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1. Introduction 

Aggregate outcomes such as technological change and economic growth are results of microevolutionary 

processes of novelty creation and selection. Much research focus on novelty creation such as innovation 

and entrepreneurship. This paper extends the analysis of economic selection by formalizing tools for 

empirical analysis of coevolution of multiple characteristics in a population, and by applying these tools in a 

simple simulation exercise. 

Economic selection – the increasing predominance of superior routines through the propensity of business 

units with superior performance to increase in relative size –  is generally studied empirically or formally 

modelled in a simplified manner where it is assumed to be directional and depending on a single 

performance characteristic. In Andersen and Holm (2014) we explored analytically and simulated more 

complex cases in which selection is not necessarily directional while the possibility of confounding selection 

processes working in opposite directions (e.g. at the firm and industry level) was studied empirically in 

Holm (2014). However, implicitly underlying both of these studies is the assumption that selection is upon a 

single characteristic. This is a common assumption, especially in the guise that selection among firms is 

assumed to be based on productivity of profitability, but it is often too simplistic. Research has not always 

been able to identify this simple selection process empirically and it has hence been suggested that 

selection might work on some combination of characteristics such as financial performance combined with 

the propensity to re-invest profits (Coad 2007; Bottazzi et al. 2010; Coad and Teruel 2013). It does not take 

a very complicated formal model of competition for firms’ heterogeneous preferences for expansion to 

seriously confound the relationship between productivity and growth (Metcalfe 2010). 

With inspiration from Rice (2004) we show that it is possible and practically feasible to quantify economic 

selection in empirical studies even when simultaneous selection on multiple characteristics of business 

units is confounding the relationship between covarying characteristics and fitness. The confounding 

effects of investment behaviour and financial performance may be disentangled with this methodology. But 

it also has other uses such as the study of simultaneous selection in factor and output markets (Metcalfe 

1997; Baldwin and Gu 2006; Metcalfe and Ramlogan 2006). Even in a straightforward model of competition 

where firms compete by undercutting each other’s prices the simple assumption that labour markets are 

less than perfect and that growing firms hence must offer a relatively high wage rate to attract employees, 

and thus have higher unit costs, entails that the relationship between profitability and growth becomes 

confounded (Metcalfe 1997). As soon as profits are imperfectly correlated with investment decisions we 

cannot ensure that the most competitive firm in terms of unit costs is the fittest firm, in the evolutionary 

sense of having the fastest rate of growth among its population of rivals. 

The discussion below is, in essence, a warning against the perils of simple models of selection in which firms 

are allowed to vary in only one dimension, usually unit cost or its inverse total factor productivity, and have 

that selective characteristic tested in only one market, typically the product market for the firm. As a 

pedagogic device this is perfectly reasonable and much can be demonstrated about the attributes of 

evolutionary processes and the dynamics of creative destruction, particularly the idea that evolution 

depends on correlation of characteristics with aspects of firm performance, growth price setting and so on. 

However, real world economic selection processes are not typically of this simple kind and many an 

empirical puzzle can only be illuminated if a more general approach is followed. In particular, firms differ in 

the quality of the goods that they sell and an essential element of Schumpeterian competition is defined by 

product innovation and not just process innovation. Moreover, firms compete not only for customers but 



3 

 

for employees and for access to capital so that labour and capital markets deeply condition the rate and 

direction of evolution across the population of firms that we call an industry. A far richer account of 

economic evolution depends on taking these, and related dimensions of the competitive process seriously 

and our task here is to set out some of the grounding principles of a more general evolutionary economics 

in which selection across bundles of many characteristics takes place within a system of interdependent 

markets for goods and factors of production. 

This draft paper proceeds as follows. Section 2 presents a simple analytical framework for handling the 

confoundedness produced by multivariate selection and multiple types of selection. Section 3 presents 

models developed within this framework as well as simulation results. Section 4 includes a few conclusions. 

