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Abstract 94 
 95 

When listening to ensemble music even non-musicians can follow single instruments effortlessly. 96 

Electrophysiological indices for neural sensory encoding of separate streams have been 97 

described using oddball paradigms which utilize brain reactions to sound events that deviate 98 

from a repeating standard pattern. Obviously, these paradigms put constraints on the 99 

compositional complexity of the musical stimulus. Here, we apply a regression-based method of 100 

multivariate EEG analysis in order to reveal the neural encoding of separate voices of naturalistic 101 

ensemble music that is based on cortical responses to tone onsets, such as N1/P2 ERP 102 

components.  Music clips (resembling minimalistic electro-pop) were presented to 11 subjects, 103 

either in an ensemble version (drums, bass, keyboard) or in the corresponding three solo 104 

versions. For each instrument we train a spatio-temporal regression filter that optimizes the 105 

correlation between EEG and a target function which represents the sequence of note onsets in 106 

the audio signal of the respective solo voice. This filter extracts an EEG projection that reflects 107 

the brain’s reaction to note onsets with enhanced sensitivity.  We apply these instrument-108 

specific filters to 61-channel EEG recorded during the presentations of the ensemble version and 109 

assess by means of correlation measures how strongly the voice of each solo instrument is 110 

reflected in the EEG. Our results show that the reflection of the melody instrument keyboard in 111 

the EEG exceeds that of the other instruments by far, suggesting a high-voice superiority effect 112 

in the neural representation of note onsets. Moreover, the results indicated that focusing 113 

attention on a particular instrument can enhance this reflection. We conclude that the voice-114 
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discriminating neural representation of tone onsets at the level of early auditory ERPs parallels 115 

the perceptual segregation of multi-voiced music. 116 

 117 

 118 

  119 

 120 

Introduction 121 

 122 

Natural ‘soundscapes’ of everyday life, e.g., communication in a crowded get-together or noisy 123 

environment, challenge our proficiency in organizing sounds into perceptually meaningful 124 

sequences. All the more music might spark our processing capabilities as it provides acoustic 125 

scenes with a large number of concurring sound sources. Yet, when listening to music we are 126 

able to organize the complex soundscape into streams, segregate foreground and background, 127 

recognize voices, melodies, patterns, motifs, and switch our attention between different aspects 128 

of a piece of music. Auditory stream segregation (ASS), the perceptional process which underlies 129 

this capability, has fascinated researchers for many years, resulting in numerous studies 130 

exploring its mechanisms and determinants. In a nutshell (for a detailed review see Moore and 131 

Gockel, 2002), the segregation of a complex audio signal into streams can occur on the basis of 132 

many different acoustic cues (Van Noorden, 1975); it is assumed to rely on processes at multiple 133 

levels of the auditory system; and it reflects a number of different processes, some of which are 134 

stimulus-driven while others are of more general cognitive nature, i.e., involving attention 135 

and/or knowledge (Bregman, 1994).  136 

Electrophysiological indices of auditory stream segregation have been detected in several 137 

approaches (Sussman, 2005; Sussman, Horváth, Winkler, & Orr, 2007; Winkler, Takegata, & 138 
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Sussman, 2005; Yabe, et al., 2001; for an overview see Snyder and Alain, 2007). One line of 139 

research focused on the Mismatch Negativity (MMN) as neural index for a distinct perceptional 140 

state of stream segregation by constructing tone sequences such that only a perceptual 141 

segregation into two streams would allow a MMN-generating sound pattern to emerge. 142 

Following a similar principle, neural steady-state responses were found to reflect the formation 143 

of separate streams (Chakalov, Draganova, Wollbrink, Preissl, & Pantev, 2013) in MEG. Using 144 

EEG an influence of frequency separation of consecutive tones on the N1-P2 complex amplitudes 145 

was reported (Gutschalk, et al., 2005; Snyder, Alain, & Picton, 2006). Critically, this trend 146 

correlated with the perception of streaming in individual participants; a similar effect was 147 

reported for the N1 component. 148 

This suggests that the amplitude of early auditory ERP components like the N1-P2 complex can 149 

inform about the perceptional state with respect to segregation/coherence of complex auditory 150 

stimuli. Since the N1-P2 complex as a sensory-obligatory auditory-evoked potential can be 151 

utilized without imposing a complex structure, e.g., an oddball paradigm, on the stimulus 152 

material, it may be promising for investigating ASS in more naturalistic listening scenarios.  153 

In the domain of speech processing cortical onset responses that reflect changes in the 154 

waveform envelope (termed Envelope Following Responses, EFRs), have been a target of 155 

interest for a long time (Kuwada & Maher, 1986; Purcell, John, Schneider, & Picton, 2004; Aiken 156 

& Picton, 2005). Several approaches and methods aiming at extracting EFRs in naturalistic 157 

listening scenarios from continuous EEG or MEG have been proposed (Aiken & Picton, 2008; 158 

Kerlin & Miller, 2010; Lalor, Power, Reilly, & Foxe, 2009; Lalor & Foxe, 2010 and O'Sullivan, 159 

2014). These methods have provided a distinct picture of the brain signals ‘following’ the speech 160 

waveform envelope and, in particular, been utilized to study the human ‘cocktail party problem’ 161 

of understanding speech in noisy settings. In the domain of music processing a marked reflection 162 

of the sound envelope has been detected in the EEG signal of short segments of naturalistic 163 
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music (Schaefer, Farquhar, Blokland, Sadakata, & Desain, 2011). Unsupervised approaches 164 

(Cong, et al., 2012; Thompson, 2013) have confirmed that note onsets leave a reflection in the 165 

listener’s EEG consistently across subjects and stimuli. However, these reflections have not been 166 

investigated in detail for longer musical contexts and, in particular, an analogue to the ‘cocktail 167 

party’ problem in speech processing has not been investigated specifically, even though 168 

composing music from several ‘voices‘ is a common musical practice.    169 

Considering the general characteristics of the N1-P2 response as a stimulus-driven sensory 170 

component that varies as a function of the physical properties of the sound like its frequency 171 

(Dimitrijevic, Michalewski, Zeng, Pratt, & Starr, 2008; Pratt, et al., 2009) or spectral complexity 172 

(Maiste & Picton, 1989; Shahin  , Roberts, Pantev, Trainor, & Ross, 2005), it is an interesting 173 

question whether in a music-related scenario where perception of separate streams is highly 174 

likely, this typical onset-related ERP can be utilized to extract a neural representation related to 175 

these streams from the brain signal.  In principle, this task taps into two so-called inverse 176 

problems that do not have a unique solution: (1) We have a number of sound sources that 177 

produce a mixed audio signal, and from the mixed signal it is not possible (without further 178 

assumptions) to infer the original configuration of sources. This audio signal is assumed to result 179 

in stimulus-related neural activity in the listener.  (2)  What we record in the listener’s EEG is a 180 

mixture of stimulus-related neural activity, unrelated neural activity, and non-cerebral noise. 181 

Inferring these sources from the EEG signal, the so-called inverse problem of EEG generation, is 182 

likewise a problem without unique solution. In the present analysis we aim in a first step to learn 183 

a solution for the second of these inverse problems, to extract stimulus-related activity from the 184 

EEG in the case of a solo stream. Subsequently, we apply the derived solution in scenario with 185 

mixed sound sources.  We explore in how far the stimulus-related activity related to the solo 186 

stream can be extracted from the EEG of the mixed (multi-voiced) ensemble presentation.  187 
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We re-analyze a data set from a study proposing a ‘musical’ brain computer interface application 188 

(Treder, Purwins, Miklody, Sturm, & Blankertz, 2014) where participants listened to short clips of 189 

a complex semi-naturalistic, multi-voiced music stimulus. In the music clips of 40 s duration 190 

three musical instruments (drums, keyboard, and bass) were presented, each playing a 191 

(different) sequence of a repetitive standard pattern, interspersed by an infrequent deviant 192 

pattern. Playing as an ensemble, the instruments produced a sequence resembling a 193 

minimalistic version of Depeche Mode’s ‘Just can’t get enough’ (1980s Electro Pop). The 194 

experiment consisted of 63 presentations of the ensemble version in which the instruments 195 

played together and 14 solo clip presentations for each instrument (42 solo clips in total). During 196 

the ensemble presentations participants were instructed to attend to a target instrument and to 197 

silently count the number of deviant patterns in this instrument. The original analysis showed 198 

that P3 ERP components to deviant patterns in the target instrument sufficiently differ from 199 

those in the non-target instruments and, thus, allow to decode from the EEG signal which of the 200 

instruments a subject is attending to. These results can be considered as a proof-of-concept that 201 

our capability of shifting attention to one voice in an ensemble may be exploited in order to 202 

create a novel music-affine stimulation approach for use in a brain-computer interface.   203 

In contrast to the previous analysis that focused solely on P3 responses to deviations in the 204 

patterns, here, we propose to exploit the fact that all note onsets in a music clip should evoke 205 

ERP responses. Therefore, the sequence of onset events that constitutes each instrument’s part 206 

should elicit a corresponding series of ERP events in the listener’s EEG. Since onset 207 

characteristics critically contribute to an instrument’s specific timbre (McAdams, 1995) and 208 

onset-triggered ERPs are known to be responsive to subtle spectral and temporal changes 209 

