
The International Journal of Digital Accounting Research
Vol. 2, No. 1, pp. 83-118
ISSN: 1577-8517

On the design of an XML-Schema based
application for business reporting: An XBRL
Schema Perspective1

Kinsun Tam. State University of New York at Albany.

Sanjay Goel. State University of New York at Albany.

Jagdish S. Gangolly. State University of New York at Albany

Abstract. A markup language for business reporting must satisfy many demanding criteria:
readable by novices, extendable by users, minimum payload overheads, and a uniform graph
structure to enable validation of document instance with minimal programming effort. To be
elegant and robust it must be based on a model that reflects the intricacies of business reporting,
and to be efficient in terms of maintenance it must be modular in structure. We suggest the
skeleton of a derivative of the XBRL that exhibits most of the criteria stated above which uses
the basic semantic structure provided in its specification and the associated C&I taxonomy. Our
proposal provides domain-specific tags so that even the source documents are very readable. We
provide a proof-of-concept schema for the Balance Sheet (using the XBRL C&I taxonomy) as an
instance of a canonical generic labeled graph model for any financial statement. We also provide
an algorithm for the validation of such labeled directed graph representation of a financial
statement and its implementation in the programming language Java.

Key words: Markup languages, Business reporting language, Validation of financial reports

1 The work of K. Tam was supported by a Faculty Research Award Program Grant of the
State University of New York at Albany. J. Gangolly gratefully acknowledges the insights
into XBRL architecture provided by Mr. David vun Kannon (the Chief architect of XBRL)
of KPMG Peat Marwick in private communications as well as on the XBRL-public group
exchanges, and to Professor Neal Hannon of Bryant College for facilitating the exchanges.
Mr. Kannon’s comments on an earlier version of the paper are also gratefully
acknowledged.

84 The International Journal of Digital Accounting Research Vol. 2, No. 1

1 INTRODUCTION

The globalization of the capital markets, the fast growth of the Internet
(particularly its world-wide web component), the evolution of B2B commerce, and
the momentum gained by the protocols based on open standards have set the stage
for the development of XML based languages to support business exchanges of
data and business reporting (W3C, 2000). One specific language of interest to us in
accounting is the Extensible Business Reporting Language (XBRL, vun Kannon &
Wang, 2001) initiative of the AICPA. Over the past two years, XBRL has gained
considerable international exposure and support from various stakeholders in the
business reporting process.

The importance of protracted deliberations and serious reflection in the
development of markup languages for business reporting becomes apparent when
one considers the enormity of the impact of online delivery of business reports on
the Internet infrastructure. For example, in the United States alone, there are over
10,000 corporations listed on one of the stock exchanges, and each is required to
make numerous filings under the securities laws alone. While at present the use of
such data online by individual naive investors is perhaps not overwhelming, the
development of applications (integrating business reports) facilitated by XBRL
should result in considerable growth in the online use of XBRL compliant data by
naïve investors.

Our goals in this paper are to state and justify certain sound principles of
XML-Schema (W3C, 2001a, 2001b, and 2001c) based application design, and to
illustrate their use in the context of one financial statement: the Balance Sheet. We
construct a schema that is modular, based on the definition and use of type
hierarchy specific to the Balance Sheet, but invariant with respect to other financial
statements in terms of its overall structure. This proposed schema provides domain-
specific tags, is extensible to individual taxonomies, and facilitates a standard
algorithm for the validation of schema instances of all financial statements. It also
minimizes “payload overhead”, i.e, the percentage of data in a document that is not
payload.

Our objective here is not to propose yet another tagging scheme, but to provide
the sketch of a markup language that in our opinion is elegant and imposes minimal

Tam, Goel, & Gangolly O n the Design of an XML-Schema based application for business reporting …… 85

burden on the preparer of the reports, the readers of the document source, as well
as the Internet infrastructure. We provide enough evidence, by way of an XML-
Schema compliant schema, and an algorithm for the validation of instance
documents complying with our proposal.

In addition, our objective here is not to put forth a comprehensive proposal for
a new language. In fact, our schema can be used in conjunction with the XBRL
DTD. It is to suggest a way in which the value of the XBRL language can be
enhanced. Therefore, we do not consider meta-level issues such as the specification
of the context (part of which is in the parameter entity att_AttributeHolder in the
XBRL specifications), labels associated with elements, and statements with multi-
year data. Those matters await a sequel, in the works, to this paper. We also do not
address the very important issue of co-existence with other initiatives such as XFI
(XML Fragment Interchange, W3C Consortium, 2001), DAML (DARPA Agent
Markup Language, DAML, 2000), the Semantic Web initiative (Berners-Lee et al.,
2001), CKML (Conceptual Knowledge Markup Language, Kent, 2001), RDF
(Resource Description Format, W3C, 2002), and the like. These matters too are in
the works as sequels to this paper. These outstanding issues, in our opinion, do not
fundamentally alter the overall design presented here.

In Section 2 we state the requirements that we considered in the design of our
schema. While the XBRL architects considered requirements for a business
reporting language at a sufficiently high level, we consider specific requirements at
the software architectural level. In Section 3, we describe the graph model for
business reporting and its realization in the schema for Balance Sheet. In Section 4
we provide the algorithm for the validation of business reporting instance
documents and its implementation in java. Finally, we provide concluding
observations in Section 5. The appendices contain the UML (class diagram) model,
the schema definition, a schema extension to show its extensibility, a basic XSL
style sheet, an instance document, and the validation routine in java.

86 The International Journal of Digital Accounting Research Vol. 2, No. 1

2 REQUIREMENTS FOR A MARKUP LANGUAGE FOR
BUSINESS REPORTING

An XML-Schema is the blueprint for an XML document in the same way that
a relational schema is the blueprint for a relational database. The Design of XBRL
Specification provides examples of business, political, as well as technical
requirements. In this paper, however, we concentrate on the technical requirements.
We will very briefly state the requirements underlying the Design of XBRL
Specification paper, and then provide detailed requirements that, in our opinion, are
important for its long-term success.

The Design of XBRL Specification states three basic technical requirements:
extensibility through reuse via incremental extensions, format consonant with
securities filing requirements, and substance over form (in the sense of lack of text
formatting requirements in the specifications). All three are quite important from
the point of view of the preparers and users of the reports. However, in our opinion,
there are at least six additional requirements to conform to good software
engineering practices. We will briefly discuss them below:

Based on standard modeling methods: In so far as the XML-Schema is the
blueprint for an XML instance document, it is important that it be based on a
rigorous model. While one can model the schema using techniques such as
conceptual graphs, concept diagrams, ODL (Object Definition Language), we
chose UML class diagrams since they are perhaps sufficiently expressive in
meeting our modeling needs, and that they are most widely used modeling
language in software development. In fact, UML models were used in the XBRL
design, but at a very high level, to yield three labels: item, group and label.
Presently, XML does not incorporate object-oriented features2 (inheritance,
information hiding, etc.) and therefore our UML object model does not add value
to the implementation. However, when object-oriented XML does materialize, we
will be able to take full advantage of UML object modeling.

