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 
Abstract—In this paper, an islanded medium-voltage (MV) 

microgrid placed in Dongao Island is presented, which integrates 
renewable-energy-based distributed generations (DGs), energy 
storage system (ESS), and local loads. In an isolated microgrid 
without connection to the main grid to support the frequency, it is 
more complex to control and manage. Thus in order to maintain 
the frequency stability in multiple-time-scales, a hierarchical 
control strategy is proposed. The proposed control architecture 
divides the system frequency in three zones: (A) stable zone, (B) 
precautionary zone and (C) emergency zone. In this way, dynamic 
stability control that cope with disturbances in short-time scale is 
implemented by microgrid central controller (MGCC) within 
Zone B and Zone C. Meanwhile, steady-state stability control to 
solve the peaks and valleys problem of loads and DGs in long-time 
scale is executed by microgrid energy management system 
(MEMS) within Zone A. Furthermore, based on the developed 
complete small-signal state-space model, sensitivity analysis of the 
eigenvalues is conducted in order to reveal the dynamic stability 
margin of the MV microgrid, and to identify the proper range of 
the control parameters of Zone B. Theoretical analysis, 
time-domain simulation and field test results under various 
conditions and scenarios in the Dongao Island microgrid are 
presented to prove the validity of the introduced control strategy. 
 

Index Terms—Microgrid, frequency stability, 
multiple-time-scales, microgrid central controller (MGCC), 
microgrid energy management system (MEMS), stability analysis. 
 

I. INTRODUCTION 

HE increasing penetration of renewable-energy-based 
distributed generations (DGs) in distribution networks 

promotes the emergence of new changes in power generation, 
transmission and distribution. Integrated DGs, energy storage 
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systems (ESS), and local loads within a certain area, microgrid 
is an effective way to achieve active distribution networks, 
which can reduce the impact of large penetration of intermittent 
renewable energy integrated into the electrical grid, making the 
power system more reliable, safe, clean, and economical [1]–
[3]. Microgrids combined with coordinated control, relaying 
protections, and intelligent dispatching systems, can operate in 
either grid-connected mode to exchange power with the main 
grid [4], or in islanded mode when applied in remote areas, 
islands or faults occur in the external power grid. Isolated 
microgrids, often named minigrids, are autonomous systems 
that can achieve self-control, protection and management [5], 
[6]. 

In recent years, many related technologies on islanded 
operation of microgrid have been developed, such as energy 
management [7]–[8], decentralized and hierarchical control 
[9]–[11], power quality compensation [12]–[13], and protection 
schemes [14]–[15], applied to laboratory systems or 
demonstration projects [16]–[20]. During islanded operation, 
without a fast and effective power balance strategy, frequency 
may present high fluctuations and instabilities due to the high 
penetration of intermittent renewable energy [21]. Power 
electronic converters based DGs play a significant role in 
maintaining the stability of microgrids, since they show faster 
transient response and higher controllability than conventional 
rotating machines interfaced DGs [22]–[24]. Normally, power 
electronic converters based DGs can be connected to the 
microgrid through three major kinds of interfaces: grid-forming, 
grid-feeding, and grid-supporting power converters [22], [25]. 
Grid-forming power converters are utilized as voltage source in 
the absent of master unit in a microgrid. Actually, most of the 
renewable-energy-based DGs are controlled in grid-feeding 
mode as current source, thus they cannot directly control the 
frequency and voltage in microgrid. On the other hand, grid 
supporting power converters can be controlled as voltage 
source or current source based on droop concept. Generally, the 
major purpose is to participate in the regulation of the 
frequency and voltage amplitude of the microgrid through 
controlling the active and reactive power injection or 
absorption.  

Originally applied in line-interactive UPS systems, 
voltage-source-based grid supporting approach have been 
widely extended to parallel inverters control in inverter-based 
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microgrid [4]. Frequency and voltage magnitude droop control 
architectures are proposed to stabilize the frequency and 
voltage of microgrids, and to achieve power sharing in a 
decentralized manner during islanded operation [6], [26], [27]. 
However, it is shown that frequency and voltage deviations are 
inevitable, and accurate reactive power sharing are challenged 
due to the impact of mismatched feeder impedance [28], [29]. 
Also, system stability and dynamic are highly affected by the 
selected droop gains [6]. Furthermore, to obtain accurate 
power-sharing performance with a high droop gain, the 
microgrid may experience oscillations and instabilities [30]–
[32]. To solve the power control problems, secondary control 
has been recently addressed based on extra communication 
system [9], [33], [34]. However, the proposed methods exist 
fundamental conflict that the secondary voltage control can 
worsen the already poor sharing of reactive power, while 
enforcing reactive power sharing can result in poorer voltage 
profiles than with only primary control conversely [35]. 
Moreover, most of the microgrid control structures reported in 
the current literature are proposed for particular microgrids 
only formed by ideal parallel inverters, which neglect the 
dynamic of the primary sources, thus being inappropriate to 
integrate the diversity of DGs in a certain area. 

Recently, a few coordinated methods have been proposed to 
support the frequency and voltage in a multi-source microgrid 
that includes renewable-energy-based DGs and ESS. In [36], an 
improved grid-forming control scheme is developed, which can 
keep the charging voltage of battery banks under control 
without physical communication. A coordinated control 
architecture for power management of islanded microgrids is 
proposed in [37] where the flexible power control of each DG 
unit can be achieved with seamless modes changes. However, 
experimental results in [36] and [37] show that the steady-state 
frequency deviates from the nominal value seriously. In [38], 
the novel grid-feeding control (GFC) scheme is presented in 
ESS. It can be also observed that this control method is only 
capable of dealing with the disturbance of wind-speed 
variations. Incorporating the current-source-based grid 
supporting control (GSC) approach, the control concept in [5] 
includes load-frequency primary control and secondary control, 
which mimics the frequency control method in interconnected 
power systems. Furthermore, [39] extends the primary and 
secondary control from frequency to voltage. In regards to 
dynamic stability control in short-time scale, the 
aforementioned control schemes are not sufficient to guarantee 
the microgrid frequency stability for large transients, such as 
sudden huge load demands or faults. In the case of multi-source 
microgrids, a damping method to mitigate the underlying 
oscillation due to the introduction of GSC approach is not 
reported in the current literature. On the other hand, the power 
reserve management is a vital task for microgrid operation in 
long-time scale. Optimizing microgrid operation using model 
predictive control approach is presented in [40]–[41] where 
operation constraints and time-varying request are satisfied. In 
[42]–[43], multiagent system for real-time operation of a 
microgrid is studied to maximize the power production of DGs 
while maintaining the stability. However, the existing control 

strategies greatly increase the complexity of microgrid energy 
management, and are only verified in simulation or laboratory 
test beds. Therefore, it is necessary to develop effective 
steady-state stability control approach in long-time scale with 
high applicability and reliability, where the operation modes 
and the power supply scheduling of microgrid can be optimized 
or regulated according to the availability of renewable 
resources, load conditions, and state of charge (SoC) of the 
ESS. 