(Meyer, Baumann, & Jancke, 2006) it can be assumed that the properties of this ERP response 210 

might differ for musical instruments with different tone onset characteristics. We introduce a 211 

novel multivariate method to extract this sequence of ERPs from the single-trial EEG by training 212 

a spatio-temporal filter that optimizes the relation between the sequence of onsets in the solo 213 
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audio signal and the concomitant EEG. We (1) explore whether such a spatio-temporal filter 214 

obtains EEG projections from the solo-instrument trials that are significantly correlated with the 215 

sequence of onsets of the respective solo music clip; and we (2) probe (by correlation measures) 216 

whether these filters trained on the solo trials can be used to reconstruct a representation of 217 

this solo voice from the EEG of participants listening to the ensemble version clips.  Finally, we 218 

test whether the reconstruction quality increases if participants focus their attention on the 219 

respective instrument. 220 

Methods 221 

Participants 222 

Eleven participants (7 male, 4 female), aged 21-50 years (mean age 28), all but one right-handed, 223 

were paid to take part in the experiment. Participants gave written consent and the study was 224 

performed in accordance with the Declaration of Helsinki. 225 

Apparatus 226 

EEG was recorded at 1000 Hz, using a Brain Products (Munich, Germany) actiCAP active 227 

electrode system with 64 electrodes. We used electrodes Fp1-2, AF3,4,7,8, Fz, F1-10, FCz, FC1-6, 228 

FT7,8, T7,8, Cz, C1-6,TP7,8, CPz, CP1-6, Pz, P1-10, POz, PO3,4,7,8, and Oz,1,2, placed according to 229 

the international 10-20 system. In addition to these 63 EEG channels one electrode was used to 230 

measure the electrooculgram (EOG). Active electrodes were referenced to left mastoid, using a 231 

forehead ground. All skin-electrode impedances were kept below 20 kΩ. The bandpass of the 232 

hardware filter was at 0.016-250 Hz. Visual stimuli providing the cues related to the participant’s 233 

task (details see below) were shown on a standard 22" TFT screen. Music stimuli were presented 234 

using Sennheiser PMX 200 headphones. The audio signal was recorded as an additional EEG 235 

channel. 236 

   237 
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    238 

Stimuli 239 

Stimuli consisted of 40-seconds music clips in 44.1 kHz mono WAV format, delivered binaurally, 240 

i.e., listeners were presented with the identical audio stream at each ear. The ensemble  version 241 

clip is composed of three overlaid instruments, each repeating 21 times the respective bar-long 242 

standard sound pattern depicted in Figure 1. In the following, the term ‘single trial’ denotes a 243 

single presentation of one of these 40s-long music clips.  Once in a while, instead of the bar-long 244 

standard pattern a deviant pattern occurs in one of the instruments. Each clip contains 3-7 245 

deviant bar-long patterns (out of 21 bars) for each instrument. Deviants of different instruments 246 

are non-overlapping and there is only one deviant pattern per instrument.  Deviant patterns are 247 

defined by 1 (drums), 4 (bass) or 3 (keyboard) tone(s) deviating from the standard pattern in 248 

pitch or timbre (drums), but not changing the onset pattern in time (for a detailed description 249 

see Treder, Purwins, Miklody, Sturm and Blankertz (2014)).  The stimulus represents a 250 

minimalistic adaptation of the chorus of ‘Just can't get enough’ by the Synth-Pop band Depeche 251 

Mode. It features three instruments: drums consisting of kick drum, snare and hi-hat; a synthetic 252 

bass; and a keyboard equipped with a synthetic piano sound. The instruments play an 253 

adaptation of the chorus of the original song with the keyboard playing the main melody of the 254 

song. The relative loudness of the instruments has been set by one of the authors such that all 255 

instruments are roughly equally audible. The tempo is 130 beats-per-minute. 256 

These stimuli are multi-voiced in the sense that they represent a musical texture consisting of 257 

more than one voice, not in the sense of independent melody lines. This interdependence is also 258 

reflected in the correlation between the audio power slopes that is given in Table 4. The bar-259 

long patterns consist of nine onsets for drums, four onsets for bass and eight onsets for 260 

keyboard. Drums and keyboard have one onset each that is not shared by one of the other 261 

instruments; all other onsets coincide for at least two instruments.  262 
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 263 

In the original experiment two different kinds of musical pieces were tested: in addition to the 264 

‘Just can't get enough’ adaptation (music condition SP) a stimulus resembling a jazz-like 265 

minimalistic piece of music (music condition J) was presented. This jazz-like piece of music was in 266 

stereo format, i.e., left ear and right ear were stimulated with different streams. The present 267 

analysis focused on utilizing continuous onset-related brain responses for the investigation of 268 

stream segregation. Therefore, the jazz-like stereo stimulus which introduced additional spatial 269 

cues for stream segregation was not appropriate for the present analysis.  270 

According to the pattern of standard and deviant, 10 different music clips were created with 271 

variable amounts and different positions of the deviants in each instrument. Additionally, solo 272 

versions with each of the instruments playing in isolation were generated. Sample stimuli are 273 

provided as supplemental material.  274 

 275 

Procedure 276 

 277 

Participants were seated in a comfortable chair at a distance of about 60 cm from the screen. 278 

Instruction was given in both, written and verbal form. They were instructed to sit still, relax 279 

their muscles and try to minimize eye movements during the course of a trial. Prior to the main 280 

experiment, participants were presented with the different music stimuli and it was verified that 281 

they can recognize the deviants. The main experiment was split into 10 blocks and each block 282 

consisted of 21 40s-long music clips (containing 21 bars each). All clips in a block featured one 283 

music condition: Synth-Pop(SP), Jazz(J), Synth-Pop solo(SPS), or Jazz solo(JS). The solo clips were 284 

identical to the mixed clips except for featuring only one instrument. Within one block the 21 285 

music clips were played according to a randomized playlist containing the ten clips that differed 286 

with respect to the position of deviant patterns. Each of the three instruments served as the 287 
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cued instrument for 7 clips within a block. The music conditions were presented in an 288 

interleaved order as: SP, J, SPS, JS, SP, J, SPS, JS, SP, J. In other words, there were 3 blocks with 289 

ensemble presentations (= 63 clips, 21 for each target instrument) and 2 solo blocks (= 42 clips, 290 

14 for each instrument) for each music condition; only conditions SP and SPS are part of the 291 

present analysis. 292 

Each trial started with a visual cue indicating the to-be-attended instrument. Then, the standard 293 

bar-long pattern and the deviant bar-long pattern of that particular instrument were played. 294 

Subsequently, a fixation cross was overlaid on the cue and after 2s, the music clip started. The 295 

cue and the fixation cross remained on the screen throughout the playback and participants 296 

were instructed to fixate the cross. To assure that participants deployed attention to the cued 297 

instrument, their task was to count the number of deviants in the cued instrument, ignoring the 298 

other two instruments. After the clip, a cue on the screen prompted participants to enter the 299 

count using the computer keyboard. After each block, they took a break of a few minutes. 300 

 301 

Data Analysis 302 

Pre-processing of EEG data 303 

The EEG data was lowpass-filtered using a Chebyshev filter (with passbands and stopbands of 42 304 

Hz and 49 Hz, respectively) and then downsampled to 100 Hz. Since electrodes F9 and F10 were 305 

not contained in the head model used in the later analysis (see below ‘Training of regression 306 

filters on solo clips’ ) they were not considered in the analysis. This left 61 EEG channels for 307 

analysis. In order to remove signal components of non-neural origin, such as eye artifacts, 308 

muscle artifacts or movement artifacts while preserving the overall temporal structure of clips 309 

we separated the 61-channel EEG data into independent components using the TDSEP algorithm 310 

(Temporal Decorrelation source SEParation, (Ziehe, Laskov, Nolte, & Müller, 2004)) . ICA 311 
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components that were considered as purely or predominantly driven by artifacts based on visual 312 

inspection of power spectrum, time course and topography (see also McMenamin et al. (2010) 313 

and McMenamin, Shackman, Greischar and Davidson (2011)) were discarded and the remaining 314 

components were projected back into the original sensor space.  315 

Pre-processing of audio wave files 316 

For each music clip (solo and ensemble stimuli) we determined the slope of the audio power 317 

envelope. To this end, we first segmented the audio signal into 50% overlapping time windows 318 

of 50 ms width and then calculated the average power of each window. Subsequently, the 319 

resulting time course was smoothed using a Gaussian filter of three samples width and the first 320 

derivative was taken, yielding the power slope.  Then, the extracted power slope was 321 

interpolated to match the sampling frequency of the EEG. 322 

Linear Ridge Regression with temporal embedding  323 

In order to extract a component from the ongoing EEG that reflects a brain response to the 324 

sequence of onsets of a music stimulus we apply Linear Ridge Regression (Hoerl, 1970).      325 

Regression-based techniques have been applied in the context of cortical speech envelope 326 

tracking before (O'Sullivan, 2014). The related Canonical Component Analysis has been applied 327 

in studies related to the perception of complex natural stimuli, e.g. for identifying common 328 

networks of activation in a group of participants who were presented with movie clips 329 

(Dmochowski, Sajda, Dias, & Parra, 2012; Gaebler, et al., 2014) or in subjects listening to 330 

narrations (Kuhlen, Allefeld, & Haynes, 2012).  Here, we utilize Linear Ridge Regression in order 331 

to optimally extract ERP responses that are phase-locked to rapid intensity changes indicating 332 

tone onsets in the music stimulus from the listener’s EEG. We train regression models to 333 

optimize the correlation between a surrogate channel extracted from the 61-channel EEG of 334 

single subjects and the power slope of the audio signal, a feature that, according to our 335 
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experience, represents best the intensity changes that are expected to trigger ERP responses.  336 

