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Abstract—Valid channel models for the future generation of
communications (5G) are paramount for system design and
performance analysis. The METIS map-based model is based
on 3D ray tracing principles with a simplified description of
the environment and it is suitable for 5G communications. In
this paper, the model is first described and then validated
through comparison with indoor measurements performed at
mmwave frequencies. Specifically, the dominant paths trajectory
and power values are compared for three relevant scenarios: line
of sight (LOS), non-line of sight (NLOS) and obstructed line of
sight (O-LOS), where an object blocks the LOS path. Agreement
between simulations and measurements is remarkable.

Index Terms—METIS map-based model, ray tracing, mil-

limeter wave, channel sounding, channel modeling and radio

propagation.

I. INTRODUCTION

The demand for ubiquitous, reliable and high-speed wireless

connectivity has been steadily growing. It is anticipated that

wireless data will grow around a tenfold by 2020 [1]. In

5G communication systems, it is expected an avalanche of

traffic growth, an explosion of the number of connected

devices and a large diversity of use cases and requirements. To

face those challenges, a number of new features are targeted

in the air interface design, e.g., small cellular cells, ultra-

dense networks, movable base stations, device-to-device links,

explorations of unused frequency spectrum above 6 GHz, and

massive MIMO technologies [2].

Accurate channel characterization is important for sys-

tem design and performance analysis. The following require-

ments were identified for 5G channel models in the METIS

project [2], [3]:

• Exploration of unused frequency spectrum above 6 GHz.

• Utilization of ultra high bandwidth.

• Necessity of full 3D polarimetric channel models.

• Necessity of suitable models for massive MIMO, e.g.,

spherical wavefronts, spatial non-stationarity over large

antenna arrays.

• Necessity of channel models for dynamic scenarios, e.g.,

device to device, machine to machine and vehicle to

vehicle communications.

• Necessity of channel models compatible for various prop-

agation scenarios.

Unfortunately, none of the existing channel models can ad-

dress all 5G channel model requirements. A novel map-based

channel model was proposed within the METIS project to

address the requirements in 5G channel models [4]. The

map-based model is based on ray tracing principle using a

simplified 3D geometric modeling of the propagation environ-

ment. Propagation mechanisms, e.g. line-of-sight propagation,

diffraction, specular reflection, diffuse scattering and blocking

are implemented. Conventional ray tracing simulations often

are subject to high complexity due to the use of a high-

resolution database and high computation time associated

with the ray trajectory identification. Moreover, ray tracing

models are strictly site-specific, and hence results might not

be applicable and sufficient for system level evaluations. To

address these issues, random objects, which represent cars or

humans for example, are introduced in the METIS map-based

model. The complexity is also scalable, as number of rays and

types of relevant propagation mechanisms can be predefined.

METIS map-based channel model is a promising candidate,

since it fulfills the 5G channel modeling requirements [2].

However, validation of the implemented algorithms (i.e. path

trajectory identification and propagation mechanism imple-

mentation) is missing. This paper targets to contribute in this

aspect, by comparing METIS map-based channel models to

channel sounding results in indoor scenarios. Note that the

METIS map-based channel model does not intend to work as

a deterministic ray tracing tool, and hence the comparison in

this work only attempts to verify whether the above-mentioned

algorithms in the METIS map-based model are implemented

as expected. To do so, measurements in an static indoor

scenario at mmwave frequencies are compared with the results

extracted from the METIS map-based model.

The paper is organized as follow. Section II briefly intro-

duces the METIS map-based channel model. In section III, the

measurement setup and measurement scenarios are described.

Comparison results between the METIS map-based channel

model and the measurement results are shown in Section IV.

Finally, section V concludes the paper.

II. METIS MAP-BASED MODEL

The METIS map-based model is based on 3D ray tracing

principle. The model targets both spatial and frequency con-

sistency by using a simplified geometric description of the en-

vironment and well-established frequency dependent formulas

to describe the propagation effects [4]. Seven representative

scenarios expected in future cellular communication systems

are defined, e.g., urban micro cell, urban macro cell, indoor



Fig. 1. Block diagram of METIS map-based model. [4].

office, indoor shopping mall, highway, open air festival and

stadium.