Motivated by the above-mentioned difficulties, this paper 
introduces a multiple-time-scales hierarchical frequency 
stability control architecture with the capability to operate 
stably and reliably at different conditions. The control 
architecture is implemented in the medium-voltage (MV) 
microgrid demonstration project of Dongao Island in China. By 
using the proposed control strategy, the system frequency is 
divided into three zones: (A) stable zone, (B) precautionary 
zone, and (C) emergency zone. The dynamic stability control 
for short-time scale is implemented by the microgrid central 
controller (MGCC) within Zone B and Zone C, while 
steady-state stability control for long-time scale is executed by 
the microgrid energy management system (MEMS) within 
Zone A. In order to analyze and ensure stability of the MV 
isolated microgrid system, a complete small-signal state-space 
model of the microgrid which containing diesel generator set 
(DGS), battery energy storage system (BESS), squirrel cage 
induction generator (SCIG) wind turbine (WT), network and 
loads is established. The developed state-space model is 
adopted to analyze the dynamic stability margin of the 
microgrid and to identify the proper range of key control 
parameters. Theoretical analysis, simulation and site 
experimental results are used to verify the effectiveness of the 
proposed control strategy. 

This paper is organized as follows. Section II illustrates the 
system configuration and control structure of the isolated MV 
microgrid. Section III describes the proposed frequency 
stability control strategy. The detailed small-signal dynamic 
model of the MV microgrid and corresponding stability 
analysis are presented in Section IV. In Section V, simulation 
and experimental results in the Dongao Island microgrid are 
presented. Finally, conclusion is given in Section VI. 

II. MV ISOLATED MICROGRID SYSTEM IN DONGAO ISLAND 

A. System Configuration 

Fig. 1 shows the hierarchically controlled MV microgrid in 
Dongao Island. This microgrid includes four 10-kV busbars, 
i.e., BUS-1, BUS-2, BUS-3 and BUS-4, three DGSs, four SCIG 
WTs, one BESS, six distribution substations (DSs), and several 
load banks. Interconnection of these components is achieved 
through 10-kV MV lines. The BESS is connected to BUS-2 via 
a 380 V/10 kV step-up transformer, which is located 
geographically near to the point of common coupling (PCC) of 
the SCIG WTs and residential loads. Besides, the load is 
composed of six DSs (DS1–DS6: unconnected in this work for 
the sake of safety) and adjustable load banks. These 10-kV 
adjustable load banks consist of RLC (resistance, inductance, 
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and capacitor) branches, which are specially used in the field 
test and can be controlled automatically by remote signals. 
Details about the component parameters of the MV microgrid 
system are listed in Tables II and III.  

B. Microgrid Control Architecture 

Microgrid unified control system uses a hierarchical control 
structure, which comprises three control levels: (i) the local 
control layer, (ii) the centralized control layer, and (iii) the main 
station energy management layer, as presented in Fig. 1. The 
communication among the devices, the MGCC and the main 
station is performed by using the IEC61850 standard protocol. 
High-speed Ethernet data communication channel is 
implemented by using fiber optic ring network between the 
local control layer and the centralized control layer, which 
rapidly transmits the wide-area measurement sampled-value 
(SV) messaging, the device event data based on generic 
object-oriented substation event (GOOSE) network and the 
clock synchronization data based on the IEEE1588 standard. 
Thus, the data in these three networks achieved 
interconnectivity. Furthermore, Global Positioning System 
(GPS) devices provide a unified synchronization service for all 
apparatus in the different levels. Details of the three control 
levels are described as follows: 

1) Local control layer is mainly composed of local intelligent 
terminals, i.e., smart distribution terminal unit (DTU), SCIG 
WT control system, DGS control system and BESS power 
conversion system. This layer automatically completes the 
wide-area data measurement, collection, and the operating 
conditions identification for the devices. The devices in the 
local control layer are required to provide two types of 
communication:  

(a) High-speed GOOSE/SV for transmitting data between 
local control, protection units and MGCC. Moreover, the data 
must be transmitted with a 5-ms transmission interval. 

(b) IEC61850 Manufacturing Message Service (MMS) layer 
for transmitting the steady-state data from field measurement 
and control devices to the main station, with a data refresh 
interval that cannot exceed two seconds. 
2) Centralized control layer is responsible for the dynamic 
stability control, which is implemented by the MGCC. 
3) Main station energy management layer is the top layer, 
equipped with MEMS that provides functionalities such as 
monitoring, comprehensive data acquisition and processing, 
steady-state stability control, and optimal dispatch. 

 
Fig. 1. Single-line diagram and hierarchical control structure of the Dongao Island MV microgrid. 
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III. MULTIPLE-TIME-SCALES HIERARCHICAL FREQUENCY 

STABILITY CONTROL STRATEGY IMPLEMENTATION 

The objective of the frequency stability control strategy is to 
maintain the system frequency within the allowed range. 
Therefore, to mitigate frequency fluctuations due to the 
variations or switch on/off of distributed renewable resources 
and loads, additional control measures should be taken to 
remain the active power balance in the multiple-time-scales. 
Based on the frequency dynamic behaviors characteristic and 
the real-time values, the frequency stability control strategy of 
the microgrid system is divided into three zones, including 
stable zone, precautionary zone and emergency zone, which is 
referred in this paper as Zones A, B and C, respectively, as 
shown in Fig. 2. These proposed three zones reflect the level of 
frequency stability and are organized as follows.  
1) Zone A: The frequency range in the frequency stable zone is

AL AHf f f  . Frequency deviation is minimal in this zone 

and frequency stable zone preventive control (FSZPC) is 
required to execute in long-time scale. Note that the allowable 
limit of the frequency deviation in interconnected grid is ±0.2 
Hz in UCTE (Continental Europe) or ±0.1 Hz in North America 
[44]. The normal frequency fluctuation range of an isolated 
microgrid is greater than that of interconnected power systems 
since the capacity of a microgrid is comparatively small. Thus 
the allowable frequency deviation is set to ±0.3 Hz, which is 
less strict than in conventional power systems. 
2) Zone B: The frequency range in the frequency precautionary 
zone is &BL AL AH BHf f f f f f    . When the frequency 

deviates from permissible frequency fluctuation range, 
frequency precautionary zone preventive control (FPZPC) that 
uses the buffering and regulating effect of the BESS has the 
responsibility to restore the frequency to Zone A. The selection 
of the border of Zone B ( ,BL BHf f ) is discussed in Section V-A. 

3) Zone C: The frequency range in the frequency emergency 
zone is &CL BL BH CHf f f f f f    .When the frequency is 

deviated dramatically and is unavoidable to fall into Zone C, 
BESS is unable to restore the frequency back to Zone B 
effectively as the unbalanced power in the microgrid might 
have exceeded the charging/discharging limits of the BESS. 
Meanwhile, the DG units will trip off because of individual 
under/over-frequency protection. Therefore, in this case, 

frequency emergency zone preventive control (FEZPC) that 
results in sequential under-frequency load shedding (UFLS) 
and over-frequency generator tripping (OFGT) is supposed to 
restore the system frequency and protect the microgrid against a 
blackout.  

Consequently, frequency stability control strategy of isolated 
microgrid comprises the dynamic stability control and 
steady-state stability control based on different requirement of 
time scales. Dynamic stability control is composed of FPZPC 
in Zone B and FEZPC in Zone C, which is implemented by the 
MGCC within 65 ms through the high-speed GOOSE network. 
The MGCC is the last line of defense to ensure the safe and 
stable operation of the microgrid. On the other hand, 
steady-state stability control refers to the FSZPC in Zone A, 
which is executed by MEMS every 5 s through MMS 
supervisory network. It can be concluded that the hierarchical 
stability control strategy works in a status switching flowchart, 
as shown in Fig. 3.  