Since it is not clear by how much the EEG response lags behind the presented stimulus, we apply 337 

regression to temporally embedded EEG data, a technique that was proposed in (Bießmann, et 338 

al., 2010) in order to deal with couplings between signals with unknown delay: To the EEG data 339 

set X1,…,Xn additional dimensions that are copies of X, time-shifted by 1, . . . , 25 data points are 340 

added as ‘artificial’ channels. This allows to capture brain responses within a latency of 0 to 250 341 

ms.   342 

Figure 2 summarizes the workflow of the generic regression analysis that was performed on the 343 

solo stimuli.   344 

Training of regression filters to EEG during presentation of solo clips 345 

 346 

In the first stage of the analysis regression filters that maximize the correlation between EEG and 347 

audio power slope were determined for the solo clips of the three instruments for each subject 348 

separately. In a leave-one-clip-out cross-validation approach clips for each instrument were 349 

divided into training and test sets, so that each clip acted as the test set once while the 350 

remaining clips formed the training set. Regression filters were calculated on the training set and 351 

applied to the test clip resulting in one uni-dimensional EEG projection for each of the 14 music 352 

clips.  The correlation coefficients of the 14 derived EEG projections for one instrument and the 353 

respective power were calculated in order to determine how well the extracted brain response 354 

reflects the onset sequence of the stimulus at the level of single subjects and single trials. In the 355 

following, we use the term ‘reconstruction quality’ if we refer to the correlation coefficient 356 

between EEG projections and audio power slope.  Additionally, the correlation coefficient for the 357 

mean EEG projection and the audio power slope was determined for each subject and 358 

instrument, and the grand average across all subjects was calculated.  359 
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The resulting regression filters, matrices of the dimensionality 61 channels x 26 time lags can be 360 

translated into spatio-temporal patterns that indicate to which extent each sensor contributes 361 

to the optimal EEG projection at which time lag (Haufe, et al., 2014). This allows to examine how 362 

the information that is used to reconstruct the audio power slope is distributed in space and 363 

time (relative to the stimulus).  An example of such a spatio-temporal pattern is given in Figure 364 

5. In order to get a better neurophysiological understanding of our results, we decomposed 365 

these 61 x 26 dimensional matrices into spatial components using a least-squares source 366 

reconstruction approach, the  MUltiple SIgnal Classification (‘MUSIC’) algorithm (Mosher & 367 

Leahy, 1998) and determined the corresponding time evolution for each component. This gives a 368 

set of scalp topographies (called spatial MUSIC components in the following) that contain a 369 

certain proportion of the spatial variance of a regression pattern and a corresponding set of time 370 

courses (called temporal MUSIC components in the following) that informs about their temporal 371 

distribution.   372 

 373 

Application of regression filter to EEG during presentation of ensemble version 374 

Then, we applied the regression filters derived in step 1 to the EEG responses of the ensemble 375 

version stimuli. This was done for each subject and each instrument separately, resulting in 376 

three uni-dimensional EEG projections for each ensemble version clip per subject. As before, 377 

these projections were averaged across the 63 ensemble version clips for each subject 378 

(separately for the instruments) as well as across all subjects. 379 

 380 

Statistical analysis 381 

It is important to recognize that both, the EEG signal and the audio power slopes, contain serial 382 

correlation, i.e., subsequent samples are not independent of each other. Thus, the assumptions 383 
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that underlie the standard tests for significance of correlation are not satisfied. To obtain a 384 

significance measure that takes this into account we followed the approach proposed by Pyper 385 

and Peterman (1998) and determined for each correlation coefficient the effective degrees of 386 

freedom based on the cross-correlation between the two respective time courses. This value, 387 

which is an estimate of the number of independent samples in both signals, is then used to 388 

determine the significance of the correlation coefficient. In order to account for the 389 

repetitiveness of the music clips, we considered the cross-correlation for all possible time lags 390 

within a music clip, drastically reducing the effective degrees of freedom.  The original and 391 

estimated effective degrees of freedom for the Grand Average correlation coefficients are given 392 

in Table 2 in the bottom line.    393 

The correlation coefficients of the subject-individual mean EEG projections were corrected for 394 

multiple testing for N=11 subjects with a Bonferroni correction. Significance of correlation was 395 

determined to the level of alpha=0.05.  396 

Results 397 

 398 

Solo stimulus presentations 399 

Figure 3 shows examples of the EEG projections that reconstruct the audio power slope; for 400 

illustration purposes these were collapsed across 11 subjects, 14 clips for each instrument and 401 

21 bars in each clip. A comparison of the EEG-reconstructed power slope (grey line) with the 402 

audio power slope (black line) shows that onset events in the audio signal are accompanied by 403 

peaks in the brain signal. Furthermore, the brain signal contains additional peaks that occur in 404 

absence of a corresponding onset event in the audio power slope. 405 

Table 1 gives the percentage of solo clips (14 for each instrument) in which the EEG-406 

reconstructed power slope is significantly correlated with the audio power slope at the level of 407 



The neural representation of ensemble music 
 

16 
 

each individual clip. Note that this measure relates to the significance of single trial clips of 40 s 408 

duration and was derived without averaging of EEG data. Table 2 shows the magnitude of 409 

correlation of the averaged EEG-reconstructed power slopes (for the 14 solo presentations of 410 

each instrument) with the audio power slope for single subjects, revealing significant correlation 411 

in 7/11 subjects for drums, in 9/11 subjects for bass, and in 8/11 subjects for keyboard. The 412 

bottom line of Table 2 shows that taking the mean of all subject’s EEG projections (Table 2, 413 

bottom line ‘GA’) produces time courses that are significantly correlated with the original audio 414 

power slopes for all three instruments with magnitude of correlation r=0.60 for drums 415 

(p=0.00014, effective degrees of freedom: 34), r=0.52 for bass(r=0.52, p=0.00011, effective 416 

degrees of freedom: 48) and r=0.54 for keyboard (p=0.0000004, effective degrees of freedom: 417 

72). Note that the original number of degrees of freedom of 3968 was drastically reduced by 418 

Pyper et al.’s method (Pyper & Peterman, 1998) that was applied to account for serial 419 

correlation in both time courses. All power slopes in Figure 3 are scaled for illustrational 420 

purposes. The absolute values of the audio power slopes for the three instruments are depicted 421 

in Figure 4, indicating differences in amplitudes and rise times.  422 

Decomposition of regression patterns 423 

Figure 5 shows an example of the spatio-temporal patterns that were derived from regression 424 

filters of a representative subject. The spatio-temporal patterns matrices that are directly 425 

derived from the regression filters are shown in the top panel. They show the distribution of 426 

information that is used to optimally reconstruct the stimulus’ power slope in time and sensor 427 

space with time lags from 0 to 250 ms in the abscissa and the EEG channels on the ordinate. 428 

Note that the x-axis in milliseconds carries a different meaning than in standard ERP analysis, 429 

since it denotes the time lag between stimulus and EEG signal. Decomposing the spatio-430 

temporal patterns with the MUSIC algorithm (see section Methods) results in a fronto-central 431 

scalp topography, resembling the topography of the N1/P2 complex. This scalp pattern is 432 



The neural representation of ensemble music 
 

17 
 

consistent for the three instruments. Its evolution over time differs, showing a change from 433 

positive to negative weights with extrema at 40 ms and 210 ms time lag for drums, broadly 434 

spread negative weights between 0 ms and 220 ms for bass, and a time evolution with two 435 

distinct positive peaks at 50 ms and 150 ms for keyboard.    436 

Ensemble version stimulus presentations 437 

Applying the three regression filters (trained on the solo stimulus presentations for the three 438 

instruments) to the EEG of the ensemble version stimulus presentation extracts an EEG 439 

projection that is significantly correlated with the solo audio power slope of each instrument in 440 

3/11 subjects for drums, in 2/11 subjects for bass, and in 9/11 subjects for keyboard (Table 3). In 441 

one of the subjects EEG projections significantly correlated with all three solo power slopes 442 

could be derived in parallel from the (same) EEG of the ensemble presentation, in 3/11 subjects 443 

the audio power slopes of two instruments in parallel, in 5/11 subjects for one instrument, and 444 

for 2/11 subjects for none of them. The EEG Grand Average (11 subjects, 63 EEG projections for 445 

each ensemble version clip each) is significantly correlated with the audio power slope of a solo 446 

instrument only for keyboard (r=0.45, p=0.001, effective degrees of freedom 88).  447 

Specificity of reconstruction 448 

Since the solo power slopes are correlated with each other to different degrees as well as with 449 

the audio power slope of the ensemble version stimulus (Table 4), there is no straightforward 450 

way to estimate whether the EEG projections extracted by the instrument-specific filters are 451 

indeed specific for the instrument. To learn about the specificity, we put forward the null 452 

hypothesis that the instrument-specific filter extracts a representation of all onsets of the 453 

ensemble version  stimulus. We compare Fisher-z-transformed correlation coefficients between 454 

EEG projections derived by the instrument-specific filter and solo audio power slopes to those 455 

between the same EEG projections and ensemble version audio power slopes in a paired 456 
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Wilcoxon signed rank test. Figure 6 shows that for keyboard in all but one subject the EEG 457 

projection is more highly correlated with the keyboard audio power slope than with the 458 

ensemble version audio power slope, resulting in a significant difference between the 459 

distributions of correlation coefficients at group level (p=0.002). For drums and bass there were 460 

no significant differences.   461 

 462 

Effect of attention 463 

When listening to the 63 ensemble version clips subjects were instructed to focus on a specific 464 

instrument before each clip, resulting in 21 trials of an ‘attended condition’ and 42 trials with an 465 

‘unattended condition’ for each instrument. We tested whether the correlation between the 466 

EEG-reconstructed instrument-specific audio power slope and the respective audio power slope 467 

significantly differed between these two conditions by performing a random partition test with 468 

1000 iterations. For single subjects a significant increase in correlation was present for drums in 469 

one subject (S1), for bass in two subjects (S5, S11), and for keyboard in five subjects (S6, S7, S8, 470 