2 However, there is a proposal before the WWW Consortium on Schema for Object-
oriented XML (SOX). See Schema for Object-Oriented XML 2.0
(http://www.w3.org/TR/NOTE-SOX/, visited on May 15, 2002).

Tam, Goel, & Gangolly O n the Design of an XML-Schema based application for business reporting …… 87

Common schema structure for all financial statements so that validation routine
can be standardized: An important supposition of the XBRL design is that the
validation of an instance document is an application layer concern. While this is
quite true, the choice of a graph model for schema has important consequences for
all applications. It is therefore important to choose models and data structures that
result in efficient development of validation software. If there is a common graph
model for the schemas for the various financial statements, the development of a
single comprehensive validation algorithm is facilitated. Instance validation based
on domain-specific rules at the browser level is important to provide users comfort
and also build trust, especially since the data in XBRL is largely of a financial
nature.

Readability of XML code: The readability of source document is also
improved when it contains just the minimum information to be displayed; all other
information is hard-wired in the schema. Moreover, as will become clear in the
subsequent sections, the readability of the schema is also improved by typing of the
nodes. Typing refers to separating out verbose data type definitions so that the
remaining tree structure becomes more readable.

Extensibility of schema: This is substantially the same as the requirement in
the XBRL Design document. Since it is unrealistic to have a schema satisfying all
user requirements, the schema should be extensible by individual users.

Modular schema so it is easier to maintain: The schema should be modular so
that any changes are easily incorporated. Typing of the nodes facilitates it.

Minimization of payload overheads: The information in an XBRL instance
consists of the information to be displayed as well as structural information. A
simple structure can reduce the payload overheads for structural information.

In the next section, we provide the canonical design for a financial report and
its implementation for balance sheet. We will refer to the requirements in our
discussion of the design.

88 The International Journal of Digital Accounting Research Vol. 2, No. 1

3 THE DESIGN

Financial reports are perhaps the primary means of communicating financial
information to the public. While their use at the present time by naïve investors
may not be widespread, as the Internet technologies become ubiquitous and
applications using such online information become prevalent, one can expect their
use to be pervasive. Therefore, it is important that there be a canonical design of
data structures (graph models) for financial reports to facilitate the development of
algorithms for their validation.

In this section, we provide a canonical graph model for financial reports, and
discuss the UML class diagram for the balance sheet and the associated XML-
Schema. The next section will argue that this model provides a standard validation
algorithm for all financial statements.

Most financial reports have a similar hierarchical structure that lends itself to a
canonical graph (Directed tree) model. Since XML-Schema as well as XML
instance documents are also hierarchical in structure, modeling the schema for
financial reports as a canonical tree permits us to exploit the DOMTree generated
by parsing an XML instance to extract the structure in order to perform the
validation of financial reports.

We represent all financial reports (with the possible exception of footnotes,
which we have yet to model) as a tree shown in Figure 1 below. Each node in the
tree represents either an element (say, a balance sheet item for example) or an
attribute. We distinguish between them by writing the labels of element nodes in
upper case letters and the labels of attributes in lower case letters. Each element
node has three attributes: parent, relation, and balance.

The parent attribute specifies the name of the parent element node. The set of
element nodes and the parent attribute for each such node specifies a financial
statement directed tree.

The balance attribute specifies the balance amount of the element node. The
value of the balance attribute for each element node is displayed in the financial
statement on the browser.

Tam, Goel, & Gangolly O n the Design of an XML-Schema based application for business reporting …… 89

The relation attribute of an element node specifies the relationship of the
element balance to the balance amount of the parent element node. If the value of
relation is 0, then the balance attribute of an element node must be equal to the
balance attribute of the parent element node. On the other hand, if it is –1, then the
contribution of the balance attribute of an element node towards the balance
attribute of the parent element node is negative. Analogously, if the relation
attribute is +1, then the contribution of the balance attribute of an element node
towards the balance attribute of the parent element node is positive. Because
treasury stock is to be deducted from stockholders' equity, for example, the relation
attribute of the treasuryStock node is -1, indicating a negative contribute to its
parent node.

For a financial statement directed tree to be valid, for each element node in the
tree, the value of the balance attribute must equal the sum of its children node
balance attribute adjusted for sign (using the children nodes relation attribute
values). For instance, the sum of the balance attributes of the currentAssets and
nonCurrentAssets nodes must equal the balance attribute of the totalAssets node.
The parent and relation attribute essentially perform the same role as the rollup and
weight attributes in the XBRL specification.

The model in Figure 1 provides a template for generating XML-Schema for
financial reports from the UML class diagrams (we used Rational Rose Enterprise
Edition version 7.1). This is what we discuss next.

90 The International Journal of Digital Accounting Research Vol. 2, No. 1

Figure1

The Canonical graph (Directed Tree) model for Financial Statements

relation

parent

balance

CHILD

PARENT

CHILD

relation

parent

balance

relation

parent

balance

Elements are shown in upper case; attributes are shown in lower case

Appendix 1 provides the UML class diagram for a Balance Sheet. We used the
terminology given in the XBRL C&I taxonomy, but stopped at level 5 in most
cases since our objective was to have a proof-of-concept for our model. Figure 2
below provides the associated graph model. Appendix 2 gives the schema (we used
XML Spy version 3.5) based on the UML class model and the graph model.