A. Frequency Stable Zone Preventive Control in MEMS 

When the microgrid is operating in isolated mode, it is 
essential to monitor for frequency of the system, generated 
power of the DG units, SoC of the BESS and the load condition 
in real time. If relevant variables exceed the limits, appropriate 
means of regulation must be implemented. For instance, 
regulation of dispatchable DG units, start-up/shutdown of DG 
units, interruption/ recovery of loads, and so forth. FSZPC in 
MEMS can solve the operation problem of frequency deviation 
in long-time scale caused by peaks and valleys of load 
consumption and wind power generation. The control objective 
of FSZPC is to maintain the microgrid system with sufficient 
spare capacity, which can guarantee the system to cope with 
large fluctuations in wind power and equipment failures. 
Meanwhile, the SCIG WTs power generation should be 
maximized. The flowchart representing the FSZPC in MEMS is 
depicted in Fig. 4.  

Initially, the load rate of the DGS   is detected. When   is 

Fig. 2. Hierarchical frequency control strategy for the isolated microgrid. 

 
Fig. 3. Status switching flowchart for the hierarchical stability control strategy.
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higher than the load rate upper limit H , the program 

determines whether the condition is satisfied to turn on the WT 
first. If Criterion 1 is satisfied, the command of WT start-up 
will be issued. Nevertheless, if the conditions are not met, the 
discharging conditions of BESS is checked: “if BESSP is less 

than discharging power limit maxBdP and SoC is greater than 

MEMSminSoC , then the discharging power of BESS is increased; 

otherwise the DGS will be turned on afterwards”. On the other 
hand, when   is below the load rate low limit L , the charging 

conditions of BESS is checked: “if BESSP is less than charging 

power limit maxBcP  and SoC is less than MEMSmaxSoC , then the 

charging power of BESS is raised; if the conditions are 
unsatisfied, then the DGS or WT will be shut down according to 
Criterion 2”. Otherwise, when   is inside the limits 

( L H    ), BESSP  will be restored to zero if 

L DGS BESS HP P       is satisfied. Then, the BESS 

performs maintenance program once SoC is out of the range of 
low/upper threshold for MEMS, i.e., MEMSminSoC  and 

MEMSmaxSoC . The detailed description of the commands and 

criteria in the flowchart are as follows:  
1) BESS commands: The adjusting commands of the BESS 

are designed as follows:  

1 _

( ( ) )

MEMS DGS aim up

DGS upper_limit upper_limit low_limit osc

P P P

P P P P K

   

    
     (1) 

 
2

( ( ) )

MEMS DGS aim_down

DGS low_limit upper_limit low_limit osc

P P P

P P P P K

   

    
   (2) 

subjected to:  
  power constraints     1 2, .MEMS MEMS reg DGSrateP P K P       (3) 

sensitivity constraint      BESS MEMS senP P K                (4) 

where 1MEMSP and 2MEMSP are the commands corresponding 

with load rate exceeding H  and L , upper_limitP and low_limitP  are 

the upper limit and the low limit of the DGS output power, oscK  

is the oscillation coefficient, regK is the regulating coefficient,

BESSP is the measured active power value of BESS, MEMSP  is the 

power command for the BESS and senK  is the sensitivity 

coefficient, respectively. Note that the purpose of introducing 
the coefficient oscK  is to prevent the oscillation due to 

repetitively regulating BESS nearby the limits. Thus, the 
regulating objective is narrowed. Besides, MEMSP  is restricted 

with power constraints; no repetitive instruction is issued if 
sensitivity constraint is not satisfied. 

2) Criteria of start-up/shutdown of WTs: First, the 
penetration rate of wind power in the microgrid can be defined 
as follows:  

_

_ _

WT T
pr

DGS T WT T

P
S

P P



          (5) 

where _DGS TP  and _WT TP  are the total capacity of the DGS and 

WTs in operation, respectively. Thus, the condition of starting 
up a WT (Criterion 1): 

1

a)

b)

c)

H

su pr

sc WT WTrate

S S

P k P

 
 
   

                     (6) 

where suS  is the penetration rate after starting up a WT, scP is 

the spare capacity of the DGS, WTk is the impact coefficient of 

WT start-up, and WTrateP is the rated power of the SCIG WT. 

Note that the regulating and impact resistance capability of the 
MV microgrid system improves with the increasing of the DGS 
in operation. Therefore, to upgrade the utilization rate of the 
WTs in the microgrid, H should be reduced reasonably based 

 
Fig. 4. FSZPC flowchart of MEMS. 
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on the quantity of DGS N . The condition of shutting down a 
WT (Criterion 2): 

2

a)

b)
L

rt prS S

 
 

                                  (7) 

where rtS  is the real-time penetration rate. 

B. Frequency Precautionary Zone Preventive Control in 
MGCC 

When the system frequency is inside the precautionary zone, 
first, the shortage or the surplus of the active/reactive power in 
the microgrid system is calculated by the MGCC based on /f P  

and /V Q  droop approaches [6], [39]. Then the power 

commands of the BESS are issued by MGCC through GOOSE 
channel with a communication delay cd . The primary 

objective is to stabilize the system frequency fluctuations 
caused by the variations of the loads and renewable DGs in 
short-time scale. Note that by using centralized control schemes 
for BESS management can ensure the optimum operation of 
multi BESS easily when integrating more distributed BESS 
units into the MV microgrid, which is also the case for the 
future plans in Dongao pilot project. To be mentioned that the 
time delay of the high-speed GOOSE/SV network is usually 
considered to be in the order of 60 ms [45]. Therefore, the 
communication delay is normally negligible in such low-delay 
network [46]. Detailed analysis about the communication delay 
issue is given in Subsections IV-A-6 and IV-B-3.  

Notice that, conventional droop control method has the 
inherent drawback that the dynamic performance of the system 
is weakened with low droop gains, while the stability margin is 
decreased with high droop gains [6].  Fig. 5 shows the proposed 
FPZPC scheme, which is based on the compensation and 
suppression of the frequency and power swings by introducing 
a supplementary control signal sclP  to the active power 

generated by the /f P  droop controller. It is worth mentioning 

that the supplementary control loop is inspired by the power 
system stabilizer (PSS) equipped in the synchronous machines 
for damping low frequency oscillation in interconnected power 

systems [47]. As can be seen from Fig. 5, frequency oscillation 
signal yielded from the derivative term of the frequency is used 
to inject a damping power signal sclP  in the output of the /f P  

droop control loop. In this way, as additional control signal, 

sclP  and P  are combined with the set-point command MEMSP  

issued by MEMS in FSZPC scheme. Hence, the reference 
output power command of the BESS under the constraint of 
multiple-time scales can be expressed as:  

( ) .

sclP

P

Bref MEMS fP n scl

df
P P K f f K

dt





   


 

      (8) 

.( )

Q

Bref MEMS VQ rms nQ Q K V V



  


             (9) 

where fPK  is the frequency-active power droop gain, f  is the 

monitored microgrid frequency, nf  is the reference frequency 

of the microgrid, sclK is the coefficient of the supplementary 

control loop, VQK  is the voltage-reactive power droop gain, 

rmsV  is the rms value of the voltage of BUS-2, nV  is the 

reference voltage of BUS-2. f  can be obtained by a low-pass 

filter as follows: 

c

c

f f
s







           (10) 

where c  is the filter cutoff frequency. On this basis, 

considering the constraints of maximum power limits of 
charging/discharging, if BrefP  exceeds the charging limit maxBcP  

or discharging limit maxBdP , then the reference power command 

is set to the limit values. 
 

C. Frequency Emergency Zone Preventive Control in MGCC 

If the frequency cannot be effectively controlled by the 
FPZPC scheme under large disturbances and falling into Zone 
C, UFLS or OFGT of MGCC is implemented to avoid 
frequency collapse. 

