et al. 175.  

The lack of efficacy of conventional rehabilitation alone and the effectiveness of balance and gait 

training plus vBFB in chronic SCI subjects requires further analysis. Our study focused on walking 

AIS D subjects. Based on the WISCI values (Table 10), all subjects relied on some type of aid for 

walking. These aids, in addition to supporting attenuated muscle strength, substitute for balance. 

Thus, we hypothesize that at the chronic stage, subjects learn to adapt while performing everyday 

activities, progressively decreasing the need to maintain their balance unassisted 46. If this 

hypothesis is true, at this stage, there might be little opportunity to improve muscle strength after 

traditional gait rehab, whereas balance training might compensate for the lack of balance 

exercises due to the use of aids. 

Nevertheless, the value of good balance for gait in SCI is well established. Better balance enables 

one to have better functional gait at a higher speed with fewer aids 5;115. Thus, we assume that 

task-specific vBFB training, although it acts on motor programs for balance control strategies in 

training regimens, is also effective for gait motor programs.  

This link between balance and gait improvement has been confirmed by correlation analyses, 

based on T4/T0 differences. In the overall assessment of balance, improvement in COP parameters 

appears to be strictly linked to improvements in gait. In particular, with regard to instrumental 

balance and gait assessment, COP length indicators correlate with improvements in SPEED and 

DTS. These findings are supported by data on older, healthy subjects that have demonstrated the 

link between COP length and gait SPEED 176 or DTS 176. With regard to improvements during 

training, Nardone et al. 124 reported correlation between COP length and DTS recovery in stroke 

subjects.  

That improvements in balance precede the amelioration in gait also links vBFB to gait . Clinical and 

instrumental evaluations have demonstrated that EXP subjects improved balance after 10 days of 

vBFB treatment, whereas gait data improved significantly after 30 vBFB sessions ( 

Figure 28, Table 12). Although parallel improvements in balance and walking have been observed in 

acute 47 and chronic SCI subjects 177, no study has examined the interdependence of these 

functions. We can not conclude that there is a causal relationship between improvements in 

balance and gait, but we have demonstrated that static stability improves before walking in 

chronic SCI subjects and thus propose that improvements in walking depend in part on those in 

balance.  
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Figure 28: V and SPEED improvements in relation to vBFB training steps. Green and red arrow, point out 
respectively significant improvements of gait SPEED and V values in comparison to T0 assessment for EXP 

group.  

 

Although improvements in balance and gait might be unrelated with recovery in spontaneous SCI 

subjects, all SCI subjects in both groups were chronic (> 12 months) with stable gait and balance 

parameters. Further, the groups performed similarly with regard to gait and balance for all 

parameters at baseline. This stability in functional status is supported by the not significant 

response after 8 weeks of conventional gait training in the CTRL group. 

The intensity of rehabilitation, a significant factor of the effectiveness of rehabilitation, might be 

related to improvements in gait 178. In our study, both SCI groups were treated 60 min daily, 5 

times per week. In this regiment, the treatments differed only in the type of training—ie, vBFB—

which was implemented only in the EXP group. 

Thus, vBFB improves gait parameters, but it is unknown whether these improvements are related 

to physiological gait. To this end, we compared EXP and CTRL data with balance and gait data from 

matched HEALTHY subjects. As expected, at baseline, the performance on balance and walking 

differed significantly in all SCI patients compared with healthy subjects 53. Confirming the matching 

procedure, the gap in performance versus healthy data was similar in both SCI groups at T0. At the 

end of the training, the parameters in both groups remained different from those of healthy 

subjects. Nevertheless, balance and gait indices more closely approximated those of healthy ones 

than the CTRL group. By statistical comparison of the effectiveness between conventional rehab 

and vBFB trainings with regard to balance and gait data, we noted a significant difference between 

CTRL and EXP group (Effectiveness - Table 11).  
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For gait, significance was not reached in the one-time test and 10MWT and for one kinematic 

parameter, DTS, after vBFB training. The WISCI and 10MWT results are related. WISCI is a scale 

that was developed to include device use in the evaluation of gait for a distance of 10 meters and 

should thus be effective in scoring balance-related changes in gait. Nevertheless, most AIS-D 

subjects are at the same WISCI level, rendering it nearly useless in this group 179. Further, Burns 

proposed that an improvement of one WISCI level in chronic SCI subjects has clinical relevance 146. 

Thus, the significant improvement of 3 WISCI levels that was associated with the insignificant 

improvement in the 10MWT only in the EXP group suggests that vBFB training is effective. 

DTS values, although they were insignificant at T4, became significant at C1 (Table 12), a finding for 

which we have no clear explanation. Nevertheless, the correlation between DTS and balance is 

well documented 124;176, and the lack of changes in DTS in the CTRL group further support our 

findings on the efficacy of vBFB.  

The reliability of our findings and their clinical significance is strengthened by our follow-up data. 

At 2 months after the end of treatment, the improvements in balance and gait were maintained, 

underscoring the value of vBFB in the chronic stages of spinal lesions but highlighting the effects of 

balance feedback practice with regard to relearning motor skills and the ability to modulate skill 

retention with long-lasting effects 180. 

9.2.5 Study limitations 

This study was not double-blinded. The CTRL group was epidemiologically, clinically and 

eurologically matched with the EXP group but was structured as a historic group. Thus, successive 

prospective studies in a larger group of subjects are required to confirm our observations. The 

results of this trial merely reflect the response of chronic SCI patients to training intervention, due 

to the inclusion of only those with chronic SCI to reduce variability in data and increase the 

statistical power 181. Thus, our study does not apply to a population of acute and subacute SCI 

subjects.  

 

9.2.6 CONCLUSION 

Our results indicate that vBFB training improves balance and gait in chronic motor incomplete SCI 

subjects. Further, inclusion of vBFB training in a rehabilitation protocol effected greater 

improvements in gait than conventional gait rehabilitation alone, also maintained at follow-up 

examinations.  
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 Study 2:  10

Somatosensory inputs by application of KinesioTaping: Effects on 

spasticity, balance, and gait in chronic spinal cord injury 

 

10.1 INTRODUCTION 

In designing effective gait rehabilitation programs after SCI, knowledge of the neuronal 

mechanisms that mediate and, in  particular, influence the afferent feedbacks in the function of 

the damaged spinal cord is paramount 11. Locomotion requires continuous modulation of spinal 

CPG circuits to adapt to the everchanging environment. Feedback from a variety of sources, such 

as visual, vestibular, somatosensory, and proprioceptive circuits, must be interpreted and 

integrated into CPG activity to generate locomotion that is effective under all conditions 11. In this 

complex framework, sensory feedback and context-specific gait requirements interact in affecting 

muscle synergies 182.  

As detailed above, cortical re-organization occurs after SCI due to re-organization may be 

attributed to pre-existing and new neural circuits. Additionally recovery function can be also 

related to the re-activation of parts of sensory motor system that are still intact 98. Delwaide   and 

Crenna 183 suggested that it is possible to activate the supraspinal centers by exteroceptive 

afferents. In line with this hypothesis Nakazawa 184 et al recently proposed that during standing 

disrupted plantar pressure sensation resulted in balance deficits, implying that cutaneous 

afferents might not only contribute to the control of locomotion, but also to posture. It is generally 

assumed that the sensory information projecting to the spinal cord and brain serves to correct 

errors in movement, i.e., provides corrective feedback in response to the activation of sensory 

receptors from a wide range of tissues and tissue environments that change in a predictable way. 

One approach to re-activate nervous system, particularly in the context of sensorimotor system, is 

to use rehabilitation strategies that include somatic sensory afferent and activating functional 

movements 185. 

 

 

 

 

 

 

Figure 29: General representation of skin with and without Kinesio Taping over epidermis. 
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In recent years, increasing cutaneous stimuli through neuromuscular KinesioTaping (KT) (Figure 29) 

has been proposed to enhance somatosensory inputs 186. Alexander et al. reported decreased H-

reflex amplitude after KT of the trapezius, suggesting that it influences muscle tone 187. This KT-

dependent H-reflex decline indicates that it is inhibitory and adjusts muscle activity through 

proprioception feedback 188. KT has been used in neurological pathologies189-191, including stroke 

and multiple sclerosis, and various orthopedic disorders20-22;68, generally improving muscle tone, 

range of motion, center of pressure balance parameters, and pain symptoms.  

Major gait impairments in incomplete SCI are caused by ankle spasticity6;9 and decreased 

balance5;6, both of which are positively affected by KT in neurological189 and non-neurological 

disorders21-23. Thus, we examined KT treatment in controlling ankle muscle tone in subjects with 

incomplete SCI, determining its effects on spasticity, balance, and gait by clinical and instrument-

based evaluations.  

10.2 MATERIAL AND METHODS 

10.2.1 Study design - Population 

A randomized crossover case control design was used to compare the effects of KT and 

conventional nonelastic silk tape (ST) on ankle muscles in subjects with chronic incomplete SCI. 

Patient selection was based on the clinical assessment, per the American Spinal Injury Association 

(ASIA) standards for neurological status, and on the degree of ankle spasticity 21, per the modified 

Ashworth scale (MAS). The inclusion criteria were chronic SCI lesion (ie, at least 12 months 

postinjury), AIS level D, and MAS higher than 2 bilaterally in the soleus/gastrocnemius muscles. 

The exclusion criteria were the presence of other neurological or orthopedic impairments, 

participation in other studies, and pharmacological treatment for spasticity in the previous 4 

weeks. This study was approved by the local ethics committee.  

