
 

  

 

Aalborg Universitet

Control Methods for Energy Management of Refrigeration Systems

Shafiei, Seyed Ehsan

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Shafiei, S. E. (2015). Control Methods for Energy Management of Refrigeration Systems. Department of
Electronic Systems, Aalborg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 29, 2017

http://vbn.aau.dk/en/publications/control-methods-for-energy-management-of-refrigeration-systems(4c57dcab-67a6-4e85-8ebf-a45c93afbb65).html


Seyed Ehsan Shafiei

Control Methods for Energy Management
of Refrigeration Systems



Control Methods for Energy Management of Refrigeration Systems
PhD thesis

ISBN: 978-87-7152-061-3
March 2015

Copyright 2015 © Seyed Ehsan Shafiei



Title:
Control Methods for Energy Management of Refrigeration Systems

Author:
Seyed Ehsan Shafiei

Supervisors:
Professor Jakob Stoustrup (2012 and 2013)
External Lecturer Henrik Rasmussen (2013 and 2014)
Professor Rafael Wisniewski (2014)
Associate Professor Palle Andersen (2014)
Lead Expert, PhD, Roozbeh Izadi-Zamanabadi (2012-2014)

List of Publications:
Enclosed journal papers

• Seyed Ehsan Shafiei, Henrik Rasmussen and Jakob Stoustrup, “Modeling Super-
market Refrigeration Systems for Demand-Side Management,” Energies, Special
issue: Smart grid and the future electrical network, 6(2), pp. 900-920, 2013.

• Seyed Ehsan Shafiei, Torben Knudsen, Rafael Wisniewski and Palle Andersen,
“Data-Driven Predictive Direct Load Control of Refrigeration Systems,” IET Con-
trol Theory & Applications, Special issue: Data-based control and process moni-
toring with industrial applications, DOI: 10.1049/iet-cta.2014.0666, Online ISSN
1751-8652, Available online: 23 March 2015.

• Seyed Ehsan Shafiei and Andrew Alleyne, “Model Predictive Control of Hybrid
Thermal Energy Systems in Transport Refrigeration,” Applied Thermal Engineer-
ing, vol. 82, pp. 264-280, 2015.

Enclosed conference papers

• Seyed Ehsan Shafiei, Jakob Stoustrup and Henrik Rasmussen, “A Supervisory Con-
trol Approach in Economic MPC Design for Refrigeration Systems,” Proceedings
of the European Control Conference, Zurich, Switzerland, July, 2013.

• Seyed Ehsan Shafiei, Henrik Rasmussen and Jakob Stoustrup, “Model Predictive
Control for a Thermostatic Controlled System,” Proceedings of the European Con-
trol Conference, Zurich, Switzerland, July 2013.

• Seyed Ehsan Shafiei, Roozbeh Izadi-Zamanabadi, Henrik Rasmussen and Jakob
Stoustrup, “A Decentralized Control Method for Direct Smart Grid Control of Re-
frigeration Systems,” Proceedings of the 52nd IEEE Conference on Decision and
Control, Firenze, Italy, December 2013.

• Seyed Ehsan Shafiei, Jakob Stoustrup and Henrik Rasmussen, “Model Predictive
Control for Flexible Power Consumption of Large-Scale Refrigeration Systems,”
Proceedings of the American Control Conference, Portland, OR, USA, June, 2014.

Additional conference papers, not enclosed



• Rasmus Pedersen, John Schwensen, Senthuran Sivabalan, Chiara Corazzol, Seyed
Ehsan Shafiei, Kasper Vinther and jakob Stoustrup, “Direct Control Implementa-
tion of a Refrigeration System in Smart Grid,” Proceedings of the American Control
Conference, Washington, DC, USA, June, 2013.

• Seyed Ehsan Shafiei, Henrik Rasmussen and J. Stoustrup, “Modeling Supermarket
Refrigeration Systems for Supervisory Control in Smart Grid,” Proceedings of the
American Control Conference, Washington, DC, USA, June, 2013.

