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ENGLISH SUMMARY 

The topic of this Ph.D. thesis is short term forecasting of precipitation for up to 6 
hours called nowcasts. The focus is on improving the precision of deterministic 
nowcasts, assimilation of radar extrapolation model (REM) data into Danish 
Meteorological Institutes (DMI) HIRLAM numerical weather prediction (NWP) 
model and produce quantitative estimations of nowcast uncertainty.  

In real time control of urban drainage systems, nowcasting is used to increase the 
margin for decision-making. The spatial extent of urban drainage catchments is very 
small in a meteorological context. This is a problem since small scale features of the 
precipitation are the least predictable and hence very difficult to anticipate. This also 
leads to uncertainty at urban scale, which needs to be addressed.  

Initially, Kalman filtering is used to stabilise the advection field in order to increase 
the precision of a Co-TREC based REM. The filter is calibrated against atmospheric 
observations of radial velocity measured by a Doppler radar. The results from 
pooled skill scores from 16 events show only a slight improvement. The positive 
contribution, from applying Kalman filtering, is increased stability computed by the 
relative standard deviation. 

A significant result of this Ph.D. study is major improvements in predictability of 
DMI HIRLAM NWP model by assimilation of REM data. A new nudging 
assimilation method developed at DMI was used to assimilate the REM data. The 
assimilation technique enhances convection in case of under-prediction of 
precipitation and reduces convection in the opposite case. The result is based on 
evaluation of 8 events from august 2010 and an extreme event from 2 July 2011. 
Both spatial predictability and accumulated volumes benefit from the REM data 
assimilation. The system is currently being tested at DMI to become an operational 
system. 

To address the uncertainty of REM nowcasting, a new ensemble prediction system 
was developed called RESEMBLE (Rainfall Extrapolation System – EnseMBLE). 
The novelty of this method is the separation of advection – and evolution 
uncertainty and the way the temporal correlation is incorporated by a numerical 
interpolation technique. The results demonstrate that ensemble mean performs with 
higher correlation than the deterministic prediction compared to observations. The 
system, with good skill, is able to predict the location and intensity of precipitation 
and the ensemble spread is in proportion to the uncertainty of ensemble mean. The 
system is also tested as input for an urban drainage system with promising results. 

The encouraging results from assimilation of REM data into DMI HIRLAM NWP 
model also inspired the work of initiating HIRLAM NWP ensemble members by 
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assimilation of REM ensemble members. The same nudging assimilation technique 
was applied to assimilate ensemble members from RESEMBLE into the NWP 
model. The results showed a rapid initiation of ensemble members, reasonable 
reproduction of nowcast uncertainty and a higher performance than ensemble mean 
than runs without using RESEMBLE assimilation. A slight bias was also 
demonstrated in the prediction towards high intensities but this was expected since 
the model was tuned towards high intensity precipitation.  
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DANSK RESUME 

Temaet for indeværende Ph.D. afhandling er forudsigelse af nedbør op til 6 timer 
frem i tiden også kaldet nowcasts. Der er fokus på at forbedre præcisionen af 
deterministiske nowcasts, assimilering af radar ekstrapolations modeller (REM) i 
Dansk Meteorologisk Instituts (DMI) HIRLAM numeriske vejrmodel (NWP), samt 
kvantificering af nowcast usikkerhed.  

Indenfor realtidsstyring af afløbssystemer bliver nowcasts brugt til at udvide den 
margin der er til at træffe styringsbeslutninger i forhold til kun at anvende 
observationer. Den spatial udstrækning af afløbssystemer er lille i forhold til 
meteorologiske skala. Dette udgør et problem i forhold til at kunne forudsige 
nedbøren eftersom de små skalaer også er dem der har kortest levetid og herved er 
de sværeste at forudsige. Ydermere betyder det også at der er stor usikkerhed ved 
forudsigelser på afløbsteknisk skala. Dette er motivationen for at arbejde med at 
forbedre forudsigelsen af nedbør.   

For at forbedre præcisionen af REM nowcasts er et Kalman filter implementeret for 
at stabilisere flytningsfeltet. Filteret er kalibreret op mod radar-Doppler målinger af 
den atmosfæriske ændring i radial hastighed af nedbøren. Implementeringen af 
Kalman filteret blev igennem pooled skill scores evalueret for 16 hændelser. 
Resultatet viste kun en lille tendens til forbedring af forudsigelserne. Den egentligt 
fordel ved implementeringen er en stabilisering af præstationsniveauet hvilket er 
bekræftet vha. beregning af den relative standard afvigelse.  

Et meget signifikant resultat for denne Ph.D. er opnået ved assimilering af REM 
data i DMI HIRLAM NWP model. Assimileringen blev foretaget vha. en nudging 
metode, udviklet på DMI, der forstærker konvektion når der underestimeres og 
reducere når der overestimeres. Metoden blev evalueret for 8 hændelser fra august 
2010 samt en ekstrem hændelse d. 2 juli 2011. Resultaterne viser en væsentlig 
forbedring i både den spatiale forudsigelse og i akkumulerede nedbørsmængder. 
Systemet er for nuværende i gang med at blive testet ved DMI med henblik på at 
fungere operationelt. 

For at adressere usikkerhed i REM forudsigelser er et nyt ensemble forudsigelses 
system udviklet. Metoden kaldes RESEMBLE (Rainfall Extrapolation System – 
EnseMBLE). Det der gør denne model anderledes, end andre systemer, er måden 
hvorpå usikkerheden er opdelt og behandlet i dens komponenter – 
advektionsusikkerhed samt evolutionsusikkerhed. Ydermere er den temporale 
korrelation estimeret vha. en numerisk interpolations metode. Resultaterne viser at 
gennemsnits ensemblet har højere korrelation med observationer end den 
deterministiske forudsigelse, samt at RESEMBLE er i stand til at forudsige 
lokaliteten af regnen. Yderligere viste evalueringen at spredningen på ensemblerne 
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er i overensstemmelse med nowcast-usikkerheden. RESEMBLE blev også testet 
som input i en afløbsmodel. Resultaterne virker lovende.  

De gode resultater ved assimilering af REM data i DMI HIRLAM NWP model 
inspirerede til at initiere NWP ensembler ved at assimilere RESEMBLE ensembler. 
Dette blev gjort ved at benytte samme assimileringsteknik som blev anvendt i 
tidligere forsøg. Resultat viste en hurtig initiering af NWP ensembler, en fornuftig 
reproduktion af nowcast-usikkerheden og et bedre præstationsniveau af gennemsnit 
ensemblet i forhold til kørsler uden assimilering af RESEMBLE. En bias mod højere 
intensiteter blev også fundet. Dette var dog forventet siden assimileringen var tunet 
mod at forudsige høje intensiteter.  
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CHAPTER 1. INTRODUCTION 

The precipitation pattern over Denmark will, in the future, change due to climate 
changes. According to Pachauri, Allen et al. (2014), it is very likely that the 
precipitation will become more frequent and intense as global mean temperature 
increases. Furthermore, as urbanisation is increasing, more impervious areas are 
contributing to an increased amount of water in the drainage system. The 
combination of higher precipitation intensity and urbanisation results in further 
stress on the cities drainage systems. These factors also contributed to a significant 
increase in economic loss from flooding since the 1950’s (Christensen, Arnbjerg-
Nielsen et al. 2014). Pachauri, Allen et al. (2014) also states, with very high 
confidence that the tendency of increased frequency of urban floods will continue.  

Urban floods due to heavy precipitation can be extremely costly for the society. As 
a recent example, a flood of the Copenhagen area on the 2nd July 2011 costed 
approximately 6bn Danish DKK in damage costs (Krawack, Madsen 2013), see 
Figure 1.  

 

Figure 1: Flooding of Copenhagen 2nd July 2011. Image to the left taken by Per Folkver and 
the image to the right by Finn Majlergaard. 

Adaptation of the drainage system can be done by physically upgrading the 
capacity. This is achieved by enlarging pipe dimensions and basin volumes but is 
very costly and, in some places, problematic due to urban development. For these 
reasons, a new tendency is seen to move towards more dynamically controlled 
systems, or real time control (RTC), in order to increase capacity.  

RTC of the drainage system has the purpose of increasing the existing system 
capacity in order to minimise urban floods and minimise combined sewer overflow 
(CSO). RTC is to intelligently control pumps and valves within the drainage system 
to reroute water to areas where it will cause less damage or less precipitation is 
expected. Doing so releases capacity in the remaining drainage system. The control 
is typically based on sensors within the system and simulated water levels through 
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distributed urban rainfall-runoff models combined with pipe flow sub models. For 
extreme events, such as 2nd July 2011, flooding is unavoidable even with the 
application of RTC due to the large volume of water. However, with proper RTC, 
the damages and costs could most likely have been minimised.  

The driving input for RTC of drainage systems is the precipitation. Often, ground 
observations and more recently also radar quantitative precipitation estimates 
(QPE) are used as inputs. Radar QPE has the advantage of high spatiotemporal 
resolution and large coverage compared to point measurements. Research has 
shown that radar QPE improves the simulated response for small to medium sized 
urban catchments (Pfister, Cassar 1999, Sempere-Torres, Corral et al. 1999, Ogden, 
Sharif et al. 2000, Gourley, Giangrande et al. 2010, Löwe, Thorndahl et al. 2014).   

Radar QPE is not only used as an observation but also to generate short term 
forecasts (up to 6 hours in advance) called nowcasts. The nowcast is generated by 
extrapolation of the current precipitation field according to an estimated motion 
field. Nowcasts can provide knowledge of where and how much precipitation will 
fall in the future within the urban catchment. The advantage is that it enlarges the 
margin for decisions making (Krämer, Fuchs et al. 2007) which can be crucial for 
correct RTC. Several studies have shown that there is a considerable benefit for 
RTC in using future predictions of precipitation compared to the alternative of not 
using future predictions (Vivoni, Entekhabi et al. 2007, Krämer, Fuchs et al. 2007, 
Werner, Cranston 2009). However, urban drainage operates on small spatial scales, 
which is also the least predictable (Venugopal, Foufoula‐Georgiou et al. 1999, 
Germann, Zawadzki 2002, Seed 2003).  

Since the predictability of the precipitation exhibits scale dependencies with short 
lifetimes for small scales and urban scales, it is difficult to correctly predict these 
small scale features of the precipitation. As a consequence it is only possible to 
produce nowcasts with very short lead-times. The uncertainty will, as a function of 
lead time, rapidly increase to a point where skill is lost and the nowcasts can no 
longer be applied for RTC. For RTC, it is just as important to know the uncertainty 
of a prediction as the prediction itself. Low intensities could lead the operator to a 
false sense of safety if the uncertainty is high at the same time. On the other hand, if 
the prediction is high intensity with high uncertainty then the lack of information 
could potentially lead to a poor decision, which may cause more harm than good. 
There is therefore a need to increase the skill on longer lead-times of nowcasts and 
to quantify the uncertainty.  

In order to address this problem, the work of the Ph.D. thesis is divided into three 
focus areas. The first focus area is to improve the spatial precision of nowcasts 
based on extrapolation of radar QPE (hereafter REM for radar extrapolation model). 
The second focus area is to combine REM with a numerical weather prediction 
(NWP) model, by assimilation, to improve predictability on longer lead-times. The 
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third focus area is to quantify and describe the uncertainty of nowcasts. These focus 
areas set the framework for the current Ph.D. study. 

1.1. HOW TO PREDICT PRECIPITATION 

There are two principal methods to generate nowcasts that are able to predict the 
location and intensity of precipitation. The first method is a radar extrapolation 
model (REM) prediction and the second is a numerical weather prediction (NWP) 
model prediction. The two methodologies have some similarities but are 
fundamentally very different.  

REM is, as the name implies, an extrapolation of the current observed precipitation 
field measured by radar. The concept of REM is fairly simple. It consists of two 
major components. These are 1) Estimating the motion of the precipitation field and 
2) Extrapolating the precipitation field into the future according to the estimated 
motion. The strengths of REM are a short computational time, high spatial and 
temporal resolution and high performance for very short lead-times. However, the 
disadvantage is that the quality of the nowcast very rapidly deteriorates since the 
predicted precipitation field is merely an extrapolation of the current precipitation 
field and does not include meteorological processes. 

NWP models are not just an extrapolation of the current precipitation field but a 
numerical interpretation of the atmospheric state coupled with physical processes. 
Numerical models need both boundary conditions and initial conditions to run the 
simulation. In a Danish context, the boundary conditions are obtained from a model 
of the northern hemisphere provided by the European Centre for Medium range 
Weather Forecast (ECMWF). The boundary conditions are used to simulate the 
boundary conditions for an even smaller nested model with increasing precision. 
This is repeated until the desired model area and precision are obtained. The initial 
conditions are estimated from a vast amount of observations and are assimilated 
into the models at all nested levels. Observations come from numerous weather 
stations, different satellites, weather radars, weather balloons, aircrafts, ships, buoys 
and more. The advantage of NWP models is that the quality of the prediction is 
more persistent than REM predictions due to the description of the evolution and 
decay of the precipitation. The NWP model actually predicts the future state of the 
earth’s atmosphere and therefore also models how it evolves. The disadvantages are 
a longer computational time, the need for a vast amount of observations and often 
also a more coarse spatial and temporal resolution due to the computational 
demands.  