From January 1, 2013 to April 30, 2013, 33 consecutive patients who were admitted to the Spinal 

Cord Rehabilitation outpatient service of Santa Lucia Foundation were examined by an experience 

neurologist (G.S.), of whom 11 subjects met the inclusion criteria. The demographics and clinical 

features of the SCI subjects are reported in Table 14. 
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Table 14: Patients’ clinical and epidemiological data 

 

  

Patients Sex Age Weight

(Kg) 

Height 

(cm) 

Etiology Lesion 

Level 

Years 

since 

SCI  

MAS WISCI 

level 

PT1 
M 34 85 1.82 Traumatic C6 4 3 13 

PT2 
M 69 75 1.65 Traumatic C6 8 2 18 

PT3 
F 35 60 1.76 

Non traumatic 

(Degenerative) 
T9 4 5 19 

PT4 
M 51 74 1.73 

Non traumatic 

(Vascular) 
C6 3 2 18 

PT5 
F 41 60 1.64 

Non traumatic 

(Vascular) 
T6 4 2 19 

PT6 
M 52 80 1.78 Traumatic C6 3 2 20 

PT7 
F 77 67 1.66 

Non traumatic 

(Vascular) 
T10 7 2 19 

PT8 
M 58 66 1.73 

Non traumatic 

(Tumoral) 
T11 2 4 19 

PT9 
F 41 55 1.7 

Non traumatic 

(Tumoral) 
T7 10 4 20 

PT10 
M 72 81 1.64 

Non traumatic 

(Degenerative) 
C7 6 3 13 

PT11 
F 38 64 1.6 Traumatic T8 12 3 20 

Mean  52 70 170   5.72 2.9 18 

S.D.  16 10 0.07   3.19 1.04 2,57 
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10.2.2 Intervention: KT and ST treatment 

After enrollment, SCI subjects were randomized into 2 treatment groups. Group A (n = 6) 

underwent 48 hours of KT, followed by 48 hours of ST  1 week later. Group B (n = 5) received 48 

hours of ST treatment, followed by 48 hours of KT treatment after 1 week (Figure 30). All subjects 

underwent clinical and instrumental evaluations before (T0) and immediately after treatment 

(T48h). Electromyography (EMG) was performed only in Group B before, during, and after KT 

treatment. A certified KT practitioner (F.T.) administered all taping procedures. Clinical and 

instrumental outcomes were measured at T0 and T48h after removal of the KT by a different 

researcher (L.M.) who was blinded to the treatment.  

 

 

 

 

 

 

 

 

 

KT and ST were applied bilaterally to the plantar-flexor ankle muscles, soleus (S), and 

gastrocnemius (G), per Luque-Suarez et al. 192.  Standard 5-cm single-strip nonelastic silk tape and 

Cure© tape were used for the ST and KT, respectively. Y-strip tapes were applied to the S and G 

muscles with the subject in a prone position, the with knee extended and the ankle in 90° passive 

dorsiflexion. Both tapes were applied directly to the skin using a decompressive muscle technique, 

with 0% stretch, from the calcaneus to the medial and lateral femoral condyles (Figure 31). To 

maximize their adhesion, the tape strips were warmed by rubbing them in the hands several times 

on the application zone 192. 

 

Figure 30: Randomized crossover case control study schema. 
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10.2.3 Setup and evaluation of outcomes 

All assessments were performed by the same examiner at the same time each day before 

application of the tape (T0) and after 48 hours (T48h) of KT or ST treatment. Neurological status was 

assessed using the American Spinal Injury Association (ASIA) and ASIA Impairment Scale (AIS) 21. 

Active and passive range of motion (ROM) was measured using a standard manual goniometer 193.  

The Modified Ashworth Scale (MAS) 194 was used to evaluate ankle spasticity. Spasms, clonus, and 

pain were scored using the Penn modified Spasm Frequency Scale (PSFS)195, Spinal Cord 

Assessment Tool for Spastic Reflexes subscale for clonus assessment (SCATS) 196, and Global Pain 

Scale (GPS) 197, respectively. Balance and gait were assessed using the Berg Balance Scale (BBS) 115, 

Walking Index for Spinal Cord Injury (WISCI) 133(21), 10-meter walk test (10MWT) 162, 6-minute 

walking test (6MWT) 163, and timed up and go test (TUG) 164. Walking time tests were performed 

using a self-selected walking device, if needed 198 and scored using the WISCI, as reported in Table 

14. All subjects we subjected to instrument-based balance and gait analyses as detailed below.  

The visual analog scale (VAS) was administered at T48h to assess perception of reductions in 

spasticity and tape’s acceptance. Patients were asked to quantify the reduction in spasticity due to 

the tape, on a scale from 0 (no reduction in spasticity) to 10 (maximum reduction in spasticity). 

EMG analyses were performed only for KT-treated subjects in Group B.  

 

10.2.3.1 Evaluation of balance 

Balance was evaluated using the same static force platform described for Study 1 (BPM 120 - 

Physical Gait Software Vv. 2.66, Rome, Italy). As detailed for Study 1 static stability was assessed 

per protocol defined above (see 9.1.7)  by  COP mean velocity (V, mm/s) analysis in OE and CE 

visual assessment conditions. 

Figure 31: KT application for calf muscles 
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10.2.3.2 Evaluation of gait 

Locomotion kinematic gait data were recorded and analyzed using the bidimensional KineView 

Motion System ® (Kineview, Hafnarfjordur, Iceland) per the protocol for chronic SCI subjects 

already described for Study 1 (see 9.2.2.4.2) based on 3 strides at a self-determined velocity. The 

following kinematic data were considered: speed (m/s), cadence (N° step/min), stride length (m), 

stance phase (STANCE, %), and double-time support phase (DTS, %).  

 

10.2.3.3 EMG assessment  

For Group B patients, surface EMGs of tibialis anterior (TA), extensor hallucis longus (EHL), S, and 

G muscle activity were analyzed. Recordings were made before (T0), 5 minutes after KT was 

applied (T1), and after the KT was removed (T48h). EMG data were acquired through 4 wireless 

EMG sensors (Figure 32), 1 for each muscle, affixed per SENIAM recommendations 199 using EMG 

Delsys. EMG data were processed using EMG Works Analysis (Delsys, Boston, USA) using a pass-

band filter between 10 and 450 Hz, and successively a 50-Hz notch filter. Root mean square (RMS) 

values, with a window of 0.250 and an overlap of 0.0625, were obtained from the filtered data. 

Data on each muscle were then imported into Matlab (Mathworks, Inc., version 7.1, Natick, 

Massachusetts, USA) to analyze muscle coactivation by calculating the coactivation index (CI) 200  

100
)]GS()EHLTA[(EMG

)GS(EMG
CI

 

CI is a relative measure of antagonist (S and G) contribution to total activation (S and G + TA and 

EHL) during the dorsiflexion task (30). Thus, an increase in CI reflects a rise in co-contraction. CI 

ranged from 0% to 100%, with 100% indicating full muscle coactivation, defined as coactivation 

(ie, simultaneous activity) of all ankle muscles. EMG data were recorded while patients were asked 

to perform maximal voluntary contraction (MVC) during 5 dorsiflexion active movements lying 

down with knees flexed and extended. Data were averaged across the 5 active tasks. 

 

 

 

 

 

Figure 32: EMG wireless sensors 
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10.2.3.4 Statistical analysis 

No participant withdrew from the trial, and all outcome measures were obtained for all SCI 

subjects. Descriptive statistics were generated for all variables. Prior to the statistical comparisons, 

normal distribution of the data was confirmed by Kolmogorov-Smirnov test.  

Treatment effects were analyzed by grouping the KT and ST data on Group A and B subjects. 

Paired t-test was used to compare the effects of treatment, evaluated as T0 versus T48h, for each 

KT or SK treatment groups. At T0 and T48h, KT and ST were compared by independent t-test and 

Mann-Whitney U-test for ordinal and non ordinal variables, respectively.  

For each clinical and instrument-based parameter, the percentage of improvement due to KT and 

ST was calculated as follows: 

Percentage of improvement= [(T48h data – T0 data) / T0]*100.  

Treatment effects on percentage of improvement data were analyzed by independent t-test or 

Mann-Whitney U-test when appropriate.  

CI data on KT-treated Group B patients were analyzed by repeated measures ANOVA, with time 

(T0 vs T1 vs T48h) as the main within-group factor, followed by Bonferroni post hoc test when the 

ANOVA results reached significance. 

Statistical significance was considered at p <0.05 (*:p <0.05, **: p < 0.005, ***: p <0.001) . All 

statistical tests were performed using the Statistical Package for the Social Sciences Software 

(SPSS), version 12.0 (Chicago, IL). 
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10.3 RESULTS 

No clinical or instrument-based assessment differed significantly between Groups A and B at T0 

(Table 15) (p >0.05). 

 

10.3.1 Clinical Assessment 

The clinical assessment results are shown inTable 15. As expected, almost no changes were 

observed between T0 and T48h in the ST group. Conversely, versus T0, KT treatment at T48h 

significantly improved passive (p <0.005) and active ROM (p <0.001), SCATS score with the knees 

flexed and extended (p <0.001), PSFS (p < 0.001), BBS (p <0.001), and 6MWT (p < 0.001). 

Compared with ST, KT had significant treatment effects T48h on SCATS with the knees flexed and 

extended (p <0.05) and on MAS (p <0.05).  

Based on percentage of improvement values, we noted significant treatment effects on active and 

passive dorsiflexion ROM (p< 0.001), pathological reflex with the knees flexed   (p <0.005) and 

extended (p <0.001), PSFS (p <0.001), GPN (p <0.001), BBS, and 6MWT (p <0.001).  