A block diagram of the METIS map-based model is illus-

trated in Fig. 1. Step-by-step instructions of how the METIS

map-based model works are detailed in [4] and only outlined

here. The first step of the model is to create the propagation

environment. Buildings are composed by walls which are rep-

resented as rectangular surfaces with certain electromagnetic

properties. These surfaces are then divided into tiles, where the

tile center corresponds to a potential diffuse scattering source.

The model allows to define objects, which could correspond to,

for example, people, vehicles, trees, etc. The height and width

of the objects can be defined and they are distributed around

the environment either following a regular pattern, e.g., in the

stadium scenario, or randomly according to a certain density.

These objects have a twofold role in the propagation; they

may block a path producing shadowing or act as a scatterer

node. Once the random objects are distributed across the

environment, the model is purely deterministic.

The next step is to find the possible path ways from each Tx

to each Rx location. Possible interactions with the environment

are: line of sight (LOS), reflections, corner diffractions, over

the roof top propagation, shadowing by objects, scattering

by objects, penetration through building walls, and diffuse

scattering. Once the possible path ways are determined, each

path length, and angles of departure and arrival are calculated.

After the pathways are identified, the next step is to deter-

mine the propagation channel matrices for the path segments,

i.e., calculate the losses due to the different interactions

and polarization matrices. Contrary to other existing channel

models, path loss and shadowing are not explicitly modelled

by empirical distributions in the METIS map-based model.

Alternatively, these effects are determined by the contribution

of the different propagation paths. Below, there is a brief

description of each of these propagation mechanisms:

• Direct LOS: For direct LOS, the path loss is modeled

by Friis equation.

• Specular reflection: Only a fraction of the incident

power is reflected. This is defined by the parameter β,

which is the ratio between the reflected and the scattered

power. The β parameter can be either predefined or

alternatively calculated based on the surface roughness

effect [5]. The channel matrix for reflections is calculated

according to the Fresnel reflection coefficients for electric

fields [6].

• Diffraction: Two models are used to model diffraction

around edges: uniform theory of diffraction (UTD) [7],

and Berg’s model [8]. Note that Berg’s model is applied

for estimating path loss in urban microcell environments,

and hence not considered in our indoor investigation.

• Shadowing due to object blocking: To model shadow-

ing, the objects are modeled as rectangular screens with a

predefined height and width. Two cases are considered to

model shadowing by objects: low and high object density.

In the former, shadowing is calculated as the knife-edge

diffraction around the four edges of the screen [4]. For the

latter, shadowing is modelled using the Walfisch-Bertoni

model [9].

• Scattering from objects: In this case, objects do not act

as rectangular screens anymore. Instead, the scattering

loss produced by an object is modelled based on the scat-

tering cross section for a perfect conducting sphere [4].

• Diffuse scattering: The density of the source distribu-

tions for diffuse scattering is configurable through the

tile size. Just like for specular reflections, the scattered

power is defined either by the parameter β or the surface

roughness effect. The walls from the room where the

measurements were performed and relatively smooth.

Diffuse scattering barely appears in the measurement

results and, hence, is not discussed in this paper.

• Penetration loss: Penetration is not considered in this

paper. Penetration losses at mmwave bands are very high,

and hence paths that penetrate the walls would not be

present in our measurements.

• Over the rooftop propagation: Since our measurements

are performed in an indoor environment, over the roof top

propagation is not relevant to the paper.

Finally, antenna patterns are embedded into the result and

the final channel impulse responses are calculated. Note that

the number of path ways are scalable to limit the computa-

tional complexity. Pathway identification is detailed in [4].

The purpose of this paper is to validate the pathway identi-

fication algorithm and the implementation of the propagation

loss calculation in the METIS map based model. Note that

only some propagation mechanisms can be validated with our

indoor measurements, as explained above.