The above mentioned strength and weaknesses of the two methodologies affects the 
quality of the forecast which is conceptualised in Figure 2. 
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Figure 2: Solid lines: Conceptualisation of the relationship between forecasting 
methodology, skill and forecast range. Schematic diagram after Browning (1980). The red 

and green stippled line is added to the diagram to conceptualise REM quality on urban 
scales and the quality of REM assimilated into NWP model, respectively. 

The conceptualised idea of quality, from 1980, has been shown by Bowler, Pierce et 
al. (2006) and Berenguer, Surcel et al. (2012) to still be valid. The quality of the 
extrapolation model at a continental scale is higher, for lead-times up to 8 hours, 
than NWP.  

On smaller urban scales, the REM quality is lower than on a continental scale since 
the smaller scales are less predictable (red stippled line). This entails that the NWP 
prediction will be more skilful at approx. 2-4 hours. The quality of the NWP model 
initiates lower than the REM prediction due to spin-up effects.  

It is clear, from Figure 2, that there is a great potential in combining REM and 
NWP to increase the systems overall performance. The stippled green line 
conceptualises the outcome of combining a NWP model by assimilation of REM. 
The idea is that the higher quality of the REM prediction is beneficial for the NWP 
model when combined and not only in the assimilation period. This is the basis for 
the focus area of the Ph.D. on combining the two methods by assimilation.  

An example of nowcasts generated by a Co-TREC REM and the Danish 
Meteorological Institutes (DMI) HIRLAM NWP model compared to the 
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corresponding observational radar precipitation field is seen in Figure 3. The 
example is from the previously described case that caused flooding in the 
Copenhagen area the 2nd July 2011.  

 

Figure 3: An example from nowcasts issued on the 2nd July 2011 15:00 UTC at lead-time 60 
min from a REM and NWP model (DMI HIRLAM model) compared to the observational 

radar precipitation field. The plots depict the precipitation field from a minimum threshold of 
0.5 mm/hr. 

It is difficult to identify which one of the two nowcast methods has the highest 
quality. However, it seems that the REM prediction is more detailed on smaller 
scales than the NWP prediction. Common to both methods is that they are 
uncertain. 
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1.2. THE CHALLENGE OF NOWCAST UNCERTAINTY 

The chaotic and transient nature of precipitation makes future predictions one of the 
most difficult earth system problems, and consequently among the most imprecise. 
Significant effort has gone into improving the performance of both REM and NWP 
methods but still predictions come with a significant amount of uncertainty.  

Quantification of the nowcast uncertainty is very challenging and highly case 
dependent (Germann, Zawadzki et al. 2006) and also very much related to the 
nowcast methodology. 

Extrapolating precipitation, as done by the REM method, is very simple, robust and 
fast. However, the quality of the prediction deteriorates rapidly as the method does 
not account for the temporal changes in precipitation (see Figure 2). As the quality 
deteriorates, the uncertainty increases. The uncertainty increases due to the non-
stationarity assumption of the estimated motion field and foremost the 
evolution/decay of the precipitation (Germann, Zawadzki et al. 2006). This is also 
the reason why the quality for very short-lead times of REM is high and higher than 
the NWP models since the actual situation is the initial condition. The sources of 
uncertainty are further described in section 3.1.7. 

NWP models simulate the atmospheric phenomena but there are model errors 
which affect the quality of the prediction. The prediction is challenging for two 
reasons. The first being the description of some physical processes that are related 
with uncertainty and secondly the temporal and spatial discretisation of the 
numerical approximation. Both are related to the computational power since a 
nowcast, in order to be useful, needs to be produced within a reasonable amount of 
time. Another issue is the non-linearity and the many degrees of freedom of the 
NWP methodology. Obtaining exact initial conditions from observations is not 
possible as they will be affected by uncertainties. The problem is that even slight 
changes in the initial states will very rapidly depart from each other and produce 
very different predictions (Lorenz 1965). These are the challenges for describing 
the future atmospheric state using NWP models.   

Due to the uncertainty associated with nowcasting precipitation, there is an inherent 
risk in RTC. The uncertainty of the prediction has to be compared against potential 
consequences of incorrect control. Incorrect decisions based on wrong predictions 
of the precipitation can, in worst case, lead to flooding of urban areas with severe 
economic implications as a consequence. Quantitative estimation of the nowcast 
uncertainty before executing a control strategy is therefore very important and are 
therefore a focus area of this Ph.D. study.  
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The need to improve nowcasting at urban scales based on the three focus areas, 
with the aim of making predictions more applicable in RTC of urban drainage 
systems, has led to the following problem formulation and research questions.   

1.3. PROBLEM FORMULATION AND RESEARCH QUESTIONS 

It is clear from the previous descriptions that reliable and precise nowcasts are 
needed before they can be implemented successfully in urban drainage. 
Furthermore, uncertainty estimation is paramount before important control 
decisions, based on nowcasts, can be executed. Lastly there is a large potential in 
utilising the strengths of the two methods to improve the combined predictability 
and extend the lead-time of the nowcasts. 

The motivation for further development of REM nowcasting methods is the 
applicability within RTC of urban drainage systems. Three focus areas have been 
identified; improve precision of REM prediction, utilise the strengths of the REM 
and NWP predictions by assimilation and quantify the nowcast uncertainty.   

The above mentioned led to the main purpose of this Ph.D. study: Improve 
nowcasting of 0-6 hour’s lead-time for applicability in RTC of urban drainage 
systems. This is done through working with the following research questions: 

- How is it possible to improve the precision of deterministic REM 
nowcasting? 

- The quality of a REM prediction, at urban scales, deteriorates rapidly so 
how is it possible to extend the lead-time?  

- How can the nowcast uncertainty be quantified in a way that is applicable 
to RTC of urban drainage systems? 

1.4. THESIS ORGANISATION 

As a direct result of the research of the PhD project, a series of scientific papers and 
a technical note have been produced. Each paper or technical note represents 
individual research; a short overview are presented in the following subsection. The 
intention of the thesis is not to repeat, in details, the research presented in the papers 
but to give a summary of the main findings and to provide a retrospective overview. 
The thesis is structured in the following way: 

Chapter 2 describes the basic principles of measuring precipitation by weather 
radars and the uncertainties related to the quantitative precipitation estimation 
(QPE). 

Chapter 3 elaborates on selected REM nowcasts methodologies and state-of-the-art 
methods within the field of REM nowcasting.  
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Chapter 4 presents the work of the Ph.D. study that focuses on deterministic 
nowcasting. It elaborates on how Kalman filtering is implemented to temporally 
stabilise the advection field. The chapter also describes a developed methodology 
for vector retrieval by a variational technique and presents the results from 
assimilation of REM data into DMI HIRLAM NWP model.  

Chapter 5 describes the work of the Ph.D. study to develop a REM ensemble 
prediction system called RESEMBLE and its performance when applied to the 
drainage system of the city Frejlev, Denmark. The chapter furthermore contains the 
results from initiating ensemble members in DMI HIRLAM NWP model by 
assimilation of RESEMBLE ensemble members. 

Chapter 6 concludes the thesis and underlines the main findings of the research.  

The scope of the work presented is nowcasting by REM. The thesis does not go into 
the further development of the NWP framework but instead works with the 
combination of the two methodologies of nowcasting by data assimilation. Data 
assimilation is a key stone in the overall project, by which the current PhD thesis is 
funded. The overall project is HydroCast – Hydrological forecasting and Data 
assimilation. The objective of the HydroCast project is to establish and test a 
general framework for hydrological forecasting and data assimilation that integrates 
different data sources with meteorological and hydrological modelling systems.  

1.5. LIST OF SUPPORTING PAPERS AND TECHNICAL NOTES 

Paper I:  Jensen, D. G., Nielsen, J. E., and Rasmussen, M. R. (2015). Does 
simple Kalman filtering improve the advection field of Co-TREC 
nowcasting? 

Paper II: Jensen, D. G., Petersen, C. and Rasmussen, M. R. (2015). 
Assimilation of radar-based nowcast into a HIRLAM NWP model. 

Paper III:  Jensen, D. G., Nielsen, J. E., Thorndahl, S. and Rasmussen, M. R. 
(2015). Ensemble Prediction System based on Lagrangian 
extrapolation of radar derived precipitation (RESEMBLE). 

Paper IV:  Jensen, D. G., Nielsen, J. E., Thorndahl, S. and Rasmussen, M. R. 
(2015). Ensemble prediction of flow in urban drainage systems 
using RESEMBLE. 

Paper V: Jensen, D. G., Petersen, C. and Rasmussen, M. R. (2015). 
Assimilation of ensemble radar based nowcast into HIRLAM NWP 
model for high intensity rainfall estimation. 
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Tech. Note: Jensen, D. G. and Rasmussen, M. R. (2015). Retrieval of advection 
fields using variational analysis techniques. 

All references, to the authors own work namely the above listed papers, is refereed 
in the following text as Paper I for Paper I etc. and Technical Note. 
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CHAPTER 2. RADAR BASED 
QUANTITATIVE PRECIPITATION 

ESTIMATE 

The basis for all REM models is the radar QPE. In the following the basic working 
principles of measuring precipitation using weather radars are presented. 
Furthermore, possible error sources/uncertainties for radar QPE are described.  

The radar is a remote sensing device that emits a signal and measures the 
backscatter from the signal as it hits a target. The name radar is an acronym for 
RAnge Detection And Ranging and was developed shortly before and during World 
War II to detect aircraft and ships for military purposes. It was noticed quickly that 
the radar also received additional interference, especially when it was raining. This 
lead to the further development of a more peaceful application of the radar namely 
to measure precipitation. The radar, since its invention, has undergone a significant 
evolutionary development to the state of the art radars of today (Rinehart 2010). 

The radars of today is very complex in terms of hardware, signal generation and 
processing but the basic principle on how it works is easily understood. The radar, 
in essence, consists of three components. These are a transmitter, an antenna and a 
receiver. The transmitter sends out a high frequency electromagnetic wave emitted 
from the antenna, which travels at the speed of light. When the emitted energy hits 
an object, some of the energy is reflected. This reflected energy is then picked up 
by the antenna and processed in the receiver, which amplifies the signal to improve 
the signal-to-noise ratio.  

The object position in space can be determined by knowing the exact position 
(azimuth and elevation) of the emitted signal, the speed of the electromagnetic 
wave and the time from transmission to receiving the signal. The main principle of 
the radar can be seen in Figure 4. 
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Figure 4: Basic principle of measuring precipitation by radar. 

All measurement by weather radar is based on the radar equation that expresses the 
relationship between radar reflectivity of distributed meteorological targets and the 
received power (Battan 1959, Probert‐Jones 1962, Battan 1973): ݌௥ = గయ	௣೟	௚మ	ఏ	థ	௛	|௄|మ	௟	௭ଵ଴ଶସ	 ୪୬(ଶ)	ఒమ	௥మ                           (1) 

Where ݌௥ is the received power, ݌௧ is the transmitted power, ݖ is the reflectivity, ݃ 
is the antenna gain, ߠ and ߶ are the horizontal and vertical beam width, ℎ is the 
length of the pulse, ߣ is the wavelength and ݎ is the radial distance to the radar. |ܭ|ଶ 
is the magnitude of the parameter related to refraction and ݈ is the attenuation. 

Most of the parameters of equation (1) are considered constant and are radar 
specific based on the setup and hardware. This applies to the transmitted power, 
pulse length and wavelength, antenna gain and the horizontal and vertical beam 
width. The parameter |ܭ|ଶ mainly depends on the target material but is also 
influenced by temperature and wavelength to a minor degree. Grouping these 
parameters together in a single parameter ܿ by assuming that the only target is 
liquid precipitation will reduce equation (1) to the following expression: ݌௥ = ௖	௟	௭௥మ                             (2) 

The attenuation for C- and S-band radars is often neglected which simplifies the 
expression further. For this study, only data from C-band radars are used. 

Equation (2) describes a relation between the returned power and the reflectivity, 
which is the basis for measuring precipitation. This is unfortunately not enough to 
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estimate the precipitation intensity. Here a relation between reflectivity and 
precipitation intensity is needed. The backscattering, and hereby also the 
reflectivity, is a function of the number and diameter of the precipitation droplets. 
The intensity of precipitation is also a function of the number and diameter of 
droplets, combined with their falling velocity. Since the falling velocity is a 
function of the drop size, this signifies that the precipitation intensity and the drop 
size distribution (DSD) are linked. This relation was utilised, by Marshall, Palmer 
(1948), to establish a relationship between the reflectivity	(ݖ) in logarithmic decibel 
domain (dBZ) and rainfall intensity	(ܴ), through an empirical power law as seen in 
equation (3). ݖ =  ఉ                           (3)ܴߙ

This relationship has subsequently been verified by the work of Uijlenhoet, 
Pomeroy (2001). The value of the coefficients ߙ and	ߚ, have been demonstrated to 
vary from event to event but also as a function of the specific event by comparing 
radar data with disdrometer readings (Lee, Zawadzki 2005). Furthermore, Lee, 
Zawadzki (2005) found that the instantaneous rain-rate estimation had a random 
error of 41%, which was decreased by daily accumulations to 28% using a fixed 
relation of	ݖ = 210ܴଵ.ସ଻.  The reason for this random error is that the relationship is 
in fact not constant. 

