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The building design community is challenged by continuously increasing energy demands, which are often combined with ambitious goals for 

indoor environment, for environmental impact, and for building costs. To aid decision-making, building simulation is widely used in the late 

design stages, but its application is still limited in the early stages in which design decisions have a major impact on final building performance 

and costs. The early integration of simulation software faces several challenges, which include time-consuming modeling, rapid change of the 

design, conflicting requirements, input uncertainties, and large design variability. In addition, building design is a multi-collaborator discipline, 

where design decisions are influenced by architects, engineers, contractors, and building owners. This review covers developments in both 

academia and in commercial software industry that target these challenges. Identified research areas include statistical methods, optimisation, 

proactive simulations, knowledge based input generation, and interoperability between CAD-software and building performance software. Based 

on promising developments in literature, we propose a simulation framework that facilitates proactive, intelligent, and experience based building 

simulation which aid decision making in early design. To find software candidates accommodating this framework, we compare existing 

software with regard to intended usage, interoperability, complexity, objectives, and ability to perform various parametric simulations.  

Keywords: Building performance, uncertainty analysis, sensitivity analysis, interoperability, optimisation, knowledge based input generation 

Abbreviations: building performance simulation (BPS), one-at-a-time (OAT), uncertainty analysis (UA), sensitivity analysis (SA), life cycle 

costs (LCC), life cycle analysis (LCA) 

1 Introduction 
The building design community is challenged by continuously increasing energy demands which are often in conjunction with 

ambitious goals for the indoor environment. The recast of the European Performance of Buildings Directive (EPBD) requires all new 

buildings in the European Union to be “nearly zero energy” buildings by 2020 [1]. In addition to stricter energy demands, the use of 

environmental assessment methods has increased considerably [2][3]. As a result, the design team must try to optimize on a large 

number of criteria, such as energy demand, indoor environment, materials, life cycle cost, etc., which are often conflicting. Supporting 

decision making and guiding the design towards high performance is of utmost importance in the early design phase where decisions 

have the highest impact on final performance and costs [4][5][6] 1. Predicting the consequences of early decisions is particularly 

difficult, but crucial, since adverse decisions will reduce the remaining design space and make it more strenuous and expensive to meet 

high performance goals. For example, the design team may early on decide on a design concept with a highly transparent facade 

favoring daylight (high window-to-wall-ratio) where potential issues, concerning cooling energy, thermal comfort, and glare, are 

avoided by a combination of hybrid ventilation and automatic, external shading. If the initial conditions later turn out to be too 

optimistic or unrealistic (e.g. solar shading in use more that 80% of the time, venting needs an air change of more than 10 h-1 to keep 

temperatures within limits), it will have major impact on both cost and design to remedy this early decision and reach ambitious goals.  

Despite the potential of performing building simulations, the information obtained from building performance simulation software is 

often evaluative instead of proactive [5][7]. Even when the software is sophisticated, accurate, and capable of assessing a wide range 

of different performance indicators, it is often most suitable for code compliance, benchmarking, and quality control. There is a lack of 

tools that provide timely feedback on performance implications and help compare and rank multiple design variations [8][5]. The 

software’s ability to provide this kind of active support is sometimes referred to as “intelligence” [5][9]. In a survey among 230 

architects, “intelligence” and “usability” ranked higher than “interoperability” and “accuracy” when selecting BPS tools [5]. In other 

words, the software’s ability to inform and guide the design has the highest priority by the majority of the architects. According to 

Batueva and Mahdavi [9], less than 8 percent of more than 400 building simulations tools listed by the U.S. Department of Energy [10] 

have potential for early design deployment potential. In summary, challenges of performing building simulations at the early stages, 

identified by the authors, include: lack of information, uncertainty, vast design space, increasing levels of model resolution (level of 

detail), time-consuming modeling, and rapid change of design. In general, challenges affecting all stages of building design include: 

contradicting and stricter requirements, interoperability, limited reuse of knowledge, discrepancy between simulations and real-life 

measurements, and lack of simulation guidance. 

The main focus of this review is to identify state-of-the-art within the field of building simulations addressing the challenges above. 

The review is part of a research project which aims to develop a simulation framework that addresses all of these diverse challenges in 

order to facilitate proactive, intelligent, and experience based building simulations. Another ambition of the research is to implement 

such a framework in the design project as early as possible. Below, we outline six research areas targeting at least one of the identified 

challenges, and we specify how this review differs from previous reviews related to building simulations. In chapter 2, we describe 

                                                                        
1
 In this review, we distinguish between early design and detailed design. In addition, the early design stage may be split into two phases: conceptual 

design, in which the building concept is developed and schematic drawings are produced; and preliminary design, where schematic drawings are 
refined to estimate the main quantities for the building project (adopted from [11]). 
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how each of the six research areas approaches the issues of BPS, and we highlight promising and trending methods. In chapter 3, we 

propose an ideal framework for building performance simulations based on our findings in chapter 2. In continuation of this, we carry 

out a software review in search for available software that fits the requirements and properties of this “ideal” framework.  

In this paper, attention is drawn to developments facilitating improved assistance and guidance for the design team during the early 

design stages. Particular interest is given to methods that enable the designer to investigate a global design space, which is expanded 

from the variability of multiple design parameters. The reason for this is that a single building performance simulation only evaluates a 

single point in the design space without taking uncertainties and variability into account. Nor does the single evaluation guide the 

designer on how to improve the design. As a consequence, designers often perform manual or automatic, parametric simulations 

varying one parameter at a time. This one-at-a-time approach (OAT) is referred to as local analysis. In early design, many parameters 

may be varied at the same time which advocates exploration of a global design space, which presumable can reveal higher performing 

design as illustrated on Figure 1. 

 

Figure 1 Different explorations of a 2D discretized design space. Favorable solution spaces are illustrated by simulations resulting 
in best (Gold) and second best (Silver) awards according to the DGNB certification system for sustainable buildings [11] (similar to 
e.g. LEED Platinum and Gold certification [12]) 

1.1 Research targeting early building simulations 

This review covers a wide range of research addressing the challenges related to building simulations as identified above. To create an 

overview, the reviewed papers have been organized into six larger groups of research areas – each of them targeting one or more 

specific challenges as illustrated on Figure 2. Definitions of these intertwined research areas, and motive for their inclusion, are as 

follows:  

 Proactive building simulations refer to a proactive exploration of the design space in order to guide the design rather than 

evaluate design. 

 Statistical methods include running large numbers of simulations and applying statistical measures. As well as coping with 

uncertainties, a statistical approach may facilitate exploration of a large design space and identify important inputs and 

favorable input domains. 

 Holistic design includes calculation of many interdependent performance objectives and combining the results to support 

decision making. Examples of important interdependent objectives are energy demand, thermal comfort, and daylight. 

 Optimisation on performance objectives helps to automate the exploration of a large design space and guide the design 

towards high performance. 

 CAD-BPS interoperability may be achieved by integration of models, run-time coupling, and shared schemas. A common 

ambition is to ensure fast and consistent modeling. 