2. An analytical framework 

More than thirty years ago, Nelson and Winter (1982, 29) wrote that “the intellectual coherence and power 

of thinking about Schumpeterian competition have been quite low, as one would expect in the absence of a 

well-articulated theoretical structure to guide and connect research.” The analytical situation has in the 

meantime improved radically, especially with respect to the analysis of the selection and evolution of single 

characteristics. In contrast, the study of selection and evolution of multiple and interdependent 

characteristics still seems to lack analytical guidance and integration. Since the much-needed analytical 

framework does not seem to emerge spontaneously within evolutionary economics, we suggest the 

shortcut of cautiously importing and redesigning analytical tools from evolutionary biology. The need for 

caution should be obvious for any evolutionary economist who recognises the heavy dependence of the 

biological toolbox on specific modes of transmission of genetic traits across generations.  Nevertheless, 

many evolutionary biologists help to bridge the gap by working with generic evolutionary tools and/or at a 

high level of abstraction. 

2.1. Approaching multivariate evolution 

Metcalfe (1994, 329) moved from R. A. Fisher's specific theorem of genetics-based natural selection to the 

general “Fisher Principle” in order to make the work of the great statistician and evolutionary biologist 

relevant for evolutionary economics. The Fisher Principle states that “in the context of a population of 

diverse behaviours across which selection is taking place in a constant environment, the rate of change of 

mean behaviour is a function of the degree of variety in behaviour across the population.” Under such 

circumstances the gradually evolving mean behaviour becomes increasingly informed about and adapted to 

the environment of the population. Evolutionary economists have formalised and applied this principle in 

the study of simple selection and evolution in simple environments. However, the conditions of Fisher's 

Principle are seldom fulfilled. First, the stability or lawful patterning of the environment of an economic 

population obviously cannot always be taken for granted. Second, selection can work on a number of more 

or less conflicting behavioural characteristics. For example, a fluctuating environment may repeatedly shift 

the characteristics that are focussed upon by selection. Furthermore, the input markets and the output 

markets can emphasise conflicting characteristics of the population. Third, the importance of multiple and 

shifting characteristics means that it is often not obvious which characteristics of behaviour that has to be 

recreated when old variance has been used up by the selection process.  

The move from Fisher’s Principle toward an extended and more operational toolbox for theoretical and 

applied evolutionary economics involves a large research agenda. The turbulent environment and its 
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shifting focus on different characteristics of behaviour have already to some extent been confronted by 

innovation studies. Furthermore, industrial dynamics has studied the systematic change of selective focus 

between different behavioural characteristics during the industry life cycle. However, we are still missing 

general principles and statistical methods for handling selection and evolution of multiple and potentially 

conflicting characteristics of behaviour. The lack of analytical tools seems to have slowed down the move 

from the well-understood univariate analysis to the general analysis of multivariate selection and evolution. 

In turn, the lack of multivariate analysis has decreased the analytical clarity and power of evolutionary 

economic studies that try to extend Fisher’s Principle in other directions.   

To move from univariate to multivariate selection has already been made within evolutionary biology. The 

statistical procedures for theorising and data analysis can be traced back to Fisher (1930), but a very helpful 

jump forward was made by the Chicago School, a group of Chicago biologists working within quantitative 

genetics in the late 1970s and early 1980s (Lande and Arnold 1983; Conner and Hartl 2004). The Chicago 

approach to phenotypical selection and evolution is based on the statistical analysis of the fundamental 

requirements for any evolutionary process: variance of the characteristics of the population, covariance 

between characteristics and the reproduction of members, and the intertemporal inertia of the 

characteristics. By focusing on these requirements for phenotypical evolution rather than on the direct 

study of genetic evolution, this approach has been very successful for studying “natural selection in the 

wild” (Endler 1986; Brodie et al. 1995; Kingsolver et al. 2001; Kingsolver and Pfennig 2007). With some 

caution and modification, the approach can also be used for the analysis of economic selection and 

evolution. This use has been eased by reformulations and developments by e.g. Rice (2004) of the Chicago 

School approach in relation to the very general analytical framework of R. A. Fisher and George R. Price. 

Since we have already developed the basic analytical framework elsewhere (Andersen 2004; Metcalfe and 

Ramlogan 2006; Andersen and Holm 2014; Holm 2014), we in the following move quickly from Price’s 

Equation to the Chicago novelties with respect to evolutionary economics. 

