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Absorption Related to
Handheld Devices in Data Mode

Jørgen Bach Andersen, Life Fellow, IEEE, Jesper Ødum Nielsen, Gert Frølund Pedersen

Abstract—The human body has an influence on the radiation
from handheld devices like smartphones, tablets and laptops,
part of the energy is absorbed and the spatial distribution of the
radiated part is modified. Previous studies of whole body absorp-
tion have mainly been numerical or related to talk mode. In the
present paper an experimental study involving four volunteers
and three different devices is performed from 0.5 to 3 GHz. The
devices are a laptop, a tablet, and a smartphone all held in the
lap. The 3D distribution of radiation is measured. Comparing
the integrated power in the case of a person present with the
device alone allows the determination of the relative absorption
in the whole body and the device. In general the absorption varies
considerably between devices and as a function of frequency and
person. The absorption varies from almost nothing to close to
100%. The shadowing of the body is apparent in all cases. The
losses in the inbuilt antennas are often dominating and with a
maximum total loss of 99% for the smartphone for one user. The
absorption in the body is around 50%.

Index Terms—Mobile phone, whole body absorption, data
mode

I. INTRODUCTION

The paper focuses on measurement of power absorption

from modern wireless devices like a laptop, and a tablet,

where the absorption may be in the device and in the human

holding the device. For the latter the International Commission

on Non-Ionizing Radiation Protection (ICNIRP) [1] has given

basic restrictions on the specific absorption rate (SAR), a local

value inside the tissue and a global value, whole-body SAR

(wbSAR); in the frequencies of interest the wbSAR limit is

0.08 W/kg. It will be apparent from the results presented

later in the paper that in the practical situations considered

the wbSAR is far below the basic restriction. Therefore, the

focus is on measurement of absorption influenced by a person

holding a device in the lap (data mode), since the total radiated

power and its distribution is important for the wireless link.
For communication purposes, the power gain of the channel

is important and may be evaluated in terms of the so-called

mean effective gain (MEG), depending on both the antennas

and the propagation environment, see e.g. [2]. For small

mobile devices the influence of a user holding the device

is important since large variations up to 10 dB have been

measured previously for different users in the same radio

environment (next to head, talk-mode) [3], [4]. Numerical

evaluation of the user influence is possible using, e.g., finite-

difference time-domain (FDTD) simulations, see [5]–[8], but
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here the variations in the user influence are difficult to include.

This problem is avoided if the antenna is measured in the

anechoic room including different users as it was done in [9]–

[11]. For the talk-mode case the location of the user’s hand

is the single most important issue for the variation in power

obtained with different users [12]. Today’s use of mobile

devices include situations where the user holds the device in

front of the body, e.g. for web browsing. As for the talk-

mode case, it is expected that the user in this so-called data-

mode may have a significant influence on the performance

[13]. The performance of devices in data-mode including real

persons has only been investigated in a few works, see [14]

and references therein. In the current work the user influence is

investigated for the data-mode usage of modern type devices.

The incident power is coming from a device in a transmit

mode, and the absorbed power is determined by measuring

the radiated power in an anechoic chamber and compared with

the available power. It is interesting to note that the opposite

environment, a reverberation chamber, may also be used for

finding the wbSAR [15], where the incident power is diffuse

and coming from many directions, as will be the case in an

indoor environment. Wide band measurements in an aircraft

cabin with passengers have also been used as a lossy cavity

[16] where the source is an access point in the cabin. The new

aspects in this paper are the use of modern devices like tablets

and laptops in an anechoic room using real persons, illustrating

the impact on the absorption. Real persons have been used

before, see above, but with mobile phones only, and at head

positions, or with diffuse incidence. In addition the distribution

of the energy in the far field is measured. The experiments are

described in Section II and III, while the results are discussed

in Section IV. Discussion and Conclusion in Section V and VI

concludes the paper.

II. MEASUREMENTS

The objective of the measurements is to obtain the radiation

pattern in both the θ and φ polarization for different combi-

nations of mobile devices and users (test persons) holding the

devices. In addition, also S11 measurements are made. During

the measurements the user sits in a wooden chair which is

made for this kind of measurements and about 2.5 m high, so

that the user is approximately in the middle of the anechoic

room and the measurement coordinate system. The chair has

armrests and pillows to ensure that the person is comfortable

and can stay reasonably static for the about 20 minutes a

measurement lasts. The full radiation pattern is obtained as

a series of azimuthal (φ -angle) scans, obtained by rotating the
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Fig. 1: User in the measurement chair inside the anechoic

room. The reference coordinate systems is also shown.

TABLE I: Users involved in the measurements.