With regard to perception of spasticity, VAS score was 7.9 ± 1.2 after KT and 2.5 ± 1.3 after ST 

(p<0.05). 
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Table 15: Clinical and instrumental assessment. Into KT T48h column is reported statistical comparison of 

T0 vs T48h data.  Comparison between KT and SHAM data at T0 and T48h, and percentage of 

improvements’ comparisons between  KT and ST groups  are reported in the last columns of the table (*p 

<0.05, ** p < 0.005, *** p <0.001). Grey cells indicate significant p values.  n.s.: not significant; for clinical 

scales abbreviation see List of abbreviation. 

 

 

 

 

 

 

 

 
Clinical data 

KT 
Mean 
(sd) 

ST 
Mean 
(sd) 

P 

KT vs ST 
 

T0 T48h T0 T48h T0 T48h 
Percentage of 
improvement 

Passive ROM (°) 
88,64 

(11,63) 
78,64 ** 
(10,88) 

85,27 
(13,07) 

85,27 
(13,07) 

n.s. n.s. 0,001*** 

Active ROM (°) 
90,18 

(13,47) 
80,45 *** 

(12,41) 
87,27 

(14,55) 
87 

(14,21) 
n.s. n.s. 0,001*** 

SCATS 
(flexed knee) 

2,18 
(0,82) 

1,55*** 
(0,82) 

2,09 
(0,91) 

2,09 
(0,91) 

n.s. 0,008* 0,002** 

SCATS 
(extended knee) 

2,18 
(0,82) 

1,09*** 
(0,54) 

2,09 
(0,91) 

2,09 
(0,91) 

n.s. 0,008* 0,001*** 

MAS 
3,82 

(1,17) 
1,82 

(0,75) 
3,6 

(0,84) 
2,45 

(0,93) 
n.s. 0,05* 0,001*** 

PSFS 
2,73 

(1,35) 
1*** 
(1,26) 

2,09 
(1,51) 

2,09 
(1,51) 

n.s. n.s. 0,001*** 

GPS 
2,45 
(3,3) 

1 
(2,49) 

2 
(3,26) 

2 
(3,26) 

n.s. n.s. 0,04* 

BBS 
39,64 
(7,7) 

42,82*** 
(7,15) 

40,36 
(7,68) 

40,55 
(8) 

n.s. n.s. 0,001*** 

WISCI 
18 

(2,57) 
18 

(2,57) 
18 

(2,57) 
18 

(2,57) 
n.s. n.s. n.s. 

6MWT (m) 
231,65 

(106,479) 
259,63*** 
(116,13) 

253,63 
(125,16) 

251,25 
(125,02) 

n.s. n.s. 0,001*** 

10MWT (s) 
24,62 

(17,07) 
19,94 

(14,28) 
22,97 

(18,11) 
21,94 

(17,32) 
n.s. n.s. n.s. 

TUG (s) 
25,69 

(17,50) 
20,45 

(13,30) 
22,11 

(14,34) 
21,27 

(13,92) 
n.s. n.s. n.s. 
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10.3.2 Evaluation of balance 

For both visual conditions, V significantly improved between T0 and T48h, (p<0.05) as well as the 

percentage of improvement of V values between T0 and T48h  (p<0.05). Furthermore KT 

comparison with ST at T48h, had significant treatment effects on V for both visual conditions (p 

<0.05) (Table 16). 

Table 16: Balance assessment. The KT T48h column lists the statistical comparison of T0 vs T48h data. 

Comparisons between KT and SHAM data at T0 and T48h and percentage of improvement between KT and 

ST groups are reported in the last columns of the table (*: p <0.05, **: p < 0.005, ***: p <0.001). Grey cells 

indicate significant p values. n.s.: not significant; for abbreviation of COP parameters, see List of 

abbreviation. 

 

 

 

  

 

CoP parameters 

KT 
Mean 
(sd) 

ST 
Mean 
(sd) 

P 

KT vs ST 

T0 T48h T0 T48h T0 T48h 
Percentage of 

improvement 

Open 

Eyes 
V (mm/s) 

3,78 

(2,04) 

3,08* 

(1,49) 

(3,64) 

(1,92) 

3,66 

(2,1) 
n.s. 0,01* 0,02* 

Closed 

Eyes 
V (mm/s) 

5,53 

(3,68) 

4,82* 

(3,22) 

4,77 

(2,80) 

5,21 

(3,92) 
n.s. 0,03* 0,02* 
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10.3.3 Evaluation of gait 

The effects of KT on STRIDE, STANCE and DTS at T48h versus T0 were significant (p <0.001). Further 

STRIDE (p <0.001), STANCE, and DTS (p <0.005) improved with KT at T48h compared with ST. 

Comparison of percentage improvement values demonstrated significant treatment effects  for all 

kinematic parameters (speed, cadence, and DTS: p <0.05; STRIDE and STANCE: p < 0.001) (Table 

17). 

 

Table 17: Gait assessment. The KT T48h column lists the statistical comparison of T0 vs T48h data. 
Comparisons between KT and SHAM data at T0 and T48h and percentage of improvement between KT and 
ST groups are reported in the last columns of the table (*: p <0.05, **: p < 0.005, ***: p <0.001). Grey cells 

indicate significant p values. n.s.: not significant; DTS: double-time support phase. 

 

 

 

 

 

 

Kinematic 

gait data 

KT 
Mean 
(sd) 

ST 
Mean 
(sd) 

P 

KT 
vs ST 

T0 T48h T0 T48h T0 T48h 
Percentage of 

improvement 

Speed 

(m/s) 

0.54 

(0.2) 

0.56 

(0.24) 

0.51 

(0.18) 

0.50 

(0.19) 
n.s. n.s. 0.02* 

Cadence 

(steps/min) 

69.67 

(22.61) 

71.09 

(24.80) 

66.47 

(20.52) 

65.79 

(20.55) 
n.s. n.s. 0.04* 

STRIDE 

(m) 

1.04 

(0.15) 

1.15 *** 

(0.19) 

1 

(0.13) 

0.97 

(0.13) 
n.s. 0.001*** 0.001*** 

STANCE 

(%) 

72.42 

(24.39) 

64.99 *** 

(21.63) 

69.94 

(23.81) 

65.49 

(23.66) 
n.s. 0.005** 0.001*** 

DTS 

(%) 

27.44 

(11.05) 

24.46 *** 

(9.20) 

26.66 

(10.93) 

24.64 

(10.52) 
n.s. 0.005** 0.05* 
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10.3.4 Assessment of EMG CI  

CI, as assessed with the knees flexed or extended, declined significantly immediately after 

application of KT (p <0.001 – F [19.046]). After 48 hours of treatment, this effect was maintained 

only with the knees flexed (p <0.001 – F [0.820]) (Figure 33). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 33: CI index at T0, T1, and T48h for EXP group 
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To determine the most notable effects of KT, the results were divided into primary and secondary 

outcome measures, as reported in Table 18. MAS, BBS, COP V, 6MWT, STRIDE, and STANCE were 

identified as the most important outcomes, and the remaining data were considered secondary 

outcomes and used to evaluate additional effects of the intervention.  

Table 18:  Primary and secondary outcome measures. Clinical and instrumental data on spasticity, balance, 

and gait have been divided into primary and secondary outcome measures. The KT T48h column lists the 

statistical comparison of T0 vs T48h data. Comparisons between KT and SHAM data at T0 and T48h and 

percentage of improvement between KT and ST groups are reported in the last columns of the table (*: p 

<0.05, **: p < 0.005, ***: p <0.001). Grey cells indicate significant p values. n.s.: not significant; for 

abbreviations, see see List of abbreviation. 

  

 KT Mean (sd) ST Mean (sd) P: KT vs ST 

T0 T48h T0 T48h T0 T48h 
% of 

improvement 

P
R

IM
A

R
Y

 
 O

U
TC

O
M

ES
 

MAS 
3.82 

(1.17) 

1.82 

(0.75) 

3.6 

(0.84) 

2.45 

(0.93) 
n.s. 0.05* 0.001*** 

BBS 
39.64 

(7.7) 

42.82*** 

(7.15) 

40.36 

(7.68) 

40.55 

(8) 
n.s. n.s. 0.001*** 

V 

(mm

/s) 

OE 
3.78 

(2.04) 

3.08* 

(1.49) 

(3.64) 

(1.92) 

3.66 

(2.1) 
n.s. 0.01* 0,02* 

CE 
5.53 

(3.68) 

4.82* 

(3.22) 

4.77 

(2.80) 

5.21 

(3.92) 
n.s. 0.03* 0,02* 

6MWT (m) 
231.65 

(106.479) 

259.63*** 

(116.13) 

253.63 

(125.16) 

251.25 

(125.02) 
n.s. n.s. 0.001*** 

STRIDE 

(m) 

1.04 

(0.15) 

1.15 *** 

(0.19) 

1 

(0.13) 

0.97 

(0.13) 
n.s. 

