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Abstract — In this paper, the power quality of multi-area 

microgrids is addressed. For this, Active Power Filters (APFs) 
and Distributed Generators (DGs) inverters are used. To 
achieve the reference value of power quality indices of different 
areas, a strategy based on cooperation between DGs and APFs 
is proposed. Hierarchical control is applied to control DGs 
inverters and APFs in a coordinated way. Primary control 
consists of power droop controller of DGs, selective virtual 
impedance and voltage/current regulators. Based on the 
secondary control, voltage compensation of Points of Common 
Coupling (PCCs) of multi-area microgrid is carried out by 
DGs. Voltage compensation of PCCs by DGs may cause 
violation from maximum allowable voltage distortion at DGs 
terminals. Thus, tertiary control is used to mitigate these 
violations by using APF in proper coordination with secondary 
control. Evaluation of the proposed hierarchical control is 
carried out by simulation. 

Index Terms — Active Power Filter, Distributed Generator 
(DG), Hierarchical Control, Multiple Voltage Harmonic 
Compensation, Multi-Area Microgrid. 

I. INTRODUCTION 
OMBINATION of Distributed Generators (DGs), 
energy storages and loads in a small-scale grid is 
called Microgrid. Microgrids may operate as 

connected to main grid (grid-connected) or isolated from 
that (islanded). DGs are usually connected to microgrids by 
power electronic interface converters. To regulate 
voltage/frequency at DGs terminals, proper control of the 
interface inverters is recommended [1], [2]. Some strategies 
based on control of DGs inverters have been suggested for 
improving power quality of microgrids. Some of them 
address voltage harmonic compensation [3]-[5]. In this line, 
the present paper considers voltage harmonic compensation 
of islanded microgrids. 

Voltage Control Method (VCM) with the help of a single-
phase DG is used in [3] to compensate voltage harmonics of 
PCC. Control strategy of [4] is based on selective voltage 
harmonic compensation. In this method, different rated 
power of each DG is considered for compensation effort 

control. Despite significant voltage improvement of PCC in 
this method, output voltages of DGs can be significantly 
distorted. 

 To tackle this problem, an effective method has been 
suggested in [5] to achieve desirable power quality at PCC 
and DGs terminals with the help of APFs. The coordination 
between DGs and APFs is based on voltage THD at DGs 
terminals and inverters nominal power. According to [5], in 
case of multiple APFs, utilizing APFs is simultaneous and 
compensation sharing between them is based on their rated 
power. However, applying several APFs at the same time is 
not economic. Moreover, in this method the coordination is 
between APFs and all DGs, whereas to reduce power losses 
and compensation effort of APFs, it might be better making 
coordination between APFs and the DGs that the violations 
are occurred for them. 

 Concerning compensation of voltage distortion at DGs 
terminals, the reference voltage quality index in [5] is set to 
THD = 5%, however, sometimes it is needed to reduce 
voltage distortion less than this value and/or selectively 
mitigate voltage distortion of specific harmonic orders.   

Considering the proliferation and geographical spread of 
DGs and sensitive loads, power quality of multi-area 
inverter-based microgrids is addressed in the present paper. 
Moreover, the proposed approach is able to resolve the 
aforementioned defects of [5] and to provide desired power 
quality for main buses of an islanded microgrid (PCC and 
DG buses). 

II. PROPOSED HIERARCHICAL CONTROL SCHEME 
Fig. 1(a) shows the general microgrid topology. As it can 

be seen in this figure, microgrid is divided to several areas 
that each area includes at least one DG. The main distinction 
between the areas is the required voltage quality based on its 
load condition and topology. Parallel APF in each area 
compensates voltage harmonic distortion by proper injection 
of harmonic current. Therefore, based on each area voltage 
quality situation, necessity of parallel APF can be 
determined. It is shown in Fig. 1(a) that each area has two 
main bus categories: PCC and node(s). Considering possible 
sensitive loads at node(s), voltage quality of all PCCs and 
nodes should be taken into account.  

The proposed method to improve power quality of 
microgrids is based on the hierarchical control as can be 
seen in Fig. 1(b). This figure shows the proposed 
hierarchical control structure for a typical area. Primary 
(Local) control includes power droop controller, selective 
virtual impedance and inner voltage and current controllers.  
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Fig. 1.  General scheme of: (a) microgrid, (b) proposed c
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Fig. 4.  Test system. 
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TABLE III 
SIMULATION TIME PERIODS 

Time (s) 0 < t < 2 2 < t < 4 4 < t < 6 6 < t < 8 8 < t < 10 10 < t < 12 12 < t < 14

Area 1 
Droop Control,  

Fundamental Power & Current 
Sharing 

Non-fundamental 
Current Sharing 

Secondary Control is 
added 

Tertiary Control is 
added 

The first reduction of 
Nonlinear Load 1  

The second reduction of 
Nonlinear Load 1 

Tertiary Control is 
disconnected 

Area 2 Droop Control Secondary Control is added 
Area 3 Droop Control Secondary Control is added  Tertiary Control is added 

 
(a) 

 
(b) 

Fig. 5.  Voltage harmonic distortion (Area1). (a) 5th & (b) 7th Harmonic. 
 