 Knowledge based methods aim to reuse and share knowledge to reduce the time spent modeling, and they seek to improve 

consistency and validity. Moreover, knowledge databases may be used to set default values to enable simulations when the 

input resolution is low (model detail). 
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Figure 2 The reviewed research areas and their relation to different challenges of performing building simulations in the early 
design stages and in general. 

Since the main focus of the review is simulations made in the early design phases, we will not cover efforts in improved algorithms 

describing building physics. Nor will we address methods which primarily intend to improve detailed analysis or reduce performance 

gaps. 

1.2 Literature reviews and comparative surveys 

Prior to this study, we found a considerable amount of comparative studies and reviews concerning building performance simulations. 

These studies provide a comprehensive insight into a specific discipline or branch of building design, such as: energy simulation, 

daylight simulation, software comparison, optimisation, sensitivity analysis, etc. This review covers a more wide range of research 

areas to see how the industry might benefit from the combined efforts made across disciplines. The reader looking for a more in-depth 

review of a specific topic may look into the following: 

 Kanters et al. [8]: Tools and methods used by architects for solar design  

 Hopfe et al. [13]: Comparison of 6 BPS tools and potential of BPS in conceptual design phase  

 Crawley et al. [14]: Comparison of 20 building energy performance simulation programs  

 Attia et al. [15]: Survey with 249 architects and their relation to 10 BPS tools  

 Attia and Herde [16]: Comparison of 10 early design simulation tools  

 Zhao et al. [17]: Review on the prediction of building energy consumption  

 Pacheco et al. [18]: Review on energy efficient design of building  

 Ochoa et al. [19]: Review of lighting simulation for building science  

 Tian [20]: Review of sensitivity analysis methods in building energy analysis  

 Evins [21]: Review of computational optimization methods applied to sustainable building design  

 Machairas et al. [22]: Review of algorithms for optimization of building design  

 Bucking et al. [23]: Uncertainty, sensitivity, and optimisation in building simulation  

 Iwaro et al. [24]: Criteria weighting framework and multi-criteria decision making  

 Fumo [25]: Basics and classification of whole building energy estimations  

Primarily works after 2005 have been included. 
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2 Research areas 

2.1 Proactive building simulations 

The engineer responsible for building performance simulations regarding energy, comfort, cost, etc., are often asked various “What 

if…” questions by building owners, entrepreneurs, and architects. These questions refer to alternative design options, such as “what if 

we allow external shading”, “what if we increase window-to-wall ratio”, “what if we combine venting and overhangs to avoid 

mechanical cooling”. Since most simulation software is evaluative in nature, such queries are difficult to give immediate replies to – 

especially in the early design phase where the option space is immense. Trying to answer such queries will often require the simulation 

expert to run additionally simulations between meetings or workshops. When the answers are obtained, it may already be too late, 

since the design has evolved and new issues and questions have arisen instead. Addressing this issue of time-consuming, iterative, and 

evaluative nature of building simulation, Shady et al. [5] used the concept of “pre-design informative” BPS that enables proactive 

guidance and support for decision making during early design. According to the authors, only 1 % of the then 392 tools listed on the 

U.S. Department of Energy homepage [26] can be categorized as pre-design informative.  

In this paper, we will distinguish between the terms “pre-design informative” and “proactive” simulations. The term “pre-design 

informative” is applied to methods where simulations have been carried out prior to the design stage. Examples include the 

constructions of meta-models (see section 2.2.3) and the creation of databases from simulations of predefined rooms or building types. 

“Proactive” is considered a more broad term that also applies to methods where alternative simulations are carried out in a structured 

way to guide, rather than evaluate, the design.  

Petersen [7] recognizes the potential of the simulation environment to become more proactive and provide data-driven advice along 

with design implications. He therefore focuses on enabling “the support environment to generate input to the overall building design 

process prior to any actual design decisions”. Petersen introduces a novel tool that enables parametric, room-level simulations with 

respect to energy consumption, air quality, daylight, and thermal comfort. For all inputs, the user assigns a reference value and 

optionally two alternative values. Along with the reference model, the tool will then perform one-at-a-time simulations to evaluate two 

variations for each of the varied parameters. The tool was tested on three real building projects, where the actors involved found this 

one-at-the-time parametric analysis useful for decision support. Though, the extent to which the design information was allowed to 

influence design decision differed due to different opinions on the benefits from interdisciplinary collaboration in the conceptual 

design stage. This demonstrates the importance of an open mind towards multi-actor collaboration and towards the implementation of 

novel methods and tools that may improve the design process.  

Similar to Petersen’s approach, Ochoa and Capeluto [27] have developed an advice tool for the conceptual design stage of intelligent 

facades based on energy and visual comfort. The tool employs the EnergyPlus [28] engine in order to evaluate intelligent facades and 

to ensure continuity with the subsequent preliminary and detailed design phases. The many EnergyPlus inputs are abstracted away by 

using presets that are determined from a few architectural considerations concerning location, main orientation, occupancy level, 

sophistication level, facade openness, surroundings, and building depth. In that way, the architect does not need to assign specific input 

values into the simulation tool. Instead, the designer defines relatively few properties regarding geometry and location along with some 

desired design concepts. On the basis of these properties and design intentions, the tool creates building design alternatives that follow 

a set of built-in design rules. An interesting feature is that the logic also generates an alternative with a degree of randomness to avoid 

locking the designer into one direction. In the end, the designer is presented with a list of detailed design alternatives.  

Attia et al. [5] has developed a prototype tool for net zero-energy buildings in hot climates with the purpose to inform designers prior 

to decision making. The prototype consists of a simple and easy-to-use interface enabling parametric runs of the EnergyPlus 

simulation engine. Numerous inputs for EnergyPlus have been reduced to reflect the early design stage. This allows for fast creation 

and exploration of a variety of alternatives while using advanced, validated simulation software. The prototype allows for simulation 

of a number of predefined building types and applies sensitivity analysis to guide decision making. 

The above works focus on early design integration, creation of alternatives, and guidance of the designer. Such ambitions may also be 

facilitated by means of statistical methods as described in the following section.  

2.2 Statistical methods 

In this context, statistical methods refers to a design process where the modeler runs a large number of simulations in a structured 

manner and use statistical techniques to achieve design support from the simulated data. This approach enables the modeler to explore 

a large design space in a systematic way, which potentially enlarges the solution space, and thereby improves building performance 

compared to typical one-at-a-time parametric analysis (see Figure 1). Statistical analysis also allows for definition of inputs in form of 

possible spans, thereby addressing the issue of non-determined or uncertain inputs that is characteristic of the early design phase. 

Finally, statistical analyses are suitable for addressing the challenges related to the probabilistic nature of user behavior and weather.  



 5 

 
 

Statistical building performance modeling consists of three intertwined disciplines, namely uncertainty analysis, sensitivity analysis, 

and multivariate analysis. Present work covers diverse uses of statistical analysis, but the following steps are common (see reduced 

workflow on Figure 3): 

  

1. A baseline model is created in building performance software capable of calculating the objectives of interest. 

2. Depending on the scope of the analysis, a number of input parameters, ranging from a few to hundreds, are selected. Each 

parameter is assigned with a probability density function that reflects parameter uncertainty related to the numerical model, 

boundary condition, physical property, or design variability. 