S9, and S10). Within the group of subjects a significant effect of attention was present for 471 

keyboard (p = 0.001).   472 

Behavioral performance 473 

The behavioral performance differs for the three instruments with highest counting accuracy for 474 

keyboard (Grand Average: 74% correctly counted deviant stimuli), second highest accuracy for 475 

drums (71%) and lowest for bass (54%). The previous analysis of this data set (Treder, Purwins, 476 

Miklody, Sturm, & Blankertz, 2014) reported the absence of a significant main effect of the 477 

category instrument on the counting accuracy (ANOVA, p=0.12), but found a significantly lower 478 

counting accuracy for bass than for Keyboard (Bonferroni-corrected t-test, t = 4.87; p = 0.001).   479 

 480 
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Discussion 481 

 482 

The present study demonstrates that multichannel EEG recordings can reveal neural responses 483 

to acoustic onset patterns of a single voice embedded in an ensemble of musical instruments: To 484 

this end 11 subjects listened to a set of music clips where three instruments played short 485 

repetitive patterns, either in a solo version (three solo conditions) or together, forming a 486 

minimalistic electro pop-like sound pattern (multi-voiced `ensemble’ condition). 487 

Methodologically, we found that Linear Ridge Regression with temporal embedding enables to 488 

extract neural responses to the tone onset structure of a continuous music stimulus. In a first 489 

step using the solo stimulus presentations, such an onset sequence was reconstructed from the 490 

group average of EEG projections of each of the three instruments; for each single subject it was 491 

recovered at least for one of the instruments, in 4/11 subjects for all three instruments. 492 

Topographically, the maps derived from the spatio-temporal regression filters resembled a N1-493 

P2 complex, as, e.g., described in Shahin, Roberts, Pantev, Traino and Ross (2005), while their 494 

time evolution seem to be influenced by the stimulus properties of each instrument’s part. In a 495 

second step, applying these instrument-specific regression filters to the EEG recorded during the 496 

ensemble version presentation successfully extracted onset representations of at least one 497 

instrument’s solo voice in 9/11 single subjects, and in the Grand Average for the melody 498 

instrument keyboard. Third, in the melody instrument the reconstruction quality was found 499 

significantly enhanced when this instrument was the target of attention.   500 

Note onsets in music are acoustic landmarks providing auditory cues that underlie the 501 

perception of more complex phenomena such as beat, rhythm, and meter (Cameron & Grahn, 502 

2014). Event-related brain responses to these low-level constituents of rhythm have been 503 

studied in numerous contexts in the music domain (Meyer, Baumann, & Jancke, 2006; Schaefer, 504 

Desain, & Suppes, 2009; Shahin A. , Roberts, Pantev, Trainor, & Ross, 2005) and in the speech 505 
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domain (Hertrich, Dietrich, Trouvain, Moos, & Ackermann, 2012). In order to detect differences 506 

between conditions in the ERP, applications typically rely on averaging techniques. Thus, they 507 

require a large number of presentations of the same stimulus, therefore constraining the 508 

stimulus material in duration and complexity.  509 

In the first part of the present analysis we have demonstrated that the proposed regression 510 

method allows to robustly track the onset sequence of three monophonic complex music-like 511 

stimuli in the listener’s EEG. This corresponds to results from the domain of speech processing 512 

where Envelope Following Responses (EFRs) have been extracted from continuous EEG and MEG 513 

by combining source reconstruction techniques based on explicit modeling of the N1-P2 complex 514 

with convolution models (Aiken & Picton, 2008), with spatial filtering methods (Kerlin & Miller, 515 

2010) or by estimating the impulse response of the auditory system (Lalor, Power, Reilly, & Foxe, 516 

2009; Lalor & Foxe, 2010).  517 

In particular, the proposed method is related to the reverse correlation approach of O’Sullivan et 518 

al. (2014) since we regress EEG onto a sound envelope-related target function and operate on 519 

single trials. Our results demonstrate that such an approach can be successfully applied in a 520 

music-related context and, moreover, we extend O’Sullivan’s technique by providing a way to 521 

transform the regression filters into a format that is neurophysiologically interpretable.   522 

Our approach was successful in single subjects in a considerable proportion of presentations 523 

(music clips of 40 s duration (see Table 1)) without any averaging of EEG data. By following a 524 

cross-validation approach we demonstrated that this relationship between EEG and stimulus 525 

reflects genuine stimulus-related activity in the listener’s EEG that generalizes across 526 

presentations of the same stimulus. 527 

Compared with averaging techniques the proposed EEG decomposition approach allows to 528 

examine also non-repetitive stimuli that would lead to ‘blurred’ ERPs for single tones in the 529 
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average. It extracts an EEG projection that represents the cortical onset responses with 530 

enhanced signal-to-noise-ratio at the original time-resolution and, thus, enhances the sensitivity 531 

for small-scale differences between conditions such as, e.g., those related to the target status of 532 

an auditory stream. Furthermore, it allows for subsequent investigations at several time scales.   533 

Extending the results by Schaefer et al. (2011) and Cong et al. (2012) the present results add to 534 

the growing body of knowledge about how a naturalistic complex music signal is represented in 535 

the brain. 536 

Patterns 537 

The extracted MUSIC components (see Methods) revealed a scalp pattern that was consistent 538 

between subjects and instruments while time courses strongly varied between instruments. This 539 

common scalp pattern is reminiscent of a N1-P2 complex. The P1-N1-P2 complex is a sequence 540 

of ‘obligatory’ auditory event-related potentials that index detection of the onset of auditory 541 

stimuli (Näätänen & Picton, 1987). Latency and amplitude of the P1, N1 and P2 (which are 542 

assumed to reflect different neural generators and functional processes, but typically occur 543 

together) are influenced by a variety of factors related to stimulus properties and context, but 544 

also to subject-individual variables, such as age, arousal or attention (for a review see Crowley 545 

and Colrain (2004)).  Taken together, given the N1-P2-like scalp topography in the present 546 

results, the latency range of up to 250 ms, and the fact that the target function for defining the 547 

spatio-temporal regression filter emphasized rapid changes in sound intensity, the regression-548 

derived EEG-projections appear to reflect a sequence of onset-triggered early auditory ERPs, 549 

similar to those reported for single musical tones (Shahin, Roberts, Pantev, Trainor, & Ross, 550 

2005).  551 

The temporal dimension of the extracted components of the three instruments is much more 552 

variable. When interpreting these time courses, one has to recognize that they differ from 553 
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averaged ERPs (even though they are on the same time scale), as they represent the weighting 554 

of the corresponding spatial component over time and, thus, rather resemble a convolution 555 

model or FIR filter than an ERP time course. Nonetheless, time lags with large weights in 556 

principle can be compared to latencies of canonical ERP components. As such, the range where 557 

the extracted time courses peak is in line with the optimal time lag of cross-correlation between 558 

brain signal and sound envelope of 180 ms reported in (Aiken & Picton, 2005) and with results of 559 

O'Sullivan (2014).  In the present stimuli, however, note onsets occur in quick succession, such 560 

that the window of 0 to 250 ms time lag of the regression model potentially covers more than a 561 

single onset/ERP component. This means that the regression model not only might ‘learn’ 562 

latency and spatial distribution of onset-related brain responses, but could be sensitive also to 563 

the rhythmic structure of the stimulus sequence. Most likely, the two peaks that are 115 ms 564 

apart (corresponding to the inter-onset-interval between two semi-quavers) in the temporal 565 

MUSIC component of keyboard can be attributed to this effect. Along this line, the flat shape of 566 

the temporal MUSIC component for bass may be related to the fact that its rhythmic pattern is 567 

the most inhomogeneous with respect to inter-onset-intervals and, the (relatively) better 568 

pronounced peaks of drums to quavers being the most frequent inter-onset-interval in this 569 

voice. In summary, while the spatial patterns are consistent across instruments, the extracted 570 

time courses seem to be influenced by stimulus properties. However, a future systematic 571 

parametric investigation is needed to clarify factors determining such instrument-specific time 572 

courses.  573 

 574 

Ensemble version stimuli 575 

In the second part of the analysis the regression filters that were fine-tuned to each subject’s 576 

individual brain response and each stimulus’ properties were applied to the subject’s EEG 577 

recorded during the ensemble presentation. We assessed how well the solo parts of the three 578 
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instruments were recovered by comparing the instrument-specific EEG projections to the 579 

respective audio power slopes. Our results show that at the level of single subjects this approach 580 

was successful for keyboard in all but two subjects, while a reconstruction for drums and bass 581 

failed in most subjects. In one subject (S1) all three instruments were reconstructed in parallel 582 

(from the same EEG signal) with significant correlation and in three subjects in two instruments.  583 

The study goal was to approach the two-fold inverse problem of reconstructing (known) sound 584 

sources that create a mixed sound signal from the EEG signal of an individual who listened to this 585 

mixed signal. This intricate enterprise capitalized on the assumption that the brain performs 586 

auditory scene analysis and creates a representation of these single sources. In the present 587 

scenario the listener was presented with a sound scene that is stylistically relatively close to real 588 

music and, therefore, may invoke our natural abilities to stream music. The present stimulus 589 

provides a whole range of spectral, timbral and rhythmic cues on several time scales and these 590 

occur both, sequentially and simultaneously, promoting the segregation into streams. In the 591 

present scenario, thus, users were expected to perceive separate streams, and this assumption 592 

was confirmed by the behavioral results.  593 

The present results are a proof-of-concept that a neural representation of such a stream can be 594 

extracted from the EEG, at least for one of the sound sources, here for the melody instrument 595 

keyboard.  The scalp topographies derived from the regression models and the latency range of 596 

the EEG features suggest that the same ‘mid-latency’ auditory ERP components play a role in this 597 

process that have been found indicative of the percept of streaming, as reported previously in 598 