George Price (1970; 1995) worked at a deeper level than the Chicago School. He thought in terms of a 

population that is studied at two subsequent points of time,   and   . He assumed that any member of the 

  -population can be connected to a member of the  -population. This made it possible for him to define 

absolute fitness for each  -member as the number by which multiply its  -size to get its representation in 

the   -population. Then Price defined evolution as the change of the population mean of a characteristic 

between the two points of time. He also defined selection as the part of evolution that can be explained by 

the covariance between the characteristic values of the members of the  -population and their fitness. The 

residual of the evolutionary change of mean characteristic is explained fully by mean intra-member change 

evaluated in the   -population. Thus Price’s Equation – or Price’s Identity – can be written as 

                                                              . (1) 

The developers and users of the Chicago approach agree with Price, but they normally focus on concrete 

problems of artificial selection and natural selection in the wild. In these connections, the problems of 

handling selection on multiple characteristics are obvious. For example, when breeders are performing 

artificial selection, they recognise that by selecting on a single characteristic they are often coselecting 

unwanted characteristics. The Chicago approach handles this and similar problems by thinking of total 

evolutionary change as a vector that consists of the changes in a number of different characteristics (e.g. 

Lande and Arnold 1983). In the context of artificial selection, each element of the vector can e.g. be a 

selection differential, i.e. the difference between the mean value of the patents chosen for breeding and 
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the mean value of all potential parents in the population (most of which have be slaughtered or harvested). 

However, this selection differential is the combined result of direct selection on the studied characteristic 

and the indirect effects on that characteristic of (artificial) selection working on other characteristics. 

To confront this difficulty the Chicago School has provided two new tools (under the assumption of 

multivariate normal distribution; otherwise things get complex). The first tool is the vector of selection 

gradients, i.e. the direct effects of selection on the different characteristics. While a selection differential 

includes both the direct and the indirect selection on a characteristic, a selection gradient is the partial 

regression of relative fitness on a characteristic. Thus the selection gradient ignores indirect selection due 

to other analysed characteristics and measures only the direct selection of the characteristic. The second 

tool to handle multiple characteristics is the matrix of phenotypic covariances between characteristics. This 

matrix reflects the fact that different characteristics may be interdependent. For example, we have the case 

in which members of the  -population that have high values of one characteristic also tend to have high (or 

low) values of coupled characteristics. This means that when selection acts directly on one characteristic, it 

also influences the population mean of more or less closely coupled characteristics. The elements of the 

phenotypic covariance matrix can be zero, positive, or negative.  

By combining the two new tools, we can understand the strange ways in which the process of selection on 

coupled characteristics might work. For instance, the change of the mean of the focal first characteristic is 

potentially influenced by all the studied characteristics. The selection effect in equation (1) now consists of 

one direct effect and multiple indirect effects. The direct effect is found by multiplying the first element of 

the covariance matrix by the first element of the vector of selection gradients. Thus we are multiplying a 

covariance with a partial regression coefficient. However, since we are here dealing with the covariance of 

the first characteristic with itself, we are actually multiplying the variance of the first characteristic by the 

efficiency of direct selection on that characteristic. The indirect effects might involve important covariances 

(and thus correlations). For example, the first indirect effect on the change of the mean of the first 

characteristic is found by multiplying the covariance between characteristics 1 and 2 by the selection 

gradient of characteristic 2. Surprising things can result from this multiplication since the covariance might 

be negative and the selection gradients of characteristics 1 and 2 might have opposite signs. Thus this 

indirect selection of characteristic 1 might remove or invert a positive direct selection on characteristic 1. 

However, although the effects of such couplings of characteristics have been analysed intensively by 

evolutionary biology, there are still discussion about the frequency of this phenomenon in nature (Agrawal 

and Stinchcombe 2009). 