Tam, Goel, & Gangolly O n the Design of an XML-Schema based application for business reporting …… 91

relation

parent

balance

relation

parent

balance

relation

parent

balance

relation

parent

balance

relation

parent

balance

relation

parent

balance

relation

parent

balance

relation

parent

balance

BALANCE
SHEET

ASSETS
LIAB &
EQUITIES

CURRENT
ASSETS

NON_CU
ASSETS

CURRENT
LIAB

NON-CU
LIAB

ST.HDR
EQUITIES

FIGURE 2. The Canonical Graph (Directyed Tree) Model for Balance Sheet

The schema in Appendix 2 is based on the definitions of type for each node in
the hierarchy. At the top level the element balanceSheet is defined to be of the
balanceSheetType, which is defined to consist of the three attributes of the balance
sheet (relation, parent, and balance) and two sub-elements (totalAssets and
liabilitiesAndEquities) as follows:

 <!-- Definition of the root element balanceSheet-->
 <element name="balanceSheet" type="xfs:balanceSheetType"/>
 <!-- Definition of the balanceSheetType-->
 <complexType name="balanceSheetType">
 <all>
 <element name="totalAssets" type="xfs:totalAssetsType"
minOccurs="0"/>
 <element name="liabilitiesAndEquities"
 type="xfs:liabilitiesAndEquitiesType"
minOccurs="0"/>
 </all>
 <attribute name="relation" type="integer" fixed="0"/>
 <attribute name="balance" type="decimal" use="required"/>
 <attribute name="parent" type="NMTOKEN" fixed="statement"/>
 </complexType>

92 The International Journal of Digital Accounting Research Vol. 2, No. 1

Content models for these sub-elements are in turn defined in terms of the sub-
elements and the three attributes. For example, the element totalAssets and
liabilitiesAndEquities are defined in terms of its child elements as follows:

<!-- Definition of the totalAssetsType-->
<complexType name="totalAssetsType">
 <all>
 <element name="currentAssets" type="xfs:currentAssetsType"
minOccurs="0"/>
 <element name="nonCurrentAssets"
type="xfs:nonCurrentAssetsType"
 minOccurs="0"/>
 </all>
 <attribute name="relation" type="integer" fixed="0"/>
 <attribute name="balance" type="decimal" use="required"/>
 <attribute name="parent" type="NMTOKEN" fixed="balanceSheet"/>
</complexType>

<!-- Definition of the liabilitiesAndEquitiesType-->
<complexType name="liabilitiesAndEquitiesType">
 <all>
 <element name="currentLiabilities"
 type="xfs:currentLiabilitiesType" minOccurs="0"/>
 <element name="nonCurrentLiabilities"
 type="xfs:nonCurrentLiabilitiesType" minOccurs="0"/>
 <element name="stockholdersEquity"
 type="xfs:stockholdersEquityType" minOccurs="0"/>
 </all>
 <attribute name="relation" type="integer" fixed="0"/>
 <attribute name="balance" type="decimal" use="required"/>
 <attribute name="parent" type="NMTOKEN" fixed="balanceSheet"/>
</complexType>

Ideally, the attributes balance and relation should be globally defined as in the
box below. However, Xerces 1.4 does not implement the infoset contribution
(supplementary information that is not immediately present in the instance, such as
types and default values) correctly. Only attributes with unqualified (un-prefixed)
names are added as infoset contribution. Accordingly, though an inelegant
solution, we have had to use simple types for relation and balance. This changes
relation and balance to non-root level attributes, for which the xfs prefix is not
needed in the instance documents. This is reflected throughout our schema and our
discussions.

Tam, Goel, & Gangolly O n the Design of an XML-Schema based application for business reporting …… 93

<!-- "balance" is the amount as would appear on the Balance
Sheet.-->
<attribute name="balance" id="balance" type="decimal"/>

<!-- Relation is the nature of the relationship with the
 "parent" element.

 relation = 0 : the "balance" equals the balance of the
 "parent" element

 relation = +1 : the contribution of the element "balance"
 to the balance of the "parent" element
 is positive
 relation = -1 : the contribution of the element "balance"
 to the balance of the "parent" element
 is negative -->

<attribute name="relation" id="relation">
 <simpleType>
 <restriction base="integer">
 <minInclusive value="-1"/>
 <maxInclusive value="1"/>
 </restriction>
 </simpleType>
</attribute>

The values of the relation attribute are hardwired into the schema, though not
globally, as can be seen from our schema, and the values of the balance attribute
are bound in the instance document as can be seen in the example document in
Appendix 5.

Schema extensibility is achieved through redefining types. The schema in
Appendix 2, based on the UML model in Appendix 1, specifies a five level deep
balance sheet hierarchy. Individual users who need to use accounts below the fifth
level, such as child accounts of the netPropertyPlantEquipment node, can extend
this schema to describe lower level nodes. The original specification of the type
netPropertyAndEquipmentType, as provided in the balance sheet schema in
Appendix 2, is reproduced as follows:

94 The International Journal of Digital Accounting Research Vol. 2, No. 1

<!-- single out this netPropertyPlantEquipmentType for subsequent
redefinition in imb4.xsd-->
<complexType name="netPropertyPlantEquipmentType">
 <attribute name="relation" type="integer" fixed="+1"/>
 <attribute name="balance" type="decimal" use="required"/>
 <attribute name="parent" type="NMTOKEN"
fixed="nonCurrentAssets"/>
</complexType>

However, the schema in Appendix 2 specifies only the content model for this
type in terms of the attributes relation, parent, and balance but not the child nodes.
Child nodes corresponding to elements in the XBRL hierarchy below level 5 are
added, through using the <redefine> element provided by the XML-Schema
specification, in the schema extension in Appendix 3. For example, child nodes
such as grossPropertyPlantEquipment and
accumulatedDepreciationAndAmortization are specified through redefining as
below:

<redefine schemaLocation="bsj6.xsd">
 <complexType name="netPropertyPlantEquipmentType">
 <complexContent>
 <extension base="xfs:netPropertyPlantEquipmentType">
 <all>
 <!-- Definition of the grossPropertyPlantEquipment-->
 <element name="grossPropertyPlantEquipment" minOccurs="0">
 <complexType>
 <all>
 <element name="land" minOccurs="0">
 <complexType>
 <attribute name="relation" type="integer" fixed="+1"/>
 <attribute name="balance" type="decimal" use="required"/>
 <attribute name="parent" type="NMTOKEN"
fixed="grossPropertyPlantEquipment"/>
 </complexType>
 </element>

 </all>

 </complexType>
</element>
<element name="accumulatedDepreciationAndAmortization"
 minOccurs="0">
 <complexType>
 <attribute name="relation" type="integer" fixed="-1"/>
 <attribute name="balance" type="decimal" use="required"/>
 <attribute name="parent" type="NMTOKEN"
 fixed="netPropertyPlantEquipment"/>
 </complexType>
 </element>

Tam, Goel, & Gangolly O n the Design of an XML-Schema based application for business reporting …… 95

 </all>
 </extension>
 </complexContent>
 </complexType>
</redefine>

When used in conjunction with the XSL stylesheet (Appendix 4) and the
schemas (Appendices 2 and 3), the balance sheet instance document can be viewed
in any XML supporting browser (we tested with the Internet Explorer version 5).

The design we have described above was based on an UML class model, based
on a canonical directed tree model for all financial reports, and provides a tagset
meaningful to accountants (having been based on the items in the XBRL C&I
taxonomy). Since we have exploited the hierarchical nature of XML as well as the
financial reports, the canonical representation enables us to write one validation
routine for most financial reports. We have demonstrated the extensibility of
schemas, and the readability of the code is obvious from the description above and
in the appendices. The better readability is due to the modularization of the schema
accomplished by defining types for the nodes in the report hierarchy.

