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Preference Learning with Evolutionary-Based Multivariate Adaptive
Regression Spline Model

Mohamed Abou-Zleikha
Audio Analysis Lab, ad:mt,
Aalborg University
Aalborg, Denmark
Email: moa@create.aau.dk

Abstract—Collecting users’ feedback through pairwise pref-
erences is recommended over other ranking approaches as this
method is more appealing for human decision making. Learning
models from pairwise preference data is however an NP-hard
problem. Therefore, constructing models that can effectively learn
such data is a challenging task. Models are usually constructed
with accuracy being the most important factor. Another vi-
tally important aspect that is usually given less attention is
expressiveness, i.e. how easy it is to explain the relationship
between the model input and output. Most machine learning
techniques are on either side of the performance-expressiveness
spectrum especially when it comes to learning complex non-linear
functions. This paper introduces a novel approach for pairwise
preference learning through combining an evolutionary method
with Multivariate Adaptive Regression Spline (MARS). MARS
has the advantage of being a powerful method for function
approximation as well as being relatively easy to interpret.
This work evolve MARS models based on their efficiency in
learning pairwise data. The method is tested on two datasets
that collectively provide pairwise preference data of five cognitive
states expressed by users. The method is analysed in terms
of the performance, expressiveness and complexity and showed
promising results in all aspects.

I. INTRODUCTION

Preference Learning (PL) is a subfield in machine learning
that has attracted increasing attention in Artificial Intelligence
research in recent years. PL refers to the problem of learning a
predictive preference models from observations [1]. Observa-
tions are usually empirical data collected from users’s feedback
as preferences or abstract utilities. Consequently, modelling
preferences can then be tackled using utility functions or pair-
wise preference learning. Utility functions assign a numerical
or ordinal utility to each instance and, thereafter, the problem
of learning such functions becomes one of regression learning
or ordered classification [1]. Pairwise preference learning, on
the other hand, relies on the principle of comparing pairs of
alternatives making the construction of an efficient predictor a
difficult task. This is mainly because the data is not necessarily
transitive and, therefore, ranking can not be usually defined in
a unique way [1]. Hence, learning a global ranking function
from pairwise preferences is an NP-hard problem [2] since one
needs to find a ranking that is maximally consistent with the
given binary preferences.

Pairwise preference learning is recommended over tra-
ditional ranking methods when collecting data from human
users. This is mainly because the comparative approach is more
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intuitively appealing for human decision making [1]. Several
studies could be found in the literature on learning models
of pairwise preferences [3], [4], [5]. In this paper, we are
interested in learning such models for cognitive modelling,
a domain where several approaches have been investigated
with varying results [5], [6], [7]. We propose the use of
Multivariate Adaptive Regression Spline (MARS) [8] for
preference learning. Our choice is motivated by its several
desired advantages: MARS has shown promising results when
solving regression problems that are competitive with neural
networks and support vector regression [9]; this method has the
advantage of being easy to understand and interpret compared
to the other approaches [10]; MARS also has superiority over
other partitioning approaches such as decision stump [11]
when dealing with numerical values; the method can effec-
tively handle non-linear data; and finally, one of its important
features is that it performs an automatic feature selection.
These properties make MARS well suited for our problem
which entails the construction of accurate and understandable
predictors of pairwise preferences from complex data.

As we are dealing with pairwise preference data where
output values are defined for pairs and not for individual
instances, we propose the use of artificial evolution to train our
MARS models. We are not aware of any previous attempts on
training MARS models on pairwise preference data, and we
know about only one study that uses a Genetic Algorithm-
based (GA) approach to train MARS models for a regres-
sion task [12]. Our approach, however, offers a number of
improvements. In particular, while the previous study [12]
evolves the features used for modelling and the number of
the basis functions, our approach optimises these two factors
as well as the other basis functions parameters which greatly
affect the modelling performance. Furthermore, since we are
dealing with data of pairwise nature, a new definition of the
error function for the evolution process that takes into account
the nature of the data is proposed. Finally, while the previous
study uses a standard GA method, we investigate the use of
Grammatical Evolution (GE) for evolving MARS preference
models. GE offers a number of advantages over traditional GA
methods: it permits an easy way of describing the individuals
in the population (through the use of design grammar) making
the problem easy to define and allowing an easy way to
understand and interpret the results.