0.001**

* 
0.001*** 

STANCE 

(%) 

72.42 

(24.39) 

64.99 *** 

(21.63) 

69.94 

(23.81) 

65.49 

(23.66) 
n.s. 0.005** 0.001*** 

SE
C

O
N

D
A

R
Y

 
O

U
TC

O
M

ES
 CLINICAL DATA 

Passive / Active ROM, SCATS, PSFS, GPS, WISCI, 10MWT, TUG (for details, 

see Table 15) 

INSTRUMENTAL 

DATA 

BALANCE: A, X, Y, L, VLL, VAP for both visual conditions: OE and CE (for 

details, see Table 16) 

GAIT: Speed, Cadence, DTS (for details see Table 17) 



Study 2 

104 
 

10.4  DISCUSSION 

In this study, we examined the effects of KT treatment in chronic incomplete SCI subjects 

compared with nonelastic ST on functional relevant aspects of the post-SCI condition—ie, ankle 

muscle spasticity, balance, and gait. By MAS and analysis of functional balance and gait, 48 hours 

of KT treatment improved MAS, BBS, V CoP, 6MWT, STRIDE, and STANCE (Figure 34), indicating 

better functional status after KT, with reduced spasticity and improved balance and gait.  

 

In general no adverse events were observed, and subjects reported no discomfort during KT 

treatment.  

KT is used to enhance sensory inputs, decreasing spasticity through proprioception feedback and 

relieving abnormal muscle tension, in healthy athletic subjects 188;201. Few studies have examined 

KT in neurological lesions, such as multiple sclerosis 189 and stroke 190;191. In multiple sclerosis, 

Cortesi et al. observed positive effects of KT of the ankle on COP balance parameters, suggesting 

that ankle taping helps stabilize body posture immediately 189. In stroke patients, KT of the gluteus 

muscles increases hip extension during gait, suggesting that muscle activation improves through 

cutaneous stimuli 190, whereas no positive effects were obtained by combining ankle KT and 

botulinum toxin to reduce plantar flexor spasticity 191. No data are available on the effects of KT in 

SCI subjects. 

The crossover paradigm that we used allowed us to blind subjects to the treatment allocation and 

limit the risk of compliance in analyzing the effects of KT versus ST 202. To prevent overflow effects 

of KT, an interval of 7 days separated application of the tapes 203;204.  

Figure 34: Percentage of improvements T0 vs T48h assessment of spasticity, balance and gait features 
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Although significant differences were observed in passive/active ROM, clonus, spasms, BBS, 

6MWT, and most COP parameters and kinematic gait data after 48 hours of KT, almost no changes  

were observed after 48 h of ST treatment, as expected, due to the chronic condition. Treatment 

effects were analyzed by comparing improvements after 48 hours of KT and ST treatments. KT 

reduced MAS and improved active and passive ankle ROM, which was paralleled by a decrease in 

spasticity-associated symptoms, clonus, and pain. Control of ankle spasticity is paramount in 

improving balance and gait in SCI subjects 6. KT had significant therapeutic effects on balance and 

gait, both of which improved with regard to the clinical scales and stabilometric and kinematic 

data. After KT treatment, there was better control of balance, as confirmed by the decline in V and 

L COP parameters 189, as well as an improvement in kinematic gait parameters. Decreases in 

STANCE and DTS reflect improved dynamic postural stability, which has been suggested to 

specifically influence gait in subjects with chronic motor incomplete SCI 5 (Table 18). 

To determine the possible mechanism of these improvements, EMG data were collected in Group 

B patients before, during, and after KT treatment. CI has been proposed as an index of spasticity in 

stroke subjects 205 and is indicative of fatigue-induced decreases in muscular co-contraction in 

healthy athletic subjects  206. In this study, we used the CI to evaluate EMG activity of agonist 

versus antagonist ankle muscles. A high degree of CI reflects excessive antagonistic muscle 

contractions during dynamic activities compared with agonist muscle activity, impairing function 

and increasing the metabolic cost of performing the task 207. Our EMG data demonstrated a 

significant reduction in CI with KT, suggesting improved motor outcome 205 and confirming our 

clinical data on spasticity.  

Notably, CI improved immediately after application of KT—an effect that was maintained, 

although slightly reduced, after 48 hours. The lack of significance of the CI data at 48 hours with 

the knee extended confirm the high variability of spasticity measurements in this posture 

compared with the knee flexed (Figure 33). The significant reduction in CI due to KT might be 

explained by 2 reasons: the increase in EMG activation of the TA and EHL and the decreased co-

contraction phase of the antagonist S and G muscles.  Considering the findings of Alexander et al. 
187, in which amplitude of the H-reflex decreased after KT of the trapezius in healthy subjects, it is 

conceivable that KT also adjusts muscle activity by inhibiting proprioception feedback 188 also in 

SCI subjects.  

To improve outcomes and methods of applying the tape, it is necessary to understand the 

mechanism that leads to better upright balance and gait. The effects of KT were clinically 

significant immediately after its application, implying that the changes were not due to long-term 

learning, as reported in multiple sclerosis 189. In addition to the secondary effects of spasticity 

changes, the alterations in the balance control system might be explained by changes in skin 

receptor inputs due to application of KT 208. The mechanical effects of applying tape to the skin 

might increase skin receptor output, stimulating supraspinal centers and thus enhancing 

kinesthetic and joint position sense 186;209 and improving balance.  

In analyzing the effects of KT on gait, sensory components can not be dismissed. Applying pressure 

to and stretching the skin with KT can stimulate cutaneous mechanoreceptors and enhance signal 

information of joint movement or joint position 210;211. The importance of sensory inputs in 

influencing the activity of gait central pattern generators (CPGs) is highlighted 212. In SCI patients, 
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changes in CPG circuits are well documented 212;213 and are learning-dependent, primarily through 

rhythmic peripheral influences that imposed by the exercise—for instance, during robotic gait 

training 62;214. The importance and effectiveness of sensory input in modulating stepping in SCI has 

been demonstrated in a wide range of experiments 91; for example, modulation of sensory 

information influences spinal circuit reorganization to be effective from milliseconds to months 213. 

Thus, sensory modulation through KT might not only influence spasticity but also intervene in 

longlasting reorganization of spinal gait circuits. In this theoretical framework, the influences of KT 

on gait merit studies not only in subjects with SCI but in all neurological gait pathologies.  

Subjectively, the VAS results indicate a significant reduction in perception of spasticity after KT 

treatment and that spasticity is negatively associated with quality of life after SCI 215.  

The significance of the sensory effects of KT must also be considered in analyzing its effects on 

pain. In our study, despite the short-term treatment, GPS declined significantly after KT and but 

not with ST. Treatment significance was present when comparing KT and ST GPS improvements. 

Although this study did not aim to evaluate the effects of KT on pain, our results are consistent 

with data in chronic low back pain patients 216 and merit dedicated studies, possibly with longer 

application times of KT.  

In conclusion, KT is a valid technique to reduce spasticity and related symptoms in the short term 

and improve balance and gait in chronic incomplete SCI subjects. Further studies are needed to 

determine its long-lasting effects.  

 

10.5 Study limitations 

The sample size of SCI subjects (n = 11) was small, which might have limited the statistical 

relevance of the study. Nevertheless, the statistical differences were large, rendering the 

statistical error that was caused by sample size negligible. Further, as suggested by Friston 217, 

significant results that are based on a small sample indicate a greater treatment effect than 

equivalent results in a large sample  

A follow-up study with a longer KT application is necessary to confirm these preliminary data, and 

a theory on the neurophysiological effects of taping would facilitate the generation of 

experimental hypotheses. 

 

10.6 CONCLUSION 

Short term application of KT reduces spasticity and pain and improves balance and gait in chronic SCI 

subjects. These promising data, require confirmation in a larger cohort of patients.
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 Study 3:  11

Walking in Water and on Land after an Incomplete Spinal Cord Injury  

11.1 INTRODUCTION 

Even if hydrotherapy is often used in the rehabilitation protocols of different pathologies 218-220, 

few studies analyzed the effects of water environment on gait and only in regard to orthopedic 

diseases 221;222. In the case of spinal cord injuries (SCIs), a single study demonstrated the positive 

effects of hydrotherapy in decreasing the amount of medications required for the treatment of 

spasticity 7. At present, no data are available on the characteristics of gait in water after SCI, 

although walking in water (WW) is commonly used as a low-impact exercise for training and 

rehabilitation 223;224. From a biomechanical point of view, there are several reasons to support the 

hypothesis that WW is helpful for gait rehabilitation. Because of the buoyant force, the lower 

apparent body weight simulates a microgravity environment, allowing standing and ambulation 

with less muscular strength while providing increased postural support 225. Indeed, the apparent 

body weight in water (the gravitational force minus the buoyancy force) decreases to 

approximately one-third of the body weight when subjects walk in chest-deep water; and to one-

half, in waist-deep water223. 

Water environment also provides a sort of body-weight support as other novel gait therapies do 

on the basis of complex and expensive body-weight support robotic assisted devices that have 

been the objective of several group studies 226. In comparison to these approaches gait 

arehabilitation in water represents a low cost thepary. In addition, because of the drag force 

exerted by water on the human body, the increased resistance to movement provides a helpful 

environment for progressively increasing muscle strength 227. Another benefit of hydrotherapy is 

the reduced level of joint loading and impact; moreover, warm water relaxes the muscles and 

temporarily decreases pain 227. Water is also a supportive, low-risk exercise environment that may 

reduce the likelihood of acute injury and the fear of falling while improving participation and 

adherence 228;229. Furthermore, comfortable walking speed in water is slower than on land 230, 

suggesting that exercises in water may be able to reduce the speed of falling because of the 

properties of viscosity and density. This allows individuals with impaired balance to have more 

time to detect postural errors that might lead to the fall 231. Evidences from different pathologies 

supported the efficacy of hydrotherapy. Water environment exercise improves postural 

capabilities in healthy elderly people 231. Positive effects on muscular strength, cardiovascular 

function, and gross motor skill performance have been observed in children with cerebral palsy 220. 

