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Noise Reduction with Optimal Variable Span
Linear Filters

Jesper Rindom Jensen*, Member, IEEE, Jacob Benesty, and Mads Græsbøll Christensen, Senior Member, IEEE.

Abstract—In this paper, the problem of noise reduction is
addressed as a linear filtering problem in a novel way by using
concepts from subspace-based enhancement methods, resulting
in variable span linear filters. This is done by forming the filter
coefficients as linear combinations of a number of eigenvectors
stemming from a joint diagonalization of the covariance matrices
of the signal of interest and the noise. The resulting filters are
flexible in that it is possible to trade off distortion of the desired
signal for improved noise reduction. This tradeoff is controlled
by the number of eigenvectors included in forming the filter.
Using these concepts, a number of different filter designs are
considered, like minimum distortion, Wiener, maximum SNR,
and tradeoff filters. Interestingly, all these can be expressed as
special cases of variable span filters. We also derive expressions
for the speech distortion and noise reduction of the various filter
designs. Moreover, we consider an alternative approach, wherein
the filter is designed for extracting an estimate of the noise signal,
which can then be extracted from the observed signals, which
is referred to as the indirect approach. Simulations demonstrate
the advantages and properties of the variable span filter designs,
and their potential performance gain compared to widely used
speech enhancement methods.

Index Terms—Noise reduction, speech enhancement, joint
diagonalization, span, subspace, optimal filters.

I. INTRODUCTION

Noise reduction, or speech enhancement as it is commonly
called in speech processing, is the art of reducing the influence
of additive noise on a signal of interest. Such additive noise
occurs naturally in many important applications, including
hearing aids, teleconferencing, and mobile telephony. Exam-
ples of commonly occurring noises are babble, car, traffic, and
air conditioning noise. The additive noise should be attenuated
as much as possible, which is measured in terms of noise
reduction, but, at the same time, the noise reduction process
may distort the signal of interest, which, in the case of speech
signals, is measured in terms of speech distortion. These two
criteria are conflicting, something that can easily be seen by
observing the trivial (and uninteresting) extremes: by multi-
plying the observed signal by zero, all noise is removed, but
a maximum of speech distortion is also obtained. Conversely,
by doing nothing at all, no speech distortion is incurred but no
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noise is reduced either. A challenge for current noise reduction
research is thus to design noise reduction algorithms in which
the tradeoff between the amount of noise reduction and speech
distortion can be controlled and quantified, and most current
efforts fail to offer any explicit control over, especially, the
speech distortion.

Many different methods for noise reduction have been
proposed, including linear filtering methods [1], spectral sub-
traction methods [2], statistical methods [3]–[5], and subspace
methods [6], [7]. Most recent research in the field has focused
its attention to noise power spectral density estimation [8],
[10], [11], [40], extensions to multiple channels [12]–[15], and
various improvements to linear filtering techniques, e.g., [1],
[16]–[18], [20], while very little progress have been made on
subspace methods. We refer the interested reader to [1], [19],
[20] for overviews of recent advances in noise reduction. On
the matter of subspace methods and their application to noise
reduction, we refer to [21] and the references therein.

Of the aforementioned methods, there are two that are
particularly relevant to the present paper, namely the linear
filtering methods and the subspace methods. In the methods
based on linear filtering, noise reduction is obtained by convo-
lution of the observed signal, which comprises both the signal
of interest and the additive noise, with the impulse response of
a filter. The noise reduction problem then amounts to designing
this filter so that it meets some requirements, in terms of, for
example, noise reduction and speech distortion. For example,
when the mean-square error (MSE) is used as a performance
measure and the filter is optimized so as to minimize the MSE,
the classical Wiener filter is obtained. In subspace methods, a
diagonalization of the involved correlation matrices is obtained
by means of, for example, the Karhunen-Loève transform,
the eigenvalue decomposition, or the singular value decom-
position, and this is then used as a basis for noise reduction
by identifying bases for the speech-plus-noise subspace (also
sometimes simply called the signal subspace) and the noise
subspace, respectively. In the past couple of decades, there
has been some attempts to combine the filtering and subspace-
based approach, and a few early examples of this can be found
in [22], [23]. Of particular relevance to the present work,
is the prior use of joint diagonalization for noise reduction,
something that has previously been done in [7] and later in
[24] to account for colored noise. In this connection, it should
be noted that it only served as a computational tool in [12].

In this paper, we express the (single-channel) noise re-
duction problem as a linear filtering problem using joint
diagonalization of the correlation matrix of the signal of
interest and the noise. More specifically, we consider filter
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designs, wherein the filter coefficients are formed as linear
combinations of a desired number of eigenvectors. This way,
speech distortion can be traded for more noise reduction
by changing the number of eigenvectors. We also proposed
noise reduction filters based on the joint diagonalization in
[25], [26]. As opposed to the filters proposed herein, these
considered only an indirect approach where the noise is
estimated first and subtracted from the observation to obtain
the enhanced signal. Moreover, we propose a wider range
of filter designs herein and clearly show how all the differ-
ent filter designs are related. In the proposed framework, a
number of noise reduction filters, which are referred to as
variable span filters, are derived. Our naming of the filters
stems from the fact that the filters are linear combinations
of a varying number of eigenvectors, which therefore span a
varying space. The derived filters include minimum distortion,
Wiener, and tradeoff filters. Interestingly, it is also possible
to express various well-known filters in this framework. We
acknowledge that a link between linear filtering and subspace-
based enhancement has been established before [27], [28].
However, in these papers, the relationship between traditional
filtering methods for enhancement such as Wiener filtering
and subspace-based methods has not been identified explicitly.
Moreover, these papers regard the enhancement problem as
a subspace fitting problem, but this gives no explicit control
over relevant performance measures. Both of these issues are
addressed with the proposed variable span filtering framework.
We also introduce a so-called indirect approach, wherein the
noise reduction is performed in two stages. In the first stage,
an estimate of the noise signal is found using the variable span
filter framework, which is then used, in the second stage, to
obtain an estimate of the desired signal by subtracting the
estimate from the observed signal. Again, several different
filter designs are proposed. We show that this alternative way
of formulating the enhancement problem resembles the direct
approach in a few special cases, but, generally, it leads to other
filter designs which gives more flexibility when tackling the
enhancement problem.