To analyse the performance of the proposed method and
to compare it with the state-of-the-art approaches, we use



two different datasets. The datasets contains instances of
pairwise preference data collected from users’ feedback in two
independent surveys. Our proposed method is applied on the
two dataset separately and the results obtained are analysed
and compared with other approaches reported in the literature
on learning pairwise preference models from these datasets.

II. MULTIVARIATE ADAPTIVE REGRESSION SPLINE
MODEL

Multivariate adaptive regression spline (MARS) model is a
popular nonparametric model proposed by Friedman to solve
regression problems [8]. The key idea is to segment the space
of inputs into regions of varying sizes that are fit with linear or
cubic splines. Each of the regions has its own regression sub-
model and the size of the regions is adjusted by the model
according to the nature of the input space; the greater the
density of the training data and the greater the complexity
of the relationship between the input and output variables, the
smaller the regions become. In this sense, MARS combines
the strengths of regression trees and spline fitting approaches
through the use of piecewise linear basis functions instead
of the step functions usually employed in regression trees.
Practically speaking, MARS shares the attractive properties of
being exceptionally fast to analyse and easy to understand.

MARS attempts to fit adaptive non-linear regression to
define relationships between a response variable and some
set of predictors through a forward/backward iterative ap-
proach [8]. The adaptive non-linear regression uses piecewise
basis functions (also known as terms) that are defined in pairs,
using a knot or value of a variable that defines an inflection
point along the range of a predictor. These knots (parameters)
are also determined from the data.

Practically speaking, suppose we have the input data X =
[1....xy] where n is the size of the input space, MARS is
defined as:

M
y=Ff(X)=Bo+ Y Bifi(X) (1)

i=1

The model is a weighted (by ;) sum of basis functions
fi(X) and M is the number of the basis functions. The
function f(X) is defined as:

K
fi(X) = H h(X (v,k)) 2)
k=1

where X, is the variable with index v and k is the number of
terms in the function (k € [1..kpnaz))-

For order of interactions K=1, the model is additive and
for K=2 the model is pairwise interactive.

The MARS algorithm searches over the space of all inputs
and predictor values as well as interactions between variables.
The method works in two main steps: in the forward stage, an
increasingly larger number of basis functions are added to the
model. The model selects the knot and its corresponding pair

of basis functions that maximise a least squares goodness-of-
fit criterion. Knots are chosen automatically and can be placed
at any position within the range of each output to define a
pair of basis functions. As a result of these operations, MARS
automatically determines the most important independent vari-
ables as well as the most significant interactions among them.
As this might yield an over-fitted model, a backward procedure
is then applied; the model is pruned by removing those basis
functions that are associated with the smallest increase in
the goodness-of-fit. This is done using the Generalised Cross
Validation (GCV) error which is a measure of the goodness
of fit that takes into account both the residual error and the
model complexity. This measure is calculated as:

GOV _ Zi:l (yl éfQ(‘rl))
(1=3)
where n is the number of samples in the training data and ¢
is the effective number of parameters and is calculated as:

3

px(c—1)
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where c is the number of independent basis function, and p is
the penalty of adding a basis function.

c=c+

There are a number of basis functions that are usually
defined. The most used are the hinge function and product
of a set of hinge functions which are defined as:

h(x) = max (0, x t)max(0,t — x) (5)
where ¢ is a constant called knot. The knot value defines
the “’pieces” of the piecewise linear regression which is also

determined from the data.