• Morten Juelsgaard, Luminita C. Totu, Seyed Ehsan Shafiei, Rafael Wisniewski and
Jakob Stoustrup, “Control Structures for Smart Grid Balancing," Proceedings of the
4th European Innovative Smart Grid Technologies (IEEE PES ISGT), Copenhagen,
Denmark, October, 2013.

• Harm H. M. Weerts, Seyed Ehsan Shafiei, Jakob Stoustrup and Roozbeh Izadi-
Zamanabadi, “Model-Based Predictive Control Scheme for Cost Optimization and
Balancing Services for Supermarket Refrigeration Systems,” Proceedings of the
19th IFAC World Congress, Cape Town, South Africa, August, 2014.

• Samira Rahnama, Seyed Ehsan Shafiei, Jakob Stoustrup, Henrik Rasmussen and
Jan D. Bendtsen, “Evaluation of Aggregators for Integration of Large-scale Con-
sumers in Smart Grid,” Proceedings of the 19th IFAC World Congress, Cape Town,
South Africa, August, 2014.

Patent Applications, not enclosed

• Seyed Ehsan Shafiei, Roozbeh Izadi-Zamanabadi, Henrik Rasmussen and Jakob
Stoustrup, “A Method for Controlling a Vapor Compression Cycle System Con-
nected to a Smart Grid,” Submitted patent application.

• Seyed Ehsan Shafiei and Roozbeh Izadi-Zamanabadi, “A Method for Estimating of
Thermal Capacity of Food in Display Cases/Freezers,” Submitted patent applica-
tion.

This thesis has been submitted for assessment in partial fulfillment of the PhD degree.
The thesis is based on the submitted or published scientific papers which are listed above.
Parts of the papers are used directly or indirectly in the extended summary of the thesis.
As part of the assessment, co-author statements have been made available to the assess-
ment committee and are also available at the Faculty. The thesis is not in its present form
acceptable for open publication but only in limited and closed circulation as copyright
may not be ensured.

IV



Contents

Contents V

Preface IX

Abstract XI

Synopsis XIII

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 State-of-the-Art and Background . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Research Objectives and Hypotheses . . . . . . . . . . . . . . . . . . . . . 20
1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Summary of Contributions 25
2.1 Modeling for Control and Simulations . . . . . . . . . . . . . . . . . . . . 26
2.2 Indirect Load Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Direct Load Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Control of Hybrid Thermal Systems . . . . . . . . . . . . . . . . . . . . . 52

3 Concluding Remarks 65
3.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

References 69

Contributions 81

Paper A: Modeling Supermarket Refrigeration Systems for Demand-Side Man-
agement 83
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5 System Integration and Simulation Benchmark . . . . . . . . . . . . . . . 98
6 Demand-Side Management . . . . . . . . . . . . . . . . . . . . . . . . . . 102

V



CONTENTS

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Paper B: A Supervisory Control Approach in Economic MPC Design for Re-
frigeration Systems 109
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2 Refrigeration System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3 Supervisory Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Paper C: Model Predictive Control for a Thermostatic Controlled System 125
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
2 Refrigeration System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3 Set-Point Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Paper D: A Decentralized Control Method for Direct Smart Grid Control of
Refrigeration Systems 141
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
2 System Description and Problem Statement . . . . . . . . . . . . . . . . . 144
3 Design of Control Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Paper E: Model Predictive Control for Flexible Power Consumption of Large-
Scale Refrigeration Systems 157
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
2 System Description and Problem Statement . . . . . . . . . . . . . . . . . 160
3 MPC Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Paper F: Data-Driven Predictive Direct Load Control of Refrigeration Systems 173
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
2 System Description and Problem Statement . . . . . . . . . . . . . . . . . 177
3 Control Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
4 Subspace Identification Method . . . . . . . . . . . . . . . . . . . . . . . . 179
5 Data-Driven Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . 182
6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