The rest of the paper is organized as described here: In the
following section, namely Section II, the signal model and
problem formulation used throughout the paper are presented.
Moreover, in this section, the joint diagonalization is presented
along with some useful notation. In Section III, we then
introduce the notion of variable span linear filtering, which
forms the basis of the proposed filters designs. This is followed
by, in Section IV, the performance measures used to quantify
the performance of the various filter designs, namely noise
reduction, speech distortion, and mean-square error measures.
In Section V, some optimal filters that belong to the class
of variable span filters are derived. Then, in Section VI,
an alternative approach is investigated, wherein the noise
reduction is performed in two steps: a first step, wherein the
variable span filters are used to form an estimate of the noise,
and a second step, where this estimate is then subtracted from
the observed signal. Finally, we present some experimental
results in Section VII and conclude on the work in Section
VIII.

II. SIGNAL MODEL AND PROBLEM FORMULATION

We consider the very general signal model:

y = x + v, (1)

where y is the observation or noisy signal vector of length M ,
x is the speech signal vector, and v is the noise signal vector.
This general model can be applied in different domains, e.g.,
for both time- and frequency-domain processing. We assume
that the components of the two vectors x and v are zero mean
and stationary. Moreover, in cases with complex signals, i.e.,
in frequency-domain processing, the vector components are
assumed to be circular [29], [30]. We further assume that these
two vectors are uncorrelated, i.e., E

(
xvH

)
= E

(
vxH

)
=

0M×M , where E(·) denotes mathematical expectation, the
superscript H is the conjugate-transpose operator, and 0M×M
is a matrix of size M ×M with all its elements equal to 0.
In this context, the correlation matrix (of size M ×M ) of the
observations is

Φy = E
(
yyH

)
= Φx + Φv, (2)

where Φx = E
(
xxH

)
and Φv = E

(
vvH

)
are the correlation

matrices of x and v, respectively. In the rest of this paper, we
assume that the rank of the speech correlation matrix, Φx, is
equal to P ≤M and the rank of the noise correlation matrix,
Φv, is equal to M . It should be emphasized, though, that
the filters presented later can still be implemented in practice
even if these assumptions do not hold. If the rank of Φx

equals M , the proposed filters can still be implemented if
speech distortion is allowed. Moreover, if Φv is rank deficient,
although this is rather unrealistic due to inevitable microphone
self noise, we can always add a small degree of matrix
regularization to ensure invertibility.

Let x1 be the first element of x. It is assumed that x1 is the
desired speech signal. Then, we here consider the objective of
speech enhancement (or noise reduction) as that of estimating
x1 from y. This should be done in such a way that the noise
is reduced as much as possible with no or little distortion of
the desired signal sample [20], [19], [31].

The use of the joint diagonalization in noise reduction was
first proposed in [7] and then in [24]. In this paper, we give a
different perspective, as will be shown later.

The two Hermitian matrices Φx and Φv can be jointly
diagonalized as follows [32]:

BHΦxB = Λ, (3)
BHΦvB = IM , (4)

where B is a full-rank square matrix (of size M ×M ), Λ is
a diagonal matrix whose main elements are real and nonnega-
tive, and IM is the M×M identity matrix. Furthermore, Λ and
B are the eigenvalue and eigenvector matrices, respectively, of
Φ−1v Φx, i.e.,

Φ−1v ΦxB = BΛ. (5)

Since the rank of the matrix Φx is equal to P , the eigenvalues
of Φ−1v Φx can be ordered as λ1 ≥ λ2 ≥ · · · ≥ λP > λP+1 =
· · · = λM = 0. In other words, the last M − P eigenvalues
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of the matrix product Φ−1v Φx are exactly zero, while its
first P eigenvalues are positive, with λ1 being the maximum
eigenvalue. We also denote by b1,b2, . . . ,bP ,bP+1, . . . ,bM ,
the corresponding eigenvectors. A consequence of this joint
diagonalization is that the noisy signal correlation matrix can
also be diagonalized as

BHΦyB = Λ + IM . (6)

We can decompose the matrix B as

B =
[

B′Q B′′Q
]
, (7)

where

B′Q =
[

b1 b2 · · · bQ
]

(8)

is an M ×Q matrix,

B′′Q =
[

bQ+1 bQ+2 · · · bM
]

(9)

is an M×(M−Q) matrix, and 1 ≤ Q ≤M . For the particular
case Q = P , the matrices B′P and B′′P span the speech-plus-
noise subspace and the noise subspace, respectively. It can be
verified from (3) that

B′′HP x = 0P×1. (10)

To show this, we first deduce from (3) that

B′′HP ΦxB′′P = 0. (11)

If b′′P is any column vector of B′′P , we can define a signal
s as s = b′′HP x. The signal variance is φs = E

(
|s|2
)
=

E
(
|b′′HP x|2

)
. From (11), we have

b′′HP Φxb′′P = E(|b′′HP x|2) = φs = 0. (12)

The above equation can only be 0 if b′′HP x = 0 which proves
the observation in (10). Moreover, it can be verified from (4)
that

Φ−1v = B′PB′HP + B′′PB′′HP . (13)

The joint diagonalization is a very natural tool to use if
we want to fully exploit the speech-plus-noise and noise
subspaces in noise reduction and fully optimize the linear
filtering process.

III. VARIABLE SPAN LINEAR FILTERING

One of the most convenient ways to estimate the desired
signal, x1, from the observation signal vector, y, is through a
filtering operation, i.e.,

z = hHy, (14)

where z is the estimate of x1 and

h =
[
h1 h2 · · · hM

]T
(15)

is a complex-valued filter of length M . While the considered
filtering operation is only estimating x1, the performance mea-
sures and filter designs derived in the following sections can
easily be generalized for estimation of xm for m = 2, . . . ,M .
Alternatively, in time-domain processing, for example, we only
need the filter estimating x1 since we can just be update it

at every time instance to obtain the most recent estimate of
the desired signal. It is always possible to write h in a basis
formed from the vectors bm, m = 1, 2, . . . ,M , i.e.,

h = Ba

= B′Qa′Q + B′′Qa′′Q, (16)

where the components of

a =
[
a1 · · · aQ aQ+1 · · · aM

]T
=

[
a′TQ a′′TQ

]T
(17)

are the coordinates of h in the new basis, and a′Q and a′′Q
are vectors of length Q and M − Q, respectively. Now,
instead of estimating the coefficients of h as in conventional
approaches, we can estimate, equivalently, the coordinates
am, m = 1, 2, . . . ,M . When a is estimated, it is then easy
to determine h from (16). Furthermore, for Q = P , several
optimal noise reduction filters with at most P constraints
will lead to a′′P = 0(M−P )×1 since there is no speech in
the directions B′′P . Therefore, we can sometimes simplify our
problem and force a′′P = 0(M−P )×1; as a result, the filter and
the estimate are, respectively, h′ = B′Pa′P and z′ = a′HP B′HP y.

