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ABSTRACT

The reconstruction quality which can be obtained using com-
pressive sensing depends on a number of elements. In the
present paper, we establish performance indicators and use
these to model the reconstruction quality of atomic force mi-
croscopy images undersampled with Lissajous sampling pat-
terns. For this purpose, we consider previously proposed per-
formance indicators. Furthermore, we propose new perfor-
mance indicators based on the relative energy of the subsam-
pled dictionary matrix atoms. Through extensive simulations,
multiple affine models are evaluated in terms of modified co-
efficients of determination. The results show that the pro-
posed performance indicators are highly correlated with the
average reconstruction quality. In conclusion, the proposed
performance indicators can be used to model reconstruction
quality for the given application, and the proposed model out-
performs the previously established model.

Index Terms— compressive sensing, atomic force mi-
croscopy, Lissajous sampling patterns, reconstruction quality

1. INTRODUCTION

Atomic force microscopy (AFM) is an advanced tool for in-
vestigating and manipulating nanoscale surfaces [1]. In par-
ticular, sub-nanometer resolution 3D surface maps can be ob-
tained when using AFM for high-resolution imaging [2]. This
is done by moving the surface and a sharp probe relative to
each other whereby a force is asserted on the probe by the
surface [3]. Unfortunately, standard AFM image acquisition
takes on the order of minutes to hours [4].

One approach to reduce the acquisition time is to re-
duce the number of samples using compressive sensing (CS)
[5]. This recent signal acquisition paradigm allows accurate
reconstruction of certain signals from fewer samples than
suggested by the Nyquist rate [6]. However, reconstructing
the signal means solving a non-convex optimisation problem
which, in the noiseless case, takes the form [7]:

minimise ||α̂||0
subject to y = ΦΨα̂

(1)

where y ∈ Rm×1 is the sampled vector, Φ ∈ Rm×p is a

so-called measurement matrix, Ψ ∈ Cp×n is a so-called dic-
tionary matrix, and α̂ ∈ Cn×1 is the reconstructed coefficent
vector. In the present context, y contains the sampled pixel
values, and the reconstructed signal Ψα̂ = x̂ ∈ Rp×1 con-
tains the reconstructed pixel values.

In order to acquire an image with AFM using CS, the user
must choose Φ and Ψ in (1) as well as a so-called reconstruc-
tion algorithm. In a recent effort, the achievable reconstruc-
tion quality is modelled using performance indicators calcu-
lated from the Φ and Ψ [11]. The present paper is concerned
with improving the established model for Lissajous measure-
ment matrices and the discrete cosine transform (DCT) dic-
tionary. The Lissajous scanning path has been chosen for its
simplicity, ultra-narrow frequency spectrum, low sensitivity
to measurement noise, and multiresolution capabilities [1].

In [11], three performance indicators are proposed. The
first of these is the well-known quantity of mutual coher-
ence which describes the maximum correlation between the
columns of Ψ and the rows of Φ:

µmut(Φ,Ψ) = max
1≤i≤m,1≤j≤n

|Φi,:Ψ:,j |

The second performance indicator is the well-known
quantity of coherence which describes the maximum correla-
tion between two columns of A = ΦΨ:

µcoh(Φ,Ψ) = max
1≤i 6=j≤n

|ΨT
:,iΦ

TΦΨ:,j |
||ΦΨ:,i||2||ΦΨ:,j ||2

Finally, the third performance indicator is the recently es-
tablished coherence 2-norm which describes the root-mean-
square correlation between two columns of A = ΦΨ:

µrms(Φ,Ψ) =

√√√√√√ 1

n2 − n

n∑
i=1

n∑
j=1
j 6=i

(
|ΨT

:,iΦ
TΦΨ:,j |

||ΦΨ:,i||2||ΦΨ:,j ||2

)2

Based on the above performance indicators, an affine re-
construction quality model was established:

q̂ = a1µmut + a2µcoh + a3µrel + b

where the dependency on Φ and Ψ is implicit.
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With the constraints put on Φ by the given application, Ψ
is effectively subsampled to form A = ΦΨ. Depending on
the subsampling, some active dictionary atoms could have all-
zero entries sampled and make reconstruction impossible. To
establish a model which accounts for such undesired effects,
additional performance indicators are required.