Pain reduction in patients with knee osteoarthritis 218 and positive changes in balance and 

qualityof-life in older subjects with a diagnosis of osteopenia or osteoporosis 232 by hydrotherapy 

have also been reported. None of these studies addressed the effects of hydrotherapy on 

kinematic variables of gait or analyzed the differences between walking on land (WL) or WW. 

Furthermore, quantitative and detailed evidence concerning the effects of WW on gait in 

comparison with on-land activity in SCI subjects is absent. In regard to on-land condition, even if 
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many studies addressed electromyographic activity in SCI subjects 233;234, kinematic variables have 

been seldom analyzed 53. In comparison with healthy subjects, a reduction in cadence and knee 

angular velocities was present in subjects with thoracic injuries, whereas reduced stride and ankle 

velocity were associated with lumbar injuries53. As regards water environment, only few studies 

address walking in healthy subjects from a kinematic point of view 7;224;230;235-239, and only three 

provided a full description of a complete gait cycle in healthy young and old subjects 7;239. In water 

condition, speed has been reported to be approximately 36% of the speed on land; and stride 

length, approximately 10% of land values 7;230. The range of motion (ROM) of the ankle, knee, and 

hip joints has been reported to be similar in both conditions7;230 even if a decrement in knee ROM 

during stance in water has also been indicated230;239-241. Given the lack of information related to 

WW of SCI subjects, the goal of the present matched case-control study was to characterize 

kinematic gait parameters of adults with incomplete SCI WW and WL, in comparison with the gait 

characteristics of matched healthy subjects walking in the same environments, to identify 

specificities of WW for SCI subjects. This knowledge will help to correctly plan hydrotherapy 

rehabilitation protocols after SCI.  

 

11.2 MATERIAL AND METHODS  

11.2.1 Study design - Population 

This study included 15 patients with chronic or subacute SCI (SCI group [SCI-gr]), level D at the 

American Spinal Injury Association Impairment Scale 161, with a mean TSD time from lesion of  

157.04 ± 186.83 days and 15 healthy controls (CTRLs). The SCI-gr patients and the CTRL subjects 

were matched according to demographic features. The SCI-gr was composed of seven women and 

eight men with incomplete SCI, without any limitation in ROM or presence of orthopedic diseases, 

affected by traumatic (eight patients) and nontraumatic lesions (seven patients); seven had 

cervical injuries (tetraplegia group “TETRA-gr”); and eight had thoracic or lumbar lesions 

(paraplegia group “PARA-gr”). The CTRL group was composed of seven female and eight male 

volunteers without any known physical or mental illness. SCI-gr age  (43.53 ± 17.43 yrs), height 

(173.93 ± 8.95 cm), and body weight (66.6 ± 9.80 kg) mean ± SD values were not statistically 

different from those of the CTRL group (age, 38.6 ± 15.42 yrs; height, 167.90 ± 7.67 cm; and body 

weight, 66.27 ±  10.39 kg). Before their participation, all subjects signed an informed consent form 

in accordance with article 616 of the Italian criminal code and law 196/03 on the privacy of 

personal data. This study was approved by the ethical committee and conducted in accordance 

with the Declaration of the World Medical Association.  

Neurologic status was assessed using the American Spinal Injury Association standards by applying 

the American Spinal Injury Association Impairment Scale21. Walking level was assessed by trained 

examiners using the Walking Index for Spinal Cord Injury 133. Spasticity of the lower extremities 

was measured using the Modified Ashworth Scale 194. To obtain a single score, the authors 

calculated the mean of the scores of each joint examined, as in the composite Modified Ashworth 

Scale 242. The patients’ demographic and clinical features are reported in Table 19.  
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Table 19: SCI patients’ demographic and clinical data. AIS LEMS indicates lower extremity motor score of 
the American Spinal Injury Association Impairment Scale; F, female; M, male; MAS, Modified Ashworth 

Scale; PT, patient; WISCI, Walking Index for Spinal Cord Injury. 

 Sex Age 
(Years) 

Height 
(cm.) 

Weight 
(Kg) 

Lesion 
level 

Etiology AIS 
LEMS 

WISCI MAS 

PT 1 M 49 181 84 T12 Non traumatic 
(Postactinic) 

42 16 0 

PT 2 F 64 174 66 C4 Non traumatic 
(Spondilogenic 
myelopathy) 

48 19 0 

PT 3 M 53 179 75 C7 Non traumatic 
(Arthrosis) 

50 20 0 

PT 4 M 51 159 68 C5 Traumatic 45 19 0.33 

PT 5 M 26 167 70 L2 Traumatic 34 16 0 

PT 6 M 24 193 80 C7 Traumatic 49 16 1 

PT 7 M 34 175 61 T11 Traumatic 47 16 1 

PT 8 F 69 165 66 L1 Ischemia 40 19 0.66 

PT 9 M 28 184 58 T10 Non traumatic 
(Arteriovenous 

fistula) 

40 19 0.5 

PT 10 F 23 178 53 L4 Traumatic 44 16 0 

PT 11 M 45 175 72 C5 Traumatic 50 20 1 

PT 12 F 66 175 56 T9 Non traumatic 
(Ischemia) 

46 19 0 

PT 13 F 32 174 72 T12 Traumatic 41 19 1 

PT 14 F 23 170 49 C6 Traumatic 44 20 0 

PT 15 F 66 160 69 C5 Non traumatic 
(Ischemia) 

45 20 0 

 

The inclusion criteria were as follows: American Spinal Injury Association Impairment Scale level D; 

ability to walk at least 3 m without aids between parallel bars at a comfortable speed; absence of 

any hydrotherapy treatment before or during the study; and a score of 7 in communication, 

expression, memory, and problem solving on the Functional Independence Measure243. The 

exclusion criteria were cardiac or respiratory failure; infective skin conditions; excessively low, 

high, or uncontrolled blood pressure; urinary tract infections; urinal or fecal incontinence; or 

morbid hydrophobia 244.  
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11.2.2 Experiment Settings  

Experimental setup and procedure used to collect data were similar to those reported 

elsewhere223. Both groups of SCI and healthy subjects walked at self-selected comfortable speeds, 

first on a walkway in the laboratory, on-land condition (WL), and subsequently on a walkway in the 

swimming pool, water condition (WW). Both on-land and water conditions were examined by the 

same operator on the same day. In WL, the patients were asked, for safety reasons, to walk 

between the parallel bars without contact. As regards WW, no device was used, and the 

participants were instructed to keep their arms on the water surface. The walkway in the 

swimming pool was set according to the participant’s height, in such a way that they all walked 

with the water at the xiphoid process level. This allowed the subjects to walk in the water 

environment with an equivalent energy expenditure to gait on land8 and with an apparent weight 

of 34.7% ± 3.2% of their body weight on land 223. Water temperature was maintained at 35° C.  

 

11.2.2.1 Motion Analysis  

Locomotion variables were recorded and analyzed using the KineView Motion System (Kineview, 

Hafnarfjordur, Iceland), as for Study 1 and 2. The experimental setup was the same for WL and 

WW. Specifically, the authors performed a two-dimensional gait analysis of three consecutive 

strides on the sagittal plane, the main plane of movement 245, captured from both sides of the 

body. All subjects were instructed to walk with open eyes at a comfortable, self-selected velocity 1, 

walking 2 m ahead of the mat and continuing 2 m past the end. The first right foot-ground contact 

was considered the starting point for video recording. Before data collection, the subjects 

performed walking trials to familiarize with the procedure. Movies were captured with a sampling 

hertz of 50 frames per second with a digital camera (Cyber-Shot DSC P73; Sony, Tokyo, Japan) 

enclosed in waterproof housing (MPK-PEA; Sony, Tokyo, Japan) for underwater recordings (Figure 

35).  

 

 

 

 

 

 

 

 

Figure 35: waterproof housing for underwater recordings 

 

 

For both conditions, especially for WW, to eliminate size and depth visual distortions caused by 

water, the KineView System was carefully calibrated each time for offline analysis. Spatial 

movements of the lower extremity segments were determined on the basis of the position of the 

markers, placed as per the Helen Hayes biomechanical model 165, modified to fit the bidimensional 
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approach according to the requirements of the KineView Motion System software. The following 

bone landmarks were used for the markers’ placement: the first and the fifth metatarsal head, 

external and internal side of the calcaneus, the femoral epicondyle, the greater trochanter, and 

the anterior superior iliac spine (Figure 24). As regards joint angles, hip angle was defined by the 

anterior superior iliac spine, greater trochanter, and lateral epicondyle markers; knee angle was 

defined by the greater trochanter, lateral epicondyle, and lateral calcaneus markers; and ankle 

angle was defined by the lateral epicondyle, lateral calcaneus, and lateral fifth metatarsal head 

markers (Figure 36).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36: Gait assessment in water environment. 

 

The following kinematic data were considered: speed (m/s); stride length (STRIDE: mean of right 

and left stride in m); stance phase (Stance: mean of right and left stride) expressed as the 

percentage of gait cycle and overall duration of gait cycles (gait cycle time in seconds). Stride and 

stance phase were defined as for Study 1 and 2 166. From the position of the markers, the position 

of the hip, knee, and ankle joints on the sagittal plane was calculated, to obtain ROM data 

(degrees) for each joint, as the peak-to-peak angular displacement during the complete gait cycle.  