The Chicago School has also promoted the analytical distinction between different types of selection on the 

characteristics of the vector of evolutionary changes of characteristics. Although we have already dealt with 

this contribution (Andersen and Holm 2014), it is worth repeating that it is important to add other types of 

selection to the type of selection that is implied by Fisher’s Theorem and Fisher’s Principle. While most 

thinking of selection with evolutionary economics has been dominated by the – positive or negative – 

directional selection that results in a change of the mean of a characteristic, it is easy to define and search 

for two other types of types of selection that can take place with a constant mean of the population. In the 

Chicago approach all three types of selection are easily captured by means of multiple regression. The 

dependent variable is relative fitness. The linear independent variable is the value of the characteristic, 

which relates to the mean of the population. The nonlinear independent variable is the squared distance of 

the characteristic from the mean, which relates to variance. Given these definitions, the model estimates 

the coefficients of the independent variables,    and   . We observe pure directional selection if    is 
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different from zero and    is zero. We have pure stabilising selection if    is zero and    is negative. In 

contrast, pure diversifying selection means that    is zero and    is positive. Both types of “variance 

selection” seem important for the overall evolutionary process. Diversifying selection can help to create 

new populations. Stabilising selection (with the special case of purifying selection) helps to uphold complex 

systems of characteristics on which gradual adaptation depends. 

2.2. A simple framework for analysing multivariate selection 

It is time to convert the short presentation of the works of Fisher and Price as well as of the Chicago School 

approach into a simple framework for analysing multivariate selection and evolution. The core trick is to 

operate in the short run. In contrast to long-term analysis we can to a larger degree concentrate on 

selection and thus minimise the importance of the some of the huge differences between economics and 

biology. We also think that the simple short-term framework helps to think clearly about concepts and 

measurements of selection. Finally, in the Nordic countries and some other countries immensely rich data 

on each firm and each citizen has become available for relatively short-term scientific analysis. 

Our basic analyses apply two subsequent population censuses. Since we emphasise selection, we call them 

the pre-selection census and the post-selection census. When needed, we distinguish by adding a prime to 

variables that relate to the post-selection census. The two censuses provide the basis for calculating 

statistics on fitness and characteristics as well as the relationships between them. This procedure can be 

presented in three basic steps (Andersen and Holm 2014), but in the present paper we include three 

additional steps.  

1. In each of the two censuses we for each member measure its population share. Then we calculate 

the (relative) fitness of each member as the ratio of its population shares after and before 

selection. Thus the population has mean fitness  ̅   .  

2. The censuses provide information on a focal characteristic 1 of the members of a population. In 

each census we for each member measure the characteristic value of   , and we calculate the 

member-level change of    between the two censuses. We then calculate the weighted means of 

   in each of the two censuses,   ̅ and   ̅
 , as well as the change of the mean between censuses, 

   ̅. We also with respect to the post-population shares calculate the weighted mean of the 

member-level change of the characteristic,  (    ). 

3. We use the member-level information to calculate the covariance between fitness and 

characteristic 1,    (    ). This covariance is equal to the product of the total regression of 

fitness on the characteristic and the variance of the characteristic,      
        (  ). 

4. We extend the censuses beyond the focal characteristic to cover a set of new characteristics 

labelled from 2 to  . We do so by repeating steps (2) and (3) for each additional characteristic. One 

of the results is that we are provided with a vector of changes of mean characteristics, 

  ̅  [
   ̅
 
   ̅

]. 

We want to explain this vector – with special emphasis on   ̅ . We have much of the information 

for this analysis, but steps (5) and (6) provide us with crucial tools. 

5. For the pre-selection census we check whether the characteristics are correlated by calculating the 

“phenotypic” covariance matrix, 
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  [
       

   
       

]  [
   (     )     (     )

   
   (     )     (     )

], 

where the diagonal represents variances, since e.g.    (     )     (  ). The rest of the 

symmetric matrix is filled with covariances, where e.g.    (     )     (     ). We can also 

calculate   , that is, the phenotypic covariance matrix for the post-selection population. By 

comparing it with    we can check the stability over time of the matrix, but this comparison is not 

made in the present paper. 

6. We end the census-related work by calculating the vector of partial regressions of fitness on each 

of the characteristics, 

  [

     

 
     

]. 

We have an interesting case if, for example,      
 is different from      

     , which was provided by 

step (3). 