VI



CONTENTS

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Paper G: Model Predictive Control of Hybrid Thermal Energy Systems in
Transport Refrigeration 197
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
2 System Description and Problem Statement . . . . . . . . . . . . . . . . . 202
3 Control Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
4 Gray-Box Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5 Control System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
A Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

VII





Preface and Acknowledgements

This thesis is submitted as a collection of papers in partial fulfillment of the requirements
for the degree of Doctor of Philosophy at the Section of Automation and Control, De-
partment of Electronic Systems, Aalborg University, Denmark. The research has been
supported by the Southern Denmark Growth Forum and the European Regional Devel-
opment Fund, under the project “Smart & Cool”. It has been carried out in the period
from December 2011 to December 2014. The work has been supervised by Professor
Jakob Stoustrup and Associate Professor Henrik Rasmussen until December 2013, and
thereafter by Professor Rafael Wisniewski and Associate Professor Palle Andersen.

I would like to thank all my supervisors, Jakob for his great inspiration and support
and for incredible discussions, Henrik for his remarkable industrial standpoints, Rafael
for his invaluable know-how in theoretical and academic research, and finally Palle for
his precious advice. I would also like to express my gratitude to all nice colleagues in
our section of Automation and Control who made it a joyful atmosphere. Especially I
appreciate Associate Professor Torben Knudsen’s advice in system identification theory
and his contribution to this research.

Throughout the work, I visited Danfoss Air-Conditioning & Refrigeration for a period
of three months.Their supports are indeed appreciated. I would like to especially thank
Roozbeh Izadi-Zamanabadi who wholeheartedly supported my stay at Danfoss where we
had an enjoyable and productive collaboration. Thanks also goes to Torben Green who
provided valuable data required for this research through ESO2 project.

Apart from the industrial visit, I also had the opportunity to visit Mechanical Engi-
neering and Science Laboratory at the University of Illinois at Urbana-Champaign, USA,
for a period of four months. I stayed at the Alleyne Research Group under supervision of
Professor Andrew Alleyne. I am truly thankful to Andrew for his exceptional guidance.
It might have not been a long term visit, but it added a remarkable value to this research.
I would like to thank all friendly persons in that group who were indeed welcoming.

Last but not least, my greatest and heartily thanks goes to my lovely wife Solmaz for
her patience, love, supports and encouragements. I am really indebted this achievement
to her.

December 2014, Aalborg, Denmark
S. Ehsan Shafiei

IX





Abstract

In order to improve the efficiency, reliability, economics, and sustainability of electricity
services, a state-of-the-art electrical grid is needed to gather, process, and distribute in-
formation about the behavior of all participants including both suppliers and consumers.
This has led to a new concept which is called smart grid where both the consumption
and the generation are coordinated to ensure that the power generation and consumption
will maintain balanced. Demand-side management (DSM) is a promising technology to
improve the energy system at the side of consumption. The main advantage of DSM is
that it is less expensive than the alternative solutions which may require building a new
power plant or installation some electric storage devices.

In Denmark, with around 5.5 million inhabitants, there are about 4,500 supermarkets
consuming approximately 550 GWh annually that means around 62.8 MWh in average.
This is a significant potential that can be released by taking advantage of the flexibility
of the consumption using advanced control strategies. The flexibility can be defined as
the ability to shift the cooling load across the time or as the ability to follow a specific
load profile to help the power grid maintain balanced. The main idea is to utilize the
thermal capacity of refrigerated goods for storage and delivery of thermal energy. In a
broader perspective, the methods proposed in this thesis can be applied to other similar
applications, like building cooling systems with some degree of modifications.

The main objective of the existing control for refrigeration systems is to maintain the
foodstuff temperatures within the desired limits imposed by the legislative requirements.
The major challenge in energy management of refrigeration systems is to respect those
limitations. For this purpose, advanced control methods are required depending on the
type of balancing services that should be provided by supermarkets. Another important
factor that needs to be taken into account is to preserve the energy efficiency of the sys-
tem in any demand response scenario. The latter may make the control design even more
challenging. Model predictive control (MPC) is a favorable model-based control scheme
by which it is possible to deal with the multiple-input multiple-output refrigeration sys-
tems. Furthermore, inclusion of the temperature constraints in an MPC formulation is
quite straightforward.