From the previous discussion and from (16), we see that we
can build a more flexible linear filter. We define our variable
span filter of length M as

h′(Q) = B′Qa′Q. (18)

Obviously, h′(Q) ∈ Span {b1,b2, . . . ,bQ}. As a conse-
quence, the estimate of x1 is

z′ = a′HQ B′HQ x + a′HQ B′HQ v

= x′fd + v′rn, (19)

where x′fd = a′HQ B′HQ x is the filtered desired signal and v′rn =

a′HQ B′HQ v is the residual noise. We deduce that the variance
of z′ is

φz′ = a′HQ Λ′Qa′Q + a′HQ a′Q, (20)

where

Λ′Q = diag (λ1, λ2, . . . , λQ) (21)

is a diagonal matrix containing the first Q eigenvalues of
Φ−1v Φx.

Notice that the proposed linear processing implies implicitly
that we force the last M −Q components of a to 0.

IV. PERFORMANCE MEASURES

In this section, we briefly define the most useful perfor-
mance measures for noise reduction with variable span filters.
We can divide these measures into two categories. The first
category evaluates the noise reduction performance while the
second one evaluates speech distortion. We also discuss the
very convenient mean-square error (MSE) criterion, which we
tailor for variable span filters, and show how it is related to
the performance measures.
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A. Noise Reduction

One of the most fundamental measures in all aspects of
speech enhancement is the signal-to-noise ratio (SNR). Since
x1 is the desired signal, we define the input SNR as

iSNR =
φx1

φv1
, (22)

where φx1
= E

(
|x1|2

)
is the variance of x1 and φv1 =

E
(
|v1|2

)
is the variance of the first component of v, i.e., v1.

From (20), it is easy to find that the output SNR is

oSNR
(
a′Q
)

=
a′HQ Λ′Qa′Q

a′HQ a′Q

=

Q∑
q=1

λq |aq|2

Q∑
q=1

|aq|2
, (23)

and it can be shown that

oSNR
(
a′Q
)
≤ λ1, (24)

which means that the output SNR can never exceed the
maximum eigenvalue, λ1. The filters should be derived in such
a way that oSNR

(
a′Q
)
≥ iSNR.

The noise reduction factor, which quantifies the amount of
noise which is rejected by the complex filter, is given by

ξnr
(
a′Q
)
=

φv1
a′HQ a′Q

. (25)

For optimal noise reduction filters, we should have ξnr
(
a′Q
)
≥

1.

B. Speech Distortion

In practice, the complex filter may distort the desired signal.
In order to evaluate the level of this distortion, we define the
speech reduction factor:

ξsr
(
a′Q
)
=

φx1

a′HQ Λ′Qa′Q
. (26)

For optimal filters, we should have ξsr
(
a′Q
)
≥ 1. The larger

the value of ξsr
(
a′Q
)

is, the more the desired speech signal is
distorted.

By making the appropriate substitutions, one can derive the
relationship:

oSNR
(
a′Q
)

iSNR
=
ξnr
(
a′Q
)

ξsr

(
a′Q

) . (27)

This expression indicates the equivalence between gain/loss in
SNR and distortion (for both speech and noise).

Another way to measure the distortion of the desired speech
signal due to the filter is the speech distortion index, which is
defined as the mean-square error between the desired signal

and the filtered desired signal, normalized by the variance of
the desired signal, i.e.,

υsd
(
a′Q
)
=
E
(∣∣x1 − a′HQ B′HQ x

∣∣2)
φx1

. (28)

The speech distortion index is usually upper bounded by 1 for
optimal filters. Moreover, as opposed to the speech reduction
factor in (26), the speech distortion index also takes phase
distortion into account. The distortion could, of course, also
be measured using other conventional measures such as log
spectral distortion and cepstral distance [33].

C. Mean-Square Error (MSE) Criterion

The error signal between the estimated and desired signals
is

e′ = z′ − x1 (29)
= a′HQ B′HQ y − x1,

which can also be written as the sum of two uncorrelated error
signals:

e′ = e′ds + e′rs, (30)

where

e′ds = a′HQ B′HQ x− x1 (31)

is the speech distortion due to the filter and

e′rs = a′HQ B′HQ v (32)

represents the residual noise. The mean-square error (MSE)
criterion is then

J
(
a′Q
)
= E

(
|e′|2

)
= φx1

− iTΦxB′Qa′Q − a′HQ B′HQ Φxi (33)

+ a′HQ
(
Λ′Q + IQ

)
a′Q

= Jds
(
a′Q
)
+ Jrs

(
a′Q
)
,

where i is the first column of IM , IQ is the Q × Q identity
matrix, with

Jds
(
a′Q
)
= E

(
|e′ds|

2
)

= υsd
(
a′Q
)
φx1 , (34)

and

Jrs
(
a′Q
)
= E

(
|e′rs|

2
)

=
φv1

ξnr

(
a′Q

) . (35)

We deduce that

Jds
(
a′Q
)

Jrs

(
a′Q

) = iSNR× ξnr
(
a′Q
)
× υsd

(
a′Q
)

= oSNR
(
a′Q
)
× ξsr

(
a′Q
)
× υsd

(
a′Q
)
. (36)

This shows how the different performances measures are
related to the MSEs.
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V. OPTIMAL VARIABLE SPAN (VS) FILTERS

In this section, we derive a large class of variable span (VS)
filters for noise reduction from the different MSEs developed
in the previous section. We will see how all these filters, with
different objectives, are strongly connected.

A. VS Minimum Distortion

The VS minimum distortion filter is obtained by minimizing
the distortion-based MSE, Jds

(
a′Q
)
. We get

a′Q,MD = Λ′−1Q B′HQ Φxi, (37)

where Q ≤ P . Therefore, the VS minimum distortion filter is

h′MD(Q) = B′Qa′Q,MD

=

Q∑
q=1

bqb
H
q

λq
Φxi. (38)

We note that the idea of variable rank subspace filters have
been considered before [28], but previous approaches have
been derived from a subspace fitting perspective rather than
an enhancement perspective as mentioned in the introduction.
Therefore, the previous approaches do not provide any explicit
control over or analysis of the amounts of noise reduction and
signal distortion.