In the next section, we describe the validation algorithm and its
implementation.

4 VALIDATION OF FINANCIAL REPORTS: THE
BALANCE SHEET

There are five components to the validation of instance documents:

1 Validation of the Schema: The main schema would be used by all preparers of
financial statements. Since schema is written to comply with XML-Schema
specifications, validation, if provided by browsers, should be adequate.

2 Validation of schema extensions: These would include lower level details in
the financial statements for which schema extensions would be developed by
the preparers of the financial reports. Since these too are written to comply
with XML-Schema, validation, if provided by browsers, should be adequate,

96 The International Journal of Digital Accounting Research Vol. 2, No. 1

3 Validation of stylesheets: The stylesheets for the presentation of the reports
are written either complying with XSL or CSS specifications. The browser
validation, if provided, here too can be relied upon.

4 Validation of financial report instance against schemas and schema
extensions: Since they are written in XML, the browser validation, if
provided, here too can be relied upon.

5 Validation of the financial reports: Since there is an internal structure to
each financial report, it is important to verify that the rules governing such
internal structure are not violated by a financial report instance. Such rules
are dictated by accounting & auditing considerations and include rules for
footing as well as those for consistency of articulated statements.

While the first four components above are generic to all XML-
Schema/XSL/CSS based applications, the financial report validation component is
specific to such reports. Consequently the usual xml validation facilities are
provided by the browser. Since the semantics of such financial report validation
rules are to be separately programmed, from the efficiency standpoint it is
important that they be considered in the design of the schema. As the use of
financial reports gets embedded in user applications, such validation becomes
crucial to provide assurance to the naïve investors.

In as much as the financial reports contain information that is articulated in
certain ways, their integrity depends crucially on the compliance with the rules of
such articulation. For example, since the two sides of a balance sheet must balance,
it is important that total assets equal total liabilities & equities. Similarly, the total
assets must equal the sum of all the individual assets, and so on. The credibility of
a balance sheet, like that of all financial reports, hinges crucially on whether it
complies with these rules. Ultimately, if reliance is placed by the users of financial
statements while browsing them on the Internet, it is imperative that there be
browser level validation of financial reports (for compliance with such rules of
articulation) each time they are to be displayed. This can be implemented either by
a browser-side plug-in, or via validation and certification at the server-end. In
either case, it is important that the validation be done by a common program for all

Tam, Goel, & Gangolly O n the Design of an XML-Schema based application for business reporting …… 97

financial reports in an efficient manner. In this section, we discuss the validation
algorithm and its implementation in a java program.

The schema as well as the instance documents developed in this study, except
for schema extensions and instance documents based on such extensions3, were
validated with respect to the W3C recommendations on XML and XML-Schema
using XML Spy 3.5 and the Schema Quality Checker developed by IBM. We will
concentrate here on the validation of the instance documents with respect to the
articulation rules for financial statements.

Since any financial report can be cast into the canonical tree representation in
our schema defined in the previous section, we can derive a simple tree-traversal
algorithm for validation, which can be explained as follows:

Starting with the root node of the document, for each node in the DOMTree, get a

list of child nodes and their attribute names & values. If the value of the child node

relation attribute value is “0”, the value of the balance attributes for such node and

the child must be equal, else the sum of the children node balance attribute values

weighted by the value of the relation attribute must be equal to the value of the

balance attribute of the node.4

The implementation of this algorithm consists of five java classes:
FinancialStatement, Util, Parse, DOMErrorHandler, and Validate. The
FinancialStatement class accepts command line input for the report (XML instance
document) to be validated, sets up the document for parsing and validating. It also
has methods for getting the root node of the document, and printing the DOMtree
for the document.

The Util class contains the methods for printing the tree and the nodes,
converting the filenames to URIs (needed by the parser). The Parse class contains
the methods to read the instance document into the Document Object Model and
use the Xerces DOMParser. The Validate class contains all the methods used in

3 Validation of extensions and instance documents based on schema extensions are not yet
supported by XML Spy 3.5. However, Xerces parser does support these features. Therefore,
they were validated through the Xerces parser.

98 The International Journal of Digital Accounting Research Vol. 2, No. 1

validation, including that for recursive checking of the (footing) rules for financial
reports. Given a node, while there are child nodes, the method
checkCascadingBalance gets the NodeList of child nodes, and then recursively
validates the financial statement as follows: if the relation attribute of the child
node is 0 checks for compliance with the equality of node balance and the child’s
balance attributes by invoking the checkEqualityRelation method, otherwise gets
the sum of the children nodes balance weighted by the value of their relation
attribute by invoking the getChildNodesBalanceTotal method and checks the
equality of the node balance and the weighted sum of child node balances.

/** Checks to see that for the entire tree the balance of the
parent is equal to
 the sum of balances of the children nodes. And recursively
checks this for
 each child node and so on.
 @Node node - Root node for tree which needs to be validated
 @return double - Value of the sum of balance attribute of
children nodes */

public static boolean checkCascadingBalance(Node node) {
 boolean isValid = true;
 System.out.println("checkCascadingBalance LEVEL " + ++index);
 System.out.println("Node Name " + node.getNodeName());
 // If node is child node just return;
 if (!node.hasChildNodes()) {
 System.out.println("Reached Leaf Node");
 }
 else {
 NodeList childList = node.getChildNodes();
 int length = childList.getLength();
 System.out.println("Number of Children = " + length);
 System.out.println("Parent Node Balance = " +
getNodeBalance(node));
 System.out.println("Printing child node balance");
 System.out.println("Children node balance = " +
 getChildNodesBalanceTotal(node));
 // If node has children get the sum of children and
compare
 System.out.println (" Difference = " +
 (java.lang.StrictMath.abs(getNodeBalance(node) -
 getChildNodesBalanceTotal(node))));
 if (checkIfEqualityRelationExists(node)) {
 isValid = checkEqualityRelation(node);
 System.out.println("Boolean from checkEqualityRelation = "

4 A DOMTree is a tree object under the Document Object Model (DOM). DOM provides a
set of application programming interfaces (API) for navigating a tree.