Fig. 2. Block diagram of the measurement setup. The reference mixer
modular is used to down-convert the signal from the Rx to reduce cables
losses. Calibration was performed to de-embed the Tx and Rx chain from the
measurements.

TABLE I
TX AND RX ANTENNAS SPECIFICATION

Antenna Freq. range Gain Pattern

Biconical 2-30 GHz 6 dB Omnidirectional

Horn 26.4-40.1 GHz 19 dB HPBW = 20 deg

III. MEASUREMENTS DESCRIPTION

A. Measurement Setup

Fig. 2 shows a block diagram of the measurement system.

A biconical antenna was used at the transmitter (Tx) side,

whereas a horn antenna was used at the receiver (Rx) side.

Both Tx and Rx antenna are placed at the same height and are

vertically polarized. The main characteristics of the antennas

are summarized in Table I. The Rx is placed on the center of

a turntable. A full sweep over 360 degrees with steps of 10

degrees for scenario 1 and 2 and 0.5 degrees for scenario 3

is performed. Applying the inverse Fourier transform to each

frequency sweep, the power angular delay spectrum can be

calculated. The central frequency used for the measurements

is 29 GHz with a bandwidth of 2 GHz. For this bandwidth,

the delay resolution is 0.5 ns. Moreover, 750 frequency points

were recorded for the frequency range 28-30 GHz, resulting

into a delay range of 350 ns.

B. Measurement Scenarios

To allow a clear comparison, measurements were performed

in a static indoor environment where no furniture was present.

Although all measurements were performed in the same room,

three different scenarios were used as pictured in Fig. 4, 6

and 8, namely line-of-sight (LOS), non-LOS (NLOS), and

obstructed LOS (O-LOS). These three scenarios were selected

in order to investigate different propagation mechanisms, e.g.,

LOS, reflection, diffraction, or scattering. The walls of the

room are made of concrete and the blackboard used in the

Fig. 3. Picture of the room where the measurements were taken. O-LOS
scenario is shown on the left where the right wall of the room can be seen
as well as the wooden board placed at the bottom. The picture on the right
show the NLOS case without the wooden board.

Fig. 4. Scenario 1: LOS. Room geometry and main paths are shown.

O-LOS scenario to obstruct the LOS has one side covered

by aluminum. The dimensions of the blackboard are 1.19 m

× 1.19 m. Fig. 3 shows a picture of the scenarios for the

O-LOS (left) and NLOS (right) cases. Note that in the O-

LOS case, a wooden board was present in the room. For the

LOS and NLOS scenarios, the height of the antennas was

0.84 m, whereas for the O-LOS scenario the antennas’ height

was 1.1 m.

IV. RESULTS COMPARISON

In order to compare the measurement with the METIS map-

based model results, the scenarios depicted in Fig. 4, 6 and

8 where modelled with the METIS implementation. The most

relevant paths identified with the METIS model are shown in

the referred figures. The comparison is done in terms of power

per identified path.

A. LOS scenario

The power-angular-delay spectrum for the LOS case, is

shown in Fig 5. It can be seen that only a few dominant com-

ponents can be identified. The LOS component is dominant,

as expected. Path trajectories can be identified, by matching

the delay and angle of arrival of each component to the room

geometry shown in Fig. 4. The trajectories of the main paths



Fig. 5. Power angular delay spectrum for scenario 1, LOS.

TABLE II
PATH POWER IN THE LOS SCENARIO.

LOS #1 #2 #3 #4 #5

Meas [dB] -46.03 -65.82 -66.12 -67.28 -70.44

METIS [dB] -46.55 -65.03 -66.66 -70.10 -71.48

Diff [dB] 0.52 -0.79 0.54 2.82 1.04

Path LOS Ref Ref Ref Ref

TABLE III
PATH POWER IN THE NLOS SCENARIO.