One important particular case of (38) is Q = P . In
this situation, we obtain the celebrated minimum variance
distortionless response (MVDR) filter:

h′MVDR = h′MD(P ) = B′Pa′P,MD

=

P∑
p=1

bpb
H
p

λp
Φxi

=

P∑
p=1

bpb
H
p Φvi. (39)

Let us show why (39) corresponds to the MVDR filter. With
h′MVDR, the filtered desired signal is

x′fd =
(
B′PB′HP Φvi

)H
x

=
(
i−B′′PB′′HP Φvi

)H
x

= x1 − iTΦvB′′PB′′HP x

= x1, (40)

where we have used (10) and (13) in the previous expression.
Then, it is clear that

υsd
(
a′P,MD

)
= 0, (41)

proving that, indeed, h′MVDR is the MVDR filter.
Another interesting case of (38) is Q = 1. In this scenario,

we obtain the maximum SNR filter:

h′max,0 = h′MD(1) = b1a1,MD

=
b1b

H
1

λ1
Φxi. (42)

Indeed, it can be verified that

oSNR (a1,MD) = λ1. (43)

We should always have

oSNR
(
a′P,MD

)
≤ oSNR

(
a′P−1,MD

)
≤ · · · (44)

≤ oSNR (a1,MD) = λ1

and

υsd
(
a′P,MD

)
≤ υsd

(
a′P−1,MD

)
≤ · · · ≤ υsd (a1,MD) ≤ 1. (45)

If Φx is a full-rank matrix, i.e., P =M , then

h′MD(M) = i, (46)

which is the identity filter. Assume that the rank of Φx is
P = 1. In this case, Q = 1, the filter is h′MD(1) = h′MVDR,
and the output SNR is maximized, i.e., equal to λ1. Also, we
can write the speech correlation matrix as

Φx = φx1ddH , (47)

where d is a vector of length M , whose first element is equal
to 1. As a consequence,

λ1 = φx1d
HΦ−1v d

= φx1

∣∣dHb1

∣∣2 (48)

and

h′MVDR =
Φ−1v d

dHΦ−1v d
. (49)

B. VS Wiener

The VS Wiener filter is obtained from the optimization of
the MSE criterion, J

(
a′Q
)
. The minimization of J

(
a′Q
)

leads
to

a′Q,W =
(
Λ′Q + IQ

)−1
B′HQ Φxi, (50)

where Q ≤M . We deduce that the VS Wiener filter is

h′W(Q) = B′Qa′Q,W

=

Q∑
q=1

bqb
H
q

1 + λq
Φxi. (51)

It is interesting to compare h′W(Q) to h′MD(Q). The two VS
filters are very close to each other; they differ by the weighting
function, which strongly depends on the eigenvalues of the
joint diagonalization. For the VS Wiener filter, this function
is equal to (1 + λq)

−1 while it is equal to λ−1q for the VS
minimum distortion filter. Also, in the latter filter, Q must be
smaller than or equal to P , while Q can be greater than P in
the former one.

One important particular case of (51) is Q = M . In this
situation, we obtain the classical Wiener filter:

h′W = h′W(M) = B′Ma′M,W

=

M∑
m=1

bmbHm
1 + λm

Φxi

= Φ−1y Φxi. (52)
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For Q = 1, we obtain another form of the maximum SNR
filter:

h′max,1 = h′W(1) = b1a1,W =
b1b

H
1

1 + λ1
Φxi, (53)

since

oSNR (a1,W) = λ1. (54)

We should always have

oSNR
(
a′M,W

)
≤ oSNR

(
a′M−1,W

)
≤ · · · (55)

≤ oSNR (a1,W) = λ1

and

υsd
(
a′M,W

)
≤ υsd

(
a′M−1,W

)
≤ · · · ≤ υsd (a1,W) ≤ 1. (56)

C. VS Tradeoff

Another interesting approach that can compromise between
noise reduction and speech distortion is the VS tradeoff filter
obtained by

min
a′
Q

Jds
(
a′Q
)

subject to Jrs
(
a′Q
)
= β′φv1 , (57)

where 0 ≤ β′ ≤ 1, to ensure that filtering achieves some
degree of noise reduction. We easily find that the optimal filter
is

h′T,µ′(Q) =

Q∑
q=1

bqb
H
q

µ′ + λq
Φxi, (58)

where µ′ ≥ 0 is a Lagrange multiplier1. By changing Q and µ′,
we are able to choose between a wide range of noise reduction
and signal distortion trade offs. Clearly, for µ′ = 0 and µ′ = 1,
we get the VS minimum distortion and VS Wiener filters,
respectively.

For Q =M , we obtain the classical tradeoff filter:

h′T,µ′ = h′T,µ′(M)

=

M∑
m=1

bmbHm
µ′ + λm

Φxi

= (Φx + µ′Φv)
−1

Φxi (59)

and for Q = 1, we obtain the maximum SNR filter:

h′max,µ′ = h′T,µ′(1) =
b1b

H
1

µ′ + λ1
Φxi. (60)

This shows us that all these traditional enhancement filter types
are clearly related. In Table I, we summarize all optimal VS
filters developed in this section, showing how they are strongly
related in the proposed framework. As we can see, these filter
designs are simple to compute, so the main computational
complexity of the proposed method lies in the computation of
the joint diagonalization. However, fast and recursive imple-
mentations exist, which can reduce its complexity from order
O(M3) to order O(M2) [34].

1For µ′ = 0, Q must be smaller than or equal to P .

TABLE I
OPTIMAL VS FILTERS FOR NOISE REDUCTION.