3. A sample matrix is constructed from the probability density functions. Various sampling procedures exist and their applicability 

depends on the analysis to be performed. Sampling procedures include random, stratified, factorial, Latin hybercube, and quasi-

random with low-discrepancy sequences [29]. 

4. For each sample a building simulation is performed and outputs of interest are collected. 

5. Results are analyzed utilizing uncertainty analysis, sensitivity analysis, multivariate analysis, or combinations of these. The results 

may also be used to create meta-models as described below. 

 

Figure 3 Schematic flow diagram of typical implementation of statistical analyses in a building performance simulation process. 

This workflow is often facilitated by using statistical software packages such as SimLab [30] or the statistical programming language 

R [31] in combination with building performance software [20][32]. Increasing interest and need for such workflows drives developers 

to create extensions to the building simulation environment to facilitate parametric modelling, e.g. Parametric Analysis Tool for 

OpenStudio [33] and jEPlus [34]. It seems that the proliferation of scripting languages, particularly interpreted and dynamically typed 

languages such as Python and Ruby, makes programming more accessible for simulation specialists who want to perform very specific 

simulation tasks [35][36][37]. 

2.2.1 Uncertainty Analysis 

An early, comprehensive research of uncertainties related to building simulations was conducted by MacDonald [38], who addressed 

the problem of quantifying the effects of uncertainties on the predictions derived from building simulation software. More recent work 

focus on utilizing uncertainty analysis as part of the decision making process [39][40][41][42]. Hopfe and Hensen [41] conclude that 

”the integration of uncertainties in BPS provides evidence based decision support in design team meetings and dialogues with building 

partners.” When augmented by sensitivity analysis such integration will give an idea of the significance of uncertainties and facilitate 

quality assurance of the model. Uncertainty analysis is useful to investigate design variation and gives insight into design robustness 

and possible ranges of performance indicators, i.e. minimum and maximum values for energy demand, daylight metrics, costs, etc. 

However, decision making under consideration of uncertainty is not straightforward. As exemplified by de Wit and Augenbroe [39] a 

decision maker will find it difficult to decide whether or not to implement a cooling system when such a system is required if the hours 

with overheating exceeds 150 but the overheating temperatures are represented by a probability functions that spans over this limit. To 

address this issue, the authors propose implementation of Bayesian decision theory by setting up and comparing utility functions. 

Another approach for decision-making under uncertainty is suggested by Rezaee et al. [42]. They estimate the level of confidence that 

option A performs better than option B by comparing output distributions for each of the two alternatives. Thereby, the designer gets 

an idea of how likely it is that one design proposal will outperform another.  
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Since uncertainty is inherent in all building simulations one might argue always to include uncertainty analysis. Even in late retrofit 

design and in model calibration, the effects of occupants’ behavior and unpredictable weather impose substantial uncertainty on the 

model’s predictions which militate against use of deterministic calculations. Various studies applied uncertainty and sensitivity 

analysis to study the effects of occupants’ behavior and weather variability [43][44][45][46][47] [48]. Brohus et al. [43] perform both a 

theoretical and empirical study of energy consumption of domestic buildings which shows occupant’s behavior to be the major 

contributor to the variance. Hoes et al. [44] also include thermal analysis in an office case study and propose a methodology for better 

representation of user behavior. Their results show that no general design concept ensures robustness towards user behavior without 

applying extensive oversized active systems. According to O’Brien [45], implementation of passive systems, e.g. fixed solar shading, 

may reduce both energy use and uncertainty associated with occupant behavior. Applying uncertainty analysis is often accomplished 

by assigning probability density distributions to uncertain inputs as described above. This method, however, does not work for 

uncertainties related to user behavior and weather when performing whole-year simulations. To address this issue, Rodríquez et al. 

[46] defines three levels of both occupant load and weather load. By combining these, a total of nine scenarios are investigated which 

enhances the robustness of the analysis. Furthermore, the authors apply sensitivity analysis which shows that the ranking of influential 

inputs are similar for the nine investigated scenarios. 

Summing up, uncertainty analysis may aid building design in various manners. This analysis ensures more reliability to the results, 

enables exploration of large design spaces, and assesses model quality and robustness. Though, design comparison becomes less 

straightforward when considering uncertainties as compared to evaluating deterministic calculations. 

2.2.2 Sensitivity Analysis 

Various authors suggest to incorporate sensitivity analysis during early design to identify the input parameters with highest impact on 

building performance [40][49] [50][51][52]. By identifying the most influential input parameters, the design team may direct their 

attention to these inputs in subsequent analyses, such as parameter variations and optimisation, and during construction of meta-

models. Sensitivity analysis may answer “What-if” questions by calculating regression or correlation coefficients which indicate the 

size and direction of the change in performance when changing values for a certain input [40][53]. Different sensitivity analysis 

techniques are described thoroughly in an often cited book “Global Sensitivity Analysis: The Primer” by Saltelli et al. [29], while the 

use of sensitivity analysis in building energy analysis is covered in a comprehensive review by Tian [20].  

Sensitivity analysis can be divided into local and global approaches [29]. Derivative based local methods consider the effects of 

uncertain inputs around a point in design space (or baseline model) by varying one parameter at a time (OAT). This approach requires 

few computations but is ill-suited for non-linear systems [29]. Global methods consider the uncertain inputs over the whole input 

space. Global methods are more versatile since they can handle nonlinear, non-additive, and non-monotone systems and consider the 

effects of interactions between inputs. As an example of a nonlinear and non-monotone system in BPS, we may consider energy 

consumption as a function of windows’ g-value. For a given model, the heating load in winter may be reduced by increasing the g-

value but only to a certain limit after which the cooling load will increase. Yet, this relationship is highly dependent on other 

parameters such as fenestration, solar shading, shadows, set points, internal loads, etc. These complex relations may be investigated by 

applying sophisticated, global sensitivity analysis methods such as decomposition of variance and other quantitative measure. Though, 

these approaches typically increase the amount of computational effort accordingly. Hemsath and Bandhosseini  [52] argue that pre-

design local sensitivity coefficients may aid early decision-making, and it may be extended to global analysis in a later design 

optimisation stage.  

Sensitivity analysis may be applied for multiple performance indicators and thereby provide an overview of critical design parameters 

in a holistic design context. Using an office test case, Jin and Overend [53] calculated sensitivity indices for 14 facade design variables 

with respect to 13 different outputs related to energy, comfort, and cost. The resulting sensitivity coefficient charts for three different 

climatic zones help allocate design time and construction budget to the variables with highest impact on performance.  

2.2.3 Meta-modelling 

A meta-model may be defined as a simplified model of a model. In other words, if a numerical model is an abstraction of the real 

world, the meta-model is yet another abstraction of that numerical model.  Meta-modelling involves analysis of input and output 

relationships in order to establish a mathematical relationship (algorithm) that is easy and fast to compute. A broad range of techniques 

exist, such as Artificial Neural Network (ANN) [54], Support Vector Machines (SVM) [55], Kriging [56], Multivariate Linear 

Regression [4], [57], but in general no type is optimal in all circumstances [58].  

In a building simulation context, a meta-model is typically constructed from a large set of simulations made with validated, detailed 

building performance software which is often computationally heavy. Alternatively, a meta-model may be constructed from 

experimental or observational data. For instance, meta-models can be constructed from large building performance databases [56][59]. 