Tam, Goel, & Gangolly O n the Design of an XML-Schema based application for business reporting …… 99

+
 isValid);
 }
 else {
 if (java.lang.StrictMath.abs(getNodeBalance(node) -
 getChildNodesBalanceTotal(node))<
allowedDifference) {
 // Set the boolean flag
 isValid = true;
 }
 else {
 isValid = false;
 }
 }
 if (isValid) {
 // Call recursively the same function for all children nodes.
 for (int i = 0; i < length; i++) {
 if (childList.item(i).getNodeType() == 1) {
 isValid =
checkCascadingBalance(childList.item(i));
 if (!isValid)
 break;
 }
 }
 }
 }
 System.out.println("before returning isValid = " + isValid);
 return isValid;
}

The method checkCascadingBalance in Validate.java which implements the

validation.

The checkCascadingBalance method of the Validate class calls the method
getChildNodesBalanceTotal method given in the box below. It gets the list of child
nodes, for each child the values of the balance and relation attributes, and finally
computes the weighted sum of the child balances.

public static double getChildNodesBalanceTotal(Node node)
{
 NodeList childList = node.getChildNodes();
 int length = childList.getLength();
 double sum = 0;
 for (int i = 0; i < length; i++) {
 if (childList.item(i).getNodeType() == 1) {
 Double dbal =
getNodeDoubleAttributeValue(childList.item(i),
 "balance");

100 The International Journal of Digital Accounting Research Vol. 2, No. 1

 if (dbal == null) {
 System.out.println("balance attribute not
speficied");
 System.exit(-1);
 }
 double balance = dbal.doubleValue();
 System.out.println("balance = " + balance);
 Double drel =
getNodeDoubleAttributeValue(childList.item(i),
 "relation");
 if (drel == null) {
 System.out.println("relation attribute not
speficied");
 System.exit(-1);
 }
 double relation = drel.doubleValue();
 System.out.println("relation = " + relation);
 sum += relation * balance;
 }
 }
 return sum;
}

Appendix 6 gives the output of the execution of the validation performed in the
FinancialStatement class for the invalid instance document txn.3.xml in Appendix
5. The balance sheet instance in txn3.xml is invalid (with invalid internal structure
as discussed under the fifth component of validation) because the balances (200
and 80) of the netPropertyPlantEquipment and grossPropertyPlantEquipment
elements are inconsistent with the sums (180 and 100) of the balances of its child
elements. The output includes the listing of the DOMtree as well as the traversal of
that tree for validation.

5 CONCLUDING OBSERVATIONS

Development of a language for business reporting is a long and arduous task.
The XBRL specifications and the associated taxonomies have provided an initial
statement of the requirements as well as the necessary infrastructure. In this paper
we have utilized the XBRL C&I taxonomy to develop an application for one part
of the reporting language: balance sheet. We have provided an elegant schema,
shown it to be extensible, and provided a canonical structure for all financial

Tam, Goel, & Gangolly O n the Design of an XML-Schema based application for business reporting ……
101

statements so that a standard algorithm can be developed for validation (primarily
footing) of instance documents. We have discussed the algorithm as well as its
implementation in java, and provided the test results.

Future research directions include the extension of the schema to all financial
reports covered by C&I taxonomy including the notes to financial statements, the
auditor’s report, as well as meta-level information pertaining to financial
statements. While our schema “looks” object-oriented in terms of the type
hierarchies, the most important aspects of objects are absent (inheritance,
information hiding/encapsulation). However, initial efforts are also under way to
incorporate substantial object-oriented extensions.

6 REFERENCES

Berners-Lee, T; Hendler, J; Lassila, O.: The Semantic Web: A new form of Web content that
is meaningful to computers will unleash a revolution of new possibilities.
http://www.scientificamerican.com/2001/0501issue/0501berners-lee.html (visited on May
22, 2001)

DAML: The DARPA Agent Markup Language Homepage (2000). http://www.daml.org/

Kent, R.: Conceptual Knowledge Markup Language: The Central Core.
http://sern.ucalgary.ca/ksi/kaw/kaw99/papers/Kent1/CKML.pdf, , (visited on May 22,
2001)

Sigel, A.: Towards knowledge organization with Topic Maps.
http://www.infoloom.com/gcaconfs/WEB/paris2000/S22-02.HTM#s22-02shoeref1 (visited
on May 22, 2001)

Vun Kannon, D.; Wang, Y.: Design of the XBRL specification.
http://www.infoloom.com/gcaconfs/WEB/paris2000/S26-01.HTM (visited on June 6, 2001)

W3C (2000): Extensible Markup Language (XML) 1.0 (Second Edition).
http://www.w3.org/TR/2000/REC-xml-20001006

W3C (2001a): XML Schema Part 0: Prime. http://www.w3.org/TR/xmlschema-0/ (visited
on May 15, 2002)

W3C (2001b): XML Schema Part 1: Structures. http://www.w3.org/TR/2001/REC-
xmlschema-1-20010502/ (visited on May 15, 2002)

102 The International Journal of Digital Accounting Research Vol. 2, No. 1

W3C (2001c): XML Schema Part 2: Datatypes. http://www.w3.org/TR/xmlschema-2/
(visited on May 15, 2002)

W3C (2001d): XML Fragment Interchange. http://www.w3.org/TR/xml-fragment (visited
on May 15, 2002)

W3C (2002): Resource Description Framework (RDF). http://www.w3.org/RDF/ (visited
on May 15, 2002)

W3C (2002):: Schema for Object-Oriented XML 2.0. http://www.w3.org/TR/NOTE-SOX
(visited on May 15, 2002)

Tam, Goel, & Gangolly O n the Design of an XML-Schema based application for business reporting …… 103

Appendix 1. The UML Class Diagram for Balance Sheet

prepaidExpense
s

advancesOrDeposit
s

currentRestrictedAsset
s

otherCurrentAsset
s

currentAssetsHeldForSal
e
currentDeferredIncomeTaxe
s
netAssetsFromDiscontinuedOperatio
ns

cashAndEquivalent
s

netReceivable
s

shortTermInvestment
s

inventory

currentMiscAsset
s

currentAsset

putOptions

litigation

deferredIncomeTaxe
s

otherNoncurrentLiabilitie
s

employeeLiabilitie
s

longTermDeb
t

provisionsforFutureLossesandExpens
es

BalanceSheet

preferredStock

additionalPainInCapit
al

shareSubscription
s

commonStock

accumulatedOtherComprehe
n siveIncomenetOfTaxEffe

ct

unearnedESOPShare
s

unearnedCompensatio
n

receivablesFormSaleOfStoc
k

otherEquity

treasuryStock

retainedEarning
s

stockholdersEquit
y

netPropertyPlantEquipme
nt

longtermInvestment
s

netIntangibleAsset
s

asset

netComputerSoftwareCost
s
prepaidPensionCost
s

restrictedAsset
s

deferredFinancingCost
s
assetsHeldforSal
e

otherAssets

noncurrentDeferredTaxe
s

netNoncurrentAssetsFrom
Di scontinuedOperation

s

nonCurrentMiscAsset
s

nonCurrentAsse
t

currentPortionofLongtermDe
bt

bankOverdraft
s

otherCurrentLiabilitie
s

LiabilitiesAndEquitie
s

accountsPayabl
e

shorttermDeb
t incomeTaxPayabl

e
accruedExpense
s

employeeRelatedLiabiliti
es

currentLiabilities

netNoncurrentLiabilitiesof
D iscontinuedOperation

s

noncurrentLiabilitie
s

104 The International Journal of Digital Accounting Research Vol. 2, No. 1

Appendix 2. An XML-Schema for Balance Sheet (bsj6.xsd)