VS Minimum Distortion: h′
MD(Q) =

Q∑
q=1

bqbHq

λq
Φxi, Q ≤ P

MVDR: h′
MVDR =

P∑
p=1

bpbHp

λp
Φxi

VS Wiener: h′
W(Q) =

Q∑
q=1

bqbHq

1 + λq
Φxi, Q ≤M

Wiener: h′
W =

M∑
m=1

bmbHm
1 + λm

Φxi

VS Tradeoff: h′
T,µ′ (Q) =

Q∑
q=1

bqbHq

µ′ + λq
Φxi, µ′ ≥ 0

Tradeoff: h′
T,µ′ =

M∑
m=1

bmbHm
µ′ + λm

Φxi

Maximum SNR: h′
max,µ′ =

b1bH1
µ′ + λ1

Φxi

VI. INDIRECT OPTIMAL VARIABLE SPAN (VS) FILTERS

The indirect approach is based on two successive stages. In
the first stage, we find an estimate of the noise signal. This
estimate is then used in the second stage by subtracting it
from the observation signal. This will lead to an estimate of
the desired signal. Interestingly, as it appears later, there is
a strong link between the indirect and direct filters, i.e., the
optimal variable span filters can be derived and understood in
different ways. This also means that the same filter can be
implemented in many different ways, which may be relevant
from a numerical point of view. Moreover, we show that the
direct and indirect filter types are only equivalent in some
special cases, which means we can obtain different filters with
the indirect approach. This gives us even more flexibility for
solving the enhancement problem.

A. Indirect Approach

Let h′′ =
[
h′′1 h′′2 · · · h′′M

]T
be a complex-valued

filter of length M . By applying this filter to the observation
signal vector, we obtain

v̂ = h′′Hx + h′′Hv (61)

and the corresponding output SNR is

oSNRv̂ (h
′′) =

h′′HΦxh′′

h′′HΦvh′′
. (62)

Then, we find h′′ that minimizes oSNRv̂ (h
′′). It is easy to

check that the solution is

h′′ = B′′Pa′′P , (63)

where B′′P and a′′P are defined in the previous sections. With
(63), oSNRv̂ (h

′′) = 0 and v̂ can be seen as the estimate of
the noise.

We consider the more general scenario:

h′′(Q) = B′′Qa′′Q, (64)
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where 0 ≤ Q < M , B′′Q =
[

bQ+1 bQ+2 · · · bM
]

is a matrix of size M × (M − Q), a′′Q =[
aQ+1 aQ+2 · · · aM

]T
is a vector of length

M − Q, and h′′(Q) ∈ Span {bQ+1,bQ+2, . . . ,bM}. As
a consequence,

v̂ = h′′H(Q)x + h′′H(Q)v. (65)

Now, in general, oSNRv̂ [h
′′(Q)] 6= 0, and this implies

distortion as it will become clearer soon. This concludes the
first stage.

In the second stage, we estimate the desired signal, x1, as
the difference between the observation, y1, and the estimate
of the noise obtained from the first stage, i.e.,

z′′ = y1 − h′′H(Q)x− h′′H(Q)v

= x1 − a′′HQ B′′HQ x + v1 − a′′HQ B′′HQ v

= h
′′H

(Q)y, (66)

where

h
′′
(Q) = i−B′′Qa′′Q (67)

is the equivalent filter applied to the observation signal vector.

B. MSE Criterion and Performance Measures

We define the error signal between the estimated and desired
signals as

e′′ = z′′ − x1 = −a′′HQ B′′HQ x + v1 − a′′HQ B′′HQ v. (68)

This error can be written as the sum of two uncorrelated error
signals, i.e.,

e′′ = e′′ds + e′′rs, (69)

where

e′′ds = −a′′HQ B′′HQ x, (70)

e′′rs = v1 − a′′HQ B′′HQ v (71)

are the speech distortion due to the filter and the residual noise,
respectively. Then, the MSE criterion is

J
(
a′′Q
)
= E

(
|e′′|2

)
= φv1 − iTΦvB′′Qa′′Q − a′′HQ B′′HQ Φvi (72)

+ a′′HQ

(
Λ′′Q + IM−Q

)
a′′Q

= Jds
(
a′′Q
)
+ Jrs

(
a′′Q
)
,

where IM−Q is the (M − Q)× (M − Q) identity matrix,

Λ′′Q = diag (λQ+1, λQ+2, . . . , λM ) (73)

is a diagonal matrix containing the last M −Q eigenvalues of
Φ−1v Φx,

Jds
(
a′′Q
)
= E

(
|e′′ds|

2
)
= υsd

(
a′′Q
)
φx1 (74)

is the distortion-based MSE,

υsd
(
a′′Q
)
=

a′′HQ Λ′′Qa′′Q
φx1

(75)

is the speech distortion index,

Jrs
(
a′′Q
)
= E

(
|e′′rs|

2
)
=

φv1

ξnr

(
a′′Q

) (76)

is the MSE corresponding to the residual noise, and

ξnr
(
a′′Q
)
=

φv1
φv1 − 2Re{a′′HQ B′′HQ Φvi}+ a′′HQ a′′Q

(77)

is the noise reduction factor, with Re{·} denoting the real part
of a complex number. We deduce that

Jds
(
a′′Q
)

Jrs

(
a′′Q

) = iSNR× ξnr
(
a′′Q
)
× υsd

(
a′′Q
)

= oSNR
(
a′′Q
)
× ξsr

(
a′′Q
)
× υsd

(
a′′Q
)
, (78)

where

oSNR
(
a′′Q
)
=
φx1 − 2Re{a′′HQ B′′HQ Φxi}+ a′′HQ Λ′′Qa′′Q
φv1 − 2Re{a′′HQ B′′HQ Φvi}+ a′′HQ a′′Q

(79)

is the output SNR, and

ξsr
(
a′′Q
)
=

φx1

φx1
− 2Re{a′′HQ B′′HQ Φxi}+ a′′HQ Λ′′Qa′′Q

(80)

is the speech reduction factor.

C. Optimal Filters

1) Indirect VS Minimum Residual Noise: The indirect VS
minimum residual noise filter is derived from Jrs

(
a′′Q
)
. Indeed,

by minimizing Jrs
(
a′′Q
)
, we easily get

a′′Q,MR = B′′HQ Φvi. (81)

Therefore, the indirect VS minimum residual noise filter is

h
′′
MR(Q) = i−B′′QB′′HQ Φvi = B′QB′HQ Φvi (82)

for Q ≥ 1 and h
′′
MR(0) = 0M×1. We can express the previous

filter as

h
′′
MR(Q) =

Q∑
q=1

bqb
H
q Φvi

=

Q∑
q=1

bqb
H
q

λq
Φxi +

Q∑
i=Q+1

bib
H
i Φvi

= h′MD(Q) +

Q∑
i=Q+1

bib
H
i Φvi

= h
′′
MR(Q) +

Q∑
i=Q+1

bib
H
i Φvi (83)

for Q < M [and h
′′
MR(M) = i]. We observe that for Q ≤

Q ≤ P , h
′′
MR(Q) = h′MD(Q). But for Q > P , the two filters

are different since h′MD(Q) is not defined in this context.
We have at least two interesting particular cases:
• h

′′
MR(1) = h′max,0, which corresponds to the maximum

SNR filter; and
• h

′′
MR(P ) = h′MVDR, which corresponds to the MVDR

filter.
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2) Indirect VS Wiener: The indirect VS Wiener filter is
obtained from the optimization of the MSE criterion, J

(
a′′Q
)
.