Estimation of ߙ and	ߚ, linked to the DSD, has been an important issue for over half 
a century (Marshall, Palmer 1948, Marshall, Hitschfeld et al. 1955, Joss, Waldvogel 
1970, Richards, Crozier 1983, Smith, Joss 1997, Doelling, Joss et al. 1998, 
Uijlenhoet, Smith et al. 2003, Thompson, Rutledge et al. 2015). Despite the 
research, static parameters are often applied in operational use. The most often used 
set of parameters are ݖ = 200ܴଵ.଺                           (4), 

known as the standard Marshall Palmer coefficients (Marshall, Palmer 1948, 
Marshall, Hitschfeld et al. 1955). The uncertainty related to the non-static z-R 
relationship is normally handled by post processing the radar data by bias correcting 
the data to match ground observations. Several bias adjustment methods exist such 
as mean field bias adjustment at different timescales (Smith, Krajewski 1991) and 
conditional mean field bias adjustment as a function of precipitation intensity 
(Villarini, Krajewski 2010). Thorndahl, Nielsen et al. (2014) found over a 10 year 
period that hourly mean field bias adjustment showed the best performance. 

The radar equation is derived assuming ideal conditions, which is not always the 
case. The uncertainties of radar QPE are not only related to the z-R relationship but 
also to a number of error sources illustrated in Figure 5.  
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Figure 5: Error sources in measuring precipitation by radar, modified from Peura, Koistinen 
et al. (2006). 

The error sources, if unfiltered, leads to presence of non-meteorological echoes in 
the radar precipitation field. This often causes severe overestimation of QPE. Some 
of the error sources are briefly described in the following. 

Clutter, either ground or sea clutter, from mainly anomalous propagation of the 
signal is important to address. Different approaches have been developed, such as 
Harrison, Driscoll et al. (2000), Da Silveira, Holt (2001) and Sugier, du Chatelet et 
al. (2002), to detect and remove ground clutter with high success rates. Beam 
shielding or clutter in mountainous regions is especially problematic and several 
studies have given the problem attention by both deterministic and probabilistic 
approaches (Gabella, Notarpietro 2002, Germann, Galli et al. 2006, Germann, 
Berenguer et al. 2009). 

The degree of beam attenuation depends on a number of factors; the wave-length of 
the radar (X-, C- and S-band), the intensity of the precipitation and the distance. For 
most C- and especially S-band radars, the attenuation is only a problem with very 
intensive precipitation. Attenuation is when the energy of the electromagnetic wave 
decreases as it travels through precipitation. The more intense the precipitation the 
more attenuation occurs. This causes an underestimation of precipitation intensity 
since the backscattered energy is reduced. Several correction schemes to take 
attenuation into account has been developed to give more reliable QPEs (Aydin, 
Zhao et al. 1989, Bringi, Keenan et al. 2001, Thorndahl, Rasmussen 2009).  

Precipitation often forms high up in the atmosphere where the temperature normally 
is below the freezing point of water. The initial stage of the precipitation is in form 
of small ice crystals which then begin to fall towards the earth. As the precipitation 
falls through the atmosphere, the ice crystals go through different stages. The small 
ice crystals will continue to evolve into snowflakes and becoming increasingly 
larger until the temperature rises above the freezing point. At this point the exterior 
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of the snowflakes will start to melt and develop a water coating. Since water is 
approximately 10 times more reflective than ice, this will result in very high 
reflectivities due to the large size of the snowflake combined with the high 
reflectivity of water. This band of high reflectivities is called the bright band effect. 
As the melting continues does the snowflakes turn into water droplets and the 
reflectivity will be as “expected”.  

The vertical profile of reflectivity (VPR) is a function of the precipitation stages 
and identified as one of the dominant error sources by Joss, Waldvogel et al. 
(1990). This is a problem because the radar beam increases to measure higher and 
higher in the atmosphere as a function of the radial distance due to the refractive 
index and the curvature of the earth. For these reasons it is very important for 
correct QPE estimation to know; firstly the location of the bright band and secondly 
be able to classify which type of hydrometeor the beam is reflected from. If these 
two things can be detected, then it is possible to make corrections and estimate the 
QPE more precisely. Different approaches to take VPR into account have been 
developed that are conditioned on either seasonal factors (Koistinen 1991), 
precipitation type (Collier 1986), or on a typical shape of VPR (Gray, Uddstrom et 
al. 2002). Also more advanced methods based on statistical models which are range 
dependent (Krajewski, Vignal et al. 2011) or based on empirical knowledge (Cao, 
Hong et al. 2013) have been developed.  

Lastly, external emitters that lead to interference in the received power, and other 
non-meteorological objects, can give incorrect measurements. Most of these 
unwanted reflectivities can be removed by various filters.  

Nevertheless, despite the uncertainty, most radar data that has been proper adjusted, 
bias corrected and filtered from noise is highly useful and reliable data yielding 
high spatial and temporal resolution. This is also the reason for the increased 
popularity of weather radars being applied within hydrological modelling.  

For this work it is assumed that standard Marshall Palmer without bias adjustment 
sufficiently describes the relationship between reflectivity and precipitation 
intensity. This is assumed since verification and validation is performed by 
comparing nowcast against radar observations. A bias adjustment of observations 
could lead to differences in adjustments between nowcasted data and observations 
making the validation invalid. However, for practical purposes, some sort of bias 
adjustment is necessary. 

  



 

28 

  



 

29 

CHAPTER 3. NOWCASTING 

In the following section, the basic principles of REM nowcasting are described in 
order to give an overview of the field. The basic principles are followed by a short 
review of selected nowcast systems that provide exemplary methodologies within 
the field. 

3.1. REM PRINCIPLES 

Different methodologies for REM nowcasting have been developed. Common to all 
methods are that they utilise one or more of the basic principles for prediction of 
future precipitation. In the following, the most central principles are described; 
Lagrangian persistence and optical flow, area tracking, cell tracking, spectral 
algorithms, ensemble prediction systems and REM uncertainty.  

3.1.1. LAGRANGIAN PERSISTENCE AND OPTICAL FLOW 

Before describing Lagrangian persistence it is necessary to explain the simplest 
form of predicting precipitation, which is Eulerian persistence. Eulerian persistence 
involves estimating the future state from the current state. This means that the 
advection field is set to zero and the source/sink term for the precipitation is 
likewise zero. This type of prediction is mostly used as a reference (Reyniers 2008).  

Lagrangian persistence is when the advection field is not zero but the evolution of 
precipitation is zero (frozen precipitation field). In rigid coordinates can this be 
written as ݑ డ௉డ௫ + ݒ డ௉డ௬ + డ௉డ௧ = 0                            (5), 

where ܲ(ݔ, ,ݔ) is the precipitation intensity at (ݕ ,ݑ and (ݕ -are the x- and y ݒ
component of the advection vectors, respectively. For Lagrangian persistence, డ௉డ௧ =0 in Lagrangian coordinates (in the coordinates of the flowing system).  

The precipitation field is known from the radar QPE but the advection field is 
unknown and has to be determined. Equation (5) is, within the context of computer 
science, called the optical flow (OF) equation. OF is defined as the apparent 
velocity of objects in an image.  

Equation (5) contains two unknowns - ݑ and	ݒ - and can therefore not stand alone 
in determining the advection field. Additional information is required in order to 
estimate ݑ and	ݒ. The variational analysis technique introduces a cost function, as 
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in equation (6), which leads to an overdetermined set of respective equations within 
a neighbourhood (Ω) of each	(ݔ,  Minimisation of the cost function estimates the .(ݕ
advection field. 

ܥ = ∑ ߱ ቀݑ డ௉డ௫ + ݒ డ௉డ௬ + డ௉డ௧ቁଶஐ                             (6) 

Here ߱ is a weighting factor utilising quality information that is an indication of the 
reliability for each (ݔ,  location (Peura, Hohti 2004). The weighting, defined (ݕ
either in pixel coordinates and/or neighbourhood coordinates, is important in order 
to avoid partially blocked rays or isolated cluttered pixels that can influence the 
vector retrieval.  

Since the minimisation is not constrained, the estimation of the advection field is 
potentially unstable. Adding an additional equation is needed to provide sufficient 
information to ensure more reliable estimations of the advection field. The 
additional equation is called the optical flow constraint.  

Different implementations of the OF method using a constraint for advection vector 
retrieval is used by Li, Schmid et al. (1995), Germann, Zawadzki (2002) and 
Bowler, Pierce et al. (2004) among others.  

Even though the OF technique using a constraint for motion estimation is 
mathematically well-founded, the estimation of vectors is often noisy. This is 
typically because of precipitation evolution, which the OF technique is sensitive to. 
Other techniques for estimating the advection field, which are widely applied, are 
area tracking and cell tracking algorithms described in the following. 

3.1.2. AREA TRACKING 

One of the most implemented and extensively documented methodologies for 
advection vector retrieval is area tracking.  

The basic concept of an area tracker is to divide a radar scan into equally sized grid 
boxes and determine the motion of each box from radar scan at time ݐ to ݐ +1	within a maximum search area. The displacement of each box comprises the 
advection field.  

Rinehart, Garvey (1978) developed a method called tracking radar echo by 
correlation (TREC) that uses the correlation coefficient to estimate the displacement 
of each box. The concept of TREC and most area tracking algorithms is illustrated 
in Figure 6. 
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Figure 6: Conceptual illustration of the TREC methodology (In principle, most area tracking 
algorithms follow same procedure). The illustration is inspired by Mecklenburg, Joss et al. 

(2000).  

Other area tracking algorithms are mostly variations of the TREC methodology. 
What differs from most area tracking algorithms is the way the optimum/minimum 
within the search area is computed. The TREC algorithm uses the 2D correlation 
coefficient, but other techniques such as mean square error (MSE), 2D standard 
deviation and 2D cross correlation can also be applied with similar results.  

Unfortunately, because of evolution of the precipitation, the retrieved vectors are 
often noisy and even erroneous. Several methods for removal of erroneous vectors 
and spatial smoothing either by variational analysis, convolution using different 
filters or averaging of radar scans over time before motion estimation is applied to 
get more reliable estimates.  

3.1.3. CELL TRACKING 

Cell tracking algorithms are, by principle, different from area tracking and OF 
algorithms but often implemented in connection with one of the two. As the name 
implies, cell tracking (or centroid tracking) is a path estimation of precipitation cells 
(often convective cells).  

For nowcasting, not only is tracking the cell path of interest but also the evolution 
as a function of time. This information is used to predict the future location and 
state of the cell. The advection of the cell can be done by simple linear 
extrapolation or more advanced methods as Kalman filtering (prediction). The 
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methodology is, because of the focus on cells, expected to perform well in 
convective situations compared to the area tracking approach (Reyniers 2008).  

Every nowcast based on a cell tracking approach can be divided into two parts; a 
detection (segmentation) algorithm and a matching algorithm.  

The detection algorithm segments the cell from the background. The segmentation 
methodology differs by using a single threshold or multiple thresholds to more 
advanced methods as nonparametric and unsupervised methods for automatic 
threshold generation either in 2D images or in 3D volume scans. 

Cell characteristics are saved for each time step and used to match cells from 
subsequent time steps. The saved characteristics can be centroid coordinates, mean 
and max intensity, size, echo-top and vertical integrated liquid. Cell matching is 
usually performed within a search area defined by the previous cell advection 
velocity or by minimisation of a cost function weighting different characteristics of 
the cell (Dixon, Wiener 1993).  

It is often observed that the cell dynamic behaviour is different from the larger 
enveloping area (Reyniers 2008) and that the cell moves in reference to the overall 
flow pattern (Li, Lai 2004). This is the reason why cell tracking and area tracking is 
often implemented jointly.   

3.1.4. SPECTRAL ALGORITHMS 

Several studies by Venugopal, Foufoula-Georgiou et al. (1999), Germann, 
Zawadzki (2002) and Surcel, Zawadzki et al. (2015) among others, demonstrate that 
the predictability of precipitation exhibits scale dependencies based on dynamic 
scaling processes. This means that smaller scales of the precipitation field usually 
have a shorter lifetime than larger scales and therefore makes them less predictable. 

Spectral algorithms use this knowledge to decompose the precipitation field, by 
FFT or wavelet transformations, into a number of multiplicative cascades of 
different scales. The algorithm then extrapolates each scale according to their 
lifetime, often by weighting the specific cascade. As the scales are multiplicative in ܼ݀ܤ, demonstrated by Veneziano, Bras et al. (1996), it is possible to approximate 
precipitation fields by multiplying independent processes at different scales.    

Decomposition of the precipitation field does not provide an estimate of the 
advection field, which is the reason why the methodology is coupled with other 
methods for vector retrieval and advection of the precipitation into the future. 
Spectral algorithms are used in nowcasting schemes such as STEPS (Bowler, Pierce 
et al. 2006), SBMcast (Berenguer, Sempere-Torres et al. 2011) and a newly 
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developed nowcasting algorithm by Atencia, Zawadzki (2014), which are described 
in more detail under section 3.2.   

3.1.5. ADVECTION SCHEME 

The advection scheme is an essential part of the nowcast methodology. The 
function of the advection scheme is to move the precipitation into the future 
according to the retrieved advection vectors.  