We face the control challenge by first developing a simulation model for supermarket
refrigeration systems. The model is validated against real data obtained from a super-
market in Denmark. Then we look into two different demand-side management schemes:
indirect and direct load control. The former is based on the electricity price incentive,
and in the latter the consumption is directly managed by a third party based on a contract.
For the indirect load control, we propose two different supervisory control approaches
using MPC to address the problem of electricity cost minimization. For the direct load
control, three different control methods are proposed. The first method is the least com-
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plex one including decentralized proportional-integral control loops that can be applied
to a general class of supermarket refrigeration systems. The second method uses MPC
requiring a high fidelity model specific for each supermarket system which makes the
practical implementation of the method highly complex. The advantage is that the higher
performance – in terms of the reference load following – is achieved. In the third method,
we utilize a data-driven approach using the subspace method. It has the advantages of the
formers such that it does not need an explicit model of the system and the desired load
following performance is attained.

Often overlooked in the broader discussion is the energy consumption for various
transport refrigeration applications which are also very important. Recent research find-
ings indicate that the refrigeration system commonly employed in food transportation can
account for 40% of the total greenhouse gas emissions from the corresponding vehicle en-
gines. As the final contribution of this thesis, the problem of the optimization of a hybrid
transport refrigeration system is addressed. The hybrid refrigeration system is made by
the integration of conventional refrigeration technology with thermal energy storage.
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Synopsis

For at forbedre effektivitet, pålidelighed, økonomi og bæredygtighed af forsyning med
elektrisk energi er der behov for at el-produktion -distribution og -forbrug koordineres ved
hjælp af state-of-the-art metoder til indsamling, behandling og fordeling af information
om opførslen af både elproducenter og elforbrugere.

Dette har ført til det nye koncept, smart grid, hvor både forbrug og produktion bliver
koordineret for at sikre at øjeblikkelig produktion og forbrug hele tiden holdes i balance.
Demand-side management (DSM), altså aktiv påvirkning af forbruget, er en lovende tek-
nik til at forbedre energisystemet på forbrugssiden. Fordelen ved DSM er at det er mindre
dyrt end alternative løsninger, som kan kræve bygning af et nyt kraftværk eller installation
af elektriske lagerenheder

I Danmark, med omkring 5.5 millioner indbyggere, er der omkring 4500 supermar-
keder, som forbruger cirka 550 GWh om året svarende til en middeleffekt på 62.8 MW.
Der er et betydeligt potentiale i at udnytte fleksibilitet i dette forbrug ved hjælp af avan-
cerede control strategier. Fleksibilitet kan i denne forbindelse defineres som evnen til at
tidsforskyde elforbruget til køling eller som evnen til følge en specifik belastningspro-
fil som hjælp til at holde balance i produktion og forbrug i elnettet. Hovedideen er at
udnytte termisk kapacitet i nedkølede varer til at oplagre, henholdsvis frigive termisk
energi. I bredere perspektiv kan de metode,r der foreslås i afhandlingen med nogen grad
af modifikation anvendes i lignende forbrugsenheder, for eksempel systemer til køling
af bygninger. Hovedformålet med den eksisterende regulering af kølesystemet er at holde
temperaturen af de nedkølede fødevarer indenfor ønskede grænser bestemt i overensstem-
melse med lovgivningskrav. Den største udfordring med energy-management i kølesyste-
mer er at sikre at disse begrænsninger respekteres. Til dette formål kræves avancerede
styring og regulerings metoder indrettet efter hvilken type balanceringsydelse der ønskes
leveret af supemarkedet. En anden vigtig faktor der skal tages i betragtning er opretholdel-
se af kølesystemets effektivitet i alle demand response scenarier. Det sidste giver endnu
en udfordring til regulatordesignet. Model prædiktiv regulering (Model Predictive Con-
trol, MPC) er en fordelagtig modelbaseret reguleringsmetode som giver mulighed for at
håndtere kølesystemer med multiple inputs og multiple outputs og indrage prognoser om
fremtidige driftsbetingelser. Endvidere giver MPC mulighed for at håndtere temperatur-
begrænsninger på en ligefrem og systematisk måde.