The minimization of J
(
a′′Q
)

leads to

a′′Q,W =
(
Λ′′Q + IM−Q

)−1
B′′HQ Φvi. (84)

We deduce that the indirect VS Wiener filter is

h
′′
W(Q) = i−B′′Q

(
Λ′′Q + IM−Q

)−1
B′′HQ Φvi (85)

for Q ≥ 1 and h
′′
W(0) = h′W = Φ−1y Φxi, which is the

classical Wiener filter. Expression (85) can be rewritten as

h
′′
W(Q) = i−B′′Q

(
Λ′′Q + IM−Q

)−1
B′′HQ Φyi

+ B′′Q
(
Λ′′Q + IM−Q

)−1
B′′HQ Φxi

= B′Q
(
Λ′Q + IQ

)−1
B′HQ Φyi

+ B′′Q
(
Λ′′Q + IM−Q

)−1
B′′HQ Φxi

= Φ−1y Φxi + B′Q
(
Λ′Q + IQ

)−1
B′HQ Φvi

= h′W +

Q∑
q=1

bqb
H
q

1 + λq
Φvi

= h
′′
W(0) +

Q∑
q=1

bqb
H
q

1 + λq
Φvi (86)

for Q < M [and h
′′
W(M) = i]. It is of interest to observe that

h
′′
W(P ) = h′MVDR.
3) Indirect VS Tradeoff: The indirect VS tradeoff filter is

obtained from the optimization problem:

min
a′′

Q

Jrs
(
a′′Q
)

subject to Jds
(
a′′Q
)
= β′′φx1 , (87)

where 0 ≤ β′′ ≤ 1. We find that

a′′Q,T,µ′′ =
(
µ′′Λ′′Q + IM−Q

)−1
B′′HQ Φvi, (88)

where µ′′ ≥ 0 is a Lagrange multiplier. As a result, the indirect
VS tradeoff filter is

h
′′
T,µ′′(Q) = i−B′′Q

(
µ′′Λ′′Q + IM−Q

)−1
B′′HQ Φvi (89)

for Q ≥ 1 and

h
′′
T,µ′′(0) = i− (µ′′Φx + Φv)

−1
Φvi

=
(
Φx + µ′′−1Φv

)−1
Φxi = h′T,1/µ′′ . (90)

Obviously, h
′′
T,0(Q) = h

′′
MR(Q) and h

′′
T,1(Q) = h

′′
W(Q). Also,

we have h
′′
T,µ′′(P ) = h′MVDR.

VII. SIMULATIONS

We now proceed by presenting the experimental evalua-
tion of the proposed filter designs for enhancement in the
time domain. That is, we consider the problem of extract-
ing a desired speech signal, x(n), at the time instance n
from a vector of time-consecutive observations: y(n) =[
y(n) · · · y(n−M + 1)

]T
. Moreover, y(n) = x(n) +

v(n) where x(n) and v(n) are vectors containing the clean
speech and the noise, respectively. The evaluation is two-
fold: first, we have conducted a validation of the theory by
using closed-form expressions for the necessary statistics in

the filter design under the assumption of the desired signal
being either periodic or generated by an autoregressive (AR)
process, which emulates well voiced and unvoiced speech, re-
spectively. By using such models and closed-form expressions,
the performance of the filters can be evaluated without the
need of estimating any statistics, which strengthens the clarity
and interpretability of the results. Moreover, we use these
evaluations to validate the theoretical findings regarding the
relationship between the filters performances. Second, we have
conducted experiments on real speech data in different noise
scenarios using the proposed method and three well-known
enhancement methods. The outcome of these experiments
emphasizes the practical usefulness of the proposed methods.

A. Validation of Theory

In the theory validation, we first considered a scenario
where the desired signal is periodic with six real harmon-
ics, and that it is corrupted by colored noise generated by
a second order AR [AR(2)] process. For this, and all the
following theoretical scenarios, the filter performances were
measured and averaged over 500 Monte-Carlo simulations for
each setting. In each Monte-Carlo simulation, the following
quantities were randomized: the fundamental frequency of the
desired, periodic signal, was sampled from the uniform dis-
tribution U(0.1, 0.4), each harmonic amplitude was sampled
from U(0.5, 1.5), the AR coefficients of the colored noise were
found by fitting an AR(2) process [with MATLAB’s lpc()
function] to a periodic signal of length 500 with six harmonics
with amplitudes sampled from U(0.5, 1.5) and a fundamental
frequency2 sampled from U(0.15, 0.45). With this setup, we
first measured the output SNRs and speech reduction factors
for the minimum distortion (MD), Wiener (W), and Tradeoff
(T) (with µ = 0.2) filters presented in Section V for Q = 6
( ) and Q = 12 ( ) for different filter lengths, M , with an
input SNR of 15 dB as depicted in Figure 1. We see that the
differences between the filters vanish as M grows, however,
we clearly see that the MD filter always has a significantly
lower distortion than the other filters, especially for Q = 12,
where the MD filter is in fact distortionless. This is expected
since Q = 12 = 2 · (# of harmonics). Moreover, we see that
we can only expect the speech reduction factor to decrease
when Q is chosen correctly when M is increased, and that
there is a significant gap between the maximum output SNR
and the output SNRs of the different filtering methods. A
similar experiment was carried out, where the performances
were instead evaluated versus the input SNR for M = 30,
and these results are found in Figure 2. Again, we see that the
output SNR is generally higher for the filters designed with
Q = 6 than for the Q = 12 filters. However, these filters
also have a higher distortion, and never become distortionless.
At low input SNRs, the MD filters yield significantly lower
output SNRs than the Wiener filters, but they also have much
less distortion. As expected, the T filters can be used to obtain
performances in between.