1) UFLS: When the frequency of the microgrid decreases to 

 
Fig. 5. FPZPC scheme. 
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CL BLf f f   region of Zone C, it is necessary to shed some of 

loads sequentially in accordance with the load levels. UFLS 
function in FEZPC has five basic stages, as presented in Table 
I.  

2) OFGT: The flowchart of OFGT is illustrated in Fig. 6. It 
can be seen that when the frequency increases to 

BH CHf f f   region of Zone C, there are two stages of OFGT 

configured in FPZPC scheme. To guarantee the system stability 
under emergency conditions, uncontrollable microsources such 
as WTs should be disconnected in priority, and controllable 
microsources DGS may trip from the microgrid afterwards. 
Nevertheless, note that unreasonable OFGT scheme causes 
large impact on the frequency since the spare capacity is 
relatively low in a microgrid. Therefore, OFGT platen that can 
be used to enable/disable the tripping function of specific DG 
units is integrated into the sequential logic, which can be 
configured based on the field test results.  

IV. MODELING AND STABILITY ANALYSIS OF THE MV 

ISOLATED MICROGRID SYSTEM 

In order to analyze and ensure system stability, as well as to 
select the parameters of the FPZPC in Zone B properly, a 
small-signal state-space model of the MV microgrid is 
established and presented in Section IV-A. The systematic 
modeling approach can be readily extended to include more DG 
units and loads. 

A. Modeling of the MV Isolated Microgrid System 

Fig. 7 shows the equivalent circuit of the microgrid system. 
The whole dynamic model consists of four major subsystems, 
i.e., BESS, DGS, SCIG WT and network including loads. Each 
subsystem is modeled based on its local reference frame. Since 
the microgrid includes more than one DG units, all interfaced 
state variables of the subsystems should be transformed to a 
global reference frame, based on the transformation defined in 
(11) [48]. The global reference frame of the microgrid ( dq

-frame) rotates at the angular frequency of e , which is defined 

on the voltage vector of BUS-3. D Dd q -frame, B Bd q -frame and

I Id q -frame are the local reference frame of DGS, BESS, SCIG 

WT locked to the rotor of DGS, BUS-2 and BUS-4, 
respectively; and the corresponding rotating speed is D , B  

and I . 

cos sin

sin cos

non o o g
dq n n q

nnon o o g
qd n n d

ff f

ff f

 


 
        

                  
         (11) 

In (11), ( , , )n n D B I   is the angle between the local 

reference frame of the thn  subsystem and the global reference 

frame; 
Tn n

q df f    and 
Tg g

q df f    are the state variables 

in the aforementioned frames, respectively. Note that 
superscript “ o ” denotes the steady-state operating values in the 
equations of the following subsections.  
1) Dynamic model of BESS 

BESS unit is composed of a battery bank, bidirectional 
conversion system and power circuit, as shown in Fig. 5. The 
control system is composed of: 1) droop control loop, which is 
responsible for setting the values of active and reactive power 
to contribute to the regulation of the microgrid frequency and 
voltage; 2) power control loop to yield close control dynamic 
characteristics of the output power; and 3) inner current control 
loop, which has responsibility to control the current of the filter 
inductor and limit the inverter fault current. 

As illustrated in Fig. 5, the power and current control are 

 
Fig. 6. Flowchart of OFGT. 

Fig. 7. Equivalent single-line diagram of the microgrid used for stability
analysis. 

TABLE I 
EXECUTION CONDITIONS OF UFLS 

UFLS Stage Frequency range Delay time Shedding load

1st stage ↓48.5–49.0Hz 1uft t  DS6 

2nd stage ↓48.0–48.5 Hz 2uft t  DS5 

3rd stage ↓47.7–48.0 Hz 3uft t  DS4 

4th stage ↓47.5–47.7 Hz 4uft t  DS3 

5th stage ↓45.0–47.5 Hz 5uft t  DS2 
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achieved with conventional PI controllers (with gains ppK , ipK , 

pqK , iqK , 1pK , 1iK , 2pK  and 2iK ), including feed-forward 

terms. Therefore, the dynamic model of the power and current 
control loop can be derived as: 

( ) ( )B
odref pp Bref Bout ip Bref Bouti K P P K P P dt                 (12) 

(Q ) (Q )B
oqref pq Bref Bout iq Bref Bouti K Q K Q dt               (13) 

 1 1( ) ( )B B B B B B B
cdref p odref od i odref od B Bf oq odV K i i K i i dt L i V                                            

(14) 

2 2( ) ( )B B B B B B B
cqref p oqref oq i oqref oq B Bf od oqV K i i K i i dt L i V                                           

(15) 
where B

odi , B
oqi  are the filtered values of the current, B

odV  and 
B

oqV  are filtered voltage of BUS-2, B
odrefi and B

oqrefi are the 

reference values of the converter output current, B
cdrefV  and 

B
cqrefV are the reference values of the converter output voltage. 

As seen from Fig. 5, the phase lock loop (PLL) is mainly used 
for microgrid synchronization. And the mathematical model of 
the PLL is given by 

( )( )Bi
B ref B Bp

K
K

s
                              (16) 

where BpK  and BiK are the gains of the PI controller. 

The power circuit consists of the equivalent resistor BfR  and 

inductance BfL , which represents the lumped elements of the 

series filter and the interface transformer. The equations 
depicted the dynamic of the power circuit are written as 

1
( )

B
Bf B B B Bod

od oq od cd
Bf Bf

Rdi
i i V V

dt L L
                       (17) 

1
( )

B
oq Bf B B B B

oq od oq cq
Bf Bf

di R
i i V V

dt L L
                        (18) 

Thus, the state-space model of the BESS unit consists of the 
submodules of the control loop and power circuit, which can be 
established by linearizing the equations of (8)–(10) and (12)–
(18). Furthermore, the model of the submodules transferred to 
the global reference frame using (11) can be derived as (19) and 
(20), respectively: 

, , , , , , ,
g g g u V g
B c B c B c B c B p B c B B c Bx A x B x B u B V                   (19) 

, , , , , , ,
g g g u V g
B p B p B p B p B c B p B B p B B Bx A x B x B u B V B              

(20) 
In (19) and (20)  

,
g B B B B
B c oq od cq cd qq pd

TB B
oq od qq pd B

x V V V V i i

i i V V 

       

     
 ,

,

Tg g g
B p oq odx i i      ,

 TB MEMS MEMS n nu Q P V       ,
Tg g g

B oq oqV V V      . 

Note that qqi , pdi , qqV  and pdV  are the state variables 

represented the integrator states of the power and current 
controllers. 
2) Dynamic model of DGS 

DGS is composed of three blocks: (i) electrical system of the 
three-phase salient-pole synchronous generator; (ii) rotating 
mechanical system; (iii) governor and excitation systems. The 
mathematic model of the electrical system of DGS in the rotor 
reference frame D Dd q  can be expressed as follows: 

( )D D Dd
M i Ni v

dt
                              (21) 

where 

1

TD D D D D D
Sqs Sds kq fd kdi i i i i i    , 

1

TD D D D D D
Sqs Sds kq fd kdv v v v e v     

are the current and voltage vectors of the stator windings ( Sqs ,

Sds ), field winding ( fd ) and the damper windings ( 1kq , kd ). 

The method of deriving matrices M and N is presented in 
[48]. 