Depending on how the advection is performed, the scheme has an influence on the 
preservation of small scale features and the spatial location of precipitation. 
Germann, Zawadzki (2002) made a comparison of four different schemes. The 
schemes were semi-Lagrangian forward, semi-Lagrangian backward, constant-
vector backward and constant-vector forward. They concluded that the semi-
Lagrangian backward interpolate once scheme had the smallest power loss of small 
scale features in the density distribution.  

In a forward scheme, the parcel is advected downstream in space but forward in 
time whereas a backward scheme moves the parcel upstream in space but backward 
in time. There are pros and cons for each method: Forward schemes are mass 
conservative, meaning that the mean of the precipitation field is conserved in the 
nowcasted precipitation field. The problem with a forward scheme is how the 
parcel, advected into the future, is redistributed to the surrounding pixels since 
normally the future location does not coincide with a grid point. A backward 
scheme, on the other hand, is not strictly mass conservative (but close to) and since 
the scheme goes upstream in space, the parcel will always end in a grid point. The 
reason that a backward scheme is not mass conservative is because following the 
parcel backwards in time will normally not coincide in a grid point. The values are 
then found from interpolation of the surrounding values.  

Semi-Lagrangian simply means that parcels “follows” the advection field. If the 
advection scheme is not semi-Lagrangian but constant, the same value is used for 
each parcel throughout the entire nowcast, whereas a semi-Lagrangian approach 
applies a new value for each time step according to the new location of the parcel.  

Some of the problems with forward schemes can be minimised by performing the 
advection in a higher resolution than the original and applying a nearest neighbour 
interpolation once. 

3.1.6. DETERMINISTIC AND PROBABILSTIC NOWCASTING 

Deterministic nowcasts are, as the name implies, deterministic and therefore one 
“truth” is estimated. A quote of Albert Einstein says “As far as the laws of 
mathematics refer to reality, they are not certain, and as far as they are certain, 



 

34 

they do not refer to the reality” which, to some extent, applies to the deterministic 
nowcast since all predictions are uncertain.  

The origin of nowcast uncertainty is described in more detail in the following 
section 3.1.7 and therefore only the two main principles of handling the nowcast 
uncertainty will be explained here. 

The first method for addressing the uncertainty is by producing a future probability 
density function (PDF) of precipitation for each predicted pixel. Andersson, 
Ivarsson (1991), Schmid, Mecklenburg et al. (2000) and Germann, Zawadzki 
(2004) all developed such methods but the problem with this method is that they are 
not spatially or temporally correlated, which has been demonstrated by Zappa, 
Beven et al. (2010), to be crucial for hydrological modelling. This is the strength of 
ensemble predictions. Ensemble prediction gives a number of future possible 
predictions that are temporally and spatially correlated - in other words, a collection 
of deterministic nowcasts that forecast the forecast skill. The ensemble members are 
therefore directly applicable in hydrological modelling. Each ensemble member is 
weighted equally possible and therefore represents the uncertainty of the nowcast. 
This is also a weakness of the methodology since the probability of each ensemble 
member is unlikely to be equal in reality.   

3.1.7. REM UNCERTAINTY  

 A more fundamental study of predictability and uncertainty by Germann, Zawadzki 
et al. (2006) identified three main sources of error for Lagrangian extrapolation 
nowcasts: 

1. Growth and decay of precipitation not explained by the advection. 
2. The nonstationarity of the motion field. 
3. Model errors. 

Germann, Zawadzki et al. (2006) additionally showed that the relative importance 
of uncertainty caused by (1) and (2) was case dependent.  

The study was based on a definition of predictability by the concept of life time as 
derived by Germann, Zawadzki (2002). The lifetime (ܮ) is defined as: ܮ = ׬ ܿ(߬)ஶ଴                            (7) 

With ܿ(߬) expressed as: 

ܿ(߬) = ∬ ట෡(௧బାఛ,࢞)ట(௧బାఛ,࢞)ಈට∬ ట෡(௧బାఛ,࢞)మ∬ ట(௧బାఛ,࢞)మಈಈ                          (8) 



 

35 

Where ෠߰ is the nowcasted image, ߰ is the observed radar image, ݐ଴is the start time, ߬ is the lead-time and ࢞ is the position. The computation of ܿ(߬) is aggregated over 
the domain of the radar image	(Ω). The life time is, in other words, based on the 2D 
correlation coefficient without subtraction of mean (Zawadzki 1973). If ܿ(߬) 
follows an exponential law, then ܮ will be the time of intersection between ܿ(߬) 
and	1 ݁⁄ = 0.37 (Germann, Zawadzki 2002).  

The relative uncertainty related to applying a stationary motion field in Lagrangian 
persistence nowcasting was investigated by comparing the life time of (i) a 
stationary motion field and (ii) a nonstationary motion field. The nonstationary 
motion field was obtained as a series of motion fields updated for each observation 
along the lead-time of the nowcasts. This is obviously only possible in historical 
settings.  

The results showed that ܮ on average was improved by 1.1ℎ using a nonstationary 
motion field compared to Lagrangian persistence. The life time for Eulerian 
persistence was found as	ܮ = 2.9ℎ, Lagrangian persistence ܮ = 5.1ℎ and using a 
nonstationary motion field resulted in	ܮ = 6.2ℎ. The life time variations from event 
to event ranged from almost no improvement to approximately	2ℎ. 

In the event that did not demonstrate any improvement using a nonstationary 
motion field, the uncertainty from the advection field was negligible compared to 
the growth and dissipation of the precipitation, and not because the motion field 
was stationary. This indicates that strong evolution of precipitation is the 
dominating factor but for events with less strong evolution, the nonstationarity 
assumption will become an increasing source of uncertainty. 

The relative importance was also investigated by Bowler, Pierce et al. (2006) by 
comparing the mean square error (MSE) between a Lagrangian persistence nowcast 
and a nonstationary nowcast. They found that no significant differences in the MSE 
for lead-times up to 3 hours could be detected. When extending the lead-time to 360 
min did the stationarity of the motion field only constitute 10% of the total nowcast 
error. This results align nicely with the findings of Germann, Zawadzki et al. 
(2006). 

Both studies found a predominant role of uncertainty for the growth and evolution 
of the precipitation, which as mentioned, is case dependent. 

The last sources of uncertainty are the model errors. The model errors are the sum 
of all inaccuracies in the estimation of the motion field, the discretisation in space, 
time and reflectivities and numerical errors originating from numerical diffusion of 
the advection scheme (Germann, Zawadzki et al. 2006).   
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The complete separation of errors originating from either growth and decay or 
nonstationarity of the motion field is highly complex for studies like the ones 
conducted by Germann, Zawadzki et al. (2006) and Bowler, Pierce et al. (2006). 
The reason for this is the model errors. One example is the estimation of the motion 
field, which also will suffer from the uncertainties related to growth and dissipation 
of the precipitation. In the estimation of the motion field, some vectors will be noisy 
and even erroneous due to false correlations caused by evolution and decay. This 
entails that the errors somehow are related or even correlated with each other.  

The study of both Germann, Zawadzki et al. (2006) and Bowler, Pierce et al. (2006) 
was conducted on largescale mosaics with a fairly coarse spatial and temporal 
resolution. There is always a trade-off between spatial and temporal resolution in 
terms of the importance from the uncertainty of point (1) and point (2). Increasing 
the spatial resolution while maintaining the same temporal resolution will increase 
the uncertainty related to the assumption of the stationary motion field. How the 
interaction between spatial and temporal resolution affect the impact of uncertainty 
from (1) or (2) is an area where more research is needed. It was found by Nielsen, 
Thorndahl et al. (2014) that the temporal resolution is very important for the 
applicability and the accuracy compared to ground observations.  

The point of developing nowcast systems is to address and minimise the uncertainty 
of growth and decay, the nonstationarity of the motion field and model errors. 
Many approaches have been developed both by improving the deterministic 
prediction but also by probabilistic approaches. To a certain degree, it is impossible 
to model all the processes going on in the atmosphere with REM based systems. It 
is therefore just as important to know and quantify the uncertainty. 

3.2. DESCRIPTION OF SELECTED RADAR BASED NOWCAST 
SYSTEMS 

Today, many nowcast systems exist that demonstrate great variety. These range 
from simple linear extrapolation models to systems that combine a number of 
different data sources and complex merging schemes. In the following, selected 
nowcast systems are described to give an overview of modern-day techniques 
within REM nowcasting.  

TITAN 
One of the most widely used models is TITAN (Dixon, Wiener 1993), which is 
based on a cell tracking approach (Reyniers 2008). The segmentation of cells from 
the background follows a fairly simple method. A fixed threshold of ௓ܶ =  ܼܤ݀	35
and a volume of ௏ܶ = 50	݇݉ଷ is applied to the volumetric radar data in Cartesian 
coordinates to identify continuous regions classified as cells. The cell matching 
algorithm is based on minimisation of a cost function that weights two parameters, 
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݀௣ and ݀௏, which are the distances between cells and measure the difference in 
volume. The cost function is seen in equation (9) (Dixon, Wiener 1993). 
௜௝ܥ  = ߱ଵ݀௣ + ߱ଶ݀௏                            (9) 

where, 

݀௣ = ට൫ݔ௜ − ௝൯ଶݔ + ൫ݕ௜ −  ௝൯ଶ                                                                             (10)ݕ

and,  

݀௏ = ฬ ௜ܸଵ ଷൗ − ௝ܸଵ ଷൗ ฬ.                                                                             (11) 

Here (ݔ, -is the cell centroid coordinates and ܸ is the cell volume for cell (ݕ
indices	(݆, ݅). The matching of the cells are given by the minimisation of the cost 
function under constraint of the distance, which cannot exceed a maximum storm 
speed. 

Merges and splits are also handled by the algorithm. When two cells merge into 
one, the new combined cell will have a weighted average of the merged cell 
weights. The position of merged cells are found from the predicted path of the now 
terminated cell(s) if the forecast position falls within the area of the merged cell. 
Splits are handled similarly: If more than one cell falls within the forecasted cell 
path area and has no history, then it is considered a split.  

The extrapolation of cells are performed by a linear advection. Furthermore, the 
weighting property of the cell is also forecasted by an exponentially decreasing 
function back in time. This entails that the model is not mass conservative. 

MAPLE 
Another widely used nowcasting model is the McGill Algorithm for Precipitation 
Nowcasting by Lagrangian Extrapolation (MAPLE). The early development started 
in 1973 with a global vector approach (Austin, Bellon 1974). The method has been 
developed since and is today a much more advanced nowcaster. The methodology 
and implementation are described in a series of five papers (Germann, Zawadzki 
2002, Germann, Zawadzki 2004, Turner, Zawadzki et al. 2004, Germann, Zawadzki 
et al. 2006, Radhakrishna, Zawadzki et al. 2012). 
The retrieval of advection vectors follows a methodology based on a variational 
analysis technique which falls within the area tracking approach. This method is 
called Variation Echo Tracking (VET). The vector field is found by global 
minimisation of a cost function,	ܬ௏ா், as defined in equation (12) (Germann, 
Zawadzki 2002): 
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(࢛)௏ா்ܬ = టܬ +  ଶ                                                                             (12)ܬ

with ܬట = ׬׬ ,଴ݐ)ሾ߰(࢞)ߚ (࢞ − ଴ݐ)߰ − Δݐ, ࢞ − ఆݕ݀ݔሿଶ݀(ݐΔ࢛                         (13) 

and 

ଶܬ = ߛ ׬׬ ቀడమ௨డ௫ ቁଶ + ቀడమ௨డ௬ ቁଶ + 2 ቀ డమ௨డ௫డ௬ቁଶ + ቀడమ௩డ௫ ቁଶ + ቀడమ௩డ௬ ቁଶ + 2 ቀ డమ௩డ௫డ௬ቁଶ ఆݕ݀ݔ݀ 	 
                                                                                                       (14) 

where ݑ and ݒ are the x- and y-component of the advection vector, respectively. (ݔ)ߚ	is a data quality weight for each pixel in the observed radar scan ߰ at time ݐ଴ 
and ݐ଴ − Δݐ for domain ܬ .ߗట is the square of the residual error of Lagrangian 
persistence as described by equation (1). ܬଶ is a smoothness penalty function 
(Wahba, Wendelberger 1980) that influences the minimisation of the nonlinear cost 
function by the degree of divergence/convergence that is accepted. The influence of ܬଶ is weighted by	ߛ.  

An initial guess is needed to ensure convergence towards a global minimum. In a 
start-up situation, this done iteratively by gradually increasing the number of 
vectors to estimate. The first guess using global vector results from the 
minimisation is in advection vectors with a higher temporal resolution of, for 
example, 5x5 vectors. The 5x5 vectors are again used as initial guess for the next 
iteration, which yields an even higher resolution of advection vectors. This 
procedure is continued until the desired resolution is obtained. In a real-time 
situation, the last estimated vector field is used as an initial guess.   

The advection of precipitation is performed by a semi-Lagrangian backward 
interpolate once scheme as described in 3.1.5.  

MAPLE also implements a method to obtain the probability of a forecasted value to 
exceed a given threshold called “Local Lagrangian” probability forecast (Germann, 
Zawadzki 2004). The method determines the density distribution from parcels 
around the pixel to construct a probability. The advantage of such a system is that 
the probability of exceeding a threshold for a given lead-time can be used to issue a 
warning of flooding, landslides and other costly and unfortunate events. The 
drawback is that no spatiotemporal correlation exists and the nowcast cannot 
directly be applied in hydrological models.    