This six-step procedure prepares real analysis. Much can be learned from the first three steps, For example, 

we can turn to simple applications of Price’s Equation (1) for analysing the relative importance of the 

selection effect and the intramember effect with respect to individual characteristics 

   ̅      (   )   (   ). (2) 

By rewriting Price’s Equation (2), we obtain 

   ̅     (   )     (    )   (  ), (3) 

which is quite interesting since it is exactly identical to the technique introduced in 1998 by Foster and 

colleagues. The last term is the “within effect”, i.e. the change in  ̅ in the absence of any selection, while 

the middle term is the “cross-level covariance-type effect”. It is covariance between relative fitness and the 

change in characteristic. As with the original Price’s equation, equation (3) has the important property that 

it “eats its own tail” meaning that it can be applied in multilevel studies of evolutionary processes (Holm 

2014). However, in the remainder of this paper we will focus on    (   ) as we will generally assume that 

     and thus    (    )   . 

In any case, the main task of our six-step procedure is to promote the analysis of multivariate selection. We 

can use the P matrix and the vector of selection gradients for the characteristics to predict the responses to 

selection pressures that act simultaneously on these characteristics. In condensed matrix format the 

equation is 

   ̅    . (4) 

Let us, for example, expand the mean change of the first characteristic: 

   ̅     (  )     
    (     )     

      (     )     
. 

Here the evolutionary response to selection of the first characteristic has   components. First, there is the 

direct response to selection,    (  )     
, which consists of the change in the mean of characteristic 1 due 

to selection acting directly on characteristic 1. The other     contributions are the indirect responses to 

selection due to correlation (and this covariance). For example,    (     )     
 represents the indirect 

change in the mean of characteristic 1 due to its covariance with the second characteristic. 
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It is, of course, possible that the change in the mean of characteristic 1 is totally or largely due to the direct 

selection on characteristic 1. Another possibility is that several correlated responses to selection dominate 

over the direct response (see table 1). In the extreme case, direct selection tend to produce high levels of 

the first characteristic while its mean becomes smaller due to negative covariances or to low values of 

other characteristics. These and other possibilities are presented in table 1. Here we distinguish between 

five types of bivariate selection (cf. Conner and Hartl 2004, 223). If we ignore the case in which bivariate 

selection reduces to two univariate selections, we can classify the outcomes in terms of the signs of the 

selection gradients and the correlations of characteristics. For example negative correlation of the 

characteristics and gradients with opposite signs leads to negative augmentation of direct selection. 

However, when correlations are still negative while gradients have the same sign, we are facing what may 

be called a correlation constraint on the evolution of the characteristics.  

 

Table 1: Effects on evolutionary change of signs of selection gradients and correlations of characteristics 

Type of selection on 
two characteristics 

Definition Stylised example 

Univariate selection No correlation of characteristics  [
  ̅ 

  ̅ 
]  [

 
 
]  [

  

  
] [

 
 
] 

Positive augmentation 
Positive correlation of characteristics + 
gradients with same sign 

 [
  ̅ 

  ̅ 
]  [

 
 
]  [

  

  
] [

 
 
] 

Negative augmentation 
Negative correlation of characteristics 
+ gradients with opposite sign 

 [
  ̅ 

  ̅ 
]  [

 
  

]  [
   

   
] [

 
  

] 

Gradient constraint 
Positive correlation of characteristics + 
gradients with opposite sign 

 [
  ̅ 

  ̅ 
]  [

 
 
]  [

  

  
] [

 
  

] 

Correlation constraint 
Negative correlation of characteristics 
+ gradients with same sign 

 [
  ̅ 

  ̅ 
]  [

 
 
]  [

   

   
] [

 
 
] 

 

2.3. Path analysis of multivariate selection 

As emphasised by Frank (2013), the use of multivariate analysis has two major purposes. The approach to 

multiple regression analysis that is based on classical statistical theory focuses on correlations and 

variances and rejects causal interpretation (since correlation is not causation). In contrast, the approach to 

multiple regression analysis that is based on path analysis makes statistical models that are based on 

hypotheses about causes. We clearly prefer the latter approach since it can support theoretical analyses of 

adaptation produced by selection. 