The model of motion of the synchronous generator can be 
described by: 

2 S DSDr D
mS eS

b b

H Kd d
T T

dt dt

 
 

                  (22) 

where SH , DSK are the inertia constant and damping factor, 

respectively. Dr  is the angular velocity of the rotor. mST  and 

eST  are the mechanical and electromagnetic torque, 

respectively, and 

1( ) ( )D D D D D D D
eS Sds Sqs kq mq Sqs Sds kd fd mdT i i i X i i i i X               (23) 

where mqX  and mdX  are the magnetizing reactance. 

Please note that mST and D
fde are the output of the governor and 

excitation systems, respectively, and can be obtained from 
IEEE working group [49], [50]. A state-space model of DGS 
can be constructed by linearizing the equations of (21)–(23). 
Further, the model transferred to the global reference frame 
using (11) can be incorporated as follows: 

g g u V g
DGS DGS DGS DGS DGS DGS DGSx A x B u B V                 (24) 

where 

1

Tg g g D D D
DGS Sqs Sds kq fd kd Dr Dx i i i i i             , 

TD
DGS fd mSu e T      , 

Tg g g
DGS Sqs SdsV v v     . 

3) Dynamic model of SCIG WT 
The dynamic model of SCIG WT consists of: (i) the electrical 

system of the induction generator, (ii) the wind energy 
capturing mechanism, and (iii) the rotating shaft. The 
mathematical model of the induction generator in the local 
synchronously rotating reference frame I Id q  can be expressed 

by 

( )I I Id
W i Yi v

dt
                                (25) 

where 
TI I I I I

Wqs Wds Wqr Wdri i i i i    , 
TI I I I I

Wqs Wds Wqr Wdrv v v v v     
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are the current and voltage vectors of the stator (Wqs ,Wds ), 

and the rotor (Wqr , Wdr ), respectively. The matrices W and 

Y can be obtained from [48]. 
The electromagnetic torque of the SCIG can be written in 

terms of rotor and stator current as  

( )I I I I
eI MA Wqs Wdr Wds WqrT X i i i i                           (26) 

where MAX  is the magnetizing reactance. 

The shaft system of a SCIG WT unit can be represented by 
the two-mass model as follows: 

2 I Ir
ss ss I Ir eI

b

H d
K D T

dt


 


                         (27) 

2 Tur W
mW ss ss W W

b

H d
T K D

dt


 


                      (28) 

( )ss
b W Ir

d

dt


                                  (29) 

where IH , TurH , ID  and WD  are the inertia constant and 

damping factor of the induction generator rotor and wind 
turbine rotor, respectively. Ir  and W  are the mechanical 

angular velocity of the induction generator rotor and wind 
turbine rotor, respectively. ssK  is the shaft stiffness. mWT  is the 

input mechanical torque of the wind turbine. ss  is the shaft 

twist angle. The capturing mechanism of wind energy can be 
described by (30)–(31): 

2 3( , )

2
A W W W

mW
W

C R V
T

   


                           (30) 

W
W

W

R
V


                                          (31) 

where A  is the air density, WR  is the blade length of wind 

turbine, WV is the wind speed,   is the tip-speed ratio, 

( , )WC    is the power coefficient, which is a function of   

and the pitch angle   [51]. 

Thus, using (25)–(31), the linearized state-space model of the 
SCIG WT in the global reference frame is derived as: 

 g g u V g
SCIG SCIG SCIG SCIG SCIG SCIG SCIGx A x B u B V                 (32) 

where  
Tg g g I I

SCIG Wqs Wds Wqr Wdr Ir W ssx i i i i               , 

TI I
SCIG Wqr Wdr mWu v v T       , 

Tg g g
SCIG Wqs WdsV v v      . 

4) Dynamic model of network including loads 
As presented in Fig. 7, the dynamic of the network can be 

modeled in the form of the relationships between current and 
voltage as 

1 1 1 1
g

DGS PCC L LV V R i L i                             (33) 

2 2 2 2
g

PCC B L LV V R i L i                               (34) 

3 3 3 3
g g

B SCIG L LV V R i L i                              (35) 

1 2c PCC L LC V i i                                  (36) 

where nR  and ( 1, 2,3)nL n   are equivalent impedance of the 

series RL  branches. Lni  are the corresponding current vectors. 

PCCV  is the instantaneous voltage of BUS-1. cC  is the 

shunt-capacitor for reactive power compensation. Based on 
(33)–(36), the dynamic model of the microgrid network can be 
incorporated as follows: 

1 2 3g g V g V g V g
NET NET NET NET DGS NET B NET SCIGx A x B V B V B V          (37) 

where 1 2 3 Tg L L L PCC
NET qd qd qd qdx i i i V        . In addition, the 

voltage vectors of BUS-3, BUS-2 and BUS-4 can be obtained 
by 

1
5 1 5

( )
( )

g
g g DGS L

DGS DGS L

d i i
V R i i L

dt


                      (38) 

2 3
4 2 3 4

( )
( )

g
g g L B L

B L B L

d i i i
V R i i i L

dt

 
               (39) 

3
6 3 6

( )
( )

g
g g L SCIG

SCIG L SCIG

d i i
V R i i L

dt


                   (40) 

where nR  and ( 4,5,6)nL n   are equivalent impedance of the 

adjustable load banks. Thus, the linearized equations of the 
voltage vectors can be written as 

11 12 11 12g g g g g
DGS NET NET NET NET NET DGS NET DGSV D x D x E x E x          (41) 

21 22 21 22
, ,

g g g g g
B NET NET NET NET NET B p NET B pV D x D x E x E x             (42) 

31 32 31 32g g g g g
SCIG NET NET NET NET NET SCIG NET SCIGV D x D x E x E x              

(43) 
5) Complete dynamic model of MV microgrid with negligible 
communication delay 

Fig. 8 depicts the block representation for establishing the 
small-signal dynamic model of the MV microgrid with all of 
the subsystems integrated together. It is worth mentioning that 
the output current of the DG units g

DGSi , g
Bi  and g

SCIGi , are 

the input signals of the microgrid network model, while the bus 
voltages vectors g

DGSV , g
BV and g

SCIGV , which can be 

eliminated using (41)–(43), can be treated as the output of the 
network and inputs of the DG units. Now, the complete 
state-space model of the MV autonomous microgrid can be 
constructed based on (19), (20), (24), (32) and (37):  

MVMG MVMG MVMG MVMG MVMGx A x B u                  (44) 

 
Fig. 8. Block diagram of the complete dynamic model of the MV microgrid.
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where , ,[ ]g g g g g T
MVMG DGS B p B c SCIG NETx x x x x x       , 

[ ]T
MVMG DGS B SCIGu u u u     . 

6) Microgrid dynamic model considering communication 
delay 

In order to carry out the delay-dependent stability analysis of 
the proposed FPZPC scheme of Zone B in Subsection IV-B-3 
and show its robustness in the presence of communication 
delay, the state-space model of (44) is extended to consider a 
communication delay time cd  for the data transmission 

between MGCC and BESS, as depicted in Fig. 5. In this case, 
the equations of (8)–(9) should be modified as 

( )
( ( ) ) . cd

Bref MEMS fP cd n scl

df t
P P K f t f K

dt





    


  (45) 

  .( ( ) )Bref MEMS VQ rms cd nQ Q K V t V                     (46) 

Therefore, the state-space model of the microgrid system 
based on delay differential equations (DDEs) can be given by 

 
( ) ( )

( ) ( )
MVMG MVMG NCD MVMG

MVMG CD MVMG cd MVMG MVMG

x t A x t

A x t B u t




  

    



    (47)
 

Note that the matrices MVMG NCDA   and MVMG CDA   can be 

readily obtained based on the decomposed model in the 
previous subsections. 
 