Lastly, a wavelet transform is implemented to separate the small-scale precipitation 
and ensure it is not nowcasted beyond its life time (Turner, Zawadzki et al. 2004). 
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The different spatial-scales are weighted as a function of lead-time. The weighting 
function is determined by the life time estimated by a posteriori analysis where the 
life time is estimated at different cut-off wavelengths by correlation of Lagrangian 
persistence nowcasts against observations. The lifetime is estimated when the 2D 
correlation coefficient drops below	ݎ = ଵ௘ = 0.37. A linear relationship is found and 
this information is used to extrapolate precipitation to, but not beyond, its life time. 

STEPS 
The idea of not predicting spatial scales beyond its life time is also one of the core 
concepts for the model Short-Term Ensemble Prediction System (STEPS) (Bowler, 
Pierce et al. 2006). STEPS is one of the more advanced nowcasting models that 
combines an REM and NWP model. The model is based on combining “cascades” 
from three sources: a noise cascade, REM cascade and NWP cascade. A cascade is 
the decomposition of the radar scan or the NWP predicted precipitation field into 
structures of different scales. The REM of STEPS is a modified version of the 
model developed by Seed (2003) called Spectral Prognosis (S-PROG).  
S-PROG develops cascades from a decomposition of the radar scan in ܼ݀ܤ by FFT. 
The life time of each level in the cascade is found as a least square fit to a power-
law relationship as a function of scale. The life time of each scale is estimated by 
comparing a Lagrangian persistence nowcasted scale with the same corresponding 
observed scale. This relationship is used to inject spatially and temporally 
correlated noise into a specific scale when that scale loses skill.  

The last cascade originates from the nowcasted NWP model. This ensures that the 
precipitation nowcast evolves towards the large dynamical evolution of the 
atmosphere (Reyniers 2008). The final nowcasted precipitation field for a given 
lead-time is constructed by the three cascades. The procedure is that each scale is 
combined from the three cascades by weighting each component. More weight is 
given to the REM model for very short lead-times and the NWP prediction is 
gradually weighted more. The noise follows the fitted power-law function such that 
noise is firstly injected into the small scale features and at longer lead-times it is 
also injected into the larger scales. Lastly, it is renormalised to correct the power 
loss of small scale features since these will become increasingly more uniform over 
time (Bowler, Pierce et al. 2006). 

The advection field in STEPS is estimated using a OF approach (Bowler, Pierce et 
al. 2004) based on the Horn, Schunck (1981) method. The method can be sensitive 
to large displacements, which have been avoided by translating the image according 
to a single displacement vector prior to the motion estimation by OF. Because of 
considerable noise in the estimation of the advection vectors, they are subjected to 
an exponential smoothing in time following the form: ࢜௦௠௢௢௧௛(ݐ) = ݐ)௦௠௢௢௧௛࢜ߙ − Δݐ) + (1 −  ,(15)                       (ݐ)௘௦௧௜௠௔௧௘ݒ(ߙ
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where ࢜௦௠௢௢௧௛ are the smooth advection vectors, ࢜௘௦௧௜௠௔௧௘ are unsmoothed 
advection vectors and ߙ is an exponential parameter given the time scale of the 
smoothing (Bowler, Pierce et al. 2006). A value of ߙ = 0.85 is chosen, which gives 
a smoothing time scale of approximately 90 min. The advection scheme is 
backwards in time. 

The ensemble generation of STEPS is based on introducing randomly generated 
noise fields for the small scale features in the S-PROG forecast cascade and 
introducing a random component to the advection field. This is done for each 
different ensemble member. 

Lately, STEPS has been extended to also include radar observation errors, the 
choice between two noise generators - a parametric and a non-parametric - and the 
possibility to combine a number of forecasts from different sources (Seed, Pierce et 
al. 2013).  

SWIRLS 
The Short-range Warnings of Intense Rainstorms in Localized Systems (SWIRLS) 
is, as the name implies, optimised for heavy precipitation events (Li, Lai 2004). The 
method combines both an area tracking and cell tracking algorithm. This is done 
since it is often observed that convective cells move in reference to the overall flow 
pattern. The area tracking approach is based on the TREC methodology described 
in section 3.1.2. The further processing of the TREC vectors has much similarity 
with the Co-TREC methodology (Li, Schmid et al. 1995) but with some 
discrepancies. SWIRLS identifies erroneous vectors as vectors that deviate more 
than 25 degrees from the surrounding 25 vectors whereas Co-TREC makes a 
similar comparison with 9 vectors. Both methods incorporate a spatial smoothing of 
the vector field to avoid divergent flow fields. SWIRLS uses a Cressman objective 
analysis method (Cressman 1959) that is somewhat similar to the variational 
analysis approach opted for in Co-TREC.  

The cell tracking approach is similar to the segmentation methodology of TITAN 
where a single threshold is applied and the cell is being represented by an ellipse. 
The cell path is computed by identifying similar sized cells within a search radius, 
found from the predicted future cell location, that do not have a directional change 
exceeding 90 degrees.  

The SWIRLS model was developed in Hong Kong, which experiences very heavy 
showers during the monsoon time. It is well known that the Z-R relationship is not 
static and using standard Marshall Palmer (Marshall, Palmer 1948) coefficients of ܽ = 1.6 and ܾ = 200 can lead to significant bias depending on the drop size 
distribution (Lee, Zawadzki 2005). This is especially true in heavy precipitation. 
For these reasons, SWIRLS implements a real-time Z-R correction for QPE based 
on rain gauges in the greater area of Hong Kong. The Z-R correction is done with a 
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temporal resolution of five minutes and for each rain gauge corresponding to an 
area of the radar scan. This is a unique feature of the SWIRLS system. 

SBMcast 
The SBMcast (Berenguer, Sempere-Torres et al. 2011) is an ensemble based 
nowcast model. The advection vectors are retrieved by the Co-TREC methodology 
(Li, Schmid et al. 1995), which is an area tracking approach. Only the evolution 
uncertainty is described in this model and is based on the “String of Beads Model” 
(SBM) by Pegram, Clothier (2001b) and further developed for time series mode in 
(Pegram, Clothier 2001a). SBMcast produces ensemble nowcasts to describe the 
evolution uncertainty that has similarities with the methodology of STEPS.  

The original SBM can be used to generate a number of realistic stochastic 
precipitation fields that have the same properties as the corresponding observed 
precipitation fields in terms of Wet Area Ratio (WAR), Image Mean Flux (IMF) 
and spatial correlation	ߚ௦௣௔௖௘. WAR is the proportion of precipitation field above a 
certain intensity threshold (in SBMcast	1 ௠௠௛ ) and IMF is the average precipitation 
rate. The spatial correlation is modelled by the parameter	ߚ௦௣௔௖௘, which is estimated 
as the power exponent in a linear fit, in log space, to the radially averaged spatial 
power spectrum obtained from the observational precipitation field.  

Pegram, Clothier (2001a) showed that WAR and IMF are closely related to the 
mean ߤ and spread ߪ of a fitted lognormal distribution to the observed precipitation 
rates, which makes it possible to stochastically generate a precipitation field with a 
correct lognormal distribution from only the three parameters (WAR, IMF and ߚ௦௣௔௖௘).  

The parameters WAR and IMF are extrapolated (1D) into the future by an AR(5) 
model by adding a stochastic component computed from the covariance of WAR 
and IMF to ensure second-order stationarity. This does, to some extent, model the 
evolution of the precipitation field for the individual ensemble members. The 
number of WAR and IMF is equal to the number of ensemble members and one 
value per lead-time is obtained. ߚ௦௣௔௖௘	is held constant since it was demonstrated 
that the parameter	is close to having temporal persistence. 

A stochastic precipitation field is generated by the following sequence (Berenguer, 
Sempere-Torres et al. 2011): 

1. Convolute a white noise field ࢅ with the same size as the precipitation field by a 
power-law filter based on	ߚ௦௣௔௖௘. (FFT	ࢅ, perform the filtering, and inverse FFT ࢅ 
which is now spatially correlated).  
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2. Ensure that the precipitation field has the correct WAR as predicted (nowcasted) 
by estimating ܽ in	ࡾ෡ = ܴ௧௛݁(ࢅା௔), where ܴ௧௛is the precipitation threshold and ࡾ෡ is 
the stochastic generated precipitation field (non-“bias” corrected). 

3. Force the IMF of the stochastically generated precipitation field to have the same 

IMF as predicted for the given lead-time by estimating	Λ(ݐ) of	ࡾ = ܴ௧௛ ቀ ଵோ೟೓  ,෡ቁஃ(௧)ࡾ
where ࡾ is one precipitation field in the ensemble generation. 

The SBMcast uses this stochastic approach to generate ensemble members. The 
temporal correlation is ensured by an AR(2) model including the observations to 
insure a realistic transition from observation to nowcast. The parameters of the 
AR(2)  model are estimated by the Yule-Walker equations and are similar to the 
one used by Germann, Berenguer et al. (2009). The temporal correlation is added 
before the extrapolation and therefore mimics the temporal persistence in a 
Lagrangian coordinate system. 

The final step is to advect the generated ensemble precipitation fields according to 
the backward semi-Lagrangian interpolate once scheme where the advection field is 
assumed stationary throughout the nowcast. 

Lagrangian Ensemble Technique 
Atencia, Zawadzki (2014) have developed a nowcast model that is based on a 
spectral algorithm with some similarities of both STEPS and SBMcast. The method 
is described in Atencia, Zawadzki (2014), which is the first in a series of articles 
comparing different nowcasting techniques.  

The advection field is obtained using the Co-TREC methodology (Li, Schmid et al. 
1995) and advected by a semi-Lagrangian backward scheme (Staniforth, Côté 
1991). The ensemble generation, based on FFT, is divided into two steps to ensure 
that the phase and amplitude of the ensembles match that of the observation. In this 
context, the phase and amplitude can be perceived as a temporal and spatial 
component of the realisation, respectively. 

The phase of the ensemble is simulated by finding a proper wavelength cut-off from 
low-pass filtering of the latest observation. The contours of the low-pass filtered 
reflectivity are used to generate a no-rain probability map. A noise field that is 
spatiotemporally correlated is generated. This noise field is only temporally used to 
obtain a future precipitation mask by multiplying the no-rain probability, after 
thresholding and normalisation, with the noise field. The mask is nowcasted into the 
future according to the advection field. The shape of the mask, based on the large 
scale features of the observations, introduces anisotropy into the predicted fields 
and also predicts which pixels should be temporal correlated in Lagrangian 
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coordinates as a function of lead-time. The temporal correlation is obtained using a 
conditioned second order auto-regressive model.  

The procedure of creating the precipitation field, inside the nowcasted mask as a 
function of lead-time, is done by reproducing the power spectrum of the last 
observed reflectivity field through an iterative process. Firstly, a generator is 
created to reproduce the correlation of the last observed reflectivity field and 
secondly, a white noise field is convolved using the generator which ensures 
spatially correlated noise. Lastly the new correlated noise field is masked with the 
estimated mask, which introduces the phase information. These three steps are then 
repeated. A new generator needs to be created for every iteration since the new 
masked correlated field does not have the same correlation as the previous (but 
similar phase). The iterative procedure is repeated until both the slope of the power 
spectrum and the mean of the masked correlated field vary by less than 0.1% 
between each iteration.  

This procedure ensures ensemble members that have both the same power-spectrum 
slope and similar anisotropy as the Lagrangian nowcast. The difference from this 
methodology to the one of STEPS and SBMcast is that the focus is also on the 
phase and not only on the amplitude (power-spectrum).  

3.3. COMPARISON OF NOWCAST PERFORMANCE 

As demonstrated above, many different nowcast systems have been developed and 
several more exist other than those described. Each system is developed for a 
specific radar configuration and location, which makes it difficult to compare the 
performance of different systems directly. Regardless, two efforts have been carried 
out in order to compare the systems; one in Sydney 2000 and another in Beijing 
2008 in the context of the Olympic Games.  

The comparison in 2000 called the Sydney 2000 Forecast Demonstration Project 
(FDP) (Wilson, Ebert et al. 2004, Pierce, Ebert et al. 2004) was run for three 
months at Australian Bureau of Meteorology (BoM). The tested systems were 
TITAN, NIMROD (Golding 1998), GANDOLF (Pierce, Hardaker et al. 2000), 
ANC (Mueller, Saxen et al. 2003) and S-PROG of which TITAN and S-PROG is 
described previously. GANDOLF and NIMROD were developed at the U.K. Met 
Office and are jointly operated. NIMROD is the default system in stratiform 
precipitation situations but when mass air convection is present, GANDOLF is 
activated. NIMROD is a combination of REM and NWP whereas GANDOLF is an 
object-oriented expert system that also uses NWP data for retrieval of advection 
vectors. ANC, developed at the National Center for Atmospheric Research 
(NCAR), is likewise an expert system that combines numerous data sources such as 
radar reflectivity, Doppler scans, satellite images, mesonet weather station data, 
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soundings, and so on. Also, the methodology of TITAN and TREC is incorporated 
into the ANC system. 