Let us take the study the evolution of three interdependent characteristics:         , which might be 

interpreted as firm characteristics that, respectively, relates to the output market, the capital market, and 

the labour market. If the population of firms that have these three characteristics is statistically well-

behaved, we can mechanically use the Chicago approach. Since   ̅    , we have 

                                   [

   ̅

   ̅

   ̅

]  [

   (  )    (     )    (     )

   (     )    (  )    (     )

   (     )    (     )    (  )
] [

     

     

     

] (5) 
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The same result can be obtained by a more elaborate but potentially more enlightening way by path 

analysis. Thus Rice (2004) suggests the use of path analysis to deduce decomposition equations for 

multivariate selection problems. Path analysis is a particularly useful tool when seeking to describe and 

understand the origins of selection differentials as it allows complicated problems to be illustrated in a lucid 

figure. This is trivial for the above simple versions Price’s equation, but they can be important when 

multivariate selection is being studied (since the relational structure quickly becomes complicated). 

A path diagram contains all variables of interest and their relations. Relations are described by a straight 

line with an arrow at one end if it represents a hypothesis about a partial regression coefficient and by a 

curved line with arrows at both ends if it is a covariance. Source variables are those that have no incoming 

straight lines, so they can only be connected by covariance relations. Other variables are called 

downstream variables. 

The covariance between any two variables can be computed as the sum of all different paths leading from 

one variable to the other. The paths are constructed using the following rules. First, you can move either 

backwards or forwards along a straight line but not both. Second, you cannot pass through the same point 

more than once. Third, you cannot pass through more than one curved line. 

The value of each path is computed as the product of the following effects: a covariance for the curved line 

(if any), a variance for each source variable with no curved line and a regression coefficient (potentially 

partial) for each straight line. As a simple example consider the covariance term of equation (2). The 

associated path diagram is then 

 

Here we obviously have only one path. The covariance term of equation (2) can then be described as the 

variance of the source variable times the slope coefficient from a linear regression of   on  : 

   (   )     ( )    , where      is the slope coefficient from the simple regression       

             

Path analysis becomes interesting when there is more than one source variable. Suppose that we are 

studying the evolution of three characteristics of equation (4):         ,. A path diagram for this case is 

illustrated in figure 1. 

 

Figure 1: The path diagram behind equation (5) 

   (    ) must now be computed as the sum of three paths: The direct path from the source variable    

to   and the two paths passing through each of the other source variables on the way to  : 

    (    )     (  )     
    (     )     

    (     )     
 

𝑤 𝑧𝑖 

𝑤 

𝑧𝑌 

 

𝑧𝐾 

 

𝑧𝐿 
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where the betas are slope coefficients from the multiple regression            
          

     

     
          . The mean characteristic then evolves in the population according to  

   ̅      (  )     
    (     )     

    (     )     
 

For a given vector of characteristics identified as determinants of relative growth of firms (i.e. fitness) the 

associated path diagram generally consist of the characteristics as source variables and fitness as the only 

downstream variable. Based on figure 1 it can be deduced that the selection differential for the coevolution 

of the three characteristics can be written in matrix form as the product of the covariance matrix of the 

characteristics and the vector of partial regression coefficients of fitness on the characteristics. Total 

evolution will in general be this selection differential plus the usual intramember effects, cf. equation (2). 

The resulting equation simply repeats equation (5): 

 [

   ̅

   ̅

   ̅

]  [

   (  )    (     )    (     )

   (     )    (  )    (     )

   (     )    (     )    (  )
] [

     

     

     

]. (6) 

Inspecting the elements of the decomposition allows us to explain the coevolutionary pressures creating 

unexpected results in an empirical or simulation application, given the amount of fuel (variation in 

characteristics) and efficiency (partial regression coefficients) of the process. 