III. PREFERENCE LEARNING

Preference learning has received increasing attention in the
machine learning literature in recent years [1]. The ranking
problem has been categorised into three main types, namely:
label ranking, instance ranking and object ranking [1]. We
focus on object ranking in this paper. Within object ranking,
the goal is to learn a ranking function f(.) that produces
a ranking of a given subset of objects given their pairwise
preferences. More formally, given a set of instances Z and a
finite set of pairwise preferences x; > x;; (z;,r;) € Z x Z,
find a ranking function f(.) that returns the ranking of this set
Z where f(z;) > f(z;). Here, x; > x; means that instance
x; is preferred to x;.

Various methods have been presented in the literature for
the task of object ranking. Methods based on large-margin
classifiers [13], Gaussian processes [14], [4], [7], and neu-
roevolution [5] have been investigated to learn the ranking
function. Neuroevolutionary preference leaning proved to have
a powerful approximation capability and to build efficient
models of player experience in similar setups to the one at
hand [15], [16], [17], [5]. Other supervised learning methods
such as standard backpropagation [18], rank support vector
machine [19], Cohen method [20], linear preference learning
[21] and pairwise preference leaning [1] have also been



employed to learn pairwise preferences with various success.
There exists a number of other attempts where the problem
of pairwise preference learning is converted into learning a
global classifier and therefore standard ranking method can
be applied [1]. This paper introduces a new approach for
learning pairwise preferences and presents two test cases
where the suggested method demonstrated efficient learning
and modelling capabilities.

IV. EVOLVING MARS MODELS THROUGH
GRAMMATICAL EVOLUTION

Grammatical Evolution (GE) is an evolutionary algorithm
based on Grammatical Programming (GP) [22]. The main
difference between GE and GP is the genome representation;
while a tree-based structure is used in GP, GE relies on a linear
genome representation. Similar to general Genetic Algorithms
(GAs), GE applies fitness calculations for every individual and
it applies genetic operators to produce the next generation.

The population of the evolutionary algorithm is initialised
randomly consisting of variable-length integer vectors; the
syntax of possible solution is specified through a context-free
grammar. GE uses the grammar to guide the construction of
the phenotype output. The context-free grammar employed by
GE is usually written in Backus Naur Form (BNF). Because
of the use of a grammar, GE is capable of generating anything
that can be described as a set of rules such as mathematical
formulas [23], programming code, game levels [24] and phys-
ical and architectural designs [25]. In this paper, we focus on
the problem of evolving accurate MARS preference models
through the use of GE.

Each chromosome in GE is a vector of codons. Each codon
is an integer number used to select a production rule from
the BNF grammar in the genotype-to-phenotype mapping. A
complete program is generated by selecting production rules
from the grammar until all non-terminal rules are mapped. The
resultant string is evaluated according to a fitness function to
give a score to the genome. In this paper, a Design Grammar
(DG) is defined to specify the structure of possible solutions
(MARS models in our case) as can be seen in Fig. 1. The DG
is defined in a way that allows the construction of model’s
trees where each expression node represents a possible basis
function. A MARS model is constructed by creating a basis
function and adding it to the model. According to the grammar,
the basis function can be a hinge function or a multiplication
of two or more functions. An option of adding an empty node
is also added to the grammar to facilitate model simplification
by deleting some of the already added functions through the
mutation operator.

A. The Fitness Function

The goodness of the models evolved is evaluated with a
fitness function. The GCV measure (described in Section II)
is usually used for this purpose. However, as we are dealing
with pairwise preference data, and since our target values
are defined on pairs of instances rather than individuals, we
need to revise the definition of GCV. The measure we define,
named Pairwise Generalised Cross Validation (PGCV), uses
the notion of agreement between the model’s outputs of a pair
of instances and the actual pairwise preference expressed by

<Tree> := <Constant> + <Exp>
<Exp> := <Constant> x <BasisFunction> + <Exp>
| <Constant> x <BasisFunction>
<BasisFunction> := <HingeFunction> x <BasisFunction>
| <HingeFunction>
| <Empty>
<HingeFunction> := max (0, <Feature> - <Knot>)
| max (0, <Knot> - <Feature>)
<Feature> := featurel | feature2 |
<Constant> := [min, max]
<Knot> := [0,1]
<Empty> := []