The 2008 Beijing FDP (Wang, Keenan et al. 2009) was trialled over a time period 
from mid-July to mid-October 2008. The demonstration models were BJANC 
(Mueller, Saxen et al. 2003), CARDS (Joe, Falla et al. 2002), GRAPES-SWIFT 
(Xue, Droegemeier et al. 2007), MAPLE, NIWOT, STEPS, SWIRLS and TIFS 
(Bally 2004) of which MAPLE, STEPS and SWIRLS are describe previously. 
BJANC is the same ANC model used in the Sydney 2000 FDP but adapted to the 
Beijing area. CARDS is the operational radar processing system from Canada. The 
system contains, among other things, a Lagrangian extrapolation model based on 
area tracking. GRAPES-SWIFT is likewise a Lagrangian extrapolation model (Co-
TREC), but which is blended with a NWP model for longer lead-times. NIWOT, 
without an official reference, is also a Lagrangian extrapolation model combined 
with an NWP model, which additionally has the possibility for human interference 
on the prediction. Lastly TIFS is a “poor man’s” ensemble of the contributing 
systems (BJANC, CARDS, GRAPES-SWIFT, MAPLE, STEPS, and SWIRLS) 
(Wang, Keenan et al. 2009). 

The conclusion from the Sydney 2000 FDP, according to Pierce, Ebert et al. (2004), 
was that Lagrangian persistence methodologies are generally superior to more 
sophisticated, nonlinear nowcasting methods. In convective scenarios, cell tracking 
systems perform the best but area tracking methodologies are better in stratiform 
situations.  

In the Beijing 2008 FDP, a verification tool “The Real Time Forecast Verification” 
(RTFV) developed at the Australian BoM was implemented. RTFV computes a 
number of standard skill scores such as root mean square error and contingency 
table based scores. Also diagnostic verification methods are supported, such as 
feature-based verification, fuzzy logical verification methods and intensity scale 
verification. 

Eight years have separated the two FDPs and several new systems have been 
developed while other systems have been upgraded. For these reasons, it is 
interesting when comparing the results from Beijing 2008 FDP with the Sydney 
2000 FDP because it shows the track errors of convective cells have not improved. 
The track errors are the distance between nowcasted and observed cells. The results 
show that none of the present systems are better to predict the location of the 
convective cells than those available in 2000. Major improvements are, on the 
contrary, demonstrated when looking at the Critical Successive Index (CSI) for 
deterministic quantitative precipitation forecasts (QPF). The most likely 
explanation for the CSI improvement is that the nowcast schemes are better than 
they were in 2000 for non-convective situations and not that the weather in Beijing 
is easier to predict since the cell distance error was not improved. Overall, it seems 
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that STEPS stands out as being the most precise nowcast system even though a bias 
is present between the observed and nowcasted intensity distributions.  

Another conclusion from the Beijing 2008 FDP is that probabilistic nowcast 
systems bring more knowledge compared to deterministic nowcasts. The strong 
performance of nowcasted precipitation amount and thunderstorm strike probability 
suggests that the probabilistic approach is more applicable. The probability value 
also provides better information for decision making. (Wang, Keenan et al. 2009). 
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CHAPTER 4. IMPROVING 
DETERMINISTIC NOWCASTING BY 

KALMAN FILTERING AND 
ASSIMILATION 

Most probabilistic nowcast systems as those described in section 3.2 build upon a 
deterministic component. It is therefore of great importance to develop the 
deterministic part of the nowcast system in order to minimise the uncertainties as 
much as possible to give the best foundation for probabilistic predictions.  

The first part of the Ph.D. study focuses on improving the stability and quality of 
the deterministic part of REM nowcast systems and combining REM and NWP 
predictions.  

With regard to REM nowcast systems that follow the Lagrangian persistence 
approach, it is natural to focus on the estimation of the motion field. The reason for 
this is that it was concluded from the two demonstrations projects, described in 
Section 3.3, that the spatial estimation of cells was not improved from year 2000 to 
2008. Furthermore, the evolution is not part of the Lagrangian persistence 
methodology where the latest radar precipitation field is extrapolated into the future 
but remains persistent. However, some morphological changes will occur due to the 
extrapolation following the advection vectors either from acceleration/de-
acceleration and convergence/divergence in the flow pattern. This entails that the 
original image will be distorted to a slight degree.  

As part of the Ph.D. study, a Lagrangian persistence model based on the Co-TREC 
methodology (Li, Schmid et al. 1995) has been developed called RES (Radar 
Extrapolation System). This model is used as a research platform for the work 
described in Paper I - V either for further development or as a basis for probabilistic 
predictions. 

The Co-TREC methodology estimates the advection vectors as presented in Figure 
6. The displacement vectors, based on the 2D correlation coefficient, are found 
from one box in image 1 at time ݐ − 1 to image 2 at time	ݐ. The result is the raw 
TREC vectors (Rhinehart 1981) which, due to growth and dissipation uncertainty 
from image 1 to image 2, can be noisy and even erroneous. The Co-TREC 
methodology is two-pronged; firstly is erroneous vectors identified and deleted and 
secondly a variational technique is implemented to spatially smoothen the vector 
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field and ensure continuity and zero divergence over the measured domain 
(boundaries).  

The erroneous TREC vectors are identified as deviating more than 25 degrees from 
the mean direction of the surrounding vectors. In practice, vectors that deviate too 
much are flagged and all vectors are checked for this condition before any vectors 
are deleted. This ensures that the identification sequence does not influence the 
identification.  

The variational technique applied is described by (Sherman 1978) where a 
minimisation of a cost function returns Co-TREC vectors that are as close to the 
original TREC vectors as possible but still fulfil the imposed dynamical and 
statistical constraint. This technique has several similarities with approaches applied 
within optical flow techniques and the MAPLE VET methodology.  

The solution of the variational analysis is the minimisation of a cost function, 
equation (16), under the constraint of continuity equation (17) (two-dimensional 
Boussineq mass continuity equation). ݑ)ܬ, (ݒ = ׬	 ሾ(ݑ − ଴)ଶݑ + ݒ) − ∑ݕ݀ݔ଴)ଶሿ݀ݒ                          (16) 

డ௨డ௫ + ఋ௩ఋ௬ = 0                           (17) 

The advection scheme is a semi-Lagrange interpolate once forward scheme. 
Referring to subsection 3.1.5, a backward scheme would have been better in terms 
of always ending a parcel within a grid point. For computational reasons, the 
forward scheme, following some matrix operations, can be computed very 
efficiently. The advection is performed in a sub-resolution of 200 m compared to 
the original resolution of 2000 m, ensuring that the disadvantages in a forward 
scheme are minimised and negligible. Using a sub-resolution also ensures that the 
numerical dispersion is low. The precision of the advection vectors, when 
interpolated into the resolution of the radar, are finer than the original resolution of 
the radar. Performing the advection in a more fine resolution can utilise this higher 
precision better and hereby produce smoother advection.  

4.1. PAPER I: DOES SIMPLE KALMAN FILTERING IMPROVE 
THE ADVECTION FIELD OF CO-TREC NOWCASTING? 

From the review of the nowcast systems, section 3.2, the only model that applies 
temporal smoothing of the advection field is STEPS. Almost all nowcast systems 
uses some kind of spatial smoothing and filtering but not temporally. In the STEPS 
methodology, temporal smoothing was found necessary even with large spatial 



 

49 

smoothing applied to the precipitation fields prior to motion estimation. An 
exponential temporal smoothing is implemented in STEPS with a time-scale of 90 
min. Studying advection fields over time produced by the developed Co-TREC 
based nowcaster, described previous, reveals some of the same challenges with 
noisy vectors as observed by Bowler, Pierce et al. (2006). An example of this is 
illustrated in Figure 7. 

 

Figure 7: Example of temporal changes in direction of advection vectors from three time 
steps overlaid the radar precipitation field from Virring radar, Denmark. Within the 

rectangular box has vectors changed almost 45 degrees from one time step to the next 
including a dramatic change in speed. Top left image is from the 14th July 2011 at 02:10 

UTC, the top right is next time step at 02:20 UTC and the bottom image is the last time step 
at 02:30 UTC. The plots depict the precipitation field from a minimum threshold of 0.5 

mm/hr. 
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These changes over time are not physically based but more an expression of the 
uncertainty in estimating the advection field. The topic of Paper I in the Ph.D. 
study is how to handle these changes over time, in direction and speed, of the 
advection vectors.   

The basic idea of Paper I is to temporal filter the advection field constrained by 
physical changes. For these reasons was it chosen to use a Kalman filter with a 
constant acceleration model using the standard Kalman update equation (Hwang, 
Brown 1997) and calibrate it against the physical changes in radial velocity 
measured by Doppler radar.  

More specifically, the advection field from 16 events were converted into radial 
velocities. The changes in radial Co-TREC velocity from time step ݐ to	ݐ + 1	were 
then compared with the changes in Doppler velocities. Hereafter, the Kalman filter 
was calibrated so that the level of Co-TREC radial velocity change matched the 
observed change.  

Furthermore, it was investigated how two methods for identification of erroneous 
vectors influenced the results. The first method, being the more restrictive, 
identified vectors that deviate more than 25 degrees from the surrounding vectors as 
erroneous (REV>25), which is the original Co-TREC method, whereas the second 
method was 100 degrees (REV>100). 

The Kalman filtering worked as expected by filtering out the noisy fluctuations in 
direction and speed of the advection vectors as demonstrated in Figure 8. 
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Figure 8: Changes over time of centre advection vector in direction and speed from an event 
on 08-06-2011. Both Kalman filtered (red) and non-Kalman filtered (blue) for each of the 

two erroneous vector identification methods are illustrated. 

Besides the temporal filtering of the Kalman filter, it is noticeable how little effect 
the restricted and less restrictive identification and removal of advection vectors has 
for this specific example, REV>25 and REV>100 respectively. This is good since it 
indicates that the advection vectors are noisy but only with minor fluctuations at 
least less than 100 degrees from the surrounding vectors most of the time. However, 
it should be noted that for some of the other evaluated events there was larger 
fluctuations which created more pronounced differences between the two methods. 

Comparing pooled skill scores as a function of lead-time for non-Kalman filtered 
nowcasts and Kalman filtered nowcasts did not reveal any significant differences in 
performance. The positive contribution from applying temporal Kalman filtering is 
stability improvements, which is also important for RTC of drainage systems. The 
relative standard deviation showed that the Kalman filtered nowcasts were more 
stable which, in practice, means that prognoses that are performance outliers can be 
avoided. This naturally goes both ways, since outliers in both ends of the spectrum 
is avoided. Stability is important for the applicability of the nowcasts in real-time.  
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To demonstrate the effect of the Kalman filter, the same situation as seen in Figure 
7 is illustrated in Figure 9 with the difference that the temporal Kalman filtering is 
applied. 

 

Figure 9: Same as in Figure 7 but with a Kalman filter applied. The plots depict the 
precipitation field from a minimum threshold of 0.5 mm/hr. 

Figure 9 clearly shows the effect of the temporal filtering. The changes over time 
are not as dramatic as the one presented in Figure 7.  

Inherent in the Kalman filter is also the possibility for predicting the future state of 
the advection system and not only temporal filtering. This was one of the main 
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reasons for choosing this kind of filter. By predicting the development in the 
advection field, the uncertainty originating from the nonstationary assumption of 
the advection field would be addressed. Due to the fairly slowly changes in 
direction and speed of the advection, this would probably be possible to predict 
successfully. Future work will try to apply the same calibration of the Kalman filter 
based on Doppler velocities to predict the development in the advection field as a 
function of lead-time. 

 

4.2. TECHNICAL NOTE: RETRIEVAL OF ADVECTION FIELDS 
USING VARIATIONAL ANALYSIS TECHNIQUES 

Another approach for advection field estimation, as presented in Technical Note I, 
was also developed to investigate other possibilities for handling the uncertainties 
when estimating the advection field. The new methodology, for vector retrieval is 
based on a variational technique, and differs from the method of Co-TREC but is 
still considered an area tracking approach. The method has similarities with 
Variation Echo Tracking (VET) as described in section 3.2 by applying the same 
smoothness penalty function as introduced by (Wahba, Wendelberger 1980).  

The advantages of this method, compared to the Co-TREC method, is that the 
convergence/divergence can be controlled directly in the estimation of the 
advection field. In the Co-TREC method the final result is obviously highly 
influenced by the estimation of the TREC vectors and hereby also the ability to 
identify erroneous vectors, which for some situations can be complex. This is not a 
problem if single vectors slip through the identification (the method is developed to 
overcome this) but if small clusters of vectors are not identified as being erroneous, 
then this will have a large impact on the final estimated advection field. Another 
important aspect of the vector retrieval method is that it will estimate the overall 
flow pattern. Depending on the needed spatial scale this can both be positive and 
negative. 

The disadvantage of the new method is that the solution to the minimisation can be 
caught in a local minima and not the global minima resulting in false advection 
fields. This is also the reason why an iterative approach with an increasing spatial 
resolution of vectors is used in the start-up estimation. If a previous vector field is 
available then it is applied as an initial guess.  

Several methods for estimating the actual displacement (see Figure 6) were tested, 
such as 2D standard deviation, 2D correlation coefficient and root mean square 
error, which all yielded similar results. The 2D correlation coefficient was opted 
for. The retrieved vectors are estimated in the minimisation of a cost function that is 
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weighted between the “raw” displacement and the smoothness. Depending on the 
weighting, the retrieved vectors are generally smooth (non-divergent/convergent).  

The methodology was tested on synthetic data and the result from a perfect rotation 
of 5 degrees and the same rotation with a translation is illustrated in Figure 10. 