I afhandlingen er reguleringsudfordringerne imødegået ved først at udvikle en simu-
leringsmodel for kølesystemer i supermarkeder. Modellen er valideret imod målte data
fra et dansk supermarked. Derefter behandles to forskellige Demand-side management
ordninger: indirekte og direkte styring af elforbruget. Den første ordning er baseret på til-
skyndelse gennem elprisen og i den sidste bliver elforbruget styret direkte af en tredje part
på betingelser fastlagt i en kontrakt. Til indirekte forbrugsstyring foreslås to forskellige
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tilgange til regulering på overordnet niveau, begge bruger MPC som tilgang til det pro-
blem at minimere omkostningerne til elektricitet med varierende elektricitetspriser. Til di-
rekte styring af belastning foreslås tre forskellige regulerings metoder. Den første metode,
som er den mindst komplicerede og er baseret på decentraliserede reguleringssløjfer med
proportional- og integral-regulering, kan anvendes på en bred klasse af supermarkeds-
kølesystemer. Den anden metode bruger MPC og kræver en nøjagtig model tilpasset hvert
enkelt supermarkedssystem, hvilket gør den kompliceret at implementere i praksis. For-
delen er at der opnås bedre ydelse i form af evnen til at følge forskellige forløb af ønsket
elforbrug. I den tredje metode bruges en data drevet tilgang med udnyttelse af underrum
til at uddrage den ønskede informationen af data. Metoden omgår nogen af ulemperne
ved den anden metode idet den ikke behøver en explicit model af systemet og kan opnå
samme ydelse i form af evnen til at følge et ønsket forbrugs forløb.

I den brede diskussion bliver energiforbruget til køling i forbindelse med forskellige
transportanvendelser ofte overset skønt det også udgør en vigtig andel. Undersøgelser in-
dikerer at de kølesystemer der anvendes i forbindelse med fødevaretransport giver anled-
ning til 40% af den samlede udledning af drivhusgasser fra transporten. Et sidste bidrag
i afhandlingen behandler optimering af et hybrid system til køling under transport. I det
hybride kølesystem er konventionel køleteknik integreret med et termisk energilager.
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1 Introduction

This chapter begins with explaining the motivation behind doing the present PhD study.
Research background and state-of-the-art are presented next. The research objectives
are then introduced and the scientific hypotheses are stated. Finally, the thesis will be
outlined.

1.1 Motivation

The modern life, especially in developed countries, are increasingly relying on availability
of electricity, almost everywhere. In Europe (Eu27+), the electricity use would increase
by 1.2% per year from 3,043 TWh in 2008 to 4,300 TWh in 2050 [EUREL, 2013]. Simi-
larly in US, it would increase by 0.9% per year, from 3,826 TWh in 2012 to 4,954 TWh in
2040 [EIA, 2014]. The huge energy use all around the world has resulted in tremendous
CO2 emissions and consequently the problem of global warming that threats our planet.

One solution to respond to the energy demand in a clean way is to integrate the re-
newable energy resources such as wind and solar energy into the electricity generation
sector. In Europe, the target is that 20% of EU energy consumption should come from
renewable recourses by 2020 [EUREL, 2013]. On the other hand, the volatility nature
of the renewable recourses may affect the stability of the electricity power grid in terms
of the imbalance between the power generation and consumption. The Smart & Cool
project aims at addressing this problem by coordination of the power generation and con-
sumption, such that the balance of energy in the grid is preserved. The focus of the work
package 1 which is the subject of this PhD study is on the energy management at the con-
sumer side, specifically for supermarket refrigeration systems. Fig. 1.1 shows a typical
layout of a smart grid in which the energy consumption of the consumers are managed
as well as the power generation to maintain the balance between the energy demand and
supply.