Fig. 1. A simplified version of the grammar employed to specify the structure
of MARS model.

the users, i.e. the output given to the preferred instance in a pair
should be higher than that given to the unpreferred instance.
For this purpose, instead of using the residual sum of squares
to calculate the error, we used Kendall tau distance. Practically
speaking, the PGCV is calculated as:

S u(YiaYin)

PGCV = iy ©)
_ U if fa) <= f(b)
u(a,b) = {O otherwise ™

where n is the number of pairs in the dataset and f(.) is the
model output.

V. EXPERIMENTS

In order to evaluate the proposed approach we use two
datasets containing users’ subjective feedback collected as
pairwise preferences while interacting with a digital system.

A. Dataset 1: Player Data in Super Mario Bros

This dataset contains rich information about game content,
player behaviour, and self-reports of hundreds of players play-
ing a modified version of an open source clone of the popular
game Super Mario Bros (SMB). Subjects were asked to play
pairs of game levels and report their affective state using the 4-
alternative forced choice (4-AFC) experimental protocol. The
data collected allows extraction of several statistical, temporal
and spatial features. For the purpose of this study, we use
a set of statistical features capturing information about the
occurrences and frequencies of selected events. The full set
of features considered contains 30 different features that are
explained in details in [6].

One of the primary reasons for choosing the Mario dataset
is because of its size (780 different pairs) that permits mean-
ingful exploration of the method capabilities. The dataset
also offers rich information in terms of the features collected
(gameplay and content features). The size of the input space,
combined with the complex nature of the dataset (the data
is mostly non-linear and the relationship between the features
collected and the users’ reports can not be easily captured using
simple linear or non-linear model) makes the construction of
accurate models a challenging task. The dataset also offers
the possibility of exploring the strength of the modelling
approach in different settings as it contains information about



players’ reports of three different emotional states, namely:
engagement, frustration and challenge.

The dataset has been the subject for a number of ex-
periments for modelling player experience [6], [26] and the
studies conducted demonstrated the difficulty in learning such
models especially if transparency and understandability of the
modelling approach are important factors. This makes the
dataset and the problem of modelling player experience still
interesting as it introduces unsolved research questions.

B. Dataset 2: Expressed Emotions in Music

The second dataset we use consists of pairwise compar-
isons of 20 different excerpts, each excerpt is of 15 seconds
length music piece taken from the middle of selected tracks
from the USPOP20022 dataset [27]. The 20 excerpts were
chosen such that a linear regression model maps five excerpts
into each quadrant of the two-dimensional arousal-valence
space [28]. Thirteen participants listened to each pair of
excerpts and evaluated the emotional dimensions of valence
and arousal using the 2-Alternative Forced Choice (2-AFC)
experimental paradigm. This dataset has been the subject for
a number of experiments for modelling user experience using
pairwise preference methods [29], [7].

In order to run machine learning techniques that learn
the relationship between the pieces of musics played and the
reported affects, representative features are extracted from each
excerpt. Several features for modelling the expressed emotions
in music have been proposed in the literature [7]. In this
work, we used the ones suggested in [29], which are the
Mel-Frequency Cepstral Coefficients (MFCCs). The resultant
set contains 40 features related to the mean and variance
of extracted MFCC parameters (the detailed procedure of
extraction is explained in [29]).

The use of this dataset in our experiments facilitate ex-
ploration of the generalisable capability of the suggested
approaches. The problem of modelling expressed valence and
arousal from this dataset is also a challenging task according
to the difficulty in learning accurate models [29], [7].

VI. EXPERIMENTAL SETUP

The full data in both datasets is used to construct models
independently. Since the 4-AFC protocol was used in the
first dataset, it was preprocessed to remove the instances with
unclear preference (those that elicit non differentiable affective
states according to players’ reports). The sizes of the resultant
datasets are 597, 531 and 629 pairs for reported engagement,
frustration and challenge, respectively. The second dataset con-
sists of 190*13 pairs for each emotional dimension (valence
and arousal).