B. Design and Stability Analysis of the MV Isolated Microgrid 
System 

The complete linearized state-space model of (44) is then to 
be adopted for conducting sensitivity analysis of eigenvalues in 
order to have a better evaluation of the proposed supplementary 
control loop in Fig. 5, and to design the critical control 
parameters of the FPZPC in Zone B in a way that both system 
stability margin and dynamic performance constraints are met. 
The key parameters of the microgrid system are selected to be 
the same as in the simulation, as provided in Tables II and III. 
And the detailed parameters of the DGS and SCIG WT can be 
found in [52] and [53], respectively. It is to be noted that since 
the focus of this paper is on frequency stability control method 
in MV microgrid, the voltage-reactive power droop gain VQK  

in FPZPC is remained constant throughout this work. 
1) Sensitivity to control parameters 

Sensitivity of the system eigenvalues to variations in the /f P  

droop gain fPK , supplementary control loop gain sclK , and the 

corresponding filter cutoff frequency c , of the FPZPC in 

Zone B are demonstrated. Fig. 9 shows the trace of the 
microgrid dominant modes for the frequency droop gain fPK  

variations in the range of –0.2 to –900 kW/Hz  when the 
conventional /f P  frequency control scheme in [6] and [39] is 

adopted in FPZPC. Note that the low-frequency oscillatory 
modes are identified to be the dominant modes of the system, 
which is essential for the stability analysis. Moreover, it can be 
seen that the dynamic characteristics of the MV microgrid are 
noticeably affected by three pairs of eigenvalues, i.e., (1, 2), (3, 
4) and (5, 6). It is observed that eigenvalues (1, 2) is identified 

to be the electromechanical mode of the microgrid system. As 
can be seen, the trace of the eigenvalues (1, 2) indicates that the 

/f P  droop gain have remarkable impact on the 

electromechanical mode. It should be mentioned that high /f P  

droop gain can enhance the transient response of the microgrid. 
However, it can be seen from Fig. 9 that as the coefficient of 

/f P  droop loop increases, the dominant mode (1, 2) shifts 

towards to the unstable region, which leads to more oscillatory 
or even instability of the microgrid.  

Fig. 10 compares the system dominant eigenvalues spectrum 
when the supplementary control loop is introduced in the /f P  

conventional frequency control loop in FPZPC. It is shown that 
the dominant oscillatory modes of the system shift to the 
left-hand plane (LHP), which yields less oscillatory behavior. 
Moreover, the electromechanical mode shows less sensitive to 
the /f P  droop gain compared with the conventional droop 

approach. This indicates that the microgrid system remains 
stable for a wider range of  /f P  droop gain variations. It is 

worth mentioning that using a high droop gain with larger 
stability margin is favorable during the operation of the MV 
microgrid.  

Fig. 11 illustrates the loci of the dominant modes for the 
supplementary control loop gain sclK  variations in the range of 

0 to 20 2kW.s . Fig. 11 shows that as sclK  increases, the 

damping of the electromechanical mode represented by the 
eigenvalues (1, 2) goes up significantly. However, the loci of 
the eigenvalues (3, 4) and (5, 6) indicates the damping of the 
corresponding oscillatory modes first increase and then 

Fig. 9. (a) Trace of the dominant modes as a function of frequency droop gain
( kW/Hz kW/Hz0.2 900fPK    ) with the conventional frequency control

scheme reported in [6] and [39]. (b) Magnified trace of eigenvalues (5, 6). 

Fig. 10. (a) Trace of the dominant modes as a function of frequency droop gain
( kW/Hz kW/Hz0.2 900fPK    ) with the proposed supplementary control

loop in FPZPC ( 20.3kW.ssclK  ). (b) Magnified trace of eigenvalues (5, 6).
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decrease. It can be revealed that the damping ratio ( ) of the 

eigenvalues (3, 4) reduces to 0.058 when sclK  increases to 20
2kW.s , which might well become underlying factor leading 

instability of the microgrid. Therefore, sclK  should be limited 

according to the locations of the eigenvalues (3, 4) and (5, 6). 
As can be seen from Figs. 10 and 11, system stability margin is 
met even with high fPK  or sclK . Hence, final values will be 

discussed and selected thoroughly in Section V-A considering 
charging/discharging limits of the BESS.  

Fig. 12 shows the effect of the filter bandwidth on the 
dominant modes. It shows that as c decreases from 50π to π 

rad/s, the damping of eigenvalues (5, 6) increases first, then 
decreases, whereas the damping of eigenvalues (1, 2) decreases 
significantly. Obviously, by selecting a high cutoff frequency 
of the frequency filter, the system stability margin can be 
increased. However, the attenuation property of the high 
frequency components is reduced, thus the noise will be 
amplified by the supplementary control loop and leads to output 
power oscillations of the BESS. On the contrary, a low cutoff 
frequency will impose a certain delay that can degrade the 
performance of the supplementary control loop and worsen the 
system stability. In this instance, the final value of 20πc   

rad/s was chosen to obtain the desirable transient response 
specifications, considering the tradeoff between high frequency 
noise attenuation and the response speed of the supplementary 
control loop.  

 

2) Sensitivity to operating points 
Figs. 13 and 14 show the trajectory of the dominant 

oscillatory modes as the total load (TL) power increases from 
800 kW to 1200 kW, corresponding to conventional frequency 
control scheme and proposed supplementary control scheme in 
FPZPC, respectively. As shown in Figs. 13 and 14, with the 
total load in the microgrid grows, the damping of the 
electromechanical mode increases, while the mode represented 
by eigenvalues (5, 6) is attracted to the unstable region. 
Comparing Fig. 14 to Fig. 13, obviously eigenvalues (1, 2) and 
(5, 6) shift to the LHP when adopting the supplementary control 
loop. This behavior clearly reveals that the proposed 
supplementary control loop is effective for stability margin 
enhancement in different load power conditions.  
 

Fig. 11. (a) Trace of the dominant modes when sclK  is increased from 0 to 20

2kW.s ( 400 kW/HzfPK   ). (b) Magnified trace of eigenvalues (5, 6). 

Fig. 12. (a) Trace of the dominant modes when c  is decreased from 50π to π

rad/s ( 400kW/HzfPK   , 20.3kW.ssclK  ). (b) Magnified trace of

eigenvalues (5, 6). 

Fig. 14. (a) Trace of the dominant modes when the total load power in 
microgrid is increased from 800 kW to 1200 kW with the proposed FPZPC 

scheme ( 400kW/HzfPK   , 20.3kW.ssclK  ). (b) Magnified trace of 

eigenvalues (5, 6). 

Fig. 13. (a) Trace of the dominant modes when the total load power in
microgrid is increased from 800 kW to 1200 kW with the conventional
frequency control scheme ( 400kW/HzfPK   ) reported in [6] and [39]. (b)

Magnified trace of eigenvalues (1, 2) and (5, 6). 

 
Fig. 15. System eigenvalues spectrum as the communication delays ranges
from 0 to 500 ms.  
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3) Impact of communication delay 
One of the major challenges facing the proposed FPZPC in 

Zone B is the effect of communication delay. To evaluate the 
impact of the communication delay on the microgrid stability, 
Chebyshev’s discretization based method proposed in [54] is 
adopted to calculate the eigenvalues of the system with DDEs 
represented by (47). Fig. 15 demonstrates the system 
eigenvalues spectrum as the communication delays ranges from 
0 to 500 ms. Note that 3M   is chosen for the numbers of 
nodes formatting the Chebyshev’s discretization scheme. As 
can be seen, the dominant eigenvalues of the microgrid system 
keep in the LHP, which indicates that the introduced frequency 
control strategy remains stable even though the communication 
delay is assumed to be as large as 500 ms. Therefore, system 
stability will not be compromised with the proposed centralized 
control structure for BESS management.  