The matrix form expression for the coevolution of multiple characteristics in a population, as in equation (5) 

and (6), and the approach based on deriving separate weights for various elements in the process in 

Metcalfe (1997; 2010) provide two different perspectives on the processes. In the matrix form, the 

evolution of a characteristic will depend on the strength of selection in each market weighted by the 

covariance of the characteristic in question and the characteristic being selected upon in the relevant 

market. For example, the evolution of the characteristic that is selected upon in the labour market,   , 

depends on the strength of selection in the capital market only to the extent that    covaries with the 

characteristic that is selected upon in the capital market,    (assuming that    and    are not identical). 

3. Modelling and simulation results 

3.1. Modelling strategy 

In this section we will demonstrate selection may be confounded so that seemingly fit firms do not grow. 

The modelling strategy has two steps: a data generating algorithm and a deterministic selection process. 

The data generating algorithm is a set of rules for defining the pre-selection population. It is at this step 

that we may introduce correlation among the traits of business units. The selection process determines 

how the pre-selection population evolves into the post-selection population. At this step we may 

implement different selection functions based on different assumptions regarding the characteristics of 

business units. Finally the evolution from pre-selection to post-selection population is described by the 

identity in equation 6. This step is merely a measurement step and we have no influence on the results. The 

strategy is illustrated on figure 2.  
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Figure 2: The modelling strategy 

 

When evaluating whether selection is confounded we compare the values of the selection gradient with 

the observed evolutionary change. Selection is argued to be confounded when these have opposite signs. 

That is,    ̅    while      
   selection on    is confounded in the sense that business units with 

relatively high values of    have decreasing population shares, while at the same time the mean of    is 

increasing in the population. Each simulation will be repeated 100 times and the results plotted in a   ̅ by  

     space. 

The pre-selection population will consist of 100 business units. Each business unit is characterised by a 

vector of three characteristics:    (         ). In a more general model business units might enter 

and exit, and the characteristics of a business unit would change over time through adaptation and 

innovation but these complications are not included here as they are inconsequential for the research 

question, as explained above. Thus the evolution of the characteristics in the population   ̅, is described 

fully by   ̅    . Any change in the means of the characteristics must come from the relative growth or 

decline of business units. 

The data generation algorithm proceeds as follows: The three characteristics are all drawn from standard 

normal distributions with correlation matrix  . All business units have equal population shares in the pre-

selection population:    
 

   
    

For the rules of the selection process we follow the general lines also applied in Andersen and Holm (2014). 

This means that we specify a deterministic function for absolute fitness. We then transform the outcome 

into relative fitness and allow the population to evolve according to equation 7. 

          (7) 

Relative fitness is defined as absolute fitness divided by population fitness:    
  

 ( )
 and absolute fitness 

is determined by the relation: 

    (   ) (  ) (8) 

The general fitness function specified in equation 8 is an exponential function. The parameter   determines 

the pace of evolution in the sense that a business unit will grow by       percent as many times as 
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specified by the exponent. The specification of the exponent determines the type of selection. In the 

current paper we have chosen a specification where there is stabilising selection on    with optimum at 

     and positive directional selection on    and   . The exponent is determined by: 

  (  )   |   |  (       ̅̅̅̅ )  (       ̅̅ ̅̅ ) (9) 

The rules of the selection process are uniform in all of the simulations presented in the current paper.   is 

fixed at 0.5. This sets a relatively high pace for evolution but allows us to disregard the possibility of 

multiple time periods between pre- and post-selection populations. The data generation algorithm is also 

the same in all simulations except for the value of    : the correlation between the standard normal 

distributions from which    and    are drawn. 

   [
     

     
   

] (10) 

In all simulation there will be directional selection on    which is independent of the other characteristics. 

There will also be directional selection on    but this characteristic will to varying degrees be correlated 

with a third characteristic,   , upon which there is stabilising selection. 

3.2. Baseline simulation (     ) 

In the first simulation the three traits of the business units are uncorrelated;        in equation 10 above. 