There is a fundamental difference in the data collection
strategy followed in our testbed cases that influences our
decision when building the models. The experimental setup in
the second dataset demands evaluation of all music excerpts by
each participant. This permits training and testing the models
on user-specific data which is not possible in the first dataset
since each player provides feedback for only few pairs.

Since we wanted to follow the same modelling strategy to
provide a fair comparison of the results, the Leave-One-Out

(LOO) strategy is used to evaluate the model generalisability.
This can be applied in a straightforward manner in the music
dataset because we can simply identify the instances ranked by
the same user and use them as one of the fold to leave out. In
order to apply this strategy on the Mario dataset, we distinguish
between the two main types of the features collected: content
(features related to the how the game levels are created) and
gameplay (features capturing players’ characteristics). This
allows us to identify game-dependent instances (those where a
set of players played the same game) and consequently apply
the LOO paradigm on those.

The modelling accuracy is calculated on the testing sets
and the experiment is repeated 20 times. The results reported
are the averages over the best generated models from each
run. The results obtained are compared with upper and lower
baseline models defined as suggested in [7].

The open source GEVA software [30] is used as a core
to implement the needed functionalities. The experimental
parameters used are the following: 20 runs each ran for
200 generations with a population size of 100 individuals,
the ramped half-and-half initialisation method. Tournament
selection of size 3, int-flip mutation with probability 0.05, one-
point crossover with probability 0.8, and 0 maximum wraps
were allowed. All parameters were assigned experimentally.

For model generation, the number of basis functions is
bounded between 6 and 30. The penalty value of the PGCV is
set to one. For simplification, understandability, and visualisa-
tion constrains, we allow only two multiplications of the basis
functions (K = 2) which facilitates analysis of interactions
between two variables.

VII. ANALYSIS

Models are constructed for the two datasets under investi-
gation and in what follows we provide a number of analysis of
the models constructed in terms of accuracy, complexity and
expressivity and we examine the results.

A. Modelling Accuracy

Using the approach proposed, we were able to construct
accurate models for both datasets.

1) Player Data in Super Mario Bros: The results obtained
for modelling player experience in SMB for the three emo-
tional states are presented in Table I. The best modelling
accuracy is obtained for the prediction of frustration (78.04%)
followed by challenge (74.84%) while engagement was the
hardest to predict (66.81%). Compared to the baselines, the
statistical analysis showed that the proposed model is signifi-
cantly better than the lower baseline (p — value < 0.05). The
upper baseline model is slightly better than the constructed
model, as expected, with no significant difference. Figure 2
presents the box-plot of the average and standard deviation
values of the accuracies of the all models constructed for the
three emotional states.

2) Emotion in Music Dataset: High accuracies are also
obtained for predicting valence and arousal for the music
dataset. The results, presented in Table I, show that average
accuracies of 88.56% and 82.92% are obtained for predicting
arousal and valence, respectively, which are significantly better



TABLE 1. AVERAGE ACCURACIES OBTAINED FROM 20 RUNS OF THE
EXPERIMENTS FOR EVOLVING MARS. THE ACCURACIES OF THE
BASELINES ARE ALSO PRESENTED FOR COMPARISON.

Super Mario Bros Music
E F C Arousal ~ Valence
MARS 66.81%  78.04%  74.84% 88.56% 82.92%
Baselinejoyer 55.14%  62.62%  60.66% 71.84% 69.57%
Baselineypper 67.19%  78.75%  75.11% 89.65% 83.85%
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Fig. 2. Average and standard deviation accuracies obtained from 20 runs
of the experiments for evolving MARS models for predicting engagement,
Sfrustration and challenge from player data in Super Mario Bros dataset. The
accuracies of the upper and lower baseline models are also presented for
comparison.

than the lower baseline (p—value < 0.05). Figure 3 represents
the values obtained in a box-plot format.