Note: Ellipses -- sequence of dots (.....) is used to improve readability

<?xml version="1.0" encoding="UTF-8"?>
<!--The schema for Balance Sheet
Authors: Kinsun Tam, Sanjay Goel, and Jagdish S. Gangolly-->
<?xml-stylesheet type="text/xsl" href="bsj3.xsl"?>
<schema targetNamespace="http://www.albany.edu/acc/xfs"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xfs="http://www.albany.edu/acc/xfs"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<!--
Definition of global attributes used in the schema. The
attributes balance and relation are defined here. The
attribute parent is defined locally and the value of that
attribute is bound to the name of the parent element

Balance is the amount as would appear on the Balance Sheet.
Relation is the nature of the relationship with the parent
element.
relation = 0 : the balance equals the balance of the parent
element
relation = +1 : the contribution of the element balance to
the balance of the parent element is positive
relation = -1 : the contribution of the element balance to
the balance of the parent element is negative
-->

 <!-- single out this netPropertyPlantEquipmentType
 for subsequent redefinition in imb4.xsd-->
 <complexType name="netPropertyPlantEquipmentType">
 <attribute name="relation" type="integer" fixed="+1"/>
 <attribute name="balance" type="decimal"
use="required"/>
 <attribute name="parent" type="NMTOKEN"
fixed="nonCurrentAssets"/>
 </complexType>
 <!-- Definitions for the types used in the hierarchy
 in the Balance Sheet.-->
 <!-- Definition of the currentAssetsType-->
 <complexType name="currentAssetsType">
 <all>
 <element name="cashAndEquivalents" minOccurs="0">

Tam, Goel, & Gangolly O n the Design of an XML-Schema based application for business reporting … 105

 <complexType>
 <attribute name="relation" type="integer"
fixed="+1"/>
 <attribute name="balance" type="decimal"
use="required"/>
 <attribute name="parent" type="NMTOKEN"
 fixed="currentAssets"/>
 <!-- The parent attribute is defined locally.
 currentAssets element is the parent of
 cashAndEquivalents element-->
 </complexType>
 </element>
 <element name="netReceivables" minOccurs="0">
 <complexType>
 <attribute name="relation" type="integer"
fixed="+1"/>
 <attribute name="balance" type="decimal"
use="required"/>
 <attribute name="parent" type="NMTOKEN"
 fixed="currentAssets"/>
 </complexType>
 </element>

 </all>
 <attribute name="relation" type="integer" fixed="+1"/>
 <attribute name="balance" type="decimal"
use="required"/>
 <attribute name="parent" type="NMTOKEN"
fixed="totalAssets"/>
 </complexType>
 <!-- Definition of the nonCurrentAssetsType-->
 <complexType name="nonCurrentAssetsType">
 <all>
 <element name="netPropertyPlantEquipment"
 type="xfs:netPropertyPlantEquipmentType"
minOccurs="0"/>
 <element name="longTermInvestments" minOccurs="0">
 <complexType>
 <attribute name="relation" type="integer"
fixed="+1"/>
 <attribute name="balance" type="decimal"
use="required"/>
 <attribute name="parent" type="NMTOKEN"
 fixed="nonCurrentAssets"/>
 </complexType>
 </element>

106 The International Journal of Digital Accounting Research Vol. 2, No. 1

 </all>
 <attribute name="relation" type="integer" fixed="+1"/>
 <attribute name="balance" type="decimal"
use="required"/>
 <attribute name="parent" type="NMTOKEN"
fixed="totalAssets"/>
 </complexType>
 <!-- Definition of the currentLiabilitiesType-->
 <complexType name="currentLiabilitiesType">
 <all>
 <element name="accountsPayable" minOccurs="0">
 <complexType>
 <attribute name="relation" type="integer"
fixed="+1"/>
 <attribute name="balance" type="decimal"
use="required"/>
 <attribute name="parent" type="NMTOKEN"
 fixed="currentLiabilities"/>
 </complexType>
 </element>
 <element name="shortTermDebt" minOccurs="0">
 <complexType>
 <attribute name="relation" type="integer"
fixed="+1"/>
 <attribute name="balance" type="decimal"
use="required"/>
 <attribute name="parent" type="NMTOKEN"
 fixed="currentLiabilities"/>
 </complexType>
 </element>

 </all>
 <attribute name="relation" type="integer" fixed="+1"/>
 <attribute name="balance" type="decimal"
use="required"/>
 <attribute name="parent" type="NMTOKEN"
 fixed="liabilitiesAndEquities"/>
 </complexType>
 <!-- Definition of the nonCurrentLiabilitiesType-->
 <complexType name="nonCurrentLiabilitiesType">
 <all>
 <element name="longTermDebt" minOccurs="0">
 <complexType>
 <attribute name="relation" type="integer"
fixed="+1"/>
 <attribute name="balance" type="decimal"
use="required"/>

Tam, Goel, & Gangolly O n the Design of an XML-Schema based application for business reporting … 107

 <attribute name="parent" type="NMTOKEN"
 fixed="nonCurrentLiabilities"/>
 </complexType>
 </element>
 <element name="deferredIncomeTaxes" minOccurs="0">
 <complexType>
 <attribute name="relation" type="integer"
fixed="+1"/>
 <attribute name="balance" type="decimal"
use="required"/>
 <attribute name="parent" type="NMTOKEN"
 fixed="nonCurrentLiabilities"/>
 </complexType>
 </element>

 </all>
 <attribute name="relation" type="integer" fixed="+1"/>
 <attribute name="balance" type="decimal"
use="required"/>
 <attribute name="parent" type="NMTOKEN"
 fixed="liabilitiesAndEquities"/>
 </complexType>
 <!-- Definition of the stockholdersEquityType-->
 <complexType name="stockholdersEquityType">
 <all>
 <element name="preferredStock" minOccurs="0">
 <complexType>
 <attribute name="relation" type="integer"
fixed="+1"/>
 <attribute name="balance" type="decimal"
use="required"/>
 <attribute name="parent" type="NMTOKEN"
 fixed="stockholdersEquity"/>
 </complexType>
 </element>
 <element name="commonStock" minOccurs="0">
 <complexType>
 <attribute name="relation" type="integer"
fixed="+1"/>
 <attribute name="balance" type="decimal"
use="required"/>
 <attribute name="parent" type="NMTOKEN"
 fixed="stockholdersEquity"/>
 </complexType>
 </element>