In the present effort, we propose two novel performance
indicators to detect incompatibility between Φ and Ψ. Based
on these and the previously stated performance indicators, we
establish a simple affine model to fit the reconstruction qual-
ity within CS for AFM constrained to Lissajous sampling pat-
terns and the DCT dictionary. A large number of simulations
have been performed to estimate the parameters of the model
and evaluate both the model and the performance indicators.
The simulations include a number of images, reconstruction
algorithms, and measurement matrices. The results show that,
in terms of modifiedR2, the proposed performance indicators
yield better models than the other performance indicators do.
Furthermore, the proposed model outperforms the previously
established model.

2. INDICATORS

The given application puts certain constraints on Φ because
AFM physically limits the probe tip to measure only a single
point at a time. Thus, each measurement pertains to a single
pixel which makes Φ extremely sparse. That is, each row
of Φ only has a single non-zero entry containing the value,
one. Furthermore, we do not include the same pixel more
than once in y. That is, each column of Φ contains at most one
non-zero entry. Consequently, Ψ is effectively subsampled to
form A = ΦΨ, and all or most of the non-zero entries of
some dictionary atoms could be “missed” in the process.

We propose to determine the extent of the above prob-
lem by considering the energy of the subsampled dictionary
matrix atoms relative to the energy of the original dictionary
matrix atoms:

w(Φ,Ψ) =
[
||ΦΨ:,1||2
||Ψ:,1||2 . . .

||ΦΨ:,n||2
||Ψ:,n||2

]T
(2)

In order to produce performance indicators, the vector in
(2) must be summarised. Based on a number of experiments,
the summary statistics chosen are the mean and standard de-
viation of the relative energies, w(Φ,Ψ):

µrm(Φ,Ψ) =
1

n

n∑
i=1

||ΦΨ:,i||2
||Ψ:,i||2

µrs(Φ,Ψ) =

√√√√ 1

n

n∑
i=1

(
||ΦΨ:,i||2
||Ψ:,i||2

− µrm(Φ,Ψ)

)2

3. SIMULATIONS

In order to model reconstruction quality, the model must be
established and its parameters must be estimated. There-
fore, we have performed an experiment for each combination
across a set of images, a set of sampling patterns, and a set of
reconstruction algorithms. Each experiment consists of solv-
ing the reconstruction problem, computing the reconstruction
quality, and calculating the values of the set of performance
indicators.

The set of images consists of seven images of biological
cells. These images have been acquired with a resolution of
512 × 512 pixels on Keysight Technologies ILM6000 and
ILM7500 AFM equipment. Using a square matrix for dic-
tionary matrix, this resolution results in Ψ ∈ C5122×5122

which takes up 1 TiB of memory, when represented with
64 bit floats. To make the involved computations feasible, the
images have been subsequently down-sampled to 128 × 128
pixels.

The sampling patterns are based on Lissajous-shaped
scanning paths [1]. The Lissajous-shaped scanning paths can
be defined by the x(t) and y(t) coordinates for t in some
range:

x(t) = cx sin(2πfxt+ θx) , y(t) = cy sin(2πfyt+ θy)

where cx and cy are given by the dimensions of the scanned
area, fx and fy are the frequencies, and θx and θy are the ini-
tial phases. The set of sampling patterns consists of matrix
representations of these scanning paths using varying param-
eters and undersampling ratios, δ:

fx ∈ {5 + i|i = 0, . . . , 10}
fy ∈ {5 + i|i = 0, . . . , 10}

θx ∈
{
i

8
π

∣∣∣∣ i = 0, . . . , 4

}
θy ∈

{
1

2
π +

i

8
π

∣∣∣∣ i = 0, . . . , 4

}
δ ∈ {0.1 + i · 0.025|i = 0, . . . , 8}

The set of reconstruction algorithms consists of the it-
erative soft thresholding (IST) algorithm [8] and an `1-
minimisation algorithm [9]. Finally, the set of performance
indicators consists of the performance indicators presented in
Section 1 and 2.

Before the actual reconstruction is performed, the image
of interest is sampled by applying the measurement matrix
and detilted by least-squares-fitting a plane and subtracting
this. The same plane is subtracted from the original image
before the reconstruction quality is computed. For most of
the actual implementation, the Magni software package [10]
is used. Furthermore, the PyUNLocBoX software package1

1Available at https://github.com/epfl-lts2/pyunlocbox.



is used for its implementation of the `1-minimisation image
reconstruction using Douglas-Rachford splitting. Finally, the
peak signal-to-noise-ratio (PSNR) metric is used to asses the
reconstruction quality, with the peak value, P , being the max-
imum possible pixel value:

PSNR = 10 log10

(
P 2

||x− x̂||22

)
Based on the results, as presented in Section 4, and for

comparability with [11], we have chosen to model the recon-
struction quality affinely in terms of the performance indica-
tors. That is,

q̂i =
∑
k

(akck,i) + b (3)

where q̂i is the predicted reconstruction quality for the ith

measurement matrix, ak is the coefficient of the kth perfor-
mance indicator, ck,i is the value of the kth performance indi-
cator for the ith measurement matrix, and b is an offset.