V. VERIFICATION RESULTS AND DISCUSSION 

In order to verify the proposed multiple-time-scales 
hierarchical frequency stability control strategy, 
comprehensive simulations analysis under MATLAB/Simulink 
environment and experimental study in Dongao Island 
microgid have been conducted. The main parameters of the 
microgrid system are selected to be the same in both simulation 
and experiments, as listed in Tables II and III.  

TABLE II 
SYSTEM PARAMETERS 

Elements Types Value 

BESS Power converter 500 kW 

DGS Synchronous generator 1000 kW 

SCIG WT Asynchronous generator 750 kW 

Line 1 Series RL  branch 0.0. 14 )180 7 (j 

Line 2 Series RL  branch 1.422 1.16 ( )3j   

Line 3 Series RL  branch 0.351 0.28 ( )7j   

Load 1 
(Adjustable load banks) 

Series RL  load 2000 kW / 1000 kVar

Load 2 Series RL  load 100 kW / 50 kVAr  

Load 3 Series RL  load 50 kW / 50 kVAr 

Capacitor cC  Fix-capacitor bank 250 kVAr 

 

TABLE III  
MAIN BESS PARAMETERS 

Parameter Symbol Value 

DC link voltage dcV  500 V-835 V 

PWM switching frequency sf  4 kHz 

Equivalent impedance ; Bf BfL R  L:1.15mH; R:0.002

Power 
controller 

Proportional gains ;pp pqK K  10 

Integral gains ;ip iqK K  40 

Current 
controller 

Proportional gains 1 2;p pK K  12 

Integral gains 1 2;i iK K  260 

PLL 
Proportional gains BpK  180 

Integral gains BiK  3200 

 

Fig. 16. Responses of the MV microgrid as fPK is increased from –80 to –720

kW/Hz  with the conventional /f P  frequency control scheme reported in [6]

and [39]. (a) Frequency. (b) Active power: BESS ( BESSP ), SCIG WT ( WTP ),

and DGS ( DGSP ). 

Fig. 17. Responses of the MV microgrid under step load increase of 300kW
with different control schemes. (a) Comparison of frequency responses with
GFC reported in [38], conventional GSC reported in [6] and [39]
( 400kW/HzfPK   ), and the proposed control scheme in FPZPC

( 20.3kW.ssclK  ). (b) Active power response with conventional GSC: BESS

( BESSP ), SCIG WT ( WTP ), DGS ( DGSP ) and the total load in microgrid ( TLP ).

(c) Active power response with the proposed control scheme. 
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A. Evaluation of FPZPC in MGCC 

Comprehensive simulated results have been obtained to 
examine the performance of the introduced control scheme of 
FPZPC in Zone B.  

Fig. 16 shows the dynamic responses of the system under a 
step change of frequency droop gain fPK from –80 to –720 

kW/Hz  at 10.2 st   with the conventional /f P  frequency 

control scheme reported in [6] and [39]. It can be seen that the 
introduction of droop controller in a MV multi-source 
microgrid would introduce oscillations in system frequency and 
active power of the microsources, which reveals the intrinsic 
nature of the conventional droop control approach. Moreover, 
Fig. 16 suggests that as fPK  is increased, the system appears 

much more oscillatory performance, and eventually instability 
can be yielded. Note that this agrees with the findings from the 
sensitivity analysis presented in Section IV-B.  

Fig. 17 shows the performance of the microgrid under 
different control schemes when a step load increase of 300 kW 
occurs at 7.5 st  . Compared with the responses of GFC 

reported in [38], as can be seen from Fig. 17(a), frequency drop 
and fluctuations subsequent to a step load increase can be 
mitigated and stabilized significantly when adopting the droop 
control approach. Additionally, comparing the responses of the 
proposed control scheme, as shown in Fig. 17(a) and (c), to the 
conventional GSC (see Fig. 17(a) and (b)) clearly verifies the 
effectiveness of the introduced supplementary control loop in 
FPZPC. The injected supplementary stabilization signal is able 
to damp the system frequency so that to yield damped active 

power responses of all DG units. This is also consistent with the 
trend of dominant modes based on sensitivity analysis. 
Therefore, the proposed control scheme synthesizes the 
advantages of the conventional droop and supplementary 
control loop, providing fast response stabilization under 
disturbances.  

Fig. 18 illustrates the impact of the communication delay on 
the frequency dynamic response to a step load increase of 300 
kW. Fig. 18 suggests that the system frequency remains stable 
in the presence of large communication delay (200 ms) with the 
proposed frequency stability control scheme in FPZPC. Note 
that this is in line with the eigenvalue analysis shown in Fig. 15.   

As previously described, the parameters of the proposed 
control scheme in FPZPC should be selected from the 
constraints of stability and the charging/discharging limits of 
the BESS. It can be seen from Fig. 17(c) that the active power 
of BESS increases to the peak of 280 kW during load 
disturbance, which exceeds the discharging limit maxBdP . 

Considering the maximum frequency deviation of the 
microgrid in steady state to be 0.3 Hz (Zone A), /f P droop 

TABLE V 
MGCC PARAMETERS SETTING 

Parameter Symbol Setting Unit 

SoC Upper threshold MGCCmaxSoC  99 % 

SoC Low-threshold MGCCminSoC  20 % 

Zone A 
ALf  49.7 Hz 

AHf  50.3 Hz 

Zone B- BLf  49.0 Hz 

Zone B+ BHf  51.0 Hz 

Zone C- 5CLf  45.0 Hz 

Zone C+ 2CHf  55.0 Hz 

Droop coefficient of /f P  loop fPK  –250 kW/Hz

Droop coefficient of /V Q loop VQK  –100 kVar/kV

Coefficient of the supplementary 
control loop sclK  0.1 2kW.s

Filter cutoff frequency c  20π rad/s 

TABLE IV  
MEMS PARAMETERS SETTING 

Parameter Symbol Setting Unit

SoC Upper threshold MEMSmaxSoC  95 % 

SoC Low-threshold MEMSminSoC  40 % 

  Upper limit H  
70 ( 1N  ); 

% 
60 ( 1N  ) 

  Low limit L  30 % 

Discharging power limit maxBdP  210 kW

Charging power limit maxBcP  –210 kW

Oscillation coefficient oscK  10 % 

Regulating coefficient regK  5 % 

Sensitivity coefficient senK  3 kW

Impact coefficient of WT start-up WTk  27 % 

Penetration rate limit of 
start-up/shutdown WT 1prS , 2prS  45, 30 % 

Fig. 19. Main primary equipment and secondary equipment in Dongao Island
microgrid. 

Fig. 18. Frequency response at different time delays. 
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gain fPK was selected a relatively smaller value (–250 kW/Hz ). 

In regards to the selection of sclK , although the sensitivity 

analysis in Fig. 11 suggests that sclK  can be higher to achieve 

better damping effect, the design of the supplementary control 
loop ( 20.1 kW.ssclK  ) is properly conservative. One of the 

main reason is that the charging/discharging limits of the BESS 
might be easily exceeded as the derivative term has a strong 
magnifying effect.  