User No. Gender Weight Height

1 Male 80 kg 1.9 m

2 Male 92 kg 1.8 m

3 Male 85 kg 1.7 m

4 Female 44 kg 1.5 m

user and chair while the probe antenna is stationary. The dual-

polarized probe is mounted on an arm that can rotate around

the user, corresponding to different θ -angles in the radiation

pattern.

The user holds the tablet or phone in a way that is natural for

the device; the tablet or phone is held in one hand, supported

by a piece of expanded polystyrene (EPS). Fig. 1 shows a user

sitting in the wooden chair in the anechoic room. Using laser

pointers the device/hand is placed so that the rotation center

is approximately in the middle of the device. An overview of

the users is given in Table I. In addition to the measurements

with users, similar measurements were made for all the devices

without a user, by placing the device in a fixture made of

EPS. The fixture was placed on the measurement chair, so

that the device was located approximately at the same height

and location, as with the user present. Subsequently, these

measurements are denoted as “free space (FS).”

The three devices measured are listed in Table II and

Fig. 2 shows examples of how the devices are held by the

users. Each device is modified by adding a small piece of

coax cable, connecting the antenna inside the device to the

measurement system. An example of this is given in Fig. 3,

showing the connection for the tablet. Note that for practical

reasons, the added extra cable is considered part of the device

antenna. However, the extra loss is small, less than 0.3–0.9 dB,

depending on frequency. Since the focus of the current work

is power absorption, the changes caused by the added cables

TABLE II: Overview of measured devices.

Label Make Type Size [mm]

B Fujitsu LifeBook P7010
+ mockup antenna

Laptop 260×200

C Samsung Galaxy Tab 8.9
LTE GT-P7320

Tablet 231×158

D Samsung Galaxy S II LTE
I9210

Smartphone 131×70

Fig. 3: The tablet device with back cover removed, revealing

the added coax cables connecting to the two antennas (only

one used).

were only investigated with respect to the losses and not the

radiation patterns.

The radiation pattern measurements were made at 30 dif-

ferent frequencies in the three bands:

Low Band (LB): (760), 800, . . . , 960, (1000, . . . , 1120)

Mid Band (MB): 1850, 1890, . . . , 2210

High Band (HB): 2510, 2565, . . . , 2950, (3005)

all in MHz. For each of these bands, a measurement with a

reference dipole was also made, specified for the frequencies

836 MHz, 1880 MHz, and 2450 MHz, respectively. Note

that the results for the LB and HB are effectively limited

in the following due to the frequency limits of the reference

antennas, since the results are obtained via a combination

of device and reference antenna measurements, as described

in Section III. The unavailable frequency samples are shown

within parentheses in the list above.

All spherical radiation patterns were made in a grid defined

by all combinations of φ angles 0◦,15◦, . . . ,345◦ and θ angles

0◦,15◦, . . . ,165◦, i.e., using a 15◦ sampling density in both

angles of a usual spherical coordinate system. Examples of the

radiation patterns are shown in Fig. 4–6 for the three devices.

In addition to the radiation pattern measurements, also a S11

measurement was made for each user/device combination, i.e.,

including the influence of the user on the device.
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Fig. 2: The three devices held by users; from left to right device B, C, D.
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Fig. 4: XZ-cut of measured radiation pattern (both polar-

izations summed) for the laptop device with (Gain/wP) and

without user (Gain/FS). The frequency is 1890 MHz.
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Fig. 5: XZ-cut of measured radiation pattern (both polar-

izations summed) for the tablet device with (Gain/wP) and

without user (Gain/FS). The frequency is 1890 MHz.

III. DEFINITIONS AND THEORY FOR EXPERIMENTAL

SETUP

The device antenna is fed with incident power Pin. The

integrated radiated power is obtained as

Prad = ∆θ ∆φ

K

∑
k=1

L

∑
l=1

[

Qθ (θk,φl)+Qφ (θk,φl)
]

sin(θk) (1)
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Fig. 6: XZ-cut of measured radiation pattern (both polariza-

tions summed) for the smartphone device with (Gain/wP) and

without user (Gain/FS). The frequency is 1890 MHz.

where K and L are the number of samples in the θ - and

φ -angle, respectively, ∆θ and ∆φ are the associated angle

sampling intervals. The power radiation patterns in the two

polarizations are given by Qθ (·) and Qφ (·), respectively.

By comparing this with the input power it is possible to

derive some results for the absorption of the device alone

and for the combined device and person. Assuming a user

is present, the power balance is modeled as

Pusr
in = Pusr

rad +Pusr
L +Pterm

L (2)

where Pusr
rad is the total power radiated when a user is present,

Pusr
L is the loss in the user’s body, and Pterm

L is the loss in the

terminal, consisting of the actual antenna and other parts of

the device. The power input to the antenna is given by Pusr
in .