 </all>

108 The International Journal of Digital Accounting Research Vol. 2, No. 1

 <attribute name="relation" type="integer" fixed="+1"/>
 <attribute name="balance" type="decimal"
use="required"/>
 <attribute name="parent" type="NMTOKEN"
 fixed="liabilitiesAndEquities"/>
 </complexType>
 <!-- Definition of the liabilitiesAndEquitiesType-->
 <complexType name="liabilitiesAndEquitiesType">
 <all>
 <element name="currentLiabilities"
 type="xfs:currentLiabilitiesType"
minOccurs="0"/>
 <element name="nonCurrentLiabilities"
 type="xfs:nonCurrentLiabilitiesType"
minOccurs="0"/>
 <element name="stockholdersEquity"
 type="xfs:stockholdersEquityType"
minOccurs="0"/>
 </all>
 <attribute name="relation" type="integer" fixed="0"/>
 <attribute name="balance" type="decimal"
use="required"/>
 <attribute name="parent" type="NMTOKEN"
fixed="balanceSheet"/>
 </complexType>
 <!-- Definition of the totalAssetsType-->
 <complexType name="totalAssetsType">
 <all>
 <element name="currentAssets"
type="xfs:currentAssetsType"
 minOccurs="0"/>
 <element name="nonCurrentAssets"
type="xfs:nonCurrentAssetsType"
 minOccurs="0"/>
 </all>
 <attribute name="relation" type="integer" fixed="0"/>
 <attribute name="balance" type="decimal"
use="required"/>
 <attribute name="parent" type="NMTOKEN"
fixed="balanceSheet"/>
 </complexType>
 <!-- Definition of the balanceSheetType-->
 <complexType name="balanceSheetType">
 <all>
 <element name="totalAssets"
type="xfs:totalAssetsType"
 minOccurs="0"/>

Tam, Goel, & Gangolly O n the Design of an XML-Schema based application for business reporting … 109

 <element name="liabilitiesAndEquities"
 type="xfs:liabilitiesAndEquitiesType"
minOccurs="0"/>
 </all>
 <attribute name="relation" type="integer" fixed="0"/>
 <attribute name="balance" type="decimal"
use="required"/>
 <attribute name="parent" type="NMTOKEN"
fixed="statement"/>
 </complexType>
 <!-- Definition of the root element balanceSheet-->
 <element name="balanceSheet" type="xfs:balanceSheetType"/>
</schema>

110 The International Journal of Digital Accounting Research Vol. 2, No. 1

Appendix 3. A Schema Extension Example for Balance Sheet (txn2.xsd)

Note: Ellipses -- sequence of dots (.....) is used to improve readability

<?xml version="1.0" encoding="UTF-8"?>
<!--The schema for Balance Sheet extension
Authors: Kinsun Tam, Sanjay Goel, and Jagdish S. Gangolly-->
<?xml-stylesheet type="text/xsl" href="bsj3.xsl"?>
<schema targetNamespace="http://www.albany.edu/acc/xfs"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xfs="http://www.albany.edu/acc/xfs"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

 <redefine schemaLocation="bsj6.xsd">
 <complexType name="netPropertyPlantEquipmentType">
 <complexContent>
 <extension
base="xfs:netPropertyPlantEquipmentType">
 <all>
 <!-- Definition of the
grossPropertyPlantEquipment-->
 <element name="grossPropertyPlantEquipment"
 minOccurs="0">
 <complexType>
 <all>
 <element name="land" minOccurs="0">
 <complexType>
 <attribute name="relation"
type="integer"
 fixed="+1"/>
 <attribute name="balance"
type="decimal"
 use="required"/>
 <attribute name="parent"
type="NMTOKEN"

 fixed="grossPropertyPlantEquipment"/>
 </complexType>
 </element>
 <element name="machineryAndEquipment"
 minOccurs="0">
 <complexType>
 <attribute name="relation"
type="integer"
 fixed="+1"/>

Tam, Goel, & Gangolly O n the Design of an XML-Schema based application for business reporting … 111

 <attribute name="balance"
type="decimal"
 use="required"/>
 <attribute name="parent"
type="NMTOKEN"

 fixed="grossPropertyPlantEquipment"/>
 </complexType>
 </element>

 </all>
 <attribute name="relation" type="integer"
 fixed="+1"/>
 <attribute name="balance" type="decimal"
 use="required"/>
 <attribute name="parent" type="NMTOKEN"
 fixed="netPropertyPlantEquipment"/>
 </complexType>
 </element>
 <!-- Definition of the
 accumulatedDepreciationAndAmortization-->
 <element
name="accumulatedDepreciationAndAmortization"
 minOccurs="0">
 <complexType>
 <attribute name="relation" type="integer"
 fixed="-1"/>
 <attribute name="balance" type="decimal"
 use="required"/>
 <attribute name="parent" type="NMTOKEN"
 fixed="netPropertyPlantEquipment"/>
 </complexType>
 </element>

 </all>
 </extension>
 </complexContent>
 </complexType>
 </redefine>
</schema>

112 The International Journal of Digital Accounting Research Vol. 2, No. 1

Appendix 4. An XSL Stylesheet for Balance Sheet (bsj3.xsl)

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl"
xmlns:xfs="http://www.albany.edu/acc/xfs" version="1.0">
 <xsl:template match="/">
 <html>
 <head>
 <title> Displaying XML Balance Sheet with XSL
 </title>
 </head>
 <body bgcolor="#666666" text="#FFFFFF"
display="block">

 Balance Sheet
 <hr/>
 <xsl:apply-templates/>
 </body> </html>
 </xsl:template>
 <xsl:template match="xfs:balanceSheet">
 <xsl:for-each select="*">
 <xsl:node-name/>

 <xsl:value-of select="@xfs:balance"/>

 <xsl:for-each select="*">

 <xsl:node-name/>

 <xsl:value-of select="@xfs:balance"/>

 <xsl:for-each select="*">

 <xsl:node-name/>

 <xsl:value-of select="@xfs:balance"/>

 <xsl:for-each select="*">

 <xsl:node-name/>

 <xsl:value-of select="@xfs:balance"/>

Tam, Goel, & Gangolly O n the Design of an XML-Schema based application for business reporting … 113