From research point of view, this project is in line with the Danish strategic research
towards green and smart energy systems. It can help Denmark keep going as one of the
leading countries using renewable resources within a stable power grid providing high
quality electricity to the energy consumers. Collaborating with industrial partners who
support the project, especially Danfoss for this work package, would keep the Danish
industry on the track of innovation. The latter is particularly important as can open up
new possibilities for future investments that may lead to new opportunities for researchers,
job seekers and entrepreneurs.

1
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Figure 1.1: In the smart grid the energy consumption of the consumers are managed as
well as the power generation to maintain the balance between the energy demand and
supply.

1.1.1 Demand Response

Demand response (DR) is defined as [Balijepalli et al., 2011]: “Changes in electric us-
age by end-use customers from their normal consumption patterns in response to changes
in the price of electricity over time, or to incentive payments designed to induce lower
electricity use at times of high wholesale market prices or when system reliability is
jeopardized”. Under a demand response program, energy consumers would have the op-
portunity to play a significant role in the electric grid operation by energy/power manage-
ment in terms of reducing or shifting their electricity usage in response to incentive-based
schemes or time-based rates. The main purpose is to maintain supply and demand bal-
anced which allows for more integration of renewable resources into the power grid. It
can also lower the cost of electricity in wholesale markets.

Demand response implementation for refrigeration systems lies under the framework
of smart buildings for which there is a great potential to participate in DR programs by
managing their loads. For example in US, the energy consumption in residential and com-
mercial buildings accounts for around 40% of the total energy consumption [EIA, 2014].
Implementation of energy management strategies is not limited to developed countries
inside Europe or USA; there are also several practices in developing countries like In-
dia [Harish and Kumar, 2014], Brazil [Macedo et al., 2015], China [Zheng et al., 2014],
Turkey [Tascikaraoglu et al., 2014], etc that shows the world-wide acceptance of the con-
cept.

1.1.2 Refrigeration System

The main objective of the existing control for refrigeration systems is to maintain the
foodstuff temperatures within the desired limits imposed by the legislative requirements.
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1 Motivation

The major challenge in demand response implementation for refrigeration systems is to
respect the food safety while managing the energy consumption for grid balancing ser-
vices. For this purpose, advanced control methods are required depending on the type of
balancing services that should be provided by the refrigeration systems. Another impor-
tant factor that needs to be taken into account is to preserve the energy efficiency of the
consumer units in any demand response scenario.

Vapor Compression Cycle

Vapor compression cycle (VCC) system, shown in Fig. 1.2, is the most common refrig-
eration system in use due to its high coefficient of performance compared to alternative
solutions [Tassou et al., 2009].

Starting at the low pressure side (see Fig. 1.2), the refrigerant in a nominal vapor com-
pression cycle flows through the evaporator where an expansion valve (EV) at the inlet
controls the refrigerant mass flow rate to ensure superheated refrigerant exits the evapo-
rator. Superheat is desirable to avoid liquid ingestion by the compressor. The evaporator
(EVAP) is equipped with a fan that provides air circulation inside the refrigerated con-
tainer. The air from the cold reservoir is forced over the evaporator coil and cooled down
as the heat is absorbed by the cold low-pressure refrigerant. After passing over the evap-
orator, the air is returned to the cold reservoir. The superheated refrigerant flows into the
suction line where a liquid accumulator (ACC) is placed to buffer any liquid that may exit
the evaporator and ensure vapor ingestion by the compressor. The compressor (COMP)
raises the pressure and enthalpy of the refrigerant by performing work on it. The high
pressure refrigerant enters the condenser (COND) where another fan circulates ambient
air across the coil. Heat is transferred from the hot refrigerant to the ambient air and the
refrigerant condenses from a vapor to a multiphase liquid/gas mixture. As the refrigerant
loses enthalpy, it exits the condenser, possibly in a subcooled state, and flows into a liquid
receiver (REC). From the receiver, it enters the expansion valve where the cycle starts
again.