(Gutschalk, et al., 2005; Gutschalk, Oxenham, Micheyl, Wilson, & Melcher, 2007; Snyder, Alain, & 599 

Picton, 2006; Snyder & Alain, 2007; Weise, Bendixen, Müller, & Schröger, 2012).  Furthermore, 600 

the corresponding instrument-specific time courses suggest that the temporal characteristics of 601 

ERP responses (latency, rise time) are critical for detecting the neural representation of distinct 602 

sound streams. Since we do not know whether a neural representation of distinct sound streams 603 
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would be detectable in the case where subjects do not perceive separate streams, we cannot 604 

infer a causal relationship between the detectability of the neural representation and the 605 

percept of a stream.  However, our approach prepares the ground for expanding the existing 606 

literature on EEG-correlates of auditory streaming with respect to more complex stimulus 607 

material.  608 

   609 

Our results represent a link to the great number of studies that investigate the human ‘cocktail 610 

party’ problem (Power, 2012) by examining cortical activity that tracks the sound envelope of 611 

speech (for an overview see Ding (2014)) in multi-speaker environments.   612 

These have demonstrated that Envelope-Following-Responses (EFRs) can be utilized to 613 

decompose the brain signal into representations of auditory streams. Moreover, selective 614 

attention leads to an enhanced representation in the attended stream while the to-be-ignored 615 

stream is suppressed (Kerlin & Miller, 2010). Several studies identified acoustic and higher-level 616 

influences on stream representation and associated time windows of processing (Ding & Simon, 617 

2012; Ding & Simon, 2012b; Power, 2012; O'Sullivan, 2014; Horton, 2013). Our results contribute 618 

to this field in so far as they (at least partially) show a similar cortical representation of the single 619 

voices of a music-like stimulus. At group level the reconstruction quality of keyboard, the voice 620 

that is represented best, was significantly higher if keyboard was the target of attention. No such 621 

effect was present for drums and bass where reconstruction quality was poor. This means that 622 

we have found an analogue effect to an enhanced representation of an attended auditory 623 

stream in speech processing in the processing of a multi-voiced music-like stimulus. In particular, 624 

our results suggest that this effect is due to a synchronization of cortical activity to the rhythmic 625 

structure of the stimulus.     626 
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Critically, however, our stimulation scenario differs in some important points. In contrast to 627 

typical ‘cocktail party’ situations, the voices that constitute the present ensemble version 628 

stimulus are more strongly correlated and do not compete, but are integrated into an aesthetic 629 

entity. Furthermore, subjects were presented the same multi-voiced stream at both ears, while 630 

multi-speaker paradigms typically make use of a spatial separation of streams. Our results show 631 

that in absence of spatial cues and with a high coincidence of onsets between streams still at 632 

least two neural representations of streams could be extracted in parallel for some subjects.  633 

The time signatures that we derived from the regression filters suggest that such neural 634 

representations depend on differences in the shape of the time course of related ERPs.   635 

Our results may contribute to the domain of auditory ERP-based BCI where early ERPs like the 636 

N1 and P2 have been exploited alone (Choi, 2013) or in combination with the P3 in order to 637 

decode the user’s target of attention from the EEG (Hill, Bishop, & Miller, 2012; Treder & 638 

Blankertz, 2010; Treder, Purwins, Miklody, Sturm, & Blankertz, 2014). In this context our results 639 

may give a first hint that such applications may in principle be designed without an oddball 640 

paradigm and based on more naturalistic stimuli. 641 

 642 

The number of subjects with successfully recovered EEG-reconstructed solo power slopes 643 

differed for the three instruments, with keyboard outperforming bass and drums by far. In 644 

contrast, in the solo condition all instruments could be reconstructed similarly well, even though 645 

their audio power slopes differed in amplitude, rise times, and number of onsets. Therefore, it is 646 

not likely that the differences observed in the ensemble version condition reflect differences 647 

solely in the stimulus characteristics. It rather points to a strong influence of the context on the 648 

neural representation of the instruments’ parts, i.e., whether an instrument plays alone or is 649 

part of an ensemble. Our findings are in line with the high-voice superiority effect for pitch 650 

encoding that has been demonstrated by means of the Mismatch Negativity (MMN) in (Fujioka 651 
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T. T., 2005; Marie & Trainor, 2012; Marie & Trainor, 2014). In contrast, our results do not reveal 652 

a low-voice superiority effect that has been shown for timing in (Hove, 2014). This can be 653 

explained considering the two-tone masking effect (for a summary see Trainor L. J. (2015)): 654 

when a low-pitched and a high-pitched tone are presented together, the harmonics of the 655 

higher pitched tone tend to mask the harmonics of the lower pitched tone. In the present 656 

stimulus instruments play their notes mostly simultaneously. Consequently, the high-pitched 657 

keyboard masks the other instruments, while an opportunity for a low-voice superiority effect 658 

for timing to arise is not given, due to the absence of ‘unmasked’ bass tones. 659 

The high-voice superiority effect is consistent with the musical practice of putting the melody 660 

line in the highest voice and has been supported by concomitant behavioral observations of 661 

superior pitch salience in the high voice (Crawley, 2002; Palmer, 1994). Our findings complement 662 

these results in so far as they indicate the N1-P2 as a further ERP component that reflects the 663 

high-voice superiority effect. Moreover, the present results demonstrate the presence of this 664 

effect in a more naturalistic listening scenario and, with keyboard being the instrument with the 665 

highest accuracy in the counting task, also find consistent behavioral evidence that agrees with 666 

previous results.   667 

When evaluating correlation-related results in this scenario one has to keep in mind that the 668 

audio power slopes of all instruments and the ensemble version audio power slope are not 669 

independent of each other, but correlated to different degrees. This makes a comparison of 670 

correlation coefficients difficult; the periodic nature of the stimuli adds further limitations.  671 

Consequently, differences in absolute correlation coefficients are hard to interpret. Therefore, 672 

the present analysis was based on significance measures taking into account differences in the 673 

periodicity of the signals (see Methods). One possible concern is that the differences in 674 

reconstruction quality between keyboard and the other two solo instruments in the ensemble 675 

condition might just reflect the relations between the respective audio power slopes, more 676 



The neural representation of ensemble music 
 

27 
 

specifically, that the higher fidelity of the EEG-reconstructed keyboard slope is due to its relation 677 

to the ensemble version audio power slope. While such effects are inherent in this context and 678 

cannot be ruled out completely, two points argue in favor of a genuine instrument-specific EEG-679 

based representation of the keyboard’s part in the ensemble condition: First, the correlation of 680 

the (original) slope of drums with the ensemble version slope is much higher than that of the 681 

(original) keyboard slope (see Table 3), but its reconstruction quality is poor in most subjects. 682 

Second, the EEG-reconstructed keyboard slope in all but one subjects is more similar to the 683 

original keyboard slope than to the ensemble version audio power slope (Figure 6), suggesting 684 

that this reconstruction indeed is specific for the keyboard part.  685 

 686 

 687 

Limitations 688 
 689 

The results presented here show that multivariate methods of EEG analysis can achieve 690 

considerable advances, on the one hand transferring previous results on the processing of tone 691 

onsets to more complex stimulation scenarios, on the other hand, dealing with complex 692 

challenges like the reconstruction of streams. Notwithstanding, several issues call for further 693 

exploration. First, the stimulus sequence contains infrequently occurring deviant sound patterns 694 

in each instrument’s part. These trigger a P300 component which is the key EEG feature on in 695 

the operation of the original ‘musical’ BCI application. Yet, the present analysis uses only time 696 

lags between 0 and 250 ms and, consequently, should not make direct use of the ‘strong’ P300 697 

component. Even though P3 to deviants may be picked up by our spatio-temporal filter, its 698 

reflection in the EEG projection will not be in ‘sync’ with the audio power slope and will rather 699 

lead to lower correlation with the power slope. However it cannot be completely ruled out that 700 

the processing of deviants influences also the earlier components. Since deviants occurred only 701 
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infrequently, a possible influence would be ‘diluted’ strongly. Still, at this point, no strong claim 702 

can be made whether this approach can be transferred to a truly oddball-free, even more 703 

naturalistic paradigm and whether, in particular, the effect of attention is detectable in this case. 704 

Even though the proposed method produces EEG-projections for single trials (given that training 705 

data of the same stimulus are available), a considerable part of the present effects was detected 706 

in averaged EEG projections. This means that, in a more general sense, the present approach can 707 

be regarded as an effective preprocessing step that exploits the wealth of the multivariate EEG 708 

in order to enhance the signal-to-noise-ratio and, thus, enables to extract stimulus-related 709 

activity from brain signals in far more complex stimulation scenarios.  Moreover, the regression-710 

derived patterns represent a kind of group average across the set of training data and, thus, 711 

cannot be regarded as single-trial results. In the present analysis the stimuli used for training the 712 

regression models were repetitions of one rhythmic pattern. This is not a prerequisite for 713 

applying Linear Ridge Regression, but most probably was beneficial for the ‘learning processes’ 714 

of the regression model. In principle, however, if an onset sequence has fairly stationary 715 

characteristics, e.g., timbre and attack, the brain response to these onsets should be extractable 716 

even in the absence of a strongly repetitive structure as in the present stimuli. This hypothesis 717 

could be addressed in future experiments.  718 

Conclusion 719 

The present results demonstrate that the sequence of note onsets forming a semi-natural 720 

rhythmically complex music stimulus can be reconstructed from the listener’s EEG using spatio-721 

temporal regression filters. Furthermore, if the characteristics of a naturalistic complex sound 722 

pattern can be encoded by such a model, in principle this can be applied to extract an EEG 723 

representation of the respective sound pattern even if it is embedded into an ensemble of 724 

several voices. Thus, the EEG can provide a neural representation of separate streams a listener 725 

might perceive. Specifically, in congruence with behavioral results we found that the melody 726 
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instrument of an ensemble music stimulus was represented most distinct and that focused 727 

attention enhanced this effect.  728 

 729 

 730 

References 731 

 732 

Aiken, S. J., & Picton, T. W. (2005). Envelope following responses to natural vowels. Audiology & 733 
Neurootology, 11(4), 213-232. DOI:10.1159/000092589 734 