2The fundamental frequency is measured in radians per sample in Section
VII.
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Fig. 1. Plots of (upper) the output SNR and
(lower) the speech reduction factor of the minimum
distortion (MD), Wiener (W), Tradeoff (T) (with
µ = 0.2), and maximum SNR (max) filters for
Q = 6 ( ) and Q = 12 ( ) versus M in
a scenario with a periodic desired signal corrupted
by colored noise.
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Fig. 2. Plots of (upper) the output SNR and
(lower) the speech reduction factor of the minimum
distortion (MD), Wiener (W), Tradeoff (T) (with
µ = 0.2), and maximum SNR (max) filters for
Q = 6 ( ) and Q = 12 ( ) versus the input
SNR in a scenario with a periodic desired signal
corrupted by colored noise.
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Fig. 3. Plots of (upper) the output SNR and
(lower) the speech reduction factor of the minimum
distortion (MD), Wiener (W), Tradeoff (T) (with
µ = 0.2), and maximum SNR (max) filters for
Q = 6 ( ) and Q = 12 ( ) versus M in
a scenario with a periodic desired signal corrupted
by white noise and a periodic interferer.

We then considered another scenario, where the desired
signal was again periodic, but the noise was instead a sum of
white noise and a periodic interferer. The interfering source
was a single, real sinusoid with frequency ωi = ω0+0.05, with
ω0 being the fundamental frequency of the desired signal. The
ratio between the powers of the desired signal and white noise
was 10 dB, and we then fixed the input signal-to-interference
(SIR) ratio to 0 dB, and evaluated the performances versus
different M ’s. The outcomes of this evaluation are found in
Figure 3. We observe that, in this scenario, the differences
between the different filters are larger for low M ’s, but that
they are generally following the same trend and approach each
others performance for increasing M ’s. Moreover, we observe
that the filters provide output SNRs closer to the maximum
output SNR. A similar experiment was carried out, where M
was fixed to 30, and the performances were evaluated versus
the input SIR. The results are provided in Figure 4. From
these results, we see that, for Q = 6, the filters have nearly
identical output SNRs for all input SNRs, but, on the other
hand, there are notable differences in their signal reduction
factors, with the MD filters having the lowest. For Q = 12,
there are significant differences in both output SNRs and signal
reduction factors between the filters, though. Moreover, we
note that the filters do not converge to the same output SNR
in this case.

Furthermore, we considered a scenario where the desired
signal was generated by an AR(6) process and the noise was
generated by and AR(2). That is, in this case, we cannot avoid
distorting the desired signal, as the covariance matrix of the
desired signal is full rank. The colored noise was generated
as previously described, whereas the desired, noisy signal was
generated with an AR(6) process of which the coefficients
were found by fitting to a periodic signal (as before) with the

same parameters as the desired, periodic signal in the previous
experiments. With this setup, we first fixed the input SNR
again to 10 dB and varied the filter length, M , to obtain the
results in Figure 5. First of all, we observe that the filters
show equal performance in this scenario for high M ’s and
for low M ’s we see the same relationship between the filter
performances as in the previous experiments. Generally, the
filters have an increasing output SNR as we increase M , but
we also note that the distortion of the filters increase for an
increasing M . In another experiment, M was fixed to 30, and
the performance was measured versus different input SNRs
as depicted in Figure 6. Here, the filters again show similar
performance in terms of output SNR for input SNRs larger
than 10 dB. For lower input SNRs, the MD and tradeoff
filters have much less distortion than the Wiener filter, but
they also have lower output SNRs. Generally, Q = 6 filters
have higher output SNRs but also yield more distortion of the
desired signal.

We then conducted a final evaluation on synthetic data,
where we compared the proposed direct and indirect filters
in Section V and VI, respectively. As described in these
sections, they are only equivalent in some special cases, and
will thus lead to different filters in general. This is also
shown in this evaluation. We considered a scenario where
the desired signal is periodic with six real harmonics and
a fundamental frequency of 0.25 rad/sample. The harmonics
had unit amplitudes and uniformly distributed phases between
0 and 2π. Colored noise was added, which was generated
by an AR(2) process as described before. Using this setup,
we then evaluated the direct and indirect tradeoff filters of
length M = 60. The evaluation was conducted over a grid of
different ranks (1 ≤ Q ≤ M and 1 ≤ Q ≤ M ), and different
tradeoff parameters (µ′ ∈ [10−2; 104] and µ′′ = 1/µ′). Both
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Fig. 4. Plots of (upper) the output SNR and
(lower) the speech reduction factor of the minimum
distortion (MD), Wiener (W), Tradeoff (T) (with
µ = 0.2), and maximum SNR (max) filters for
Q = 6 ( ) and Q = 12 ( ) versus the input
SIR in a scenario with a periodic desired signal
corrupted by white noise and a periodic interferer.
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Fig. 5. Plots of (upper) the output SNR and
(lower) the speech reduction factor of the minimum
distortion (MD), Wiener (W), Tradeoff (T) (with
µ = 0.2), and maximum SNR (max) filters for
Q = 6 ( ) and Q = 12 ( ) versus M in
a scenario with a desired signal generated by an
AR(6) process corrupted by colored noise.
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(lower) the speech reduction factor of the minimum
distortion (MD), Wiener (W), Tradeoff (T) (with
µ = 0.2), and maximum SNR (max) filters for
Q = 6 ( ) and Q = 12 ( ) versus the input
SNR in a scenario with a desired signal generated
by an AR(6) process corrupted by colored noise.

Fig. 7. Plot of the output SNR versus the signal reduction factor for the direct
and indirect tradeoff filters.

the output SNRs and signal reduction factors of the filters
were measured in the evaluation as depicted in Figure 7. It
is clearly seen, that the filters yield the same performances
in a few special cases as claimed previously. Moreover, we
can see that there are different benefits of the two approaches.
If, in a given application, the amount of distortion must be
as low as possible, the indirect tradeoff filter generally yields
lower distortion levels when the tradeoff parameter and rank
is varied. On the other hand, the indirect tradeoff filter yields
a relatively low output SNR for some parameter choices, as
opposed to the direct tradeoff filter.

