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Abstract—The grid-feeding voltage controlled inverter (GF-VCI) 
based on droop control is vulnerable to the harmonic voltages of 
the utility grid. Because of the equivalent impedance of system is 
small, the slight distorted grid voltage will result in the harmonic 
component increasing of GF-VCI output currents. Therefore, the 
reason of generation of distorted grid-feeding current of GF-VCI 
under the distorted grid voltage is investigated firstly in this paper. 
Then, a harmonic grid-feeding current suppression control strategy 
for GF-VCI is proposed. Two different filters are compared and 
analysed before being adopted for abstracting the fundamental 
components of grid voltage. The injected fundamental power is 
controlled through droop controller, and a hybrid voltage 
controller of GF-VCI with PI and R regulators in rotary frame is 
adopted for improving of the tracking capability of the grid 
harmonic voltage component at the point of common coupling. As a 
result, the difference of harmonic voltage between PCC and GF-
VCI is reduced and the THDi of grid feeding-currents is decreased. 
Finally, the proposed control strategy is verified through 
simulations and experimental results. 

 
Keywords: Harmonic current; voltage source inverter; droop; 
microgrid 

I. INTRODUCTION  
OWADAYS, there is a growing interest in the use of 

renewable energy sources with the emerging demand and 
concerns about global warming. One promising power 
architecture is the microgrid (MG), which usually involves 
different kinds of energy sources, such as wind or photovoltaic 
(PV), etc. As a large number of power electronics interfaced 
distributed generations (DGs) units have been installed in the 
low-voltage power distribution system [1]-[4], the stability 
problem is emerging. As a consequence, the performance of DG 
systems must be improved to meet the grid codes in each 
country [5].  

Though the well-used grid-feeding current controlled inverter 
(GF-CCI) is easy to control and its equivalent output impedance 
is almost infinite, the output power of GF-CCI is seriously 

affected by the irradiation. It means that the power system will 
suffer more oscillation due to the unsmooth power of inverter 
when the penetration of GF-CCI or the impedance of 
transmission line is increasing. Moreover, GF-CCI cannot supply 
to loads alone under the grid fault condition. For improving the 
power supplement reliability for sensitive load, the seamless 
transition between grid-connected and islanded modes is usually 
required for grid-feeding inverter. Therefore, a mode switch 
control scheme is proposed in [6] to meet this requirement. 
However the transient performance between voltage and current 
control cannot be guaranteed unless additional control strategy is 
adopted [7].  

With the increasing interest of having DGs able to operate in 
grid-connected and islanded modes with seamless transition, the 
use of the droop control has been extended widely [8]-[10]. The 
grid-feeding voltage controlled inverter (GF-VCI) is proposed in 
[11]. As the outer loop of GF-VCI is voltage controlled, the 
system can work at islanded mode and supply to loads without 
additional grid forming unit. In the same time, the power 
injecting of GF-VCI is controlled by droop controller, which 
means the inner voltage and current loop of inverter will not be 
altered when the system work mode switching. The transient 
response performance is improved. 

However, although droop controlled inverter presents high 
power quality in islanded mode, the GF-VCI is more vulnerable 
to the harmonic voltages of the grid utility. A slight harmonic of 
grid voltage may result in high distortion of grid-feeding current 
at corresponding frequency, because that the equivalent output 
impedance of GF-VCI is quite small comparing to the GF-CCI. 
This problem will limit the usage of GF-VCI, especially in the 
distribution line with high permeation of electronic interfaced 
DGs. The voltage at the point of common coupling (PCC) may 
be distorted, because of the increasing of nonlinear loads, alone 
with the series resonance result from the LCL filter of single 
inverter, as well as the series and parallel resonance between 
multiple inverters [12]-[13]. The distorted feeding-current of 
inverter will further deteriorate the power quality unless 
additional active power filter (APF) is used.  
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Therefore, a harmonic grid-feeding current suppression 
strategy of GF-VCI is discussed in [11], the regular multiple PR 
controllers are used as voltage controller to deal with harmonic 
current issue. However, the influence of grid frequency deviation 
resulting from load disturbance is not considered. Then, in order 
to avoid the problem of voltage PR controller performance 
degradation when grid frequency fluctuating, a hybrid voltage 
and current controlled method (HCM) is proposed in [14], the 
resonant frequency is adaptive according to grid frequency and 
power loop. However, the variable parameters controller will 
make system modeling and stability analysis more difficulty. 