NLOS #1 #2 #3

Meas [dB] -75.88 -71.80 -73.06

METIS [dB] -78.235 -73.05 -74.21

Diff [dB] 2.35 1.25 1.15

Path Dif Ref Ref

the path trajectories identified by the METIS map based model

are shown in Fig. 4, which agree with the paths identified in

the measurement results.

The first two paths imping the Rx at -90 degrees (#1 and

#2) are identified to be the LOS component, and a reflection

from the bottom wall behind the Tx. The paths numbered as 3,

4, and 5 are reflections on the left wall, on the right wall, and

on the upper wall, respectively. Table II shows the power of

these components extracted from the measurements and from

METIS map-based model, as well as the deviations between

them. Note that the maximum gain from the antennas has been

considered in the results from the METIS model to have a fair

comparison. A reasonable agreement is achieved between the

measurement and the METIS simulation, with a maximum

deviation up to 2.8 dB.

B. NLOS scenario

Fig. 7 shows the power-angular spectrum for the NLOS

scenario. In this case, the transmitter is placed behind a corner

Fig. 6. Scenario 2: NLOS. Room geometry and main paths are shown.

Fig. 7. Power angular delay spectrum for scenario 2, NLOS.

and the direct LOS component is blocked as shown in Fig. 6.

It can be seen in Fig. 6 that there are long tails in delay

following the main paths, which are most likely paths due

to multiple reflections on the walls and diffuse components.

With the METIS map-based model, only three main paths are

identified: the corner diffraction (#1), reflection with the left

wall (#2), and reflection with the upper wall (#3). This is due

to the fact that only single reflections are defined in the model.

The power values of the three paths are shown in Table III.

The power values agreement is good between measurements

and simulation, with a deviation up to 2.4 dB.

C. O-LOS Scenario

O-LOS was selected to evaluate the scattering produced by

random objects in the METIS map based model. An object is

deliberately placed at the same position to evaluate the losses

produced by scattering. Fig. 9 shows the measured power-

angular-delay spectrum. Three main paths are identified with



Fig. 8. Scenario 3: O-LOS. Room geometry and main paths are shown.

Fig. 9. Power angular delay spectrum for scenario 3, O-LOS.

TABLE IV
PATH POWER IN THE O-LOS SCENARIO.

O− LOS #1 #2 #3

Meas [dB] -79.96 -71.08 -73.43

METIS [dB] -80.87 -70.61 -70.95

Diff [dB] 0.91 -0.47 -2.48

Path Scat Ref Ref

the METIS map based model as shown in Fig. 8. It can be

seen that there are a few dominant paths (at around 40 ns

delay and 55 ns delay) present in the measurements, which

are not identified with the METIS simulation. This is due to

the fact that second-order reflections, which are dominant in

this O-LOS scenario, are not evaluated. It can be seen that

the path incoming from where the blackboard is placed are

significantly attenuated, i.e., #1. The paths numbered as #2

and #3 correspond to first order reflections on the right and

left walls respectively. Table IV shows the power values for

each of these paths.

V. CONCLUSIONS

The METIS map-based model, which utilizes ray-tracing

principles to model the environment, has been described in

this paper. To validate the implementation of the model,

simulation results have been compared with measurements

in indoor scenarios. Three scenarios within the same room

where selected for the validation, i.e., LOS, NLOS, and O-

LOS. These where selected to validate the implementation

of different propagation mechanisms, namely, LOS paths,

specular reflections, diffractions and object scattering.

The main paths distinguished in the measurement results are

successfully identified by the model for the LOS and NLOS

scenarios. Double reflections become important for the O-

LOS scenario, where the LOS component is obstructed. Fur-

thermore, the power values from these main paths were also

compared reaching acceptable agreement between simualtions

and measurements, i.e., deviations up to 2.8 dB.

One possible extension of the work would be to perform fur-

ther measurements to validate other propagation mechanisms,

such as blocking by objects or penetration through walls.

However, since the model is meant to be used with simplified

and generic propagation environments, it would be of greater

interest to compare other channel statistics or validate that the

model is consistent through frequency.
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