 

11.2.2.2 Data Analysis  

Reconstruction, filtering, and offline analyses of kinematic data were performed offline using 

Matlab (version 7.1; Mathworks, Inc, Natick, MA) after digitalization of the markers with the 

KineView Motion System (Kineview, Hafnarfjordur, Iceland). Digitized data were smoothed using a 

moving average low-pass filter with a frequency of 10 Hz. For each subject, kinematic data of three 

strides were analyzed for each condition, WL and WW, then averaged to obtain the mean value 

for each participant. These cycles were then averaged across the groups (CTRL, SCI-gr, PARA-gr, 

and TETRA-gr) and conditions (WW and WL).  
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For each kinematic gait parameter, differences between the CTRL subjects and the different 

groups of SCI subjects (SCI-gr, PARA-gr, and TETRA-gr) were assessed by means of delta (∆) 

calculation from absolute values according to the following formula:  ∆ =(SCI data - CTRL data).  

As regards the position of the markers in the sagittal plane, the three strides from each participant 

in each environment were normalized in time from 0% to 100% and averaged across the groups 

(CTRL, SCI-gr, PARA-gr, and TETRA-gr) and conditions (WW and WL). Furthermore, to point out 

data dispersion from the average, mean and standard deviation values across gait cycles were also 

obtained for each group (CTRL, SCI-gr, PARA-gr, and TETRA-gr) and condition (WW and WL).  

 

11.2.2.3 Statistical Analysis  

Descriptive statistics were performed for all variables. Before statistical comparisons, the 

Kolmogorov-Smirnov test was performed to evaluate normal distribution of the data. For each 

group, statistical comparisons between the two different environments, WW vs. WL, was made by 

independent t test. Furthermore, to point out differences between the groups for each 

environment condition, WW and WL, analysis of variance evaluation was used. When analysis of 

variance reached significance, the Bonferroni post hoc test was selected.  

Statistical significance was accepted for p <0.05 (*: p<0.05, **: p <0.005, ***: p <0.001). All 

statistical tests were performed using the Statistical Package for the Social Sciences software 

(version 12.0; Chicago, IL).  

 

 

11.3 RESULTS  

No participants withdrew from the trial, and all outcome measures were obtained for all SCI and 

healthy subjects.  

 

11.3.1 Kinematic Data  

In Table 20, the mean (standard deviation) values of kinematic gait parameters for the CTRL and SCI 

subjects WL or WW are reported. Statistical comparisons between WW and WL are also reported 

for each group. As regards WW data, the CTRL group presented, as expected 230;239, a significant 

reduction in speed and stride with a coherent gait cycle time increment in comparison with WL (p 

< 0.001 for  all parameters). No significant changes were present in the stance/swing percentage 

relationships.  
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Table 20: Kinematic gait parameters. Reported mean (standard deviation) kinematic gait data on water 
(WW) and on land (WL) of the healthy subjects (HEALTHY), the subjects with SCI (SCI-gr), and the following 

lesion-level subgroups: thoracolumbar lesion group (PARA-gr) and cervical lesion group (TETRA-gr).  
Statistical comparison between WW and WL conditions (WW vs WL) are reported on the last grey column 

for each group as p values. 

 

 

For the SCI-gr, comparisons between WW and WL indicated that gait in water was characterized, 

similarly tothe CTRL group, by significant speed reduction (p < 0.05) and gait cycle time increment 

(p < 0.005). In contrast to what was observed in the CTRLs, the SCI patients presented a significant 

reduction in the stance percentage (p < 0.05) associated with an invariance of the stride. The 

general pattern of gait in water was maintained also after grouping the patients according to the 

lesion level. Both the PARA-gr and the TETRA-gr presented a reduction in speed and in stance 

phase percentage, together with stride invariance. Similarly, both groups presented a gait cycle 

total time increase in water. Interestingly, despite the similar general trend, land vs. water 

statistical comparisons in the PARA-gr and the TETRA-gr were different. No statistical significance 

was observed in any of the parameters analyzed in the PARA-gr, whereas WL vs. WW significant 

differences for speed (p < 0.05) and gait cycle total time (p < 0.05) were recorded in the TETRA-gr.  
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Statistical comparison between the groups for each environment is reported in Figure 1. On land, 

the SCI subjects, in comparison with the CTRLs, presented a gait characterized by a reduction in 

speed (p < 0.001) and stride (p < 0.001) and by a significant gait cycle time increment (p < 0.001) in 

agreement with previous observations.18 The CTRL and SCI subjects also presented gait 

differences in the WW condition. The SCI patients walked significantly slower (p <0.001), 

presented significant reduced stride (p < 0.001), and presented a longer gait cycle total time, with 

similar values of stance phase percentages. Both the PARA-gr and the TETRA-gr presented 

significant differences from the gait of the CTRL group similar to those observed for the SCI-gr for 

WW and WL (Figure 37), with a notable exception for gait cycle total time. For both environments, 

statistical comparisons with the CTRL data demonstrated significance for both the PARA-gr and the 

TETRA-gr as regards speed (PARA-gr: WL and WW, P < 0.00; TETRA-gr: WL and WW, p < 0.001) and 

stride (PARA-gr: WL, p < 0.001; WW, p < 0.05; TETRA-gr: WL and WW, p < 0.001). As regards WW 

gait cycle total time, significant differences between the CTRL and the PARA-gr evidenced in WL (p 

< 0.05) were maintained in WW (p <  0.05), whereas the TETRA-gr data were significantly different 

from the CTRL data only in WL (p < 0.05). CTRL vs. PARA-gr and TETRA-gr statistical comparisons 

show significant differences as regards stance phase percentage in WL (PARA-gr: p < 0.05; TETRA-

gr: p < 0.005), which were abolished while WW.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 37: Kinematic gait parameters. Histograms of kinematic gait data (mean T standard deviation) on land (gray 
columns) and in water (striped columns) in the healthy CTRLs, in the subjects with SCI (SCI-gr), and in the following 
lesion-level subgroups: thoracolumbar lesion group (PARA-gr) and cervical lesion group (TETRA-gr). Statistical 
comparisons of the CTRL subjects vs. the SCI-gr, the PARA-gr, and the TETRA-gr are pointed out by lines above the 
graphs: gray line as regards WL and black line as regards WW (*p < 0.05, ** p < 0.005, *** p < 0.001) 
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Delta (∆) between kinematic data of the healthy CTRLs and the SCI subjects for WL and WW were 

assessed to point out the possible influence of walking environment on kinematic gait parameters 

(Figure 38).  

As regards WW, compared with WL, ∆  was reduced for all parameters. Specifically, ∆  differences 

reached significance for speed (p < 0.001) and stance phase percentage (p <  0.05) for all groups. 

Stride length ∆ between WL and WW were significant for the SCI-gr (p <  0.05) and the TETRA-gr (p 

<  0.05) but not for the PARA-gr. This data analysis stressed the higher similarity of gait parameters 

between the CTRL and SCI subjects for WW in comparison with those for WL. This enhanced 

similarity is also maintained when the SCI subjects are grouped according to the lesion level, 

especially for the TETRA-gr. It is worth noting that, as regards stance phase duration, the enhanced 

similarity between the SCI and healthy subjects is accompanied by an inverse trend of differences: 

in comparison with CTRL data, the SCI subjects presented an increased stance phase for WL 

condition, whereas in WW, a reduction is observed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38: Group differences in kinematic gait parameters. Histograms of kinematic gait parameters during 
the stride cycle on land (gray columns) and in water (striped columns), reported as the groups’ difference 
(∆)between the healthy CTRLs and the SCI(∆ CTRL vs. SCI-gr), thoracolumbar lesion(∆ CTRL vs. PARA-gr), or 
cervical lesion(∆ CTRL vs. TETRA-gr) groups. Statistical comparisons between WL and WW are reported on 

abscissas for each group (*p < 0.05, ** p < 0.005, *** p < 0.001). 
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11.3.2 Joint Segmental Angles  

Figure 39  depicts the mean joint angle values of the hip, the knee, and the ankle during the stride 

cycle of the CTRL group and of the different SCI groups WL or WW. In the healthy subjects, the hip 

in water tended to hyperflex with a peak, not present on land, at the end of the swing phase; 

similarly, a hyperflexion was observed in knee parameters for the overall gait cycle. This 

hyperflexion was highlighted at the beginning of the stance phase and during the swing phase, in 

which a delay in the peak of flexion was observed. Regarding ankle behavior, plantarflexion was 

enhanced in water, and both plantarflexion and dorsiflexion peaks were anticipated.  

 

 

Figure 39: Values of joint angles during gait cycle. Hip, knee, and ankle joint angles (mean ± standard 
deviation) during gait cycle on land (gray area) and in water (line) in the healthy CTRLs, in the subjects with 
SCI (SCI-gr), and in the following lesion-level subgroups: thoracolumbar lesion group (PARA-gr) and cervical 

lesion group (TETRA-gr). Stance phase: 0%-60%; swing phase: 60%-100%. Positive values indicate ankle 
plantarflexion and knee and hip extension; negative values indicate ankle dorsiflexion and knee and hip 

flexion. 

 

In the SCI subjects, the greatest difference between the water and land conditions was observed 

as regards hip values. In water, the hip was hyperflexed throughout the overall gait cycle. 

Regarding knee data, the land and water traces tended to overlap almost completely, even if the 

joint tends to be more flexed in water than on land. A little delay of the swing flexion peak in 

water was recorded. The ankle behavior tended to present a slightly enhanced plantarflexion in 

water, more evident at the end of the stance and throughout the swing. This pattern was 

associated with an anticipation of both dorsiflexion and plantarflexion peaks. Similar trends were 
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also observed after grouping the subjects according to the lesion level (PARA-gr and TETRA-gr; 

Figure 39).  