The simplified model usually consists of a limited set of inputs and outputs that are relevant for the task at hand. The reduced set of 

inputs and the computationally fast algorithms makes meta-modelling attractive for early building design where only a few variables 

have been identified and the demand for fast feedback is crucial. Due to the fast algorithms, meta-modelling may be attractive when 
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performing optimisation, uncertainty analysis, sensitivity analysis, and real-time simulations. Techniques based on regression analysis, 

sometimes considered easier and more practical [60], enable both interpretation and prediction [61]. Interpretation of regression 

coefficient helps understand input-output relationships as well as interactions between inputs – i.e. sensitivity analysis is easily 

accomplished. Additionally, regression coefficients enable prediction of building performance and hence provide proactive decision 

support.  

The literature, reviewed here, concerns early building design, retrofit analysis, and test of the meta-modeling techniques. Performance 

indicators of interest include heating and cooling loads [4], [55]–[57], [62], [63], thermal comfort [55], indoor air quality [54], daylight 

factor [60] and net cost [62]. The training set for establishing the models consist of both experimental [56], [59] and simulated data. 

The use of meta-modelling in a holistic context will probably become highly laborious since individual algorithms must be developed 

for each performance indicator. Furthermore, a meta-model is only applicable in the domain of which it has been constructed, i.e. it 

becomes invalid if the prerequisites change, e.g. loads, orientation, constructions, etc. This characteristic is a considerable downside 

worth mentioning.  

2.2.4 Multivariate analysis and Filtering 

Several authors make use of a stochastic approach to run  an exhaustive set of simulations of the design space  [33][51][64]. Applying 

filtering methods afterwards help identify favorable areas of the design space that meet certain design criteria [32]. Moreover, 

multivariate analysis of the vast amount of data obtained from thousands of simulations may be assisted by various visualization 

techniques such as scatterplots, histograms, and parallel coordinate plots. Naboni et al. [64] demonstrate the possibilities of cloud 

computing by running 221.184 EnergyPlus [28] simulations within 72 hours. Using factorial sampling of 8 discrete design variables, 

all combinations are considered. The method is compared to a conventional manual approach where a practitioner is assumed to 

generate and run up to 50 manually configured simulations. When comparing time consumption, the additional computational time of 

the parametric approach is balanced out by the time spent on setting up and analyzing the manual simulations. The advantage of the 

parametric modelling is the exhaustive, global investigation of the design space and the possibility to apply statistical analysis. By 

comparing Pareto fronts, the authors show that the parametric approach may reduce both cooling and heating needs significantly. For 

instance, the energy savings are increased by 33 % when choosing the best performing parametric design as comparing to the best 

performing manually configured design. 

2.3 Holistic Design 

A building design needs to satisfy a vast range of often contradicting requirements and objectives. Certification schemes such as 

DGNB [11], LEED [12], and BREEAM [65] involve evaluation of up to 100 objectives. Some may be estimated quantitatively with 

simulation software while others can only be evaluated qualitatively. Another characteristic of the building design process is the 

gradually increase in identified design parameters and objectives [40]. For example, it is nearly impossible to calculate room acoustics, 

draught, and LCA in conceptual design. Since objectives are often correlated, a design change improving a certain objective will affect 

other objectives as well. These circumstances challenge the holistic design approach, especially in the early design phase. As stated by 

Cheung et al. [35] “There is a clear need for a designer-focused system that can give simultaneous design assessment on various 

aspects in the conceptual design stage.” 

One element of holistic design in a simulation context is to enable simultaneous calculations of as many objectives as possible. This 

may be facilitated by improved interoperability by common file exchange schemas (IFC, gbXML, etc.) or by integrating a multitude of 

algorithms into one software platform (see section 2.5). Another element is to combine these diverse performance results and extract 

information that supports decision making. This lies in the extensive field of multi-criteria decision making (MCDM). 

Pohekar & Ramachandran [66] and Wang et al. [67] have made reviews on MCDM in neighboring research areas and describe 

different techniques that aid decision making when considering conflicting and multiple objectives. These methods are based on 

weighting averages, priority setting (Analytical Hierarchy Process (AHP)), outranking (ELECTRE, PROMETHEE), and fuzzy 

principles [66][67]. In the field of sustainable energy decision-making, the simple method of equal criteria weights are the most 

popular followed by the more comprehensive Analytical Hierarchy Process [67]. Similar trends may apply to the field of building 

design, where weighting systems is demonstrated by Bjørn and Brohus [68], Iwaro et al. [69], and Østergård et al. [24]. Moreover, 

weighting frameworks, such as DGNB, LEED, and BREEAM, are getting increasingly popular. These weighting systems involve 

prioritization and establishment of comparable performance measures. Such systems compel the design team to think holistic and they 

reveal which objectives may be improved.  

In the Analytical Hierarchy Process the decision problem is decomposed into a hierarchy of sub-problems. Decision makers compare 

these sub-problems pairwise by assigning numbers from 1 as ‘equally important’ up to e.g. 9 for ‘extremely more important’ [70]. A 

matrix consisting of all pairwise comparisons is used to calculate numerical weights for all objectives in the hierarchy, allowing 

diverse objectives to be compared in a consistent way. Hopfe et al. [70] use AHP to support multi-criteria decision making under 

uncertainty based on stakeholders preferences. By propagating uncertainty from design parameters into probability distributions of 

performance indicators, much information is generated but it complicates decision making (see example in section 2.2). Applying AHP 
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helps rank design options where uncertainty is included and thereby aids decision making while reaping the benefits from uncertainty 

analysis. According to Iwaro et al. [24], the majority of the subjective criteria weighting frameworks, such as AHP, fail to consider 

objective information. Therefore, Iwaro et al. suggest an integrated frame where AHP is combined with an objective weighting 

approach to assess life cycle performance. The framework was concluded to provide a robust methodology for weighting and 

assessment of the sustainable performance of residential building designs.  

Another research dealing with uncertainties and multiple objectives is that of Jin and Overend [53]. As described in section 2.2, the 

authors take into account the large uncertainties related to early design to create façade sensitivity charts for 13 output variables 

describing the performance of two office scenarios in three geographical locations. 

Holistic design promotes evaluation of a vast number of opposing performance indicators. Since design comparison becomes more 

troublesome when considering multiple objectives, the design team may want to exclude objectives having little importance or having 

large correlation with other objectives. An example of the latter, in a Danish context, is the evaluation of overheating hours above 26 

°C and 27 °C, which are required by building code. From a design perspective, the two measures will show similar behavior and 

addressing either one of them will most likely have similar consequences on building design. These nearly redundant objectives may 

be excluded to reduce the information load. To identify such objectives, the following methods are listed by Wang et al. [67]: the least 

mean square method, the min-max deviation method, and the correlation coefficient method. These methods are simple to apply and 

may help to focus on the most important parameters in a holistic design process. 

In this brief overview of holistic design, we have left out multi-criteria optimisation which will be covered in the following. In holistic 

design, we stress that optimisation requires caution since building design is a high-dimensional and complex task where a single best 

holistic solution (or single Pareto front) does not exists. 