Aiken, S. J., & Picton, T. W. (2008). Human cortical responses to the speech envelope. Ear and 735 
Hearing, 29(2), 139-157. doi: 10.1097/AUD.0b013e31816453dc 736 

Baumann, S., Meyer, M., & Jäncke, L. (2008). Enhancement of auditory-evoked potentials in 737 
musicians reflects an influence of expertise but not selective attention. Journal of 738 
Cognitive Neuroscience, 20(12), 2238-2249. doi:10.1162/jocn.2008.20157 739 

Bießmann, F., Meinecke, F. C., Gretton, A., Rauch, A., Rainer, G., Logothetis, N. K., & Müller, K.-R. 740 
(2010). Temporal kernel CCA and its application in multimodal neuronal data analysis. 741 
Machine Learning, 79(1-2), 5-27. doi:10.1007/s10994-009-5153-3 742 

Billings, C. J., Tremblay, K. L., & Miller, C. W. (2011). Aided cortical auditory evoked potentials in 743 
response to changes in hearing aid gain. International Journal of Audiology, 50(7), 459-744 
467. doi:http://dx.doi.org/10.3109%2F14992027.2011.568011 745 

Bregman, A. S. (1994). Auditory scene analysis: The perceptual organization of sound. MIT press. 746 

Cameron, D. J., & Grahn, J. A. (2014). Neuroscientific Investigations of Musical Rhythm. Acoustics 747 
Australia, 42(2), 111. 748 

Campbell, J. D., Cardon, G., & Sharma, A. (2011). Clinical application of the P1 cortical auditory 749 
evoked potential biomarker in children with sensorineural hearing loss and auditory 750 
neuropathy spectrum disorder. NIH Public Access, 32, S. 147. 751 
doi:http://dx.doi.org/10.1055%2Fs-0031-1277236 752 

Chakalov, I., Draganova, R., Wollbrink, A., Preissl, H., & Pantev, C. (2013). Perceptual 753 
organization of auditory streaming-task relies on neural entrainment of the stimulus-754 
presentation rate: MEG evidence. BMC Neuroscience, 14(1), 120. doi:10.1186/1471-755 
2202-14-120 756 



The neural representation of ensemble music 
 

30 
 

Choi, I. R.-C. (2013). Quantifying attentional modulation of auditory-evoked cortical responses 757 
from single-trial electroencephalography. Frontiers in Human Neuroscience, 7. 758 
doi:http://dx.doi.org/10.3389%2Ffnhum.2013.00115 759 

Cirelli, L. K., Bosnyak, D., Manning, F. C., Spinelli, C., Marie, C., Fujioka, T., . . . Trainor, L. J. (2014). 760 
Beat-induced fluctuations in auditory cortical beta-band activity: using EEG to measure 761 
age-related changes. Frontiers in Psychology, 5, 1-9. 762 
doi:http://dx.doi.org/10.3389%2Ffpsyg.2014.00742 763 

Coch, D., Sanders, L. D., & Neville, H. J. (2005). An event-related potential study of selective 764 
auditory attention in children and adults. Journal of Cognitive Neuroscience, 17(4), 605-765 
622. doi:10.1162/0898929053467631 766 

Cong, F., Phan, A. H., Zhao, Q., Nandi, A. K., Alluri, V., Toiviainen, P., . . . Ristaniemi, T. (2012). 767 
Analysis of ongoing EEG elicited by natural music stimuli using nonnegative tensor 768 
factorization. Signal Processing Conference (EUSIPCO), 2012, 494-498. 769 

Crawley, E. J.-M. (2002). Change detection in multi-voice music: the role of musical structure, 770 
musical training, and task demands. Journal of Experimental Psychology: Human 771 
Perception and Performance, 28(2), 3. doi:http://psycnet.apa.org/doi/10.1037/0096-772 
1523.28.2.367 773 

Crowley, K. E., & Colrain, I. M. (2004). A review of the evidence for P2 being an independent 774 
component process: age, sleep and modality. Clinical Neurophysiology, 115(4), 732-744. 775 
doi:http://dx.doi.org/10.1016/j.clinph.2003.11.021 776 

Dimitrijevic, A., Michalewski, H. J., Zeng, F.-G., Pratt, H., & Starr, A. (2008). Frequency changes in 777 
a continuous tone: auditory cortical potentials. Clinical Neurophysiology, 119(9), 2111-778 
2124. doi:10.1016/j.clinph.2008.06.002 779 

Ding, N. & Simon, J. (2012). Emergence of neural encoding of auditory objects while listening to 780 
competing speakers . Proceedings of the National Academy of Sciences, 109(29), 11854-781 
11859. doi:10.1073/pnas.1205381109  782 

Ding, N. &. Simon, J. (2012b). Neural coding of continuous speech in auditory cortex during 783 
monaural and dichotic listening. Journal of Neurophysiology, 107(1), 78-89. 784 
doi:10.1152/jn.00297.2011  785 

Ding, N. &. Simon, J. (2014). Cortical entrainment to continuous speech: functional roles and 786 
interpretations. Frontiers in human Neuroscience, 8. 787 
doi:http://dx.doi.org/10.3389%2Ffnhum.2014.00311 788 

Dmochowski, J. P., Sajda, P., Dias, J., & Parra, L. C. (2012). Correlated components of ongoing 789 
EEG point to emotionally laden attention--a possible marker of engagement? Frontiers in 790 
Human Neuroscience, 6. doi:http://dx.doi.org/10.3389%2Ffnhum.2012.00112 791 

Doelling, K. B., Arnal, L. H., Ghitza, O., & Poeppel, D. (2014). Acoustic landmarks drive delta--792 
theta oscillations to enable speech comprehension by facilitating perceptual parsing. 793 
NeuroImage, 85, 761-768. doi:http://dx.doi.org/10.1016/j.neuroimage.2013.06.035 794 



The neural representation of ensemble music 
 

31 
 

Fujioka, T. T. (2005). Automatic encoding of polyphonic melodies in musicians and nonmusicians. 795 
Journal of Cognitive Neuroscience, 17(10), 1578-1592. 796 
doi:10.1162/089892905774597263 797 

Fujioka, T., Ross, B., Kakigi, R., Pantev, C., & Trainor, L. J. (2006). One year of musical training 798 
affects development of auditory cortical-evoked fields in young children. Brain, 129(10), 799 
2593-2608. doi:http://dx.doi.org/10.1093/brain/awl247 800 

Gaebler, M., Biessmann, F., Lamke, J.-P., Müller, K.-R., Walter, H., & Hetzer, S. (2014). 801 
Stereoscopic depth increases intersubject correlations of brain networks. NeuroImage, 802 
100, 427-434. doi:10.1016/j.neuroimage.2014.06.008 803 

Gutschalk, A., Micheyl, C., Melcher, J. R., Rupp, A., Scherg, M., & Oxenham, A. J. (2005). 804 
Neuromagnetic correlates of streaming in human auditory cortex. The Journal of 805 
Neuroscience, 25(22), 5382-5388. doi:10.1523/JNEUROSCI.0347-05.2005 806 

Gutschalk, A., Oxenham, A. J., Micheyl, C., Wilson, E. C., & Melcher, J. R. (2007). Human cortical 807 
activity during streaming without spectral cues suggests a general neural substrate for 808 
auditory stream segregation. The Journal of Neuroscience, 27(48), 13074-13081. 809 
doi:10.1523/JNEUROSCI.2299-07.2007 810 

Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., & Biessmann, F. 811 
(2014). On the interpretation of weight vectors of linear models in multivariate 812 
neuroimaging. NeuroImage, 87, 96-110. 813 
doi:http://dx.doi.org/10.1016/j.neuroimage.2013.10.067 814 

Hertrich, I., Dietrich, S., Trouvain, J., Moos, A., & Ackermann, H. (2012). Magnetic brain activity 815 
phase-locked to the envelope, the syllable onsets, and the fundamental frequency of a 816 
perceived speech signal. Psychophysiology, 49(3), 322-334. doi:10.1111/j.1469-817 
8986.2011.01314.x 818 

Hill, K. T., Bishop, C. W., & Miller, L. M. (2012). Auditory grouping mechanisms reflect a sound's 819 
relative position in a sequence. Frontiers in Human Neuroscience, 6. 820 
doi:http://dx.doi.org/10.3389%2Ffnhum.2012.00158 821 

Hoerl, A. E. (1970). Ridge regression: Biased estimation for nonorthogonal problems. 822 
 Technometrics, 12(1), 55-67. DOI:10.1080/00401706.1970.10488634 823 

Horton, C. D. (2013). Suppression of competing speech through entrainment of cortical 824 
oscillations. Journal of Neurophysiology, 109(12), 3082-3093. doi:10.1152/jn.01026.2012  825 

Hotelling, H. (1936). Relations between two sets of variates. Biometrika(28), 321-377. 826 