B. Real-Data Experiments

The second part of the experimental evaluation of the filters
is on real-life speech. For these experiments, we used four
speech excerpts (two females and two males) each of length
4–6 seconds from the Keele database [35]. In the experiments,

the speech was corrupted by different kinds of noise (white,
car, babble, exhibition hall, and street). All noise signals except
the white noise were taken from the AURORA database [36].
The proposed filtering methods were then evaluated on these
signals in different scenarios. To apply the filters on real
speech we did two things: first, we assumed that the noise
statistics could be estimated directly from the noise signal only
since noise estimation is not the main topic of this paper. More
specifically, the noise statistics were found from the past 200
samples at each time instance, and the statistics of the desired
signal was found as Φx = Φy −Φv. Likewise, the observed
signal statistics were estimated from the past 200 samples of
the observed signal using the sample covariance estimator.
Second, since the dimensionality of the signal subspace is
not known in practice, we estimated Q using a percentage-
of-variance (PoV) principle. That is, for each segment, Q was
chosen such that

γ <

∑Q
q=1 λq∑M
m=1 λm

, (91)

is satisfied with the smallest possible Q. Besides the proposed
filtering methods, two speech enhancement methods based
on spectral subtraction from the VOICEBOX3 toolbox for
MATLAB, were included in the evaluation for comparison.
The first of these method (SS) uses the gain function proposed
in [37], whereas the other (SSm) uses the one proposed in [38].
In addition to this, the optimally modified LSA (OMLSA)
speech estimator [39], [40] by Cohen & Berdugo was included
in the evaluation4. The methods were applied with the default
settings provided with the toolbox.

3http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
4http://webee.technion.ac.il/people/IsraelCohen/Info/Software.html

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
http://webee.technion.ac.il/people/IsraelCohen/Info/Software.html
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Fig. 8. Speech enhancement performance of the
proposed and comparison methods in terms of (top)
output SNR, (mid) speech reduction factor, and
(bottom) MOS (PESQ) scores versus the PoV used
for choosing Q.
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and (bottom) MOS (PESQ) scores versus the filter
length M .
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Fig. 10. Speech enhancement performance of the
proposed and comparison methods in terms of (top)
output SNR, (mid) speech reduction factor, and
(bottom) MOS (PESQ) scores versus the input
SNR.

With the above-mentioned setup, we first evaluated the per-
formance of the proposed methods versus the PoV threshold,
γ, in terms of the output SNR, the signal reduction factor, and
an objective perceptual mean opinion score (MOS) obtained
using a “Perceptual Evaluation of Speech Quality” (PESQ)
[41], [42] MATLAB implementation5. In this simulation, the
input SNR was 0 dB, and the filter length was M = 70, and
the results are provided in Figure 8. Clearly, the choice of
the PoV threshold have an impact on the enhancement per-
formance, and it affects the methods differently. All methods
have decreasing output SNRs and slightly decreasing signal
reduction factors for an increasing γ. Regarding the perceptual
performance, the MOS score for the MD methods is highest
for low γ’s, whereas higher γ’s are needed to maximize the
MOS scores of the Tradeoff and Wiener filter (γ ≈ 0.981 and
γ ≈ 0.987, respectively). As a tradeoff, we used γ = 0.985 in
the following experiments.

In the next experiment, the performances of the aforemen-
tioned methods were evaluated versus the filter length, M ,
when the input SNR was fixed to 0 dB. The results from this
experiment are provided in Figure 9, where ( ) denotes the
performance of the traditional Wiener (TrW) filter. The first
thing to note is that the variable span Wiener filter can indeed
outperform the traditional Wiener filter in terms of output
SNR and perceptual performance, especially for M > 60.

5http://ecs.utdallas.edu/loizou/speech/software.htm

Additionally, the variable span Wiener filter outperforms the
traditional Wiener filter in terms of both output SNR and the
speech reduction factor. This is very interesting since increase
noise reduction is often considered to only be achievable by
increasing the signal distortion, which is not the case here.
Besides that we see the same relation between the filters in
terms of output SNR and speech reduction as in the theoretical
experiments. For all M ’s, the proposed methods clearly out-
performs the SS, SSm, and OMLSA methods. Note, however,
that the difference might be smaller in practice, where the
noise estimation will be more difficult, but these results show
the potential performance improvement compared to those
methods. Moreover, it should be noted that the SS, SSm,
and OMLSA methods are only evaluated using the perceptual
scores, as the output SNRs and speech reduction factor cannot
be easily measured for those methods. This would require that
these methods are rewritten as linear transformations of the
observations. Finally, the performances were also evaluated
versus different input SNRs for a fixed filter length of M = 70,
where the performance of the proposed methods peaks in
the previous experiment. Again, similar relations between the
proposed methods compared to the theoretical simulations are
observed, regarding the output SNRs and signal reduction
factors (see Figure 10). Furthermore, the proposed methods
generally seem to outperform the SS, SSm, and OMLSA
methods for all input SNRs, with the largest performance
improvement being obtained for low input SNRs. Finally, the

http://ecs.utdallas.edu/loizou/speech/software.htm
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variable span Wiener filter is again shown to outperform the
traditional Wiener filter in terms of both noise reduction and
speech distortion performance. Aside from the aforementioned
objective measurements, we have also conducted informal
listening tests. From our experience, the MOS’s obtained using
PESQ reflects very well the actual perceptual quality of the
evaluated enhancement methods.

VIII. CONCLUSIONS

We have introduced the novel concept of variable span
filters, wherein noise reduction filters are formed by linear
combinations of the eigenvectors from the joint diagonaliza-
tion of the covariance matrices of the signal of interest and
the noise. We have shown how the resulting filters reduce to
well-known filter designs such as MVDR, Wiener, maximum
SNR, and tradeoff filters in some special cases. Moreover, the
variable span filters include also generalizations of these filter
designs, resulting in new optimal filters for noise reduction. An
interesting aspect of the variable span filters is that it is possi-
ble to trade signal distortion for noise reduction in an explicit
way, meaning that via two simple user parameter, it is possible
to achieve higher output SNRs by allowing some distortion on
the signal of interest. Tradeoff filters with this capability have
been considered before, but the proposed variable span tradeoff
filters can control the distortion and noise reduction levels over
a much wider range since an additional tradeoff parameter,
namely the number of eigenvectors used in building the filter,
has been introduced. Simulations have demonstrated the prop-
erties of the various designs and emphasized the flexibility of
the variable span filter in terms of being able to trade off noise
reduction for less signal distortion. Moreover, the simulations
indicated that there is a potential perceptual advantage of
using the proposed filters compared to traditional, widely used
speech enhancement methods. Another key observation from
the simulations is that the proposed variable span Wiener
filter can outperform its traditional counterpart in terms of
both output SNR and speech reduction factor levels. In other
words, we can exploit speech subspaces with a low rank to
obtain more noise reduction without increasing the amount of
distortion compared to traditional filter designs.
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