2.4 Optimisation 

In this context, optimisation refers to the automated use of mathematical optimisation in combination with building performance 

simulations. The aim of this section is to give an overview of trends, benefits, and challenges based on five reviews [21], [22], [71]–

[73] related to building design optimisation. A building optimisation analysis typically consists of the following steps that may be 

repeated in an iterative design process (combined from Machairas [22] and Nguyen et al. [72]): 

1. Identification of design variables and constraints 

2. Selection of simulation tool and creation of a baseline model 

3. Selection of objective function(s) 

4. Selection of optimisation algorithm 

5. Running simulations until optimisation convergence is achieved 

6. Interpretation and presentation of data 

Since the turn of the millennia, publications about building optimisation have roughly increased tenfold [21][22][72]. This 

development is aided by advances in computer science in terms of parallel and cloud computing as well as advancements in 

optimisation theory where genetic algorithms (GA) and particle swarm optimisation are prevalent [71][72]. Based on keyword 

searches in the scientific database “ScienceDirect”, Machairas et al. [22] conclude that optimisation on HVAC and controls represent 

the majority of the publications. Though, optimisation of parameters influencing building design has become increasingly popular 

during the last decade. Applying optimisation to building design is often motivated by the stringent and often divergent requirements 

of high-performance buildings. Interviews with researchers and practitioners emphasize that optimisation of building design is not 

about finding the “best” solution but rather to find alternative solutions from automated exploration of a large design space [71]. 

Arguably, “parameter variations” may be a better term when this is the purpose of the optimisation.  

Building designers seek to design buildings that perform well on a wide range of both quantitative and qualitative measures. While 

early building optimisation studies were dominantly single objective, the trend is towards multi-objective optimisation [21]. One way 

to include more objectives is to apply the weighted-sum method which reduces the optimisation problem to single-objective at the cost 

of introducing arbitrary fixed weights to all objectives. Otherwise, multi-objective optimisation consists of quantifying trade-offs 

curves of solutions, known as Pareto Fronts, where objectives cannot be improved further without worsening others. Typically, multi-

optimisation addresses only two objectives though a few recent works applied full 3-objective optimisation [74][75].  

According to two different reviews [21][76], the common objectives to optimize, in decreasing order, are energy, cost, thermal 

comfort, and carbon dioxide. Often, optimisation of one or two objectives is performed while setting constraints for other objectives to 

make sure the constrained objectives comply with relevant standards. Arguably, this approach is inadequate when the designer needs 

to score high in holistic assessments such as LEED [12], BREEAM [65], and DGNB [11] where the overall score depends on a wide 

range of opposing objectives. In such cases, the weighted sum method seems more appropriate. Furthermore, since building 



 9 

 
 

simulations lack qualitative measures, such as aesthetics, space layout, and logistics, optimisation on a few objectives may be at the 

cost of equally important qualitative measures.  

Despite the growing interest for building performance optimisation in academia, adoption in practice is still limited [71]. Barriers to 

widespread implementation consist of various issues that need be addressed. Time-consuming computations have long been a well-

known obstacle. This may be overcome by the proliferation of parallel and cloud computing or by constructing computationally fast 

meta-models [21]. Another issue is the inability of optimisation algorithms to cope with uncertainties [21], which are especially large 

for early building design. Performing optimisation is not trivial, and it requires knowledge and experience to formulate the problem 

properly and select appropriate software and algorithms which calls for education of practitioners [71]. Another hurdle is that available 

optimisation tools, either generic2  or customized for building simulations3, require time-consuming and error-prone linking to the 

simulation software [71]. A solution for this could be full integration of optimisation techniques into commercial software. In addition, 

interviewed researchers and practitioners desired the following features: better GUIs, parallel computing, and coupling of simulation 

software and optimisation tools to do real-time optimisation within BIM models [71]. Simulation experts also need to prove legibility 

of optimisation to architects, building owners, and contractors since building design is a multi-collaborative iterative process where 

stakeholders have different areas of responsibility. 

2.5 CAD-BPS interoperability 

For many years, the field of data exchange and interoperability between CAD models and building performance simulations (BPS) has 

received a lot of attention among software developers and researchers. Table 1 illustrates different ways of combining CAD and BPS, 

i.e. representations of the physical world (CAD) and analytical, numerical models (BPS). Note that the illustrations in Table 1 only 

show one numerical model although there often exists a number of such models of varying sizes. Moreover, interoperability may be a 

mix of the methods shown. For example, run-time interoperability often only works when there exists a common file exchange format. 

Furthermore, one type of analysis may be performed using an integrated, simplified algorithm for early design support, whereas a more 

detailed analysis might prove necessary in later stages. For example, detailed simulations using CFD software. 

 

Table 1 Characteristics and examples of four different methods to combine CAD (large disk) and BPS (small disk). Categorization 
adopted from Petersen [7] and Citherlet [77]  

                                                                        
2 E.g. GenOpt, ModelCenter, modeFRONTIER, DAKOTA, iSIGHT, Matlab optimisation toolbox [136] 
3 E.g. BEopt, TRNOPT, MultiOpt, jEPlus + EA, GENE-ARCH, Opt-E-Plus [136] 

Method  Characteristics Examples 

Integrated 

  

Numerical calculations integrated into CAD 

environment. 

Collision control, duct 

sizing, and solar analysis 

Run-time 

interoperable 

 

Links between CAD software and analytical 

models established by add-on or API. 

Simulations performed at run-time or in a 

concurrently running desktop or web edition of 

the BPS tool. 

Grasshopper and Dynamo 

plugins. SketchUp & 

Revit with Sefaira, 

OpenStudio   

File exchange 

 

Common file exchange format readable and 

sometimes writable from both CAD and BPS 

tools – i.e. Building Information Modelling 

(BIM). 

Proprietary: dwg, rvt, 

gbXML, osm 

Public: IFC, XML 

Standalone 

(users interpret) 
 

Data interpreted by users. Building simulationist 

remodels building or selected rooms by 

interpreting CAD models or drawings and 

eventually presents results orally or in reports. 

EnergyPlus, Radiance 
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2.5.1 Integration and direct links in early design 

Improved interoperability would address several of the early design issues identified in the introduction, e.g. time-consuming iterative 

modelling, and need for rapid feedback. Since the early design stages are dominated by architects, who create building models using 

CAD software, this section focus on the features of the integrated and run-time coupled approaches.  

During the last decades, the CAD industry has evolved from 2D drawings to 3D models and now “4D” models where more and more 

semantic data is integrated into the CAD environment. Moreover, advanced CAD software tends to integrate an increasingly amount of 

analyses, such as collision control, duct sizing, and solar analysis. In addition, various software vendors facilitate BPS through 

dynamically coupled tools or add-ons. Examples include Autodesk’s Green Building Studio [78] for Revit [79] while Graphisoft’s has 

EcoDesigner Star [80] for ArchiCAD [81]. Third party vendors also enable direct links to BPS through application programming 

interfaces (API) to promote early design decision support and rapid analyses. These include Sefaira [82], IESVE [83], and OpenStudio 

[84] that may be linked to SketchUp [85]. Several of these couplings rely on common file formats to do so, i.e. IFC, gbXML, osm, etc. 