According to above-mentioned issue, in order to improve the 
stability of GF-VCI when grid frequency deviates resulting from 
the load disturbance, the PI in dq frame is adopted as inner 
voltage controller in this paper. Because the phase used for the 
Park transform is derived from the estimation of grid by phase 
lock loop (PLL). The DC voltage reference tracking performance 
in dq frame is guaranteed by PI voltage controller, which means 
the fundamental component reference in abc frame is well 
tracked by inverter without the influence of frequency deviation.  

Then, the reason of generation of distorted grid-feeding 
current of GF-VCI under the distorted grid voltage is investigated 
in this paper. A harmonic grid-feeding current suppression 
control strategy for GF-VCI is proposed. Two different filters are 
compared and analyzed before being adopted for abstracting the 
different components of grid voltage. The fundamental injecting 
power is controlled by droop controller. Multiple resonant 
regulators are paralleled to the PI voltage controller for 
improving of the tracking capability of the grid harmonic voltage 
component at PCC. As a result, the difference of harmonic 
voltage between PCC and GF-VCI is reduced and the THDi (The 
total harmonics distortion of current) of grid feeding-currents is 
decreased. Finally, the proposed control strategy is verified 
through simulations and experimental results. 

II. CONFIGURATION OF THE HYBRID MICROGRID  

A. The configuration of hybrid microgrid 
In our case, the hybrid MG is consisting of regular power 

system (such as hydropower plant or diesel generator) to supply 
the regular local loads, as shown in Fig.1. Each GF-VCI is 
connected with sensitive local load and powered by energy 
storing system (ESS) system, which is charged by renewal 
energy, e.g. PV cell. The DC/DC converter with MPPT algorithm 
is used for maintaining batteries of ESS and controlling PV penal 
to output power as much as possible.  

The GF-VCI works at the grid-feeding mode and injects 
dispatched active and reactive to the grid utility when the grid 
utility is normal. When grid fault happened, the inverter is 
disconnected from the grid utility and supply to the sensitive 
local load alone for improving the reliability of power system. 

B. The power transfer principle of GF-VCI 
The system model of GF-VCI connecting with the grid utility 

DC/DC

GF-VCI

STS

Distribute Generator No.1

Regular power system Regular Load

Sensitive 
Load

…

DC/DC

GF-VCI

STS

Distribute Generator No.n

Sensitive 
Load

Ac bus

Fig.1. Block diagram of the GD-VCI based MG. 

can be simplified to two voltage sources with equivalent 
impedance and are paralleled with line impedance( line linesL R+ ), 
as shown in Fig.2. Where invV and gridV  represents the voltage 
vector of GF-VCI and PCC respectively. The vector relationship 
in Fig.2 is shown in Fig.3.  

The active and reactive power transferred from GF-VCI to 
the grid utility can be calculated from Fig.3, which is shown in 
following: 

2
inv grid grid

2
inv grid grid

cos( ) cos( )

sin( ) sin( )

V V V
P

Z Z
V V V

Q
Z Z

φ θ φ

φ θ φ


= ∆ − − ∆


 = ∆ − − ∆

          (1) 

Being P and Q are the transferred active and reactive power 
between two voltage source, invV and gridV are amplitude of output 
voltage of GF-VCI and the grid utility, φ∆  represents the phase 
between voltage vector invV  and gridV . Z and θ  are the module 
and angle of line impedance. 

When line impedance is mainly inductive, θ  is close to 2π , 
The Euq(1) can be simplified to Equ(2), as shown follows: 
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2
inv grid grid
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φ


= ∆


∆ − =

                     (2) 

Therefore, the grid-feeding active and reactive power can be 
controlled by phase and amplitude difference between the output 
voltage of GF-VCI and grid voltage at PCC. 
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Fig.2. The simplified model of GF-VCI connecting with grid 
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Fig.3. The vector relationship diagram. 