seen in Fig. 6 that ܶܦܪேሺଵሻכ  is nearly 5% without using 
tertiary control but by tertiary control, the reference voltage 
quality is achieved (ܶܦܪேሺଵሻכ ൌ3.5% ). However, as it can 
be seen in Fig. 7, APF1 is active in b < D < c; meaning that 
APF1 is used to compensate a low range of ேܸሺ௜ሻ௛ . It is not 
economic and may reduce APF1 effective lifetime. 
Consequently, according to the "Nonlinear Block" constraint 
of tertiary control, APF1 should be switched off and tertiary 
control should be disconnected. Based on Table III, this is 
happened in the final period. It can be seen that voltage 
harmonic distortion is increased, relatively (Fig. 5). Note 
that disconnecting APF is optional; meaning that this level 
might be removed in the case that lower value of ܶܦܪேሺ௜ሻכ  is 
prior to economic issues.   

As it can be seen in Fig. 6, node 1 voltage is significantly 
improved by tertiary control, but, node 2 voltage is a bit 
distorted that means DG2 effort in compensation of PCC1 is 
increased, relatively. This is for high inertia of I-controller 
in tertiary control in comparison with PI controller in the 
secondary level. However, ܶܦܪேሺଶሻכ  is less than 3.5% in all 
the periods. 

B. Area2 Simulation Results  
In this area, the maximum allowable voltage distortion of 

node 3 is ܶܦܪேሺଷሻכ ൌ5%. Since there is just a single DG in 
this area, power and harmonic current sharing is not 
considered. Fig. 8 shows voltage harmonic distortion of 
PCC2 and node 3 based on Table III time periods. 

 
Fig. 6.  THD of voltage (Area 1). 

 
Fig. 7.  D curve. 

 

It can be seen that before secondary control, voltage 
distortion of node 3 is low, but, PCC 2 voltage distortion is 
high due to nonlinear load 2 and voltage drop that is 
produced through Z3 (see Fig. 4). However, since secondary 
control is initiated, PCC2 voltage reference is achieved 
while node 3 voltage is distorted. Based on Fig. 9, ܶܦܪேሺଷሻכ  
is less than its maximum allowable value that means tertiary 
control is not required for this area. As a result, involvement 
of APF(s) in a multi-area microgrid can be determined by 
checking out node(s) voltage quality of individual areas.   

Remember that PCCs voltages are almost distortion-free 
even though there is a bit of voltage harmonic propagation 
between areas. In fact, by increase of voltage distortion of 
PCCs due to current harmonic flow from neighbor area(s), 
secondary controllers increase DGs efforts for compensating 
PCCs voltages. This process is illustrated in Figs. 8 and 9, 
clearly. As can be seen in these figures, high power quality 
of PCC2 is achieved in all the periods, but, node 3 voltage is 
a bit distorted due to load condition of areas 1 and 3. It can 
be concluded that low harmonic current is flown to area 2 
from areas 1 and 3 and it is compensated by secondary 
control of area 2.  

A. Area3 Simulation Results  
As it is represented in Fig. 4, there is just a single DG in 

this area, so, load sharing loops of primary control are 
eliminated from the hierarchical control. Voltage quality 
reference of PCC3 is like other areas, but, maximum 
allowable voltage distortion of node 4 is set to ܦܪேሺସሻହכ ൌ3.5%. 
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Fig. 8.  Voltage harmonic distortion (Area 2). 

 
Fig. 9.  Node (3) THD of voltage. 

 

 
Fig. 10.  Voltage harmonic distortion (Area 3).  

According to Fig. 10, secondary control is accurate in 
achieving the quality reference of PCC3. However, it is 
observable in Fig. 10 that violation from node 4 maximum 
allowable voltage distortion is occurred, so, tertiary control 
is required. As it is represented in this figure, once the 
tertiary control is initiated, node 4 voltage quality is 
improved and the violation is eliminated. Since there is just 
one DG in area 3, the communication between tertiary and 
secondary levels lasts more than the areas with several DGs. 
In other words, control stages of area 3 (including APF2 and 
DG4 control stages) need more time to match with each 
other. This phenomenon becomes more obvious by 
comparing Figs. 5 and 10. In Fig. 5, there is almost no 
oscillation in the figure and reference voltage quality of 
different points of area 1 is achieved in a short time. In fact, 
it is because of sharing compensation among three 
compensators. However, according to Fig. 10, reference 
voltage quality of main points of area 3 is achieved in longer 
times and with some oscillations. 

 

 

 

V. CONCLUSION 
A hierarchical control scheme to improve power quality 

of a multi-area microgrid is proposed. Microgrid is divided 
into individual areas and the hierarchical control is applied 
for each area. In order to achieve voltage compensation of 
each area, no communication is necessary between the 
areas. The hierarchical structure includes three levels. In the 
primary control, power and harmonic current sharing based 
on each area topology is done. Secondary level compensates 
PCC of each area by controlling DG(s) inverters of that 
area. Compensation of PCC by DG(s) may cause voltage 
distortion at DG(s) terminal and overloading of the interface 
inverters. Thus, tertiary control is designed to help DG(s) in 
compensating PCC by proper utilization of APF. The 
coordination between tertiary and secondary levels is based 
on APF rated power and the required power quality of each 
DG terminal.  
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