 

Figure 10: Example of advection field estimation of synthetic data of a rotation and rotation 
and translation (Technical Note I). 

As illustrated in Figure 10, the methodology is capable of predicting the expected 
motion. Since the data was artificial generated was the displacement known. The 
estimated motion was perfect in translation scenarios but minor discrepancies was 
found in rotational scenarios (rotation and rotation combined with translation). 

Tests on real data gave likewise promising results. The advantage is that, depending 
on the settings for the weights, the flow pattern of the advection field will always be 
smooth and indeed the overall flow pattern will be estimated. This estimate is only 
slightly affected by the growth and decay at small scale. This is the strength of the 
methodology.  

The computation time for vector retrieval in real-time applications cannot take more 
than a several seconds. If the estimation is too computationally heavy then the result 
is that the prediction is not available in time for further processing.  

Depending on the number of vectors needed, this methodology, at its current 
development stage, will take up to several minutes and can therefore not be applied 
in real-time applications. However, it should be possible to optimise on the 
minimisation part to yield results faster.  

A thorough comparison should be conducted in order to determine whether or not 
the new method leads to a better performance than Co-TREC. Objectively, the new 
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method could be expected to be more stable than standard Co-TREC without 
Kalman filtering.  

The difference between the two is that the new method is constrained in how much 
each vector can directly deviate from the surrounding vectors, whereas Co-TREC 
imposes continuity on the (free-flow) boundaries and not the individual vector. The 
result is two different advection fields. The new methods advection field estimation 
will be more the overall flow pattern compared to Co-TREC that allows more 
variation between the individual vectors. On urban scales, the Co-TREC 
methodology is preferable since small scale variations are possible.  

For these reasons, Co-TREC is still the preferred methodology for the remaining 
work of this Ph.D. study. 

4.3. PAPER II: ASSIMILATION OF RADAR-BASED NOWCAST 
INTO A HIRLAM NWP MODEL 

The core of the HydroCast project is data assimilation of both development and 
testing of assimilation techniques. The HydroCast project operates across several 
fields from hydrological forecasting, both short-term and long term but also 
precipitation nowcasting. The following describes how data assimilation is used 
within the current Ph.D. study to increase the accuracy of short term precipitation 
prediction (<6h). 

The prospect for combining the predictions of REM and NWP is promising as 
conceptualised in Figure 2. Figure 2 demonstrates the quality of the forecasts based 
on three sources, extrapolation of current weather (REM), mesoscale NWP model 
and synoptic scale NWP model with model output statistics.   

This conceptualisation after Browning (1980), focusing on REM and mesoscale 
NWP models, still applies today. This is demonstrated by Bowler, Seed et al. 
(2006) and Berenguer, Surcel et al. (2012) who found that REM outperform 
mesoscale NWP models (hereafter NWP models) for lead-times up to 4 hours.  

Several methods for combining REM with NWP predictions, hereby utilising the 
strengths of each method, have been proposed. One method applied in STEPS, 
described in section 3.2, combines the different spectral scales by weighting the 
cascades from REM and NWP as a function of skill. In general, most methods are 
based on some kind of weighting to combine the different predictions. Another 
approach is the possibility to assimilate the REM prediction into the NWP model. 
The only study on this subject, prior to the work of Paper II, was performed by 
Sokol, Zacharov (2012) who found using a water vapour correction method 
produced a slight improvement in the first hour but a significant improvement in 
performance of the second and third hour lead-time from the assimilation. The 
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major advantage of assimilation, compared to combining, is that the two predictions 
will never be different to a degree that makes seamless blending impossible. 
Furthermore, the NWP is forced into what is believed to be a more correct state, 
which also has the possibility to yield improvements on longer lead-times than 
within the assimilation window. 

The work of Paper II was conducted in close cooperation with the Centre for 
Meteorological Models at the Research and Development Department, DMI. The 
study uses an assimilation technique introduced as a nudging scheme described by 
Korsholm, Petersen et al. (2014), developed at DMI. The radar derived QPE is 
nudged into the DMI HIRLAM NWP model by enhancing convection in the case of 
under-prediction and reducing convection in the opposite case. This is achieved by 
adding a nudging term to the divergence in the mass continuity equation. The 
methodology has some similarities to latent heat nudging (Jones, Macpherson 1997) 
but must be considered a more direct approach (Korsholm, Petersen et al. 2014). 
The REM data is produced by the Co-TREC based model with temporal Kalman 
filtering as described previously.  

Eight events from August 2010 including a single case from 2 July 2011 were 
evaluated to test the new nudging assimilation of REM data. A reference nowcast 
was run to estimate the impact of the REM assimilation. The reference run and the 
run assimilated with REM uses the same initial analysis. 3D-var is used to 
assimilate surface observations, satellite data, radiosondes and aircraft data, which 
in the variational approach are used to correct the 3D fields of temperature, 
humidity and wind using a cut-off of 120 min. Furthermore, in the analysis, 
observed radar QPE and satellite cloud observations are assimilated using the 
methodology of (Korsholm, Petersen et al. 2014). The only difference between the 
two runs is the assimilation of the REM data.  

The verification method to evaluate the impact of the REM assimilation in 
HIRLAM NWP model is the fractional skill score (FSS) derived by Roberts, Lean 
(2008). FSS is a spatial verification method that evaluates at which spatial scale the 
nowcast has skill. The verification method is based on comparing observed and 
nowcasted logical fractions within an increasing size of boxes (spatial scale) based 
on thresholding.  

The results from comparing the reference run and the assimilated run of the nine 
events are very clear. It shows a large difference in performance by nudging REM 
data into HIRLAM NWP model in favour of assimilating REM data. The 
improvement is demonstrated for all nine events see Figure 11.  
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Figure 11: The spatial scale at which the nowcast is skilled. The red line is the prediction 
with radar extrapolation data (RED) assimilated and the blue line is the prediction with no 

RED assimilated. The vertical lines indicates the start and end of assimilation of RED (lead-
time 0-120 min). (Jensen, Petersen et al. 2014) 

The case from 2 July 2011 was an especially intensive event that caused severe 
flooding of Copenhagen (see Figure 1), Denmark, as previously mentioned. The 
accumulated predicted precipitation of the reference run from the 2 most critical 
hours gave 30 − 60	݉݉ in the Copenhagen area whereas the REM assimilated 
prediction was	75 − 150	݉݉. The actual observed precipitation from radar QPE 
was	75 − 150	݉݉. However, slightly less widespread as predicted by the REM 
assimilated run. The accumulated precipitation covering the area of Copenhagen is 
illustrated in Figure 12. 

 

 

 

 

 

 

Figure omitted due to copyright. 
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Figure 12: Accumulated precipitation from the 2nd July 2011 from 1200 to 1400 UTC. 
(Jensen, Petersen et al. 2014). Where RED is the radar extrapolation data. 

Another important aspect of the assimilation is that the improvement is not only 
obtained in the assimilation period but also afterwards. This is one of the major 
advantages of using assimilation compared to combining techniques.  

Presently the method is being developed into an operational system at Centre for 
Meteorological Models at the Research and Development Department, Danish 
Meteorological Institute (DMI). This involves development of a REM and high 
quality control of the radar derived QPE product. It is highly important that noise 
and other types of uncertainty is minimised in the data prior to assimilation.   

4.4. SUMMARY 

The first part of the Ph.D. study focuses on improving the deterministic part of 
nowcasting. It was chosen to work with temporal stabilising of the advection field 
based on a developed Co-TREC model since noisy fluctuations over time were 
observed. On average, no improvement in performance could be detected. 
However, the stability in performance was improved which is important for the 
applicability of the prognosis. A new methodology for vector retrieval was 
developed that seems very promising but the computational time at the given 
development stage needs to be improved for real-time applications. Lastly, a new 
methodology for utilising the best from REM and NWP predictions was developed. 
The assimilation approach was found, for nine events, to highly improve the quality 
of the assimilated NWP prognosis and is now underway to be implemented 
operationally at DMI.   

 

 

 

Figure omitted due to copyright. 
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CHAPTER 5. DEVELOPMENT OF 
PROBABILISTIC QUANTITATIVE 

UNCERTAINTY ESTIMATION 
METHODS 

The focus of the first part of the Ph.D. study was to improve the deterministic part 
of REM (model error) and how to assimilate REM data into NWP predictions. As 
mentioned previously, the deterministic part is a basis for the probabilistic approach 
and it is therefore important to ensure stability and to give the best possible 
prediction prior to developing probabilistic predictions. The second part addresses 
the uncertainties of nowcasting by probabilistic approaches. This is done to give 
better possibilities for decision-making in the context of RTC of urban drainage 
systems. 

5.1. PAPER III: ENSEMBLE PREDICTION SYSTEM BASED ON 
LAGRANGIAN EXTRAPOLATION OF RADAR DERIVED 

PRECIPITATION (RESEMBLE) 

The work of Paper III addresses the uncertainties of REM nowcasting. It is based 
on the ensemble approach for the applicability in hydrological models. Ensemble 
members can, as described previously, be directly used in hydrological modelling 
since they are temporally and spatially correlated.  

The developed ensemble prediction system (RESEMBLE) separates the advection 
uncertainty from the growth and decay uncertainty. Error models for each source 
were developed and used to generate ensemble members whose spread describes 
the combined uncertainty of the nowcast.  

The objective for the new ensemble prediction system is to develop a methodology 
which is very computationally efficient and can be applied in real-time applications. 
The novelty of the approach lies in the way the uncertainty is estimated by 
separating the sources and the way the temporal correlation is imposed.  

The approach is based on estimation of error models from historical deterministic 
nowcasts compared to observation radar data performed offline. The error models is 
separated into the following three:  
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- Advection uncertainty 
- Cell uncertainty 
- Non-cell uncertainty (the spurious intensities) 

The statistics of the error models originates from comparing historical nowcasted 
data with observations from the years 2011 and 2012. The nowcasted data is based 
on the previously described Co-TREC model with temporal Kalman filtering. 

The sequence of generating the ensemble members is as follows: 

1. Generate the deterministic nowcast (with a temporal discretisation based 
on an estimated cell lifetime (60 min)) 

2. Generate ensemble members based on perturbations in the advection field 
3. Identify cells (areas of interest) in each ensemble member 
4. Generate perturbation of the cells 
5. Generate perturbations of the precipitation not covered by the cells.  
6. Interpolate across lead-time to obtain the wanted temporal resolution of the 

nowcast and to ensure the temporal correlation. 

The error model for advection uncertainty is estimated from the advection error 
estimated by 2D normalised cross correlation (Lewis 1995); very similar to the 
approach by Schmid, Mecklenburg et al. (2000). Since the historical advection error 
was shown to be both linear as a function of lead-time and Gaussian in x- and y-
direction, the advection field is perturbed with a disturbance drawn from a two-
dimensional Gaussian distribution based on the historical statistics. The 
perturbation is added to the advection field as described in equation (18). ߰௡෢(ݐ଴ + ߬, (࢞ = 	߰൫ݐ଴, ࢞ − ࢻ) +  ,൯                         (18)(࢔ࢾ

where ߰ is the observed precipitation field, ݐ଴ is the issue time of the nowcast,  ߬ is 
the lead-time, ࢞ is the position,	ࢻ is the displacement vector (advection field), ࢔ࢾ is 
the advection perturbation for ensemble nowcast ݊ and ߰௡෢  is the nowcasted 
precipitation field for ensemble nowcast ݊.  

The error model for the cell uncertainty is based on the LU decomposition 
algorithm also applied in the model of REAL developed by Germann, Berenguer et 
al. (2009) but without the temporal correlation. At this juncture it should be noted 
that cells should not be thought of as convective storm cells but more as areas of 
interest. The cell-space-error statistics are computed by comparing observed and 
nowcasted cells. Since the advection error is addressed separately, the displacement 
error between the two compared cells is minimised as much as possible. This is 
done by aligning the cells according to the estimated displacement as the advection 
error using 2D normalised cross correlation. The error statistics (space structure of 
error) is in form of the mean error and covariance matrix of the residual error. The 
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cell perturbations, to be added the nowcast, is generated using Gaussian random 
white noise and the LU decomposition algorithm.  

The last part of the nowcasted precipitation that is not covered by the cells also 
needs to be perturbed. The approach for estimation of the error model is fairly 
simple. Again observations and nowcasts are compared without the cell areas. The 
error standard deviation and mean error is computed as an average across lead-time 
from historical data. A perturbation is then generated by multiplying white noise 
with the found standard deviation and adding the mean error. This perturbation is 
then added to the areas not covered by the cells scaled with lead-time so it has full 
effect at the longest lead-time.  

If each lead-time step (i.e. 10 minutes) of the deterministic nowcast was to be 
perturbed, the uncertainty of growth and decay would be uncorrelated in time and 
overestimated. Instead, the average cell lifetime is estimated following the lifetime 
definition of Germann, Zawadzki (2002). The aligned cells from the two years of 
data were found to have an average lifetime of 62 min and so for these reasons the 
60 min and 120 min lead-time of the deterministic nowcast are perturbed and only 
the 60 min and 120 min.  

The last step in the ensemble nowcasts generation is therefore to fill out the missing 
predictions in between observation and the perturbed 60 min and 120 min lead-
time. The assumption is that the transformation from one image to the next (60 
minutes) is linear. This is achieved by temporal interpolation between images 
following the methodology developed by Nielsen, Thorndahl et al. (2014). This 
ensures a natural transition from observation to prediction and temporal correlation. 