Various plug-ins and API’s make use of detailed software engines, such as EnergyPlus [28], Daysim [86], and Radiance [87], which 

are computationally heavy and require lots of inputs. As a consequence, most inputs are assigned to defaults values related to specific 

building types. The challenge of running time-consuming BPS, while designing in CAD, may be overcome by applying cloud 

computing. Such development may facilitate run-time analysis, enable rapid feedback, ease iterations, and reduce amount of 

(re)modeling. Moreover, zoning may be set up in the CAD environment after which changes in geometry automatically updates zoning 

as well. To test such an integrated framework, Batueva and Mahdavi  [9] assessed the use of Graphisoft’s EcoDesigner [80] which has 

been integrated into ArchiCAD. The authors acknowledge the effortless interoperability but desire more intelligence in terms of 

guidance and comparison features [9].  

Much of these efforts rely on software vendors to incorporate BPS into the CAD domain, or link the two, but similar work is carried 

out in the scientific community [88]–[92]. Jakubiec and Reinhart  [89] describe a plugin for Rhinoceros [93] which combines daylight 

analysis, using Radiance and Daysim, with thermal load calculations, using EnergyPlus. Muehleisen and Craig [90] implement the ISO 

13790 monthly energy model into the OpenStudio environment, which is available as a plug-in for SketchUp. The authors conclude 

that this particular plug-in is suitable for parametric simulations and Monte Carlo analysis during early design, because the simulation 

time is five orders magnitude faster than the equivalent EnergyPlus model and the simplified algorithm requires far fewer inputs. 

2.5.2 Parametric geometric modelling 

As exemplified by various authors [94][95][96], parametric modeling are increasingly adopted in design practice by means of tools 

like Grasshopper [97], Dynamo [98], and GenerativeComponents [99].  Concurrently, plug-ins are developed to link these tools with 

BPS thereby enabling data-driven support for early stage, parametric, and geometric modeling. Examples of plug-ins for the probably 

most widely used tool, Grasshopper, include: a) Honeybee which links to Radiance, Daysim, EnergyPlus, and Openstudio [100]; b) 

Mr. Comfy which facilitate interactive visualizations of thermal simulations results [91]; c) ICEbear that integrates indoor climate, 

daylight, and energy performance [92]; and d) Tortuga [101] which estimates LCA and a global warning potential based on the 

Ökobau database [102]. Comprehensive libraries of applications relevant to the architecture, engineering, and construction industries 

can be found on the sites aec-apps.com  [103] and Food4Rhino [104].  The ability to add several plug-ins to parametric modeling could 

be a feasible way to facilitate holistic simulation support. Though, even if plug-ins ensure smooth CAD-BPS interoperability during 

the early design phases such plug-ins may not be suitable for detailed analysis. Therefore, it is desirable that plug-ins make use of 

detailed software engines or common exchange formats to avoid complete remodeling, and to avoid inconsistent results, when the 

design evolves to detailed stages. 

Despite improvements with interoperability, plenty obstacles remain. Most of the couplings illustrated by arrows in Table 1 are uni-

directional. It is very seldom that properties derived from BPS are transferred back to architectural or BIM model. Moreover, BIM are 

still challenged by the complexity of the heterogeneous BPS data which requires user interpretation as well as extensive pre-processing 

and enrichment of incomplete building information [105][106]. Moreover, this central framework with a shared schema has to be 

operated in consensus with all stakeholders, i.e. architects, engineers, and contractors [107]. Aforementioned examples of coupled and 

integrated models are often limited to single user use, since the coupled programs normally have to be installed on the same computer. 

This is troublesome in a multi-actor, interdisciplinary collaboration where different actors possess expertise and responsibility over 

different areas [105].   

In conclusion, much effort is made in academia and by software developers to improve interoperability between CAD and BPS in the 

early design stages. Achieving effortless interoperability and smooth transition between design stages will make life easier for all 

parties involved.  

2.6 Knowledge based input generation 

Building performance software requires hundreds or thousands of inputs which may be assigned manually by the user or by importing 

data from CAD models, shared schemas (BIM), and databases within the software. Databases may include constructions, HVAC 
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components, load and user profiles, weather data, etc. They play an important role in terms of modelling time and reliability. The 

quality and applicability of such databases depend on their ability to address several issues such as: 

 Ease of implementation 

 Scalability and updatable 

 “Best practice”, i.e. in accordance with code compliance or prior experience 

 Flexibility, e.g. usable for both early and detailed analysis and across different tools 

 Ability to be varied in multiple (parametric, batch, or stochastic) simulations 

 Documentation and validity  

Vendor supplied libraries often serve as the only or main source of information for practitioners and are often poorly documented and 

difficult to share and reuse across applications [106]. Such issues are addressed by National Renewable Energy Laboratory that are 

developing a comprehensive, online, searchable library of energy building blocks and descriptive metadata which works for different 

applications [108] [109], e.g. EnergyPlus [28], OpenStudio [84], and DOE2 [110]. Flexible and extensible set of attributes provide the 

opportunity to add metadata such as U-value, cost, and images. In addition, the attributes “user ratings” and “number of downloads” 

may support the selection of materials, components, and systems across fields and practitioners.  

Another large online database is the “building performance database” which contains information about physical and operational 

characteristics of hundreds of thousands of real commercial and residential buildings in the U.S. [26][111]. Aimed at the vast retrofit 

market, this database enables assessment of energy retrofitting opportunities and helps to quantify risk related to project performance. 

A statistics tool is integrated to estimate expected changes in energy performance due to changes in component technologies. Though, 

since the database primarily concerns energy from existing buildings, the effects on indoor climate performance resulting from 

retrofitting remain unknown. 

Performing simulations in the early design phase is challenged by lack of data. This is especially the case for detailed simulation 

software that requires a high level of information. This difficulty may be overcome by a macro-component approach where pre-defined 

constructions allows for energy and LCA assessments in the early phase using detailed software [112]. Similarly, Rodríguez et al. [46] 

aggregates macro-parameters of occupancy and weather data to enable uncertainty and sensitivity analysis in detailed models. Hiyama 

et al. [113] propose a method to automatically generate default configuration for simulations in the early stage thereby making the 

design process more efficient and consistent. The configurations are based on past experience in combination with objectives and 

constraints of the current project. 

Pont et al. [114] make use of semantic web technologies to acquire and utilize building related data available on the Internet. Semantic 

rules and reasoning enable restructuring of ill-structured “web of documents” to machine-readable “web of data” by means of 

interlinking data from various web sources and by re-categorizing the data using consistent logic. Such methods can in theory be 

applied to any web-based resources such as databases and manufacturer sites. Data from different sources may be merged into one rich 

library with links to original data and providing opportunity for regular updates and acquisition of new information. This could be 

information about construction types, materials’ properties, and prices, 

The increasing use of uncertainty analysis and sensitivity analysis calls for development of databases that facilitate stochastic 

simulations. In contrast to deterministic defaults, the designer needs recommendations in terms of appropriate input distributions, input 

spans, and sampling strategies. Lee et al. [115] present an uncertainty and risk analysis toolkit that give energy modelers access to 

previously defined uncertainty distributions for a variety of parameters and models. Furthermore, the toolkit provides automatic 

identification and modification of parameters values in simulation input files. Such efforts might make uncertainty analysis more 

accessible for non-specialists and help to increase the use of UA and SA. 