The coefficients are estimated using a least-squares-fit,
and, in order to evaluate the usefulness of the established
model, the modified coefficient of determination, R̃2, is used
[11]:

R̃2 = 1−
∑s

i=1(q̄i − q̂i)2∑s
i=1(q̄i − q̄)2

q̄i =
1

ti

ti∑
j=1

qij , q̄ =
1

s

s∑
i=1

q̄i

where qij is the reconstruction quality for the ith measurement
matrix for the jth combination of image and reconstruction
algorithm, s is the number of measurement matrices, and ti
is the number of combinations of images and reconstruction
algorithms for the ith measurement matrix.

4. RESULTS

Using the simulated set of data, three models of the form
given by (3) were analysed: 1) one baseline model using
the mutual coherence, the coherence 2-norm, and the co-
herence as proposed in [11], 2) one model using only the
relative-energy-mean, and 3) one proposed model using the
coherence, the relative-energy-mean, and the relative-energy-
standard-deviation. Table 1 lists the resulting parameters
along with the R̃2 value for each model.

The simulated set of data is visualised in three subplots in
Figure 1: the figure shows the obtained reconstruction quali-
ties, qij , and the average reconstruction qualities, q̄i, plotted
against the reconstruction qualities predicted by each of the
three models, respectively.

Table 1. Model parameters and evaluation.
Model amut arms acoh arm ars b R̃2

base 0.47 -141 -12.3 - - 29.9 0.89
rm - - - 29 - 8.1 0.94
prop - - -5.6 18 317 12.0 0.96

5. DISCUSSION

Clearly, the relative-energy-mean is a good indicator of the
performance in terms of reconstruction quality. Impressively,
the rm model based solely on this performance indicator ac-
counts for roughly 95 % of the variation in average recon-
struction quality and thereby outperforms the baseline model
which uses three performance indicators established in [11].
We offer the interpretation that the sampling pattern should
be chosen such that it preserves as much energy of the dictio-
nary matrix as possible. According to the rm model, the max-
imum achievable average reconstruction quality is approxi-
mately 37 dB, since the relative-energy-mean cannot exceed
the value, 1, given the constraints on Φ explained in Section
2.

Interestingly, in the proposed model, the ars value is
positive and more than one order of magnitude larger than
arm. That is, the reconstruction quality should increase if
the relative-energy-mean is decreased as long as the relative-
energy-standard-deviation is increased slightly. Such be-
haviour would violate the intuition motivated in the previous
paragraph. However, we suggest that the model merely pro-
motes larger relative energies, and that larger relative energies
result in increases in both mean and standard deviation. This
suggestion is supported by the close-to-one modified coef-
ficient of determination of the model relying solely on the
relative-energy-mean.

The baseline model is able to account for roughly 90 %
of the variation in average reconstruction quality, which sup-
ports the usefulness of the performance indicators established
in [11]. The changes in the model coefficient values and the
increase in modified coefficent of determination are attributed
to the fact that fewer sampling pattern families, fewer dictio-
naries, and fewer reconstruction algorithms were used for the
simulations of the present effort.

6. CONCLUSIONS AND FUTURE WORK

The purpose of the present paper is to model reconstruction
quality from performance indicators, which are properties of
the measurement matrix and the dictionary matrix. We have
proposed the relative-energy-mean performance indicator
which can account for roughly 95 % of the observed variation
in average reconstruction quality. The results show that even
more of this variation can be accounted for using an affine
model based on the relative-energy-mean performance indi-



Fig. 1. The obtained PSNR values, qij , and the average obtained PSNR values, q̄i, versus the PSNR values predicted by the
three models, respectively.

cator, the well-known coherence quantity, and the proposed
relative-energy-standard-deviation performance indicator.

In the present paper, the proposed performance indicators
have been used for improving an existing model of the re-
construction quality which can be obtained in CS problems
within AFM. However, it has been suggested that perfor-
mance indicators could be used for optimising measurement
matrices and/or dictionary matrices. With the improvements
in terms of the modified coefficient of determination, the pro-
posed performance indicators should be even better suited for
this application. Thus, potentially, the proposed relative en-
ergy performance indicators could contribute to new learning
algorithms for CS or improve existing ones.
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