 

 

On the other hand, key differences among the lesion-level groups were observed, taking into 

account the standard deviation values of the joint angles’ overall gait cycles for both environments 

(Figure 40). In the CTRL subjects, the standard deviation values for the hip, knee, and ankle angles 

were significantly reduced during WL than WW (p < 0.001 for all joints). In the SCI subjects, the 

pattern was completely reversed as regards the hip and knee joints. The joint angles’ standard 

deviation values were significantly lower in water than on land (hip: p < 0.005; knee: p < 0.001). As 

for the CTRL subjects, an increment was present in water for the ankle standard deviation values 

(p < 0.001). Interestingly, by grouping the SCI subjects according to the lesion level, some 

differences were revealed between WW and WL. In the WW condition, the standard deviation 

values were significantly reduced as regards the knee joint for the TETRA-gr (p < 0.001) and as 

regards the hip joint for the PARA-gr (p < 0.05). In line with the CTRL and SCI-gr data, the ankle 

standard deviation values were significantly increased for WW (p < 0.001).  

 

 

 
 

 

 

 

 

 

 

 

 

Figure 40: Standard deviations of joint angles. Histograms of standard deviations of the hip, knee, and ankle 
joint angles (mean ± standard deviation) during gait cycle on land (gray columns) and in water (striped 

columns) in the healthy CTRLs, in the subjects with SCI (SCI-gr),and in the following lesion-level subgroups: 
thoracolumbar lesion group (PARA-gr) and cervical lesion group (TETRA-gr). Statistical comparisons 

between WL and WW are reported on abscissas for each joint (*p < 0.05, ** p < 0.005, *** p < 0.001). 
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11.3.3 Range of Motion  

Figure 41 presents ROM mean values for the hip, the knee, and the ankle on land or in water for 

the CTRL group, the SCI-gr, the PARA-gr, and the TETRA-gr. Comparison between WW and WL for 

each group showed that water environment did not modify ROM values, either in the CTRL or in 

the SCI subjects. The only exceptions were the CTRL and the TETRA-gr hip values, which presented 

enhanced ROM in water. These latter differences were statistically significant (CTRL, p < 0.05; 

TETRA-gr, p < 0.05).  

For both WL and WW data, statistical comparison among the groups indicated that the CTRL and 

SCI subjects differed significantly only in the knee values (WL: p < 0.05; WW: P < 0.05). The knee 

ROM values also differed between the CTRL and the TETRA-gr but only as regards WL (p < 0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 41: ROM of joint angles during gait cycle. Histograms of ROM of hip, knee, and ankle joint 
angles (mean ± standard deviation) during gait cycle on land (gray columns) and in water (striped 
columns) in the healthy CTRLs, in the subjects with SCI (SCI-gr), and in the following lesion-level 

subgroups: thoracolumbar lesion group (PARA-gr) and cervical lesion group (TETRA-gr). Statistical 
comparisons of the CTRL subjects vs. the SCI-gr, the PARA-gr, and the TETRA-gr are pointed out by 

lines above the graphs: grey line as regards WL and black line as regards WW. Statistical 
comparisons between WL and WW conditions are reported on abscissas for each group (*p < 0.05, 

** p < 0.005, *** p < 0.001). 
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11.4 DISCUSSION  

This study analyzed complete gait cycles of the SCI subjects WL and WW at a self-selected 

comfortable speed, reporting new kinematic data that support water environment to reduce gait 

differences between SCI and healthy subjects.  

As regards the results of this study, kinematic gait data of WL in the SCI subjects are in line with 

previously published data 53 in demonstrating, after SCI, a total gait cycle time increment 

associated with stride length and speed reduction (Table 20). These differences were more evident 

in the subjects with thoracic or lumbar damage compared with those with cervical lesions, as 

previously reported 53.  

As regards the effects of water environment on gait in healthy subjects, in this study and in those 

of Barela et al. 230;239 and Orselli and Duarte 223, WW presented, compared with WL, an increment 

of the gait cycle time and a reduction in gait speed and stride length. Despite slower speed, stance 

phase percentage was not modified, as also previously reported 223;230;239 (Table 20).  

It has been proposed that in water stance phase, duration remains unmodified because of a 

double effect of water: an increase, caused by speed reduction, and a decrease, caused by body-

weight unloading increment 239. Consequently, for the healthy subjects, the two effects cancel 

each other and the temporal organization of gait stride is approximately the same in water and on 

land 239. For the SCI subjects, the data of this study demonstrate that  

WW, in comparison with WL, is characterized by a reduction in gait speed and an increase in gait 

cycle time, as observed in the healthy subjects, and, differently from the CTRLs, by an invariance of 

the stride and a reduction in stance phase duration (Table 20). These differences in the effects of 

water environment induce the SCI subjects to walk in water with a gait more similar to the healthy 

one than when WL (Figure 38), supporting the idea that water may represent a good training 

environment for gait rehabilitation. It can be argued that speed reduction alone might induce a 

more physiologic gait independent from environmental changes. Present data do not allow to 

completely rule out this criticism. To establish the rehabilitative efficacy of WW, approach-

devoted studies are needed.  

Qualitative analyses of traces of joint segmental angles indicated that water induces the same 

trend in the CTRL and SCI subjects. As reported for the healthy subjects, because of buoyancy 
230;238;239;241, the hip and knee joints are more flexed and the ankle is more plantarflexed in water 

than on land in both the CTRL and the SCI-gr (Figure 39 and Figure 42). It has been hypothesized 

that in water, because of reduced support forces caused by apparent body weight reduction, there 

is a diminished need for the ankle to provide support in healthy subjects 223. The same principle 

might well be applied also to SCI subjects.  

The data of the standard deviation values of the joint segmental angles allow further 

considerations. The standard deviation of the ankle segmental angle increased in water in both 

the healthy and SCI subjects, whereas the knee and hip values behaved differently in the two 

groups, namely, in the healthy controls, water induced an increment in the knee and hip standard 

deviation values, whereas in the SCI subjects, water induced a decrement (Figure 40 and Figure 42).  



Study 3 

120 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: General schema of hip, knee, and ankle joint angles for SCI groups on land and in water. Hip, 
knee, and ankle joint angles (mean ±  standard deviation) and joint angles’ SD data during gait cycle on land 

(gray area) and in water (line) in the healthy CTRLs, in the subjects with SCI (SCI-gr), and in the following 
lesion-level subgroups: thoracolumbar lesion group (PARA-gr) and cervical lesion group (TETRA-gr). 
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As regards ROM data on land, CTRL vs. SCI group differences were observed only in knee ROM, 

and this difference was a result of the TETRA-gr data (Figure 41). Knee ROM reduction in 

tetraplegia has been previously reported246, and it has been interpreted as a consequence of the 

altered knee agonist antagonist muscles coupling with flexion reduction during swing phase. In 

line with this interpretation in WW condition, knee ROM improvement may be the consequence 

of the buoyant force supporting knee flexion during swing. Consequently, group differences in 

knee ROM between the healthy and TETRA-gr subjects, evidenced on land, disappeared in water. 

On the other hand, considering the effects of water environment in comparison with on-land gait, 

in line with previous reports of healthy subjects 223;230 no significant differences for hip, knee, and 

ankle ROM in the CTRL group, the SCI-gr, and the PARA-gr were observed. This suggests that the 

relationship between these adjacent segments did not change during stride cycle for land or water 

conditions.  

Water effects on joint segmental angles allow some speculations of rehabilitative relevance. 

Bodyweight unloading reduces the need of hip extension for body forward propulsion and of both 

knee extension and ankle dorsiflexion needed for support. In SCI patients, limited hip and knee 

flexion, especially during swing phase, are considered two specific targets for overground gait 

rehabilitation 247. Thus, water environment’s effects that favor a generalized flexion pattern can 

support the flexion improvement needed for SCI gait rehabilitation.  

The second interesting speculation derives from group differences in the water effect on standard 

deviation of joint segmental angles. Overall, it is intriguing that water has opposite effects on 

standard deviation of the hip and knee joint segmental angles in healthy (increased) and in SCI 

(reduced) subjects. In particular, the highest significant decrease in standard deviation of 

segmental angle was observed for the knee joint in the TETRA-gr and for the hip joint in the PARA-

gr. It can be hypothesized that for healthy subjects in a water environment, the increased effort to 

move the limbs would induce a gait less automatic than on land, as suggested by the reduction of 

the stereotypy of leg movements. On the other hand, the SCI subjects in both environments 

present a gait less automatic than that of the CTRLs, as indicated by the higher variability. In WW, 

the reduced load might help to regain, at least partially, a better control of leg movements, thus 

reducing the variability of the hip and knee joint angles. Although it is evident that a definite 

conclusion cannot be drawn from the present data, it can be speculated that in water, both the 

healthy and SCI subject walk in a “new” environment in which a more “voluntary/explicit” effort is 

needed. On land, although healthy gait is “automatic/implicit”, SCI gait is based on 

voluntary/explicit effort. It is generally believed that an automatic movement is more stereotyped 

than a voluntary one. Therefore, at least for implicit/voluntary differences, the SCI subjects would 

control gait with the same mechanism in WW or WL conditions, whereas the healthy subjects 

would shift from an automatic gait in WL to a more voluntary one in WW. On the other hand, the 

reduced weight in WW would allow an easier control for the SCI subjects, thus allowing a more 

regular gait. The knee and hip joints represent key rehabilitation points for subjects with 

tetraplegia 246 and paraplegia235, respectively. Interestingly, water specifically targets these crucial 

joint problems according to lesion level by reducing the variability of the knee joint angles in 

tetraplegia and the variability of the hip joint angles in paraplegia, in association with more 

physiologic ROM of the joints.  
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The present findings support some clinical considerations for SCI rehabilitation. Reduction in joint 

angles’ standard deviation, in speed, and in stance phase duration allow SCI subjects to walk in 

water with a gait more similar to that of healthy subjects, allowing a training of stride temporal 

organization more physiologic than on land. In the framework of motor learning, functional-

related plasticity can be considered as the guiding rule for rehabilitation, and it is generally agreed 

that repetition of a movement would strengthen related neural connectivity 248. In this study, 

water environment stimuli reached a more physiologic response of the locomotion skill than on-

land condition. Therefore, the exercise of a task-specific locomotion motor pattern associated with 

physiologic parameters would support the circuits that allow such movement. Thus, because of 

functional plasticity principles, WW may favor more than WL the strengthening of physiologic 

circuits, according to the task-specific acquisition, retention, and transfer principles of motor 

learning57. Furthermore, swing phase duration increment increases dynamic postural stability 

requests, favoring balance training. This latter training has been suggested to specifically improve 

gait in subjects with chronic motor incomplete SCI, as reported in Study 1.  