In addition to the parameters mentioned above, another main 
factor in the parameter selection of the proposed control 

strategy is the border of Zone B ( ,BL BHf f ). As transient control 

measures, OFGT and UFLS of FEZPC have noticeable impact 
on the generators and prime movers in the microgrid because of 
the sudden change of the electrical and mechanical stress. 
Besides, frequency fluctuations are yielded even during normal 
OFGT or UFLS due to the low inertia characteristic of the 
microgrid, as shown in Fig. 21 of experimental test. In a 
practical microgrid design, in order to avoid the frequency 
falling into Zone C and triggering FEZPC, it is desirable to 
expand the frequency range of Zone B. However, on the one 

 
Fig. 20. System performances to continuous load variations with MGCC and MEMS. (a) Frequency. (b) Active power of the total load in microgrid. (c) Active

power of DGS. (d) Active power of BESS. (e) SoC of BESS. (f) Active power ( WTP ) and reactive power ( WTQ ) of SCIG WT. (g) Voltage of BUS-2. 
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hand, fPK and sclK  are fixed by the designer to ensure desired 

transient response considering the charging/discharging limits 
of the BESS, thus the proposed control scheme in Zone B might 
limit to power saturation and become ineffective if the border is 
too large. On the other hand, the local frequency protection 
setting of all DG units and loads (e.g., the allowable frequency 
range of the SCIG WT is 47.5–52 Hz) must be within the 
frequency range of Zone C; otherwise, uncontrollable generator 
tripping and load shedding might lead to microgrid collapse. In 
this situation, the range of Zone B is chosen as a synthetic 
tradeoff taking into account the transient performance, power 
limit of BESS and the protection coordination of the microgrid. 
 

B. MEMS and MGCC Test Under Actual Conditions 

Multiple-time-scales hierarchical frequency stability control 
strategy is tested and verified in the Dongao Island MV 
microgrid under various actual conditions. Fig. 19 shows the 
main primary equipment and secondary equipment in the 
microgrid. The setting parameters of MEMS and MGCC are 
selected as presented in Tables IV and V respectively.  

Fig. 20 shows the experimental test results of the MV 
microgrid performances during the process of continuous load 
variations when MEMS and MGCC are both enabled. The real 
scenarios of operation mode optimization in MEMS and rapid 
compensation control in MGCC are summarized as follows:  
 Scenario 1S : The total load in the microgrid TLP  is rising 

from 188 kW to 752 kW gradually, and   exceeds the load rate 

upper limit H  at 202t   s, as shown in Fig. 20(b). 

Meanwhile, BESS increases the discharging power by 1MEMSP  

as the spare capacity of the DGS scP  is not met to start up the 

WT. Then the command of WT start-up is issued by FSZPC 
scheme in MEMS as Criterion 1 is satisfied. Afterwards, the 
SCIG WT connects to the microgrid smoothly at 485t  s. 
 Scenario 2S : The DGS is operating in normal range of load 

rate between L  and H . Following continuous step load 

change, the power of the BESS is regulated by the FPZPC 
scheme in MGCC to stabilize the system frequency rapidly, as 
shown in Fig. 20(a). 
 Scenario 3S : The charging power of the BESS is manually 

increased in remote control mode to speed up the charging 
process, as shown in Fig. 20(d). Thus, we can evaluate the 
system performance near the upper threshold of SoC of the 
BESS in scenario 5S .  

 Scenario 4S : In order to be able to observe the power 

oscillation due to repetitively regulating the BESS nearby the 
load rate limit, oscK is set to be zero in this case. As can be seen 

from Fig. 20(a) and (c), the system frequency and the output 
power of the DGS fluctuate up and down near L  until oscK  is 

restored to nominal value. 
 Scenario 5S : As   falls below L caused by a step load 

decrease of 200 kW, the charging power of the BESS grows 
gradually with 2MEMSP  until reaches the charging power limit 

maxBcP . Nevertheless, as shown in Fig. 20(e), the SoC of the 

BESS increases to 93.5% which almost reach the upper 
threshold 95%. Hence, the MEMS checks Criterion 2 to shut 
down the DGS or the WT in advance. Resulting from Criterion 
2 is met, the SCIG WT is shut down according to the command 
issued by MEMS at 1627t  s, as shown in Fig. 20(f).  

Consequently, it can be observed that the MEMS is capable 
of dealing with frequency fluctuations in long-time scale 
through optimization of microgrid operating mode, which is 
similar than the tertiary frequency control in interconnected 
power systems. Furthermore, there are ten times in which the 
frequency exceeds Zone A. Note that the frequency deviations 
caused by short-term large load demand can be suppressed by 
the MGCC effectively.  
 

C. Function Test of FEZPC in MGCC 

To test the validity of FEZPC scheme in MGCC under large 
disturbances (extreme conditions), simulated frequency signal 
generated using protection relay test system (PRTS) are fed in 
the DTU at BUS-1, which can be detected by the MGCC, as 
shown in Fig. 21(a). Fig. 21 shows the experimental test results 
of UFLS and OFGT functions in the MGCC. As can be seen 
from Fig. 21(a), there are three transient frequency pulses 
detected by the DTU, including 51.5 Hz last for 0.35 s at 

9.5t  s, 51.5 Hz last for 0.6 s at 18.7t  s, and 48.5Hz last for 
0.6 s at 31.4t  s, respectively. However, only the second and 

Fig. 21. Experimental test results of UFLS and OFGT functions in MGCC. (a)
Simulated frequency signal fed in the DTU. (b) SCIG WT output current. (c)
Active power of the total load. (d) Real frequency. 
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the third frequency pulse variations are valid and trigger OFGT 
at 19.4t  s [see Fig. 21(b)] and UFLS at 32.1t  s [see Fig. 
21(c)], respectively, since the pulse-width in the first time is 
less than the setting delay time. It is shown that preventive 
control within emergency zone can be performed rapidly and 
correctly under the simulated extreme conditions.  

VI. CONCLUSION 

This paper introduces a hierarchical frequency control 
strategy to ensure power balance and frequency stability in 
multiple-time-scales for MV isolated microgrids. The proposed 
control strategy is realized with both dynamic and steady-state 
stability controllers based on different time scales. Dynamic 
stability control composed of preventive control in frequency 
precautionary and emergency zone is implemented by MGCC 
within 65 ms through GOOSE high-speed network. On the 
other hand, steady-state stability control which refers to the 
preventive control in frequency stable zone is executed by 
MEMS every 5 s through MMS supervisory network. By using 
the developed small-signal model of the MV microgrid, 
sensitivity analysis is conducted to analyze the dynamic 
stability margin of the microgrid and to identify the proper 
range of the main control parameters. Comprehensive 
simulated and experimental results in Dongao Island MV 
microgid are presented to verify the effectiveness of the 
proposed control strategy. It is shown that the coordination 
between dynamic stability control based on the millisecond 
level and steady-state stability control based on the second level 
is able to realize the stable and optimal operation of the MV 
microgrid in Dongao Island. This paper provides practical 
solution for the frequency control, with insight information 
about the configuration, modeling, analysis and operation of 
the MV isolated microgrid.  

This study aims to solve the problem of the stable operation 
of the microgrid, especially concerning the frequency stability 
in the MV microgrid. The power quality improvement using 
distributed BESS in MV microgrid is subject to further research 
and will be considered in future studies of Dongao Island. 
Another important issue is that the application of proposed 
supplementary control scheme in other microgrids, e.g., 
microgrids with decentralized control architecture. In this 
application, the supplementary control scheme comprises the 
derivative terms of the local frequency and voltage. They can 
be included in the droop equations of (9) and (10) in [55] 
respectively, thus to improve the transient response of the 
microgrid. In order to evaluate the effectiveness of this 
extension further, modeling, analysis and testing of such 
microgrids are needed to conduct in future work. 
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