The pre-selection population is described by the vector of mean characteristics  ̅. After having being 

subject to the deterministic selection process described in equations 7 to 9 the post-selection population is 

created, and it is described by  ̅ . The evolution of the population is described by the change in mean 

characteristics,   ̅. This evolution is then decomposed into the variance-covariance matrix of the 

characteristics and the selection gradient as described in equation 5. In a typical baseline simulation the 

results look as presented in figure 3. The result is as should be expected.   ̅  has decreased slightly as the 

initial population mean of     ̅ , was higher than the assumed optimum at zero. The remaining two 

characteristics have increased in accordance with the assumed directional selection process. The final 

product on the right is the decomposition   . The elements of the selection gradient reflect the assumed 

selection rule and correspond to the observed evolution in means:     and    have positive selection 

coefficients while    has a coefficient close to zero. 

 

[

  ̅ 

  ̅ 

  ̅ 

]  [
     

     

     

]  [
     

     

      

]  [
      

     

     

]  [
               

               

               

] [
      

     

     

] 

Figure 3. A typical result from a baseline simulation 

 

However the stochastic nature of the data generation process entails that sampling variation can create 

covariance in   even when correlation is explicitly excluded from  . This means that the baseline 

simulation may also result in the output in figure 4 where selection on    is confounded:    is growing in 

the population while the higher the value of    for a single business unit the lower its relative fitness. It is 

clear from figure 4 that the result is created by covariance between    and both    and   :     

               . 
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]  [
     

     

     

]  [
      

      

     

]  [
     

     

     

]  [
               

               

               

] [
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Figure 4. A relatively rare result from a baseline simulation 

 

Figure 5 plots the results from figures 3 and 4 along with 98 additional simulations with the baseline 

specification. The values of    ̅ and      
 cluster around zero while of    ̅,    ̅,      

and      
 all are 

consistently positive. 

 

 

Figure 5: 100 baseline simulations 

 

Figure 5 also includes three regression lines; one for each characteristic. All three have a positive slope 

indicating that there is a positive relationship between the gradient element, even for   . Even though 

there is stabilising selection on    we still observe that the change in mean characteristic takes the same 

sign as the selection gradient. 

3.3. Simulations with correlation (     ) 

In this section we will present the results from assuming that      . Specifically, we will let the 

correlation approach unite in a stepwise manner which can be illustrated in a series of simulations. Adding 

correlation between   , upon which there is stabilising selection, and   , upon which there is directional 

selection is expected to lead to confounded selection, as the selection mechanism will be pushing   ̅  

towards zero and   ̅  towards ever higher values, while at the level of the business unit they are positively 

correlated. 
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The results from specifying         to         in increments of 0.1 are shown in figure 6. This yields a 

total of 9 different parameterisations. Compared to figure 5 (where      ) it does not make a big 

difference if instead        . However, as the correlation increases the result for the evolution of   ̅  

moves into the top left part of each plot. In this region selection is confounded:   ̅  is positive while      
 

is negative meaning that the average of    is increasing in the population but business units with high 

values of    have relatively low growth. The reason why this can happen is that the    is correlated with    

upon which there is positive directional selection. 

 

 

Figure 6: 9 different parameterisations for     

 

It is also worth noticing what happens to the evolution of   ̅ . Selection on this characteristic is direction 

and in all simulations both   ̅  and      
 are positive. However the regression line in the plots illustrating 
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the relationship between   ̅  and      
 becomes flatter when     increases and when         it is 

practically flat. This indicates that selection can be said to be confounded in a weaker sense: The sign on 

  ̅  allows us to infer the sign of      
, but the magnitude of   ̅  contains no information regarding the 

magnitude of      
. 

The results show how observed evolutionary change may not convey the suspected information about 

optimality. As an example, consider a population where there is selection on at least two characteristics: 

the relative size of business units’ administrative department and business units’ total wage costs. On the 

former there is stabilising selection towards and optimum size and on the latter there is directional 

selection towards lower costs. If these traits correlate, so that more administration is correlated with 

higher labour costs, then we would not be able to infer the actual selection process from observed 

evolution: the size of the average business units’ administration would be decreasing even below the 

optimal size. And the pace at which the average labour costs of business units decrease says very little 

about the importance of labour costs for business units’ growth. A study focussing on the representative 

agent or assuming that business units all have the optimal configuration from rational choice and/or 

competitive pressure would miss this important point. 
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