Finally, it is worth noting that gait training in water provides a sort of body-weight support as 

other novel gait therapies do on the basis of complex and expensive body-weight support robotic 

assisted devices that have been the objective of several group studies 226. No studies ever 

attempted  to compare gait rehabilitation in water vs. body-weight support approaches. Ad hoc 

studies are needed to experimentally test the efficacy of hydrotherapy for rehabilitation protocols 

after SCI and to evaluate the similarities and the differences between this and other approaches 

proposed to enhance gait recovery.  

 

11.5 Study Limitations  

A possible limitation of the present study is the sagittal plane two-dimensional analysis used to 

estimate kinematic data during WW and WL. Although kinematic data are usually acquired with 

sophisticated three-dimensional gait analysis systems when addressing WL, most studies 

addressing WW are based, as in the present study, on two-dimensional systems 223;230;239.Two-

dimensional systems provide data only as regards the sagittal plane of movement, which is 

considered the main plane of movement 245. On the other hand, the complete lack of available 

data regarding gait in water by the subjects with SCI also renders two dimensional data quite 

relevant.  

Another possible limitation is the relative small sample size of the SCI subjects (n = 15), which may 

reduce the statistical relevance of this study. It should be stressed that most studies addressing 

gait in water are based on even smaller samples and that the statistical differences reported here 

are quite large, thus making the statistical error caused by sample size negligible.  

Furthermore, all SCI subjects enrolled presented a high degree at the Walking Index for Spinal 

Cord Injury assessment; thus, the present data can apply only to a fraction of subjects with SCI. It 

could be interesting to enlarge the study to subjects with lower walking capacity.  

Finally, it should be stressed that this study is not intended to and does not provide clinical 

indications on the efficacy of gait training in water for walking recovery in SCI. Data support water 
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environment as useful in inducing a more physiologic gait for subjects with incomplete SCI. Future 

research should estimate whether this type of exercise is capable of supporting gait recovery in SCI 

and to what extent.  
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 CONCLUSIONS 12

As stated above gait control mechanisms are multifarious and in incomplete SCI subjects they might 

be lesioned in different degree. Present data demonstrate that isolate intervention on single aspects 

of the gait functional impairments may help in improving gait function (Figure 43).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43: General schema of specific treatments used in the three studies to influence SCI gait. 

 

Classically, functional gait training is considered the most effective approach to recover gait 

function25.   Present data, broaden this vision suggesting that, besides task specific training, ad hoc 

protocols aimed at specific impaired functions involved in gait control might help to boost recovery. 

Specifically we demonstrated that isolate balance training without any specific task oriented gait 

exercise is effective in improving gait in subjects with chronic motor incomplete SCI (Table 21). That, 

enhancement of somatosensory inputs by KT is effective in reducing spasticity an in improving both 

balance and gait functions. Finally that, compared to overground, water environment allows chronic 

motor incomplete SCI subjects to walk with a gait pattern more similar to the physiological oneTable 

21. These evidences support water environment as training condition for SCI rehabilitation.  
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Table 21: Overview of studies’ results. 

 

 

 

In study 1 task-specific sensory cues by means of vBFB technique have been used to improve balance 

and gait.  Re-education of balance function in SCI patients by task-specific oriented training 155 has 

been previously examined, focusing on sitting balance recovery 155 156 110 or standing balance 113;157. 

There are no data on the efficacy of task-specific biofeedback balance training in supporting walking 

functions in chronic motor incomplete SCI patients.  Our results demonstrated that in chronic motor 

incomplete SCI subjects: 

- Task specific vBFB training improves balance and gait; 

STUDIES’ RESULTS 

Study N° State of the Art Results 
 

Rehabilitation Impact 
 

1 
vBFB for 
Balance 
and Gait 

Task specific training is 
considered the gold 

standard for rehab. If 
balance improvement 
can be transferred to 

gait remains to be 
ascertain. 

vBFB training is 
effective in improving 

balance and gait in 
chronic motor 
incomplete SCI 

subjects. 

 
Inclusion of vBFB training in 
a rehabilitation protocol for 

chronic  incomplete  SCI 
subjects is more effective 

than conventional 
rehabilitation alone. 

 

2 
KT and 

spasticity 

 
Spasticity highly 

influence gait.  Kinesio 
Taping  has been 
proposed to treat 
spasticity but its 

efficacy in SCI subjects 
has to be verified. 

 

Short-term 
application of  Kinesio 

Taping  reduces 
spasticity and pain 

and improves balance 
and gait in chronic SCI 

subjects. 
 

 
Kinesio Taping  application 

is a valid technique to 
reduce spasticity in the 
short term improving 

balance and gait in chronic 
incomplete SCI subjects. 

3 
Walking 
in Water 

Hydrotherapy is a 
traditional approach for 

SCI gait rehabilitation 
although kinematic 

effects of water 
environment on SCI gait 
have not been defined. 

 
In water Gait of SCI 

subjects is more 
similar to the 

physiological one than 
during overground 

walking.  
 
 

Walking in a water 
environment may be of 

rehabilitative significance 
for SCI subjects. 



CONCLUSIONS 

126 
 

- The inclusion of vBFB training effects greater improvements in gait than conventional gait 

rehabilitation alone. 

 

We assumed that task-specific vBFB training, although it acts on motor programs for balance control 

strategies in training regimens, is also effective for gait motor programs. In the overall assessment of 

balance, improvement in COP parameters appeared to be strictly linked to improvements in gait. The 

key point is that these improvements in balance preceded the amelioration in gait, suggesting that 

improvements in walking depend in part on those in balance. Although parallel improvements in 

balance and walking have been observed in acute47 and chronic SCI subjects177, no study previously 

examined the interdependence of these functions.  

 

For study 2, KinesioTaping approach has been used to re-activate nervous system, particularly in 

the context of sensorimotor system, including somatic sensory afferent inputs and activating 

functional movements 185. Our results highlight that KT had significant immediately therapeutic 

effects on spasticity and related symptoms in the short term and improved balance and gait in 

chronic incomplete SCI subjects. KT treatment facilitates: 

- A significant spasticity reduction, suggesting improved motor outcome; 

- A better control of balance and an improvement of dynamic postural stability, associated with 

a positive enhancement of kinematic gait parameters. 

These results interpret considering somatosensory effects due to increasing skin receptor output 

through tape application. This in turn, stimulates supraspinal centers and thus enhances 

kinesthetic and joint position sense 186;209. Applying pressure to and stretching the skin with KT can 

stimulate cutaneous mechanoreceptors and enhance signal information of joint movement or 

joint position210;211. Thus, sensory modulation through KT might not only influence spasticity but 

may also intervene in long-lasting reorganization of spinal gait circuits.  

 

As concern Study 3 it demonstrated that, in SCI motor incomplete subjects, water environment 

allows a more physiological gait pattern than on-land condition. Therefore, it can be hypothesized 

that performing a task-specific locomotion exercise in an environment that allows a more 

physiological gait would reinforce correct gait pattern inhibit pathological ones. Because of 

functional plasticity principles, WW may favor more than WL the strengthening of physiologic 

circuits, according to the task-specific acquisition, retention, and transfer principles of motor 

learning57. Furthermore water environment increases dynamic postural stability requests, favoring 

balance training. This latter training has been suggested to specifically improve gait in subjects 

with chronic motor incomplete SCI, as reported in Study 1. 
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Figure 44: Overview schema of the effects of specific rehabilitation treatments on gait in chronic 
incomplete SCI subjects 

In conclusion, present results demonstrate that for chronic incomplete SCI subjects gait 

rehabilitation might take advantage of integrating different approaches aimed at balance 

rehabilitation by vBFB, at somatosensory inputs enhancement by KT, as well as at body weigh 

support by water environment (Figure 44) . 

An interaction among the different rehabilitation approaches is a topic that still needs to be 

verified.  Functional tasks, by definition address all the systems involved in a given task, but they 

do not consider possible differences among impairments. Therefore, in a holistic approach both 

spared and impaired functions will be treated equally. In a more selective approach, like the ones 

here analyzed, each function is addressed specifically. These two approaches are by no means in 

opposition. Better knowledge of the pathophysiological mechanisms determining gait impairment 

in SCI and a better understating of the effects of the different rehabilitation protocols on gait 

control systems will help us in progressing and in improving the efficacy of gait rehabilitation after 

SCI (Figure 44). (Errore. L'origine riferimento non è stata trovata.).          Errore. L'origine 

riferimento non è stata trovata.).
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