 <xsl:for-each select="*">

 <xsl:node-name/>

 <xsl:value-of select="@xfs:balance"/>

 <xsl:for-each select="*">

 <xsl:node-name/>

 <xsl:value-of select="@xfs:balance"/>

 </xsl:for-each>

 </xsl:for-each>

 </xsl:for-each>

 </xsl:for-each>

 </xsl:for-each>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

114 The International Journal of Digital Accounting Research Vol. 2, No. 1

Appendix 5. An Instance of a Balance Sheet with a Schema Extension
(txn3.xml)

<?xml version="1.0" encoding="UTF-8"?>
<!-- Balance Sheet Instance
Authors: Kinsun Tam, Sanjay Goel, and Jagdish S. Gangolly-->
<?xml-stylesheet type="text/xsl" href="bsj3.xsl"?>

<balanceSheet balance="600"
xmlns="http://www.albany.edu/acc/xfs"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.albany.edu/acc/xfs txn2.xsd">
 <totalAssets balance="600.00">
 <currentAssets balance="100.00">
 <cashAndEquivalents balance="10.00"/>
 <netReceivables balance="20.00"/>
 <shortTermInvestments balance="0.00"/>
 <inventory balance="40.00"/>
 <currentMiscellaneousAssets balance="30.00"/>
 </currentAssets>
 <nonCurrentAssets balance="500.00">
 <netPropertyPlantEquipment balance="200.00">
 <grossPropertyPlantEquipment balance="80.00">
 <land balance="40.00"/>
 <machineryAndEquipment balance="30.00"/>
 <furnitureAndFixtures balance="20.00"/>
 <computerEquipment balance="10.00"/>
 </grossPropertyPlantEquipment>
 <accumulatedDepreciationAndAmortization
balance="150.00"/>
 <netCapitalLeaseAssets balance="250.00"/>
 </netPropertyPlantEquipment>
 <longTermInvestments balance="100.00"/>
 <netIntangibleAssets balance="100.00"/>
 <nonCurrentMiscellaneousAssets balance="100.00"/>
 </nonCurrentAssets>
 </totalAssets>
 <liabilitiesAndEquities balance="600.00">
 <currentLiabilities balance="200.00">
 <accountsPayable balance="10.00"/>
 <shortTermDebt balance="20.00"/>
 <currentPortionOfLongTermDebt balance="30.00"/>
 <bankOverdrafts balance="40.00"/>
 <incomeTaxPayable balance="50.00"/>
 <accruedExpenses balance="50.00"/>

Tam, Goel, & Gangolly O n the Design of an XML-Schema based application for business reporting … 115

 <employeeRelatedLiabilities balance="0.00"/>
 </currentLiabilities>
 <nonCurrentLiabilities balance="100.00">
 <longTermDebt balance="10.00"/>
 <deferredIncomeTaxes balance="10.00"/>
 <litigation balance="10.00"/>
 <employeeLiabilities balance="20.00"/>
 <putOptions balance="20.00"/>
 <netNonCurrentLiabilitiesOfDiscontinuedOperations
balance="0"/>
 <provisionForFutureLossesAndExpenses
balance="30.00"/>
 </nonCurrentLiabilities>
 <stockholdersEquity balance="300.00">
 <preferredStock balance="100.00"/>
 <commonStock balance="100"/>
 <shareSubscriptions balance="30"/>
 <additionalPaidInCapital balance="70"/>
 <retainedEarnings balance="100"/>
 <treasuryStock balance="100"/>
 </stockholdersEquity>
 </liabilitiesAndEquities>
</balanceSheet>

116 The International Journal of Digital Accounting Research Vol. 2, No. 1

Appendix 6. Output of the Validation Program Applied on txn3.xml

Note: Ellipsis -- sequence of dots (.....) is used to improve readability. A bug in
DOM is erased.

Getting the root node
Testing the validity of the document
checkCascadingBalance LEVEL 1
Node Name balanceSheet
Number of Children = 2
Node balance parent = 600.0
Node balance child = 600.0
Node balance child = 600.0
Boolean from checkEqualityRelation = true

checkCascadingBalance LEVEL 2
Node Name totalAssets
Number of Children = 2
Parent Node Balance = 600.0
Printing child node balance
balance = 100.0
relation = 1.0
balance = 500.0
relation = 1.0
Children node balance = 600.0
 Difference = 0.0
.....
Name = currentAssets
Name = nonCurrentAssets

checkCascadingBalance LEVEL 3
Node Name currentAssets
Number of Children = 5
Parent Node Balance = 100.0
Printing child node balance
balance = 10.0
relation = 1.0
balance = 20.0
relation = 1.0
balance = 0.0
relation = 1.0
balance = 40.0
relation = 1.0
balance = 30.0
relation = 1.0

Tam, Goel, & Gangolly O n the Design of an XML-Schema based application for business reporting … 117

Children node balance = 100.0
 Difference = 0.0
.....

Name = cashAndEquivalents
Name = netReceivables
Name = shortTermInvestments
Name = inventory
Name = currentMiscellaneousAssets

checkCascadingBalance LEVEL 4
Node Name cashAndEquivalents
Reached Leaf Node
checkCascadingBalance LEVEL 4
Node Name netReceivables
Reached Leaf Node
checkCascadingBalance LEVEL 4
Node Name shortTermInvestments
Reached Leaf Node
checkCascadingBalance LEVEL 4
Node Name inventory
Reached Leaf Node
checkCascadingBalance LEVEL 4
Node Name currentMiscellaneousAssets
Reached Leaf Node

checkCascadingBalance LEVEL 3
Node Name nonCurrentAssets
Number of Children = 4
Parent Node Balance = 500.0
Printing child node balance
balance = 200.0
relation = 1.0
balance = 100.0
relation = 1.0
balance = 100.0
relation = 1.0
balance = 100.0
relation = 1.0
Children node balance = 500.0
 Difference = 0.0

118 The International Journal of Digital Accounting Research Vol. 2, No. 1

.....
Name = netPropertyPlantEquipment
Name = longTermInvestments
Name = netIntangibleAssets
Name = nonCurrentMiscellaneousAssets

checkCascadingBalance LEVEL 4
Node Name netPropertyPlantEquipment
Number of Children = 3
Parent Node Balance = 200.0
Printing child node balance
balance = 80.0
relation = 1.0
balance = 150.0
relation = -1.0
balance = 250.0
relation = 1.0
Children node balance = 180.0
 Difference = 20.0
.....
Name = grossPropertyPlantEquipment
Name = accumulatedDepreciationAndAmortization
Name = netCapitalLeaseAssets
.....The document file:c:\xbrlproject\tam\tamsrc\txn3.xml is
not valid.