III. THE PROPOSED HARMONIC GRID-FEEDING CURRENT 
SURPRESSION CONTROL STRATEGY 

A. The model analysis of GF-VCI  
Hypothetically, there is only one harmonic voltage 

component existing in the grid utility. The equivalent circuit of 
GF-VCI connecting with the distorted grid is shown in Fig.4 (a), 
which could be decomposed into fundamental and harmonic 
component based on linear superposition principle. v ( )G s  
represents the transfer function of inverter with voltage and 
current inner controller, as well as LC filter. The equivalent 
impedance of inverter ( o ( )Z s ) is  small when comparing to the 
line impedance ( ( )lineZ s ), this is mainly because that the inner 
controller of inverter is designed to reduce it as small as possible 
for improving the track performance with voltage reference( refv ). 
The grid-feeding current of GF-VCI ( ( )gridi s ) is resulting from 
the difference between the output point of inverter and grid 
connecting point. The different components of model are shown 
as following: 

grid grid_b grid_h

grid base harmonic

ref ref_b ref_h

v v v
i i i
v v v

 = +
 = +
 = +

                       (3) 

Where _grid bv and _grid hv , basei and harmonici , _ref bv and _ref hv are 
fundamental and harmonic component of grid voltage and grid-
feeding current, as well as the voltage reference of inverter 
respectively. 

Therefore, the modulus of fundamental and harmonic grid-
feeding current vector of GF-VCI are derived from Fig.4(b) 
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(b) Fundamental
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Fig.4. The equivalent circuit diagram of GF-VCI with different component 

according to the relationship between complex frequency domain 
and frequency domain, which are shown as follow: 

_

_
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However, in the conventional control strategy, the inner 
voltage and current control loop as well as the droop controller of 
GF-VCI is only designed to guarantee the fundamental voltage 
control performance in conventional strategy, it be represented as 

v h( ) 0G j dBω <<  in the amplitude-frequency characteristic 
analysis of inverter. At same time, there is no harmonic voltage 
component of grid feeding into inverter voltage reference, in 
which the phase and amplitude is regulated by droop controller 
according to the dispatched fundamental power into grid. 
Therefore, the inverter is equalized to almost shortcut at 
harmonic frequency when the grid voltage is distorted. Therefore, 
Equ(5) can be simplified from Equ(4), as shown following: 

grid h
harmonic h

( )
( )

( ) ( ) ( )o h line h grid h

v j
i j

Z j Z j Z j
ω

ω
ω ω ω

= −
+ +

    (5) 

It is noted that the output fundamental voltage of GF-VCI 
should be controlled according to fundamental grid-feeding 
active and reactive power, while the output harmonic voltage of 
system should be regulated as same with the grid as possible for 
depressing the harmonic grid-feeding current according to 
Equ.(4). 



B. The abstracting of foundamental component 
The balanced nth harmonic voltage is presented as 

trigonometric signal with order of ( 1)thn ± after the Park 
transform according to its phase sequence. Since PI controller 
cannot regulate the trigonometric signal without steady error, the 
output of PLL will be disturbed. Therefore, a filter should be 
adopted before the estimation of grid phase and voltage 
amplitude. Two kinds filter are discussed and compared in this 
paper. The resonant filter is shown as follows: 

r 2 2( )
base

nsG s
s ns ω

=
+ +

                            (7) 

Being baseω is set to the fundamental frequency, n  is used for 
altering the attenuation performance. The magnitude-frequency 
characteristics analysis is shown in Fig.5.  

Though the fundamental component can be well decomposed 
from grid voltage by the resonant filter when grid frequency is 
fixed to baseω , the phase of filter output will be affected seriously 
when there is a slight frequency deviation of the grid utility. 
Therefore, resonant filter in GF-VCI can be used only when 
connecting with the stiff grid. However, in order to overcome this 
problem, another kind of notch filter can be adopted in system, as 
shown follows: 

2 2

notch 2 2( ) har

har

s nsG s
s kns

ω
ω

+ +
=

+ +
                          (8) 

Where harω is the frequency of harmonic frequency, k  and n  
are used for adjusting the width of frequency band and the depth 
of attenuation respectively, which can be seen from the Fig.6. 

Though there is only one harmonic component can be filtered 
by one notch filter, this disadvantage can be easily compensated 
by the series connection of multiple notch filters, as shown in 
Equ(8). Moreover, the fundamental component will be not 
affected when the grid frequency altering. Therefore, the notch  

 

Fig.5. The bode diagram of resonant filter with [1,10]n∈  

 
Fig.6. The bode diagram of notch filter with 10k =  and [10,40]n∈  
filter is applied to weak grid for GF-VCI. 
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1
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C. The proposed control strategy  
The detailed control scheme of proposed harmonic grid-

feeding current suppression control strategy is illustrate in Fig.7. 
Two PI controllers are adopted in droop loop for controlling the 
inverter to inject active and reactive power to the grid utility 
according to the dispatched power reference. A low pass filter 
(LPF) is used for filter the high frequency component of the 
output of P/Q calculation for improving the damp performance of 
system, as shown follows:  