B. Model Complexity

Another interesting aspect to look at is the complexity
of the constructed models. This helps us better understand
the problem space and the difficulty of modelling it. Several
measures could be calculated for this purpose including the
convergence speed, analysing the structure of the best models
evolved and analysing the parameters of the basis functions. In
what follow, we provide a preliminary analysis of complexity
by investigating the structure of the models and their basis
functions.

1) Number of Selected Features: Figure 4 presents the
number of features selected by the best models evolved to
predict the reported emotions. As can be seen, most of the
models are of average complexity as a relatively low number of
features are selected. It is worth noting that a lower number of
features is selected to predict valence and arousal in the music
dataset compared to the average number of features selected
for predicting emotions in the SMB dataset.

2) Relationship Complexity: The complexity of the rela-
tionship between the inputs and the predicted emotional states
can be analysed by plotting the number of the basis functions
used for modelling. Figure 5 presents the results obtained. In
general, it seems that the number of basis functions required
to construct accurate models is a relatively low. The number,
however, seems lower for predicting emotions in the music
dataset than that required in the SMB dataset.
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selected by the best models in 20 runs for predicting the expressed emotions.

3) Feature Importance: In order to provide further analysis
of the importance of the features for predicting an emotion, we
counted the number of occurrences of each input feature in the
final models evolved. Figures 6 and 7 show the percentage
of selecting each feature for prediction in the best models
evolved for SMB and the music dataset, respectively. The
figures indicate a clear significance for some of the features.
The number of deaths (f24), for instance, seems to have a great
impact on how frustrating and challenging the player felt while
it has no significant effect on engagement. The same argument
can be applied to predicting emotion in the music dataset
(Figure 7). One can also notice that the mean values of some
of the MFCC features have the heights percentages for both
arousal and valence. It is interesting to note that some of the
features were very rarely selected indicating their irrelevance
for the prediction.

C. Expressivity Analysis

One of the advantages and main motivation behind using
MARS as a modelling technique is that it demonstrates pow-
erful regression ability while preserving the expressive power
being easy to interpret. In order to further analyse this point
and to better understand the complexity of our problem, we
investigate the best models constructed using a visualisation
method. This is done by plotting the relationship between the
variable of the basis functions chosen for evolving the best
MARS models and the models’ prediction. If a basis function
is of K = 2, then the relationship is visualised in 3D.
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1) Player Data in Super Mario Bros: Figures 8, 9 and 10
show the relationships between each feature selected and the
output of the best models for each emotional state in the SMB
dataset. As can be seen, the features selected, the complexity
of the interaction between them and the complexity of the
models varies among the three emotional states. The best
model evolved for predicting engagement, for instance, has six
basis functions, three of which are multiplications of two hinge
functions. The best model for predicting frustration on the
other hand has four multiplication functions indicating a more
complex interaction between the features. Challenge appears
to have the simplest models in term of feature interaction (two
multiplication functions).

By looking at the graphs of the individual features selected,
we can easily understand the effect of the features on the
prediction of the corresponding emotional state. It is clear from
the figures that several relationships are of nonlinear nature.
Engagement, for example, is a function of the number of coins
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Fig. 7. Percentages of the selection of features in the best models evolved for
predicting valence and arousal in the music dataset. Percentages lower than
1.7 are not shown.
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Fig. 8. Features selected by the best MARS model for predicting engagement
with reference to the prediction accuracy.

collected, the number of power ups presented, the amount of
time played in the last session and it is also a function of
the interaction between the time spent jumping and ducking,
the number of gaps and enemies presented and the number of
interactions with the blocks given the amount of time spent
playing. The nature of each of these interactions is depicted
by the exact characteristics of the hinge functions evolved and
the weights assigned to them.

The figures tell, for instance, that engagement is positively
correlated with the number of power ups and that it decreases if
the session length is more than a certain threshold. The figures
also show that adding extra coins above a certain level affects
engagement negatively. All of these relationships are captured
with one or more hinge functions and they are relatively easy
to interpret.