Figure 13 shows an example of two ensemble members from lead-times of 10 min, 
60 min and 120 min along with the deterministic nowcast and observation from 08th 
July 2011. 

The skill scores used to verify the ensemble prediction system shows that ensemble 
mean has a higher 2D correlation coefficient than the deterministic nowcast. The 
ensemble spread is in proportion with the uncertainty and the ensemble members 
are able to predict the location of precipitation for thresholds of	0.1	 ௠௠௛௥ ,	1	 ௠௠௛௥ , 2.5	 ௠௠௛௥  and for most events also 5	 ௠௠௛௥  with skill in the full range up to 120 min 
lead-time.  

The ensemble generation is very computational efficient and the generation of 100 
ensemble nowcasts takes less than 30 seconds on a standard computer, without 
parallelisation. This makes it applicable to real-time hydrological forecasting such 
as RTC of the urban drainage system. To study of the ensemble prediction system is 
able to reasonably predict the precipitation for up to 60 min lead-time. The 
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ensemble prognosis is used as input for the urban drainage system for the city of 
Frejlev.  

 

Figure 13: Examples of 2 ensemble members, deterministic nowcast and observations for 
lead-time 10 min, 60 min and 120 min. The plots depict the precipitation field from a 

minimum threshold of 0.5 mm/hr. 
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5.2. PAPER IV: ENSEMBLE PREDICTION OF FLOW IN URBAN 
DRAINAGE SYSTEMS USING RESEMBLE 

Ensemble nowcasts for 22 events with a new prognosis every 10 min and 300 
ensemble members were generated and used as input for the urban drainage system 
of Frejlev.  

Frejlev is a small city covered by only 3 radar pixels with a spatial resolution of 
2000x2000 m. With only few pixels covering the catchment, the demand for the 
prediction is high since there is very low response time in the system. This means 
that even small discrepancies in the prognosis and observations will give either 
large residual errors or offsets. For larger catchments this is not as critical since the 
errors will be distributed over a larger area and “smoothened”. Furthermore, the 
spatial predictability is even more critical since even small displacements would 
lead to wrong predictions. The catchment of Frejlev can be seen in Figure 14.  
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Figure 14: The urban drainage system of Frejlev and the three radar pixels covering the 
catchment. (Jensen, Thorndahl et al. 2015) 

The drainage system is simulated in the Mike Urban 2013 software as a fully 
distributed model. The runoff is based on a time-area surface runoff sub model 
combined with a pipe flow sub model described by the 1D Saint-Venant equations.  

Figure 15 shows an example of the input, from event 8, to the urban drainage model 
from one of the three pixels covering the catchment. For this event the ensemble 
prediction is good at encapsulating the uncertainty of the nowcast for all three lead-
times. It can also be observed that the ensemble members follow the deterministic 
nowcast, which also underlines the importance for precise deterministic nowcasts. 
The output from the urban drainage model using the input from Figure 15 can be 
seen in Figure 16. The simulated response is well predicted. 

 

 

 

 

 

 

 

Figure omitted due to copyright. 
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Figure 15: Time series of rainfall from one of the pixels over Frejlev. The figure illustrates 
the 95 % confidence interval of the ensemble, ensemble mean, and deterministic nowcast 

against the observed radar rainfall. (Jensen, Thorndahl et al. 2015) 

 

 

 

 

 

 

Figure omitted due to copyright. 
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Figure 16: Predicted flow in event 8 from ensemble and deterministic nowcasts compared to 
observed radar rainfall for 10, 30 and 60 min lead times.  (Jensen, Thorndahl et al. 2015) 

The simulated responses from all of the 22 events was evaluated with respect to the 
runoff volume, volume of combined sewer overflow, time to centre of volume 
(eccentricity/offset) and peak flow compared with simulated responses from 
observational radar input. In general the results are encouraging. Most of the events 
are well simulated and the uncertainty is described by the spread of the ensemble 
nowcasts.  

This also implies that there is a potential for real-time control of the urban drainage 
system following the methodology of the developed REM ensemble prediction 
system. The results originate from a very small catchment with very short response 
times which also justifies the short lead-times of the ensemble nowcast. For larger 
catchments, longer lead-times would be needed due to the longer response times. 
This is especially true if the objective is RTC. Extending the lead-time is not 

 

 

 

 

 

 

Figure omitted due to copyright. 
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possible with extrapolation models since the maximum lead-time is determined by, 
among other things, the range of the radar, however this could be possible with 
larger mosaics. The following work studies the possibility for ensemble generation 
by assimilation of REM predictions into HIRLAM NWP model to achieve that 
extra lead-time.  

5.3. PAPER V: ASSIMILATION OF ENSEMBLE RADAR BASED 
NOWCAST INTO HIRLAM NWP MODEL FOR HIGH 

INTENSITY RAINFALL ESTIMATION 

Normally ensemble members from NWP models are initiated by introducing 
disturbances in the initial conditions (IC) and/or lateral boundary conditions (LBC). 
For nowcasting can this lead to some problems with not generating effective 
members from the beginning. In other words, disturbances in the IC or LBC takes 
time to generate the wanted spread of the ensemble members. For nowcasting and 
urban drainage applications, this is not optimal.  

The idea of the study is to demonstrate that it is possible to generate NWP ensemble 
members by assimilation of REM ensemble members and furthermore utilise the 
pronounced improvements in performance when assimilating REM data as 
demonstrated in sub-section 4.3. In theory, this would result in ensemble nowcasts 
whose spread describes the uncertainty but still has the performance equal to REM 
nowcasts for short lead-times combined with the advantages of the NWP models 
source/sink terms for better predictability of longer lead-times.  

The methodology starts by generating 100 REM ensemble nowcasts, using the 
model described in section 5.1, and selects 25 that have an equal spread around the 
deterministic nowcast estimated by the 2D standard deviation. This is done in order 
to represent the uncertainty since 25 random ensemble members could lead to 25 
very similar predictions. The specific number 25 is chosen due to practical 
considerations regarding computational time of HIRLAM NWP model.  

The DMI HIRLAM NWP model is then run 25 times, with the same initial analysis 
as described in sub-section 4.3, and with continuous assimilation of the REM 
nowcast ensemble members. The combined system is called HIRLAM ensemble 
prediction system (H-EPS). The assimilation method follows the nudging technique 
developed by Korsholm, Petersen et al. (2014).  

In total eight events from August 2010 were processed - the same events from 
Paper II described in section 4.3. In Figure 17, an example of one ensemble 
member is seen along with observed radar data at lead-time 380 min from three 
events. Furthermore, two ensemble members are enlarged to show the difference in 
predictions.  
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Figure 17: The plots depicts radar observation, ensemble mean and two zoomed in ensemble 
members for event 2, event 7 and event 8 with a lead-time of 6 h and 20 min. The plots depict 
the precipitation field from a minimum threshold of 0.5 mm/hr. (Jensen, Petersen et al. 2015) 
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Taking the lead-time into account, the predictions are very good. The larger scales 
of the precipitation and the overall location is well predicted. This is the case for all 
of the eight events.  

The skill of H-EPS ensemble mean is compared, by 2D correlation coefficient, to 
two reference runs. Reference run 1 is with an initial analysis that did not assimilate 
radar QPE in the spin-up period as opposed to reference run 2 where radar QPE is 
assimilated. Reference run 2 and the ensemble members therefore have the exact 
same initial analysis. For all events, the ensemble mean performs better than both of 
the reference runs, despite the fact that ensemble mean will always smoothen both 
high and low intensity precipitation. In general the ensemble mean is not optimal in 
a prediction optimised toward high intensity precipitation.  

Estimating the skill of the ensemble members using receiver operating 
characteristic area under curve (ROC AUC) from four thresholds of	0.1	 ௠௠௛௥ ,	1	 ௠௠௛௥ , 2.5	 ௠௠௛௥  and 5	 ௠௠௛௥  reveals high skill. For several of the events, random skill is not 
reached for any of the thresholds. This is quite impressive considering the lead-
times of up to 380 min.  

The results shows a bias towards to high intensities especially in the first half of the 
nowcast which is not coincidental. It was chosen to make H-EPS tuned towards 
high intensity rainfall with the focus to estimate the probability for decision makers. 
Probability maps are developed in order to make an easy and visual way to simplify 
the probability. An example of this can be seen in Figure 18.  

The results seem quite convincing when taking the long lead-time into account. The 
location is well predicted along with the probabilities. For event 8 there is a 
tendency of overestimation of the rainfall to the west but both of the other cases are 
well predicted. The three examples shown are not exceptional but similar results for 
the remaining cases are observed. 

Three things can be concluded from the study. The first thing is that it is possible to 
generate NWP ensemble members by assimilation of REM ensemble members that 
is initiated immediately. Secondly that the skill of the NWP prediction is improved 
by the assimilation which is not only limited to the assimilation period. Thirdly, the 
developed probability maps are able to indicate the location of intense precipitation. 
That H-EPS is fairly adept in predicting the location of high intensity precipitation 
and is very useful in the context of RTC of urban drainage systems. 
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Figure 18: Probability map from event 2, event 7 and event 8 of 1h-accumulated 
precipitation along with the observed precipitation above 5 mm/hr. The probability map is 

computed from accumulated precipitation from the 6th hour to the 7th hour lead-time. (Jensen, 
Petersen et al. 2015) 
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5.4. SUMMARY 

The second part of the Ph.D. study focuses on addressing the uncertainties of 
deterministic nowcasting. A new REM ensemble prediction methodology is 
developed with the focus of being computationally efficient so it is applicable to 
real-time hydrological forecasting. The novelty of the new methodology lies in the 
way the uncertainty is estimated by separating the error sources and the way the 
temporal correlation is imposed. The REM ensemble predictions were used as input 
in a simulation for a small urban catchment to test the accuracy of the probabilistic 
predictions in the context of urban drainage applications. The results were 
promising for most of the 22 tested events, which indicates possibilities for RTC of 
drainage systems using the REM ensemble prediction system. Lastly, a new 
methodology for generation of NWP ensemble members by assimilation of REM 
ensemble members was developed. The results are very promising and display high 
skill for both short and long lead-times. The method makes it possible to combine 
the high skill of REM for short lead-times with the better predictability of NWP for 
longer lead-times cf. Figure 2. The ensemble members are initiated quickly which is 
needed if the application for the prediction is short-term hydrological forecasting. 
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CHAPTER 6. CONCLUSION 

The main purpose of this Ph.D. study is to enhance nowcasting of 0-6 hour lead-
time for increased applicability in RTC of urban drainage systems. A precursor of 
this was to try to improve the precision of the deterministic Co-TREC based REM 
nowcast.  

Improvements to the spatial precision were attempted by temporal filtering of the 
advection field since flickering or noise was observed over time. A Kalman filter 
was calibrated against observed Doppler velocities to obtain realistic behaviours 
and was implemented for exactly this purpose. Although the results showed only a 
slight improvement in skill, a major increase in stability was demonstrated. 

The evolution of precipitation at urban scales is extremely difficult to predict. It was 
therefore chosen not to try to deterministically improve the evolution precision of 
the REM prediction but instead to take a probabilistic approach. A new 
methodology, called RESEMBLE, which is very computationally efficient was 
developed to describe the nowcast uncertainty. The uncertainty of the prediction is 
expressed as a set of ensemble members whose spread determines the uncertainty. 
Ensemble members also have the advantage that they are directly applicable in 
urban drainage modelling. RESEMBLE’s novelty lies in the way the temporal 
correlation is applied and in the way that the uncertainty sources of evolution/decay 
and advection uncertainty are separated. The temporal correlation is imposed by a 
numeric interpolation method. RESEMBLE was tested as input in the urban 
drainage model of Frejlev, Denmark. Compared to observational radar QPE as 
input did the prediction perform well up to 60 min. for most tested events. 

The quality of a REM prediction at urban scales deteriorates rapidly due to the 
frozen initial condition. To extend lead-time it has been proven, as one of the major 
scientific contributions of this Ph.D. study, that assimilation of deterministic REM 
data into the HIRLAM NWP model improves NWP predictability. Not only is the 
improvement notable in the assimilation period, but it continues to have a positive 
effect on the prediction post-assimilation. It was demonstrated that the 
aforementioned flood of the Copenhagen area the 2nd July 2011 could have been 
much more precisely predicted using this assimilation approach and possible 
warnings could have been issued earlier than was the case.  

Lastly, it has been demonstrated that it is possible to initiate NWP ensemble 
members by assimilation of REM ensemble members, which are initiated 
immediately. This method combines the two prediction methodologies and utilises 
each of their strengths by nudging the atmospheric state of the NWP model towards 
a more correct state. This also improves predictability beyond the assimilation 
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period. Again, the ensemble members are directly applicable for hydrological 
modelling. 

In conclusion, based on the above described results, it is possible to improve 
stability and extend lead-time by assimilation techniques, whereby the strengths of 
these techniques complement each other. The results also imply that it is possible to 
describe the uncertainty of nowcasts which are applicable for RTC. This gives 
overall a better basis for RTC of urban drainage systems. Methods have been 
developed that operate on both very short lead-time, often sufficient for small 
catchments, and for longer lead-times up to 380 min, which is needed for larger 
catchments.  
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