To sum up, databases may be employed in a variety of ways to support and improve the building design process. When used for setting 

up initial configurations for building simulations, the practitioner must be aware of certain inherent risks: a) the configuration may 

return results in local “optimum” causing the designer to stop exploring a sufficiently large design space, b) default configuration may 

lead to misleading baseline models if there is a big discrepancy between database values and measurements, new requirements, and 

codes, c) initial configurations used in architectural design software may guide the architect in wrong directions if these configurations 

are not aligned with engineers who are responsible for code compliance in detailed design phase.  

3 Software comparison 
As stated in the introduction, the motivation for this review is to identify state-of-the-art within the field of building simulations with 

emphasis on early design. In chapter 2, we covered developments in literature across six research areas. In this chapter, we will 
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propose a simulation framework combining the most promising methods found in literature after which we compare existing software 

packages that may satisfy some of the requirements of such a framework.  

In the introduction, we identified a number of challenges related to building simulations in the design process (see Figure 2). To 

address these diverse issues, it is necessary to combine several of the methods and developments described in the literature review in 

chapter 2. Based on those findings, we describe a framework that, presumably, facilitates proactive, intelligent, and experience based 

building simulation which aid decision making in early design. The proposed framework contains the following properties, which are 

combined in an iterative design process as illustrated on Figure 3: 

0. A knowledge based database represents the starting and finishing point for each project. It must facilitate fast input 

generation, consistency, and collection of experience. Moreover, the database should contain macro-parameters to enable the 

use of detailed software in early design stages (macro-parameters represent predefined sets of constructions, HVAC systems, 

time schedules, etc. that contain the input values necessary to run a detailed simulation). Finally, it should ease the definition 

of uncertain inputs.  

1. A baseline model is swiftly set up by a combination of database inputs and suitable CAD interoperability. 

2. Uncertainties are assigned to inputs and a sampling strategy is applied to explore the global design space and to facilitate 

uncertainty and sensitivity analysis 

3. Thousands of simulations are run using a validated and detailed software engine(s) that evaluate important, interdependent 

design objectives.  

4. Data is analyzed using UA and SA.  

5. On the basis of UA and SA, attention is drawn to the most important design parameters and the design team is informed of 

benefits and consequences of various design strategies. Interactive visualization allows for interaction with the simulated 

data where different stakeholders preferences may be explored. 

 

Figure 4 Desired workflow and properties as facilitated by the proposed simulation framework. 

The properties of desired framework shown on Figure 4 entail various requirements of the simulation software. Therefore, we carry out 

a software review to assess features and limitations of current building simulations software packages. If no software satisfies all 

requirements, we aim to find software candidates that may be combined into the desired framework. Important properties of the 

reviewed software are4: 

A. Users: Is the software primarily intended for architects, engineers, or both? 

B. Design stage: In which design stages are the software typically used?  

                                                                        
4 Properties, omitted in this work, include:  licensing, price, version, status (beta, deprecated), and number of users/downloads.  
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C. Interoperability: How does the BPS software connect to CAD environment and other software packages (see Table 1 for 

definitions)? 

D. Level of complexity of the core algorithms: The complexity set the constraints of design options that the software enables 

to investigate and to what level of detail. For energy and thermal calculations, the monthly averaged ISO 13790 [116] is 

considered to have a “low” complexity level, as opposed to detailed software with “high” level of complexity due to features 

like multi-zones, advanced fenestration, HVAC and lighting control strategies, moisture transport, etc. Somewhere in 

between, we have the hourly averaged ISO 13790 [116] and RC models. For daylight calculations, simplified regression 

models have “low” complexity compared to advanced algorithms that, for instance, use ray tracing or radiosity to evaluate 

illuminance, luminance, and glare under various sky conditions and at different times a year [19].  

E. Objectives: Important, interdependent objectives must be evaluated to ensure holistic design. 

F. Parametric: Ability to run global parametric calculations and to perform UA and SA – either by using integrated features or 

by configuring input text files and accessing output text files. Option to enable cloud computing is desirable. 

In the search for relevant, existing software, we rely on various resources: the tools directory list on U.S. department of energy 

homepage [10], the AEC-apps homepage [103], the BLDG-SIM mailing list [117], and prior knowledge of novel and trending 

software in Scandinavia. A reduced set of programs have been selected for further investigation. Deprecated software packages 

(Ecotect, Vasari) have been excluded along with software that did not seem to fit into the proposed framework (Modelica and TrnSys). 

The selected programs differ greatly in scope, validation, purpose, price, level of detail, and more, but each of them can potentially 

fulfill a specific purpose in the framework described in Figure 4. Table 2 shows how the software compares. In the evaluation of the 

software, we rely on vendors’ homepages, webinars, manuals, colleagues, and other reviews from academia [8][14][118][119]. 

Readers are reminded that both table structure and table inputs are very much governed by our subjective perceptions of the programs’ 

capabilities.  

Table 2 Comparison of software in terms of fulfilling the requirements of the proposed software framework. Checkmarks indicate 
fulfilment of the requirement. Checkmarks in parenthesis indicate that software include the specific feature without satisfying the 
requirement. See explanations of headers A to F in the text. 
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According to our limited review, no existing software package satisfies all requirements of the proposed framework described Figure 

4. Though, the following three software setups may be used as starting point to test the framework.  

Riuska [131] has integrated UA and SA into a standalone application which removes the challenges of linking the processes 

“sampling” and “statistical analysis” with the execution of the simulations (the links illustrated by arrows between 2 and 3, and 3 and 4 

on Figure 4). Supposedly, the lack of several important objectives (daylight, LCA, LCC) will be difficult to remedy by combining 

Riuska with other applications since UA and SA are constrained to Riuska. 

OpenStudio [84] is a collection of software tools which include the validated, detailed applications EnergyPlus and Radiance. The 

packages “parametric analysis tool” (PAT) and “large scale analysis” extends OpenStudio’s capabilities by enabling large parametric 

studies and cloud computing. A SketchUp plug-in facilitate use in early design whereas gbXML compatibility allows for geometry 

import from e.g. detailed Revit [79] CAD models for the late design stage. Through a SketchUp plug-in, OpenStudio may access the 

online, searchable library of user-rated building blocks described in section 2.6 [108] and thereby include several features of the 

desired knowledge-based database. The combined set of tools seems to contain most of the properties needed by the proposed 

framework. Though, several features are still under development (beta-versions) and the use of all the packages mentioned (PAT, 

online database, large scale analysis, and SketchUp plugin) may be precarious and error-prone.  

Honeybee [100] connects the Grasshopper and Rhino framework with OpenStudio and thereby combines the strengths of these 

packages. The former enables parametric studies of building geometry while the link to OpenStudio allows for building performance 

evaluation. However, Honeybee cannot access all features of OpenStudio – namely the “parametric analysis tool” and the “large scale 

analysis. A possible drawback is that the Rhino software is often not detailed enough for the final design models, which complicates 

data interoperability in the transition from preliminary to detailed design.  