Hove, M. J. (2014). Superior time perception for lower musical pitch explains why bass-ranged 827 
instruments lay down musical rhythms. Proceedings of the National Academy of 828 
Sciences, 111(28), 10383-10388. 10.1073/pnas.1402039111 829 



The neural representation of ensemble music 
 

32 
 

Kerlin, J. R., & Miller, L. M. (2010). Attentional gain control of ongoing cortical speech 830 
representations in a “cocktail party”. The Journal of Neuroscience, 30(2), 620-628. doi: 831 
10.1523/JNEUROSCI.3631-09.2010 832 

Kuhlen, A. K., Allefeld, C., & Haynes, J.-D. (2012). Content-specific coordination of listeners' to 833 
speakers' EEG during communication. Frontiers in Human Neuroscience, 6. 834 
doi:http://dx.doi.org/10.3389%2Ffnhum.2012.00266 835 

Kuwada, S. B., & Maher, V. L. (1986). Scalp potentials of normal and hearing-impaired subjects in 836 
response to sinusoidally amplitude-modulated tones. Hearing research, 21(2), 179-192. 837 
http://dx.doi.org/10.1016/0378-5955(86)90038-9 838 

Lalor, E. C., & Foxe, J. J. (2010). Neural responses to uninterrupted natural speech can be 839 
extracted with precise temporal resolution. European Journal of Neuroscience, 31(1), 840 
189-193. doi:10.1111/j.1460-9568.2009.07055.x 841 

Lalor, E. C., Power, A., Reilly, R. B., & Foxe, J. J. (2009). Resolving Precise Temporal Processing 842 
Properties of the Auditory System Using Continuous Stimuli. JN Physiology, 102(1), 349-843 
359. doi:10.1152/jn.90896.2008  844 

Maiste, A., & Picton, T. (1989). Human auditory evoked potentials to frequency-modulated 845 
tones. Ear and Hearing, 10(3), 153-160. 846 

Marie, C., & Trainor, L. J. (2012). Development of simultaneous pitch encoding: infants show a 847 
high voice superiority effect. Cerebral Cortex, S. bhs050. doi:10.1093/cercor/bhs050 848 

Marie, C., & Trainor, L. J. (2014). Early development of polyphonic sound encoding and the high 849 
voice superiority effect. Neuropsychologia, 57, 50-58. 850 
doi:http://dx.doi.org/10.1016/j.neuropsychologia.2014.02.023 851 

Martin, B. A., Tremblay, K. L., & Korczak, P. (2008). Speech evoked potentials: from the 852 
laboratory to the clinic. Ear and Hearing, 29(3), 285-313. 853 
doi:10.1097/AUD.0b013e3181662c0e 854 

Martin, B., Tremblay, K., & Stapells, D. (2007). Principles and applications of cortical auditory 855 
evoked potentials. Auditory evoked potentials: basic principles and clinical application. 856 
482-507. ISBN-13: 978-0781757560 857 

McAdams, S. W. (1995). Perceptual scaling of synthesized musical timbres: Common dimensions, 858 
specificities, and latent subject classes.,. Psychological Research, 58(3), 177-192. 859 
doi:10.1007/BF00419633 860 

McMenamin, B. W., Shackman, A. J., Greischar, L. L., & Davidson, R. J. (2011). Electromyogenic 861 
artifacts and electroencephalographic inferences revisited. NeuroImage, 54(1), 4-9. 862 
doi:http://dx.doi.org/10.1016%2Fj.neuroimage.2010.07.057 863 

McMenamin, B. W., Shackman, A. J., Maxwell, J. S., Bachhuber, D. R., Koppenhaver, A. M., 864 
Greischar, L. L., & Davidson, R. J. (2010). Validation of ICA-based myogenic artifact 865 



The neural representation of ensemble music 
 

33 
 

correction for scalp and source-localized EEG. NeuroImage, 49(3), 2416-2432. 866 
doi:http://dx.doi.org/10.1016%2Fj.neuroimage.2009.10.010 867 

Meyer, M., Baumann, S., & Jancke, L. (2006). Electrical brain imaging reveals spatio-temporal 868 
dynamics of timbre perception in humans. NeuroImage, 32(4), 1510-1523. 869 
doi:http://dx.doi.org/10.1016/j.neuroimage.2006.04.193 870 

Moore, B. C., & Gockel, H. (2002). Factors influencing sequential stream segregation. Acta 871 
Acustica, 88(3), S. 320-333. 872 

Mosher, J. C., & Leahy, R. M. (1998). Recursive MUSIC: a framework for EEG and MEG source 873 
localization. Biomedical Engineering, IEEE Transactions on, 45(11), 1342-1354. 874 
doi:http://dx.doi.org/10.1109/10.725331 875 

Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to 876 
sound: a review and an analysis of the component structure. Psychophysiology, 24(4), 877 
375-425. doi:10.1111/j.1469-8986.1987.tb00311.x 878 

Nozaradan, S., Peretz, I., & Mouraux, A. (2012). Selective neuronal entrainment to the beat and 879 
meter embedded in a musical rhythm. The Journal of Neuroscience : the official journal 880 
of the Society for Neuroscience, 32(49), 17572-17581. doi:10.1523/JNEUROSCI.3203-881 
12.2012 882 

Nozaradan, S., Peretz, I., Missal, M., & Mouraux, A. (2011). Tagging the neuronal entrainment to 883 
beat and meter. The Journal of Neuroscience : the official journal of the Society for 884 
Neuroscience, 31(28), 10234-10240. doi:10.1523/JNEUROSCI.0411-11.2011 885 

O'Sullivan, J. A.-C. (2014). Attentional selection in a cocktail party environment can be decoded 886 
from single-trial EEG. Cerebral Cortex, bht355. doi:10.1093/cercor/bht355 887 

Palmer, C. &. (1994). Harmonic, melodic, and frequency height influences in the perception of 888 
multivoiced music. . Perception & Psychophysics, 56(3), 301-312. 889 
doi:10.3758/BF03209764 890 

Power, A. J. (2012).  At what time is the cocktail party? A late locus of selective attention to 891 
natural speech. European Journal of Neuroscience, 35(9), 1497-1503. 892 
DOI: 10.1111/j.1460-9568.2012.08060.x 893 

Pratt, H., Starr, A., Michalewski, H. J., Dimitrijevic, A., Bleich, N., & Mittelman, N. (2009). Cortical 894 
evoked potentials to an auditory illusion: Binaural beats. Clinical Neurophysiology, 895 
120(8), 1514-1524. doi:10.1016/j.clinph.2009.06.014 896 

Purcell, D. W., John, S. M., Schneider, B. A., & Picton, T. W. (2004). Human temporal auditory 897 
acuity as assessed by envelope following responses. The Journal of the Acoustical Society 898 
of America, 116(6), 3581-3593. http://dx.doi.org/10.1121/1.1798354 899 

Pyper, B. J., & Peterman, R. M. (1998). Comparison of methods to account for autocorrelation in 900 
correlation analyses of fish data. Canadian Journal of Fisheries and Aquatic Sciences, 901 
55(9), 2127-2140. doi:10.1139/f98-104 902 



The neural representation of ensemble music 
 

34 
 

Schaefer, R. S., Desain, P., & Suppes, P. (2009). Structural decomposition of EEG signatures of 903 
melodic processing. Biological Psychology, 82(3), 253-259. 904 
doi:http://dx.doi.org/10.1016/j.biopsycho.2009.08.004 905 

Schaefer, R. S., Farquhar, J., Blokland, Y., Sadakata, M., & Desain, P. (2011). Name that tune: 906 
decoding music from the listening brain. NeuroImage, 56(2), 843-849. 907 
doi:http://dx.doi.org/10.1016/j.neuroimage.2010.05.084 908 

Schaefer, R., Vlek, R., & Desain, P. (2011). Decomposing rhythm processing: 909 
electroencephalography of perceived and self-imposed rhythmic patterns. Psychological 910 
Research, 75(2), 95-106. doi:10.1007/s00426-010-0293-4 911 

Shahin, A., Bosnyak, D. J., Trainor, L. J., & Roberts, L. E. (2003). Enhancement of neuroplastic P2 912 
and N1c auditory evoked potentials in musicians. The Journal of Neuroscience, 23(13), S. 913 
5545--5552. ISSN:  1529-2401 914 

Shahin, A., Roberts, L. E., Chau, W., Trainor, L. J., & Miller, L. M. (2008). Music training leads to 915 
the development of timbre-specific gamma band activity. NeuroImage, 41(1), 113-122. 916 
doi:http://dx.doi.org/10.1016/j.neuroimage.2008.01.067 917 

Shahin, A., Roberts, L. E., Pantev, C., Trainor, L. J., & Ross, B. (2005). Modulation of P2 auditory-918 
evoked responses by the spectral complexity of musical sounds. Neuroreport, 16(16), 919 
1781-1785. doi:10.1097/01.wnr.0000185017.29316.63 920 

Shahin, A., Trainor, L., Roberts, L., Backer, K., & Miller, L. (2010). Development of auditory phase-921 
locked activity for music sounds. Journal of Neurophysiology, 103(1), 218. 922 
doi:10.1152/jn.00402.2009 923 

Snyder, J. S., & Alain, C. (2007). Toward a neurophysiological theory of auditory stream 924 
segregation. Psychological Bulletin, 133(5), 780. doi: http://dx.doi.org/10.1037/0033-925 
2909.133.5.780 926 

Snyder, J. S., Alain, C., & Picton, T. W. (2006). Effects of attention on neuroelectric correlates of 927 
auditory stream segregation. Journal of Cognitive Neuroscience, 18(1), 1-13. 928 
doi:10.1162/089892906775250021 929 