For the special case of FS, the user loss is absent and the

terminal loss may be found as

Pterm
L = Pfree

in −Pfree
rad (3)

where Pfree
in is the input power and Pfree

rad is the measured

radiated power.

The system is calibrated by using the measurements with

reference antennas with low loss, assumed to be zero. In this

case the radiated power equals the input power corrected for
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reflections,

Pref
rad = Pref

in

(

1−|S11|
2
)

= Pref
in T ref (4)

where T ref is the transmission coefficient for the reference

antenna, thus

Pref
in =

Pref
rad

T ref
(5)

This input power is used as the reference for all experiments.

There is a slight error due to unavoidable losses in the

reference antennas, but as long as they are small relative to

other losses, the error should be negligible.

For the general case the input power depends on the actual

value of the transmission coefficient T dev = 1−|S11|
2 for the

device and the presence or not of the human body,

Pdev
in = Pref

in T dev (6)

Using (2) and (3), the loss in the user is

Pusr
L = Pfree

rad −Pusr
rad +

(

T usr −T free
)

Pin (7)

Defining the total power input to the antenna as Ptot = Pusr
rad +

Pusr
L +Pterm

L , the relative losses given by

Rusr
L =

Pusr
L

Ptot

and Rterm
L =

Pterm
L

Ptot

(8)

shows where the power is dissipated. If we instead focus on

the power actually leaving the antenna, the ratio

ηusr
L =

Pusr
L

Pusr
L +Pusr

rad

(9)

shows the loss in the user compared to the sum of losses in

the user and terminal.

It should be noted that the subtraction of powers is an

approximation, assuming that the absorption in the antenna

is independent of the person. The error made is assumed to

be negligible.

IV. RESULTS

A. User influence on radiation pattern

Fig. 4–6 show the horizontal radiation pattern of the three

devices for one frequency and one example user. φ = 0 is

the forward scattering angle (away from the transmitter). The

interpretation is clear: in the backscattering halfspace the

influence of the body is minor, while the forward shadowing

(green curve) may be as severe as 20 dB. In scattering envi-

ronments the effects of shadowing may depend on reflections

in the environment, as investigated in e.g., [2] using the mean

effective gain (MEG) measure.

B. Absorption by device without the human body

The relative absorption in the devices alone are shown in

Fig. 7, computed using (8). This figure allows comparison

among the devices, as commented in the paragraphs below.
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Fig. 7: The relative terminal loss Rterm
L for all devices, see (8).
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Fig. 8: Relative absorption by antenna alone, Rterm
L (red crosses

and line) and combined device and different users, Rterm
L +Rusr

L ,

see (8). For the laptop.

a) Laptop: In the laptop there is sufficient space for the

antenna so the losses are not expected to be high. In the middle

and high frequency band the absorption is around 30-40%

in a non-resonant way. At the lower band around 900 MHz

the absorption varies as from a resonant structure with the

smallest absorption of 20% at 900 MHz which is also the

frequency of best match. Recall that mismatch losses have

been accounted for. It is noteworthy that near 2150 MHz the

absorption is as low as 5%. One interpretation could be that

the antenna current distribution is frequency dependent, and

the most efficient distribution is at a resonance. However, this

is a topic which deserves more studies.

b) Tablet: The tablet has an intermediate size between

the laptop and the phone, which seems to be reflected in the

range of absorptions from 49 to 87%.

c) Smartphone: The smartphone has less volume at its

disposal for the antenna and less area to distribute the current

over which leads to higher losses, in the present case between

62 and 86%, but the overall trends are similar with the highest

losses at the low frequency band. The similar measurements

in [17] for a planar inverted-F antenna (PIFA) antenna give an

average loss of 62% in agreement with the highest frequencies.
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Fig. 9: Relative absorption by antenna alone, Rterm
L (red crosses

and line) and combined device and different users, Rterm
L +Rusr

L ,

see (8). For the smartphone.
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Fig. 10: Relative absorption by antenna alone, Rterm
L (red

crosses and line) and combined device and different users,

Rterm
L +Rusr

L , see (8). For the tablet.

C. Absorption including the human body

In addition to the FS results, Fig. 8–10 also shows the

combined relative absorptions for the terminals and the user.

d) Laptop: It is not possible to measure the effect of the

human in itself, only indirectly, since the absorption is mea-

sured twice, antenna alone and antenna and human together.

In general the results from the four users cluster together

with some variation. The problem is that for some frequencies

it is not possible to distinguish the two measurements, with

and without human presence. For the laptop this occurs near

2000 MHz and above 2500 MHz (Fig. 8) where the scattering

from the human adds or subtracts from the antenna result. In

such situations it is not possible to subtract powers with a

meaningful result; in fact the absorption in the human may

seem to be negative. If the total absorption is significantly

larger than the absorption in the antenna we shall assume

that error is small with the result shown in Fig. 11, where

meaningless results have been removed.