Interactions between the features are captured through
multiplications of two (or more, but in our case we limited
k = 2) hinge functions. Interesting examples of such relation-
ship can be seen in the interaction between the number of gaps
and enemies and its effect on engagement. The figure shows
that engagement is positively correlated with the interaction
between these two factors indicating that this emotional state
is affected by the balance between these factors and not only
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Fig. 9. Features selected by the best MARS model for predicting frustration
with reference to the prediction accuracy.
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Fig. 10. Features selected by the best MARS model for predicting challenge
with reference to the prediction accuracy.

their absolute values. Another example from the best model of
predicting frustration illustrates that a high level of frustration
is experienced when the player dies frequently and does not
spent much time jumping. This can be explained by a novice
player behaviour who is probably not in full knowledge or
control of the game mechanics.

2) Emotion in Music Dataset: The relationships between
the MFCC features and arousal and valence taken from the
best MARS models evolved can be seen in Figures 11 and 12.
In split of the fact that assigning a meaningful cognitive inter-
pretation to the acoustic features used for emotion prediction
in music is not obvious, what is interesting is to look at the
features selected by the models and their dependencies. The
results suggest that a small subset of features is important for
predicting valence and arousal with high accuracies. Relatively
simple models with six and four features out of forty are se-
lected for modelling arousal and valence, respectively. Certain
interactions between specific features are important such as the
interaction between m11 and m19 which impacts arousal and
the interaction between c¢3 and c13 which affects the prediction
of valence.

D. Comparison with Previous Attempts

The datasets used are employed in previous studies to
construct predictable models of emotions. As explained earlier,
the main motivation behind this work is to propose an alterna-
tive approach that supports expressiveness while preserving
performance. To demonstrate the efficiency of the method
proposed, we compared the results obtained with the best
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Fig. 11. Features selected by the best MARS model for predicting arousal
with reference to the prediction accuracy.
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Fig. 12. Features selected by the best MARS model for predicting valence
with reference to the prediction accuracy.

ones reported in the literature. The analysis showed superior
accuracies for predicting all emotional states in both datasets
(compared to [7], [31]). This supports our claim about the
efficiency of the suggested approach and motivates further
investigation of its capabilities.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we proposed a new method for learning
pairwise preferences through evolving Multivariate Adaptive
Regression Spline Model. We demonstrated the challenges of
such task and discussed the attractive characteristics of a good
predictor. We presented MARS and illustrated the motivation
for choosing it as a modelling approach. We described the
traditional method employed to learn a MARS model and we
showed that modifications are required if we are to apply
this method for preference learning. Because of the nature
of the pairwise preference data — being transitive, subjective
and lack of a target output per instance— an evolutionary-
based method is proposed for training. For this purpose,
grammatical evolution is used to define the structure of the
models and to evolve them and the definition of the error
function is generalised to handle pairwise data. The proposed
approach is tested on two relatively large datasets consisting
of user and content features and user’s feedback of five
emotional states (engagement, frustration, challenge, valence
and arousal) provided as pairwise comparison between two
interaction instances. Several experiments were conducted to
evaluate the method performance, the modelling complexity
and expressiveness. The results showed very promising results



in term of the accuracies obtained and demonstrated powerful
expressive characteristics of the models evolved.

The investigations performed in this paper showed that, in
general, arousal and valence are easier to predict as illustrated
by the accuracies obtained and the complexity of the models
evolved (in terms of the number of features selected and the
number of the basis functions chosen). Further investigation
of this matter is required, preferably on other datasets and
domains, to examine whether this is a general trend.

The setup used for all experiments conducted in this
paper focuses on optimising the accuracies of predicting
one emotional state. In real word application, however, it
is usually interesting to predict the appeal of a piece of
software along multiple dimensions. It is therefore interesting
to investigate the applicability of the proposed method with
multi-objective optimisation approaches when, for instance,
one could construct models for accurate prediction of two,
or more, emotional states (predicting that a level is engaging
and challenging at the same time).
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