In conclusion, it is still not possible to perform global and holistic UA and SA that simultaneously vary geometry, zoning, materials, 

and systems. Riuska seems like a suitable fit for the engineer who wants to learn about, and experiment with, global parameter 

variations with emphasis on energy and thermal comfort. The OpenStudio framework expands these possibilities even further by 

accessing a knowledge based database, assessing most performance metrics, and enabling cloud computing. Though, obstacles remain 

in order to combine these capacities with the parametric tools, Dynamo and Grasshopper, which are growing increasingly popular 

among architects in particular. We emphasize that geometric parameter variations should be done while varying other sensitive inputs 

as well, i.e. global variations (see Figure 1). Otherwise, the results from the BPS will only be valid around the specific baseline with 

fixed HVAC system, controls, materials, etc.  

4 Conclusion and discussion 
This paper provides an overview of the developments in academia and in the software industry related to the use of building 

simulations in early building design. As identified in the introduction, challenges to early stage deployment include lack of 

information, uncertainties, model resolution, and rapid change of design. In addition, general challenges include interoperability, time-

consuming modeling, stricter and opposing requirements, limited reuse of knowledge, and simulation guidance. We identified six areas 

of research addressing one or more of these challenges: proactive building simulations, statistical methods, holistic design, 

optimisation, CAD-BPS interoperability, and knowledge based input generation. Below, we describe promising developments within 

these research areas along with our perception of how these developments may be used to improve building simulation in the early 

stages.  

Proactive building simulations 

Building simulation software is typically used to ensure building code compliance or to evaluate the performance of a few alternative 

designs or systems. Therefore, most software lacks the ability to guide the designer towards better performing buildings. To remedy 

this, a few authors have developed design tools to perform proactive building simulations. The three prototypes, reviewed here [5] 

[7][27], allow fast creation of a number of alternative designs with emphasis on the early design phase. Such efforts contrast the 

typical, time-consuming trial-and-error approach. To avoid locking the designer in one direction, one tool [27] included a degree of 

randomness into the logic creating design alternatives. 

Statistical methods 

In academia, there is a growing interest in stochastic simulations supported by statistical analysis. This approach enables the design 

team to handle uncertainties and to explore large design spaces. Several works apply sensitivity analysis to identify correlations and 

interdependencies between inputs, and to rank design inputs of importance [49][50][52] . Other works uses parametric simulations  or 

building performance databases [56][59]to construct fast meta-models which have few inputs and are suitable for rapid simulations. 

However, meta-models are only valid in the domains in which they were constructed. Applying uncertainty analysis are shown to add 

reliability to results, help explore vast design spaces [41], and assess model quality and robustness [44][45] (e.g. against uncertainties 
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related to user behavior and weather [46]).  Though, the inclusion of uncertainties makes design comparisons less straightforward. 

Finally, multivariate analysis and filtering techniques are effective when analyzing large dissect large amount of simulation data to 

guide decision makers [51][64]. 

Holistic design 

The need to address multiple, contradicting objectives emphasizes a holistic approach during all stages of the design process. The 

means to do so are diverse and include weighted scoring systems [68][69], improved CAD-BPS interoperability, analytical hierarchy 

processes [24][70], and sensitivity charts of multiple objectives [53].  

Optimisation 

Motivated by the stringent and often divergent requirements of high performance buildings, optimisation algorithms have become 

increasingly popular in academia over the last ten years. The trend is towards multi-objective algorithms which focus on energy, cost, 

thermal comfort, and CO2 [21][76]. However, algorithms are still limited to two or three variables at a time. A more important 

drawback is that optimisation lacks qualitative measures such as aesthetics, space layout, and logistics, which are critical parameters in 

early design. Thus, optimisation may favor solutions that come at the cost of other equally important qualitative measures.  

CAD-BPS interoperability 

For decades, academia and software developers have given much attention to the interoperability between CAD and BPS. These 

efforts address the issues of time-consuming modeling, continuity, and interdisciplinary collaboration. The different approaches to 

CAD-BPS interoperability may be split into four categories: a) integrated, b) run-time interoperable, c) file exchange, and d) 

standalone. Dominant vendors gradually integrate algorithms directly into the CAD software [80], or they develop proprietary BPS 

software to ease interoperability [78]. Concurrently, a wide range of add-on applications come to life in academia and in open-source 

communities. Much attention is put on run-time coupling to ensure fast feedback and enable parametric analysis [82][100]. The field is 

rapidly evolving, but still needs to overcome difficult obstacles (for instance, project configuration changes from one project to the 

next, and project members rely on different software packages and modeling tradition). An important challenge is the multi-actor 

collaboration in building design where companies team up differently for each project and have different software tools and design 

approaches. 

Knowledge based input generation 

Input generation for building simulation is often time-consuming and lacks reusability of best practice. Vendor supplied input 

databases are often rigid and have been made for detailed simulations in the late design stages. The works reviewed here cover “the 

development of flexible, online database with optional user ratings” [108][109]; “the definition of macro-components for level of 

detail in early design” [112]; and “input generation using semantic web technologies” [114]. However, the use of default inputs may 

limit the exploration of the design space since default configurations act as constraints for possible solutions. Further work is needed to 

improve input databases to account for the vast possibilities in early design and to enable stochastic modelling. 

Based on the literature review, we have proposed a simulation framework with the ambition to facilitate proactive, intelligent, and 

experience based building simulations (see Figure 4). Though applicable during all design stages, emphasis is on assisting the design 

team to explore the vast design space in the early phases. Another essential element, of the framework, is to ensure holistic design 

thinking in order to create buildings with high overall performance and with respect to different stakeholders’ preferences. The 

proposed framework incorporates promising methods and ideas from literature, among others: flexible and experience based database 

for consistency and fast setup; uncertainty and sensitivity analysis to explore design space and ensure robustness; and a holistic 

approach considering multiple, contradicting objectives (e.g. energy, thermal comfort, and daylight). Finally, the proposed exploration 

of a vast, global design space using thousands of detailed simulations requires cloud computing to ensure sufficiently fast response 

time in the early phases.  

We may test the framework hypothetically using the example from the introduction, in which a highly transparent design is justified by 

a combination of venting and solar shading with unrealistic preconditions. First of all, sophisticated (detailed) algorithms are needed to 

model venting and shading systems appropriately. Secondly, a holistic approach ensures that emphasis on certain objectives, such as 

daylight and transparency, does not come at the expense of other important objectives, like energy and thermal comfort. Uncertainty 

analysis may reveal insufficient robustness towards uncertainties related to control strategy, user behavior, and weather. Sensitivity 

analysis can help the designer to identify the most important simulation inputs, on which he can direct his attention. And finally, a 

knowledge based database would reduce the risk of starting out with unrealistically inputs.  

To identify potential software satisfying the properties of the proposed framework, we have compared 27 software packages, plug-ins, 

and environments (see Table 2). From these, we highlighted three different setups, consisting of the standalone software Riuska [131], 
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the OpenStudio framework [84], and the plugin Honeybee [100] that links Grasshopper [97] and OpenStudio. Since, currently these 

tools do not satisfy all requirements of the framework, further research and development is needed to enable setups that fulfil the full 

potential of proactive, holistic building simulations aiding decision making in the early design stages. 
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