Sussman, E. S. (2005). Integration and segregation in auditory scene analysis. The Journal of the 930 
Acoustical Society of America, 117(3), 1285-1298. doi: 931 
http://dx.doi.org/10.1121/1.1854312 932 

Sussman, E. S., Horváth, J., Winkler, I., & Orr, M. (2007). The role of attention in the formation of 933 
auditory streams. Perception & Psychophysics, 69(1), 136-152. doi:10.3758/BF03194460 934 

Thompson, J. (2013). Neural decoding of subjective music listening experiences - unpublished 935 
Master's Thesis. Dartmouth College Hanover, New Hampshire. Hanover: Dartmouth 936 
College Hanover, New Hampshire. 937 



The neural representation of ensemble music 
 

35 
 

Trainor, L. J. (2015). The origins of music in auditory scene analysis and the roles of evolution and 938 
culture in musical creation. Philosophical Transactions of the Royal Society of London B: 939 
Biological Sciences, 370(1664), 20140089. DOI: 10.1098/rstb.2014.0089 940 

Trainor, L., McDonald, K., & Alain, C. (2002). Automatic and controlled processing of melodic 941 
contour and interval information measured by electrical brain activity. Journal of 942 
Cognitive Neuroscience, 14(3), 430-442. doi:10.1162/089892902317361949 943 

Treder, M. S., & Blankertz, B. (2010). Research (C) overt attention and visual speller design in an 944 
ERP-based brain-computer interface. Behav. Brain Funct, 6, 1-13. doi: 10.1186/1744-945 
9081-6-28 946 

Treder, M. S., Purwins, H., Miklody, D., Sturm, I., & Blankertz, B. (2014). Decoding auditory 947 
attention to instruments in polyphonic music using single-trial EEG classification. Journal 948 
of Neural Engineering, 11(2), 026009. doi:dx.doi.org/10.1088/1741-2560/11/2/026009 949 

Tremblay, K. L., & Kraus, N. (2002). Auditory training induces asymmetrical changes in cortical 950 
neural activity. Journal of Speech, Language, and Hearing Research, 45(3), 564-572. 951 
doi:10.1044/1092-4388(2002/045) 952 

Tremblay, K. L., Ross, B., Inoue, K., McClannahan, K., & Collet, G. (2014). Is the auditory evoked 953 
P2 response a biomarker of learning? Frontiers in Systems Neuroscience, 8. 954 
doi:http://dx.doi.org/10.3389%2Ffnsys.2014.00028 955 

Tremblay, K., Kraus, N., McGee, T., Ponton, C., Otis, & Brian. (2001). Central Auditory Plasticity: 956 
Changes in the N1-P2 Complex after Speech-Sound Training. Ear & Hearing, 22(2), 79-90. 957 
doi:10.1097/00003446-200104000-00001 958 

Van Noorden, L. H. (1975). Temporal coherence in the perception of tone sequences, unpublished 959 
PhD thesis. Unpublished doctoral dissertation, Technische Hogeschool Eindhoven, the 960 
Netherlands, Netherlands. 961 

Weise, A., Bendixen, A., Müller, D., & Schröger, E. (2012). Which kind of transition is important 962 
for sound representation? An event-related potential study. Brain Research, 1464, 30-963 
42. doi:http://dx.doi.org/10.1016/j.brainres.2012.04.046 964 

Will, U., & Berg, E. (2007). Brain wave synchronization and entrainment to periodic acoustic 965 
stimuli. Neuroscience Letters, 424(1), 55-60. 966 
doi:http://dx.doi.org/10.1016/j.neulet.2007.07.036 967 

Winkler, I., Takegata, R., & Sussman, E. (2005). Event-related brain potentials reveal multiple 968 
stages in the perceptual organization of sound. Cognitive Brain Research, 25(1), 291-299. 969 
doi:10.1016/j.cogbrainres.2005.06.005 970 

Yabe, H., Winkler, I., Czigler, I., Koyama, S., Kakigi, R., Sutoh, T., . . . Kaneko, S. (2001). Organizing 971 
sound sequences in the human brain: the interplay of auditory streaming and temporal 972 
integration. Brain Research, 897(1), 222-227. doi:10.1016/S0006-8993(01)02224-7 973 



The neural representation of ensemble music 
 

36 
 

Ziehe, A., Laskov, P., Nolte, G., & Müller, K.-R. (2004). A fast algorithm for joint diagonalization 974 
with non-orthogonal transformations and its application to blind source separation. The 975 
Journal of Machine Learning Research, 5, 777-800. 976 

 977 

 978 

 979 
 980 
 981 
 982 
 983 
 984 
 985 
 986 
 987 
 988 
 989 
 990 
 991 

 992 

 993 

 994 

Figure 1: Score of ensemble version stimulus. Drums, although consisting of three instruments, are treated as one 995 
voice in the analysis. One (out of 63) music clips of 40 s duration consists of 21 repetitions of the depicted one-bar 996 
pattern. In addition, 14 solo clips were presented for each instrument. 997 
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Figure 2: Analysis pipeline: (1) In a preprocessing step the power slope of the audio waveform is extracted by taking 1011 
the first derivative of the signal’s envelope. The 61-channel EEG signal is expanded with time shifted versions of the 1012 
data to provide a range of time lags from 0 to 250 ms. (2) Training: A regression filter is trained to maximize the 1013 
correlation between EEG recorded during the audio presentation and audio power slope. (3) Application to new 1014 
data: The regression filter is applied to test data (EEG recordings of another presentation of the same stimulus, 1015 
preprocessed as in step (1)) resulting in a uni-dimensional EEG projection. The goodness-of-fit is evaluated by 1016 
assessing the relation between EEG projection and audio power slope. (4) The regression filter is transformed into 1017 
spatio-temporal patterns that can be subject to further neurophysiological interpretation.   1018 
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Figure 3: Solo clips: Grand Average (11 subjects) of extracted EEG projection (black line) and audio power slope 1031 
(grey line), averaged across bars. The light grey vertical lines indicate the beats of the four-four time. 1032 
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Figure 4: Audio power slopes of solo stimuli, displayed with identical scale. Amplitudes range between -8.8 and 11.2 1040 
for drums, between -5.9 and 10.5 for bass and between -0.7 and 2.8 for keyboard. 1041 
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Table 1: Solo presentations: Percentage of 14 solo clips that were reconstructed with significant correlation from 1069 
the EEG for the three instruments. 1070 

subject drums bass keyboard 

S1 100  75 67 

S2 0  36 14 

S3 31 100 21 

S4 93 64 29 

S5 57 36 64 

S6 43 0 7 

S7 57 79 21 

S8 71 79 21 

S9 71 57 50 

S10 50 64 57 
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S11 29 64 7 

 1071 
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 1080 

Table 2: Solo clips: Correlation between EEG-reconstructed power slopes (averaged across 14 music clips) and audio 1081 
power slope for single subjects and the three instruments. Significance of correlation was determined taking into 1082 
account the effective degrees of freedom and applying a Bonferroni correction for N=11 subjects. Shaded cells 1083 
indicate significant correlation at the level of alpha=0.05. GA: Grand average over 11 subjects. 1084 

 1085 

subject drums bass keyboard 

S1 0.43 0.34 0.32 

S2 0.23 0.26 0.21 

S3 0.26 0.49 0.25 

S4 0.52 0.39 0.17 

S5 0.27 0.28 0.34 

S6 0.22 0.13 0.08 

S7 0.33 0.42 0.23 

S8 0.35 0.45 0.24 

S9 0.38 0.40 0.32 

S10 0.32 0.33 0.30 

S11 0.28 0.38 0.12 

GA 0.60, p=0.00014, 
df_corrected=34,(df_u

0.52, p=0.00011, 0.54, p=0.0000004, 
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ncorrected=3968) df_corrected=48 df_corrected=72 
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 1094 

Figure 5: Spatio-temporal regression patterns and extracted MUSIC components for representative subject. Top: 1095 
Regression patterns, middle: scalp pattern of first extracted MUSIC component: black hatching indicates positive 1096 
weights, white hatching negative weights. Bottom: time course of first extracted MUSIC component. 1097 
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 1107 

Table 3: Ensemble version clips: Correlation between instrument-specific power slopes reconstructed from the EEG 1108 
of the ensemble presentation (averaged across 63 music clips) and audio power slope of the respective single 1109 
instrument for all 11 subjects and the three instruments. Significance of correlation was determined by estimating 1110 
the effective degrees of freedom and applying a Bonferroni correction for N=11 subjects. Shaded cells indicate 1111 
significance of correlation at the level of alpha=0.05. 1112 

 1113 

subject drums bass keyboard 

S1 0.36    0.22 0.38 

S2 -0.13  -0.06 0.25 

S3 -0.07 -0.14 0.16 

S4 0.0 -0.11 0.35 

S5 -0.23 -0.06 0.47 

S6 0.01 -0.12 0.25 

S7 -0.01 0.23 0.20 

S8 0.09 0.0 0.12 

S9 -0.12 -0.09 0.36 

S10 0.2 0.08 0.25 

S11 0.26 0.09 0.20 

GA 0.04 0.01 0.45,p=0.0001 

df_corrected=69. 
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 1116 

Figure 6: The EEG-reconstructed Keyboard power slope extracted from the EEG of the ensemble presentation by 1117 
applying the keyboard-specific filter is correlated higher with the solo keyboard audio power slope than with the 1118 
ensemble version audio power slope. 1119 
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Table 4:  Correlation between audio power slopes of solo and ensemble version stimuli 1148 

Correlation coefficient between 
power slopes 

bass keyboard ensemble version 

drums -0.15 0.24 0.48 

bass   -0.05 

keyboard 0.06  0.26 

 1149 

 1150 

 1151 

  1152 

 1153 

 1154 