* *

* *

( ) ( )

( ) ( )

c c
pP iP

c c

c c
pQ iQ

c c

k P P k P P dt
s s

E k Q Q k Q Q dt
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ω ω
θ

ω ω
ω ω
ω ω

 ∆ = − + − + +

∆ = − + −
 + +

∫

∫
    (10) 

Where pPk and iPk , pQk ppk and iQk  are parameters of active and 
reactive power controller respectively, cω  is the time constant of 
LPF. Pφ∆  and QE∆  are phase and amplitude increment of 
fundamental voltage reference. 

The final voltage reference of inverter is derived by 
combining the phase and amplitude of grid voltage detected by 
PLL ( gφ  and gE ) and the output of droop controller, as well as 
the harmonic component of grid voltage, as shown following.  

_ _

_ _

_ _
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( )sin( 2 / 3)
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v E E v
v E E v
v E E v

φ φ

φ φ π
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  (11)
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Fig.7. The control scheme of GF-VCI with proposed strategy 

In order to improve stability of GF-VCI when connecting 
with weak grid, in which the load disturbance will result in 
the deviation of the system frequency. PI controller based on 
dq frame is used to regulate voltage and current of inverter to 
guarantee the fundamental voltage tracking performance. 
Moreover, two resonant controllers are adopted in voltage 
control loop for enhance the harmonic voltage tracking 
ability of inverter.  

As the balanced harmonic voltage component thn are 
transferred to trigonometric signal with order of ( 1)thn ± , the 
frequency of one resonant controller is set to 300 Hz for 5th 
negative sequence and 7th positive sequence harmonic 
components, while another resonant controller is set to  

 
Fig.8. The equivalent circuit diagram of GF-VCI 

600 Hz for 11th negative sequence and 13th positive sequence 
harmonic components respectively. Therefore, it can be seen 
from Fig.8 that the attenuation and phase delay of 0Hz and 
300 Hz as well as 600 Hz is zero, which mean the inverter 
can track voltage reference with no error in steady state at 
fundamental and 5th, 7th, 11th and 13th harmonic component 
in abc frame. 

IV. SIMULATION AND EXPERIMENTAL RESULTS OF 
PROPOSED CONTROL STRATEGY 

In order to verify the proposed harmonic grid-feeding 
suppression strategy for GF-VCI, a simulation model is built, 
which is consisting of the grid utility with harmonic voltage 
of 5th 7th and 11th, and a 2 kW GF-VCI. The parameters are 
shown in Tab I. The simulation results are derived according 
to a scenario in which THDv of the grid voltage is 1.84%. 

TABLE I 
THE PARAMETERS OF SIMULATION 

Parameter Value Parameter Value 

pvk
 0.04 

iPLLk  1000 

ivk  7.24 
pPk  5e-4 

pik  0.07 
iPk  5e-5 

1th
prk  10 

dPk  1e-6 

1th
nω

 10 
pQk  5e-4 

57th
prk  50 

iQk  2e-5 

57th
prω  1 

dQk  1e-6 

11th
prk

 75 *P
 300 W 

11th
nω

 1 *Q  300 var 

pPLLk  14.1 
gω

 50 
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Fig. 9. The distorted grid voltage at PCC 

 
Fig. 10. The grid-feeding current without proposed control strategy 

The grid voltage at PCC and grid-feeding current without 
proposed harmonic suppression control strategy are shown 
Fig.9 and Fig.10 respectively. It can be seen that the grid-
feeding current is highly distorted with THDi=61.48%, 
which mainly result from the difference of harmonic voltage 
between PCC and inverter is not proper controlled. This 
obviously violates the grid code requirement (THDi<5%) for 
grid-feeding inverter. However, when connecting with same 
distorted voltage, the grid-feeding current of GF-VCI with 
proposed control strategy is shown in Fig.11. It can be seen 
that the sinusoidal grid-feeding current is improved. The 
THDi of grid-feeding current decreased to 2.21%, which is 
complying with the requirement of the grid code. The 
comparing harmonic component analysis of grid-feeding 
current is shown in Fig.12.  