The resulting user absorptions lie between 10 and 30% for
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Fig. 11: The absorption in the user relative to the total

power, see (8). Meaningless results are not shown. Laptop

measurements.
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Fig. 12: The absorption in the user relative to the total

power, see (8). Meaningless results are not shown. Tablet

measurements.

the laptop with some variation due to the different users.

e) Tablet: The results are shown in Fig. 12. Compared to

the laptop there is now significant user influence reflecting the

proximity of the hand to the antenna. The absorptions range

from 0 to 50%.

f) Smartphone: The results are shown in Fig. 13. The

user absorptions lie between 1 and about 25%, significantly

lower than for the tablet. It should be noted that the subtrac-

tions of powers is an approximation.

D. Human absorption and total radiation

In the previous cases the losses in the device play a signif-

icant role. This is of course important from a communication

point of view, but irrelevant from exposure to a human point of

view. In this section we look at the absorption in the human

versus the total power leaving the antenna, i.e. the sum of

human absorption and radiated power, as given by (9).

The result for the Laptop is shown in Fig. 14. The maximum

human absorption is 50%, in general below 20%. There is only
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Fig. 13: The absorption in the user relative to the total

power, see (8). Meaningless results are not shown. Smartphone

measurements.
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Fig. 14: Absorption in user relative to the power absorbed in

user and radiated, see (9). For different users and with the

laptop.

little variation between the users. In the case of the Tablet

(Fig. 15) the situation is markedly different, since the user is

closer to the antenna. The absorption may range from 20% to

90% in the middle frequency range. The situation is not too

different for the Smartphone (Fig. 16) with an approximate

overall absorption for all users of around 50%.
Note that in case the absorption in the user is erroneously

estimated to be negative, as discussed above, the relative

absorption defined in (9) may also become either negative or

larger than 100%. The plots in Fig. 14–16 are limited to the

meaning full 0–100% range.
The whole body SAR in W/kg is proportional to the relative

absorption shown in Fig. 14–16

V. DISCUSSION

The paper discusses absorption when commercial wireless

devices are used by real persons. The absorptions are measured

as the difference between radiated and input power, and thus

there is an inbuilt inaccuracy. In cases where the results are

meaningless, such as negative absorptions, the results are not
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Fig. 15: Absorption in user relative to the power absorbed in

user and radiated, see (9). For different users and with the

tablet.
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Fig. 16: Absorption in user relative to the power absorbed in

user and radiated, see (9). For different users and with the

smartphone.

shown. The number of persons is only four, but the time spent

on users is large, since it takes about 20 minutes for one device

and one person. The persons are instructed to hold the devices

in the lap, as they would normally. In several situations it was

noted that there is only little spread of the results among the

users, indicating good accuracy. Occasionally, a user will have

a hand close to an antenna affecting the absorption drastically.

It should be noted that the presence of the hand also influenced

the matching, but this is an effect which is compensated for.

There are two sets of measurements, one without the person

and one with. In most situations with the persons included, the

absorption increases sufficiently to make it possible to subtract

the two absorptions (with and without a person) to give an

estimate of the absorption in the human body. In one case

(the laptop at 2000 MHz) the total absorption is so close to the

device absorption that it is meaningless to subtract the two, the

apparent absorption may be negative in such situations. But the

total absorption is also of interest from a communication point

of view. Absorption of 95% corresponds to a loss of 13 dB,

which is not negligible. The losses from a human reach high

c© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
Published in IEEE Transactions on Electromagnetic Compatibility, Volume 58, Issue 1, 2016, pages 47–53. Doi: 10.1109/TEMC.2015.2504398.



J. Bach Andersen, J. Ødum Nielsen, G. Frølund Pedersen: Absorption Related to Handheld Devices in Data Mode Page 7 of 8

values mainly due to the inefficient antenna; a better antenna

would reduce the total losses to less than 50%. The different

devices show rather similar qualitative behavior. The radiation

patterns as modified by the body show no surprises, a common

feature is a deep null behind the body, and only small changes

in other directions. Note that this is in an anechoic chamber, in

real environments the null will be filled with scattering from

other objects.

VI. CONCLUSION

By integrating the radiated power over all angles in an

anechoic room and compare with the input power, it is possible

to estimate the human absorption and the antenna efficiency of

a radiating device such as a mobile phone or a tablet, including

the influence of the user, who holds the devices in the lap. It is

an interesting result that the influence of the antenna itself is

in most cases the dominant factor for the losses. If the antenna

losses were zero the total losses would be less than 50%.
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