 
Fig. 11. The grid-feeding current with proposed control strategy 

 
Fig. 12. The comparing harmonic analysis of grid-feeding current 

The effectiveness of the proposed harmonic grid-feeding 
current suppression control strategy is also evaluated through 
a scale-down laboratory prototype. The experimental setup 
consists of two Danfoss 2.2 kW inverters, a dSPASE1006 
control board, LCL filters, LEM sensors and two resistive 
loads, as shown in Fig.5. One of the inverter is used to 
simulate the distorted grid with different harmonic voltage 
components. The other employs the droop controller and 
proposed control strategy to simulate the GF-VCI. The 
electrical parameters of setup are listed in and II. 

TABLE III 
SYSTEM PARAMETERS OF SETUP 

Parameter Value Parameter Value 
Vdc 650V Load2 670 W 

Vac 230V P* 300 W 

Lf 1.8e-3 H Q* 0 var 

Cf 9e-6 F Vref 5th 5 V 

Lo 1.8e-3 H Vref 7th 5 V 

Load1 340 W   

 

2.2kW Danfoss
inverter

dSPACE 1006

Load1Load2

Connector 
control

 
Fig. 13. The scale-down experimental setup. 
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Fig. 14. Distorted voltage waveform of grid simulator 

 

 
Fig. 15. The harmonic analysis of grid voltage 

The output voltage of grid simulator and its harmonic 
analysis are shown in Fig.14 and Fig.15 respectively. It can 
be seen that the grid is distorted with 5th and 7th harmonic 
voltage and the corresponding harmonic component is 4.8V 
and 4.2V. 

When GF-VCI is connecting with distorted voltage, the 
grid-feeding current of system without proposed control 
strategy is shown in Fig.16. As the poor harmonic voltage 
tracking performance of GF-VCI with conventional control 
strategy, and there is no corresponding harmonic voltage 
components in the reference of inverter. The harmonic 
components of grid-feeding current are increased, resulting 
from the voltage difference between output of GF-VCI and 
the grid simulator is not suppressed properly.  

 
Fig. 16. The grid-feeding current of GF-VCI without the proposed strategy 

 
Fig. 17. The grid-feeding current of GF-VCI with the proposed strategy 

In the same way, the grid-injecting current of GF-VCI 
with proposed harmonic grid-feeding current suppression 
control strategy is shown in Fig.17. It is note that the THDi

 of 

grid-feeding current is decreased considerably, it is because 
that there is almost only fundamental voltage phase and 
amplitude difference between inverter and PCC.  

The comparing harmonic analysis of grid-feeding current 
of experiments is presented in Fig.18. The 5th and 7th 
harmonic components of current are 0.34A and 0.31A 
respectively when conventional control strategy is adopted. 
However, the corresponding harmonic component is reduced 
to 0.03A and 0.035A by the proposed strategy. 

The harmonic voltage disturbance of grid simulator is 
used for testing the dynamic response of proposed control 
strategy. The 5th and 7th harmonic voltage disturbance 

 
Fig. 18. Harmonic analysis of grid-feeding current 

 
Fig. 19. Harmonic voltage disturbance 

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

Harmonic order

G
rid

 v
ol

ta
ge

  (
V

)

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

Harmonic order

G
rid

-fe
ed

in
g 

cu
rre

nt
 (A

)

 

 
Conventional
Proposed



 
Fig. 20. The dynamic response of proposed control strategy 

happened around 5s, as shown in Fig.19. The grid-feeding 
current of GF-VCI with proposed control strategy is depicted 
in Fig.20. It can be seen that the grid-feeding current gets 
distorted immediately after voltage harmonic disturbance 
happened, however the proposed controller starts to work 
after round 0.2s and the total dynamic response is about 0.5s. 

V. CONCLUSION 
In this paper, a harmonic grid-feeding current 

suppression control strategy is proposed for the droop-
controlled inverter under distorted grid. The equivalent 
model is established for investigating the generation of the 
harmonic grid-feeding current of GF-VCI. Two kinds filter 
are analyzed and compared before being used for 
decomposing the different components of grid voltage. The 
injecting fundamental active and reactive power is controlled 
by modulating the phase and amplitude of voltage 
fundamental component of inverter based on the grid utility. 
A compound PIR voltage controller is adopted into the 
voltage loop of inverter to enhance the harmonic voltage 
tracking ability. Therefore, the difference of harmonic 
voltage between inverter and PCC is reduced and power 
quality of grid-feeding current is improved. The Simulation 
and experimental results show the effectiveness of the 
proposed approach. 
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