Supermarket Refrigeration Systems

In Denmark, with around 5.5 million inhabitants, there are about 4,500 supermarkets con-
suming approximately 550 GWh annually [Hovgaard et al., 2013] that means around 62.8
MWh in average. This is a significant potential that can be released by taking advantage
of the flexibility of the consumption using advanced control strategies. The flexibility can
be defined as the ability to shift the cooling load across the time or as the ability to follow
a specific load profile to help the power grid maintain balanced. In a broader perspec-
tive, the methods proposed in this thesis can be applied to other similar applications like
building cooling systems with some degree of modifications.

Transport Refrigeration

Apart from energy management and demand response, the energy efficiency is in itself a
great matter. The target set by the EU Heads of State and Government demands a 20%
reduction in primary energy use compared with projected levels in 2020 to be achieved by
improving energy efficiency [EUREL, 2013]. The energy usage of heating, ventilation,
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Figure 1.2: The layout of a vapor compression cycle system.

Figure 1.3: In Denmark around 4500 supermarkets consume 550 GWh/year that means
around 62.8 MWh in average.

air-conditioning and refrigeration (HVAC&R) systems accounts for a significant amount
of the total energy consumption in residential and commercial buildings.

Often overlooked in the broader discussion is the energy consumption for various
transport refrigeration applications which are also very important. The analysis provided
by [Tassou et al., 2009] indicates that the refrigeration system commonly employed in
food transportation can account for 40% of the total greenhouse gas emissions from the
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corresponding vehicle engines. The VCC system is widely used in transport refrigeration.
In the thermal system literature, the integration of conventional refrigeration technology
with thermal energy storage (TES) results in a hybrid refrigeration system. Optimization
of these hybrid systems is another focus of the present work since the optimization of the
individual VCC process has been previously addressed in the literature.

1.2 State-of-the-Art and Background

Energy management of refrigeration systems is a multidisciplinary research area requir-
ing various knowledge about thermodynamics, mathematical modeling, system identi-
fication, control theory, etc. Each of those is a well-developed filed of research from
theoretical point of view. However, when the combination of them is required for ex-
ploring new applications such as demand-side management, smart grid integration and
transport refrigeration is quite challenging and needs tremendous research effort.

1.2.1 Modeling for Control and Simulation

The model development is influenced by the purpose of modeling and the application at
hand. In the model-based control design, the models can be employed by the control
system to predict the future behavior of the plant and accordingly apply the appropriate
control effort. Individual components, like compressor [Pérez-Segarra et al., 2005], con-
denser [Corradi et al., 2006], evaporator [Willatzen et al., 1998], etc. are modeled for
performing optimization of the mechanical design, dynamical analysis and performance
and efficiency improvements at the local control levels. Those models are usually too
detailed to be employed directly by the control system due to the increase of the compu-
tational burden and the complexity which might be consequent on. Therefore, low order
and simplified models are usually used in the control design like the evaporator model
utilized in [Vinther et al., 2013], which is also validated in a refrigeration lab.

A mathematical model for industrial refrigeration plants is proposed by [Cleland,
1985] for simulation of food refrigeration processes. The air temperature of the cold
rooms are estimated by the model. However, there is a discrepancy between the predicted
and measured air temperatures. The development of a Modelica library for CO2 refriger-
ation systems is accomplished by Pfafferott and Schmitz, [Pfafferott and Schmitz, 2002].
The heat exchangers model is explained, and the steady-state conditions are validated by
experimental data. An extension of the model for transient simulation and validation is
given by [Pfafferott and Schmitz, 2004]. The pressures are well estimated, but the air
temperature of cold rooms are not reported. Investigation of a thermodynamic model
supported by experimental analysis is accomplished by [Aprea and Renno, 2004]. The
method is proposed to improve the COP by matching the compressor capacity to the load,
replacing the classical thermostatic control. A similar work is accomplished to provide an
excellent transient characteristics by using a decoupling model [Li et al., 2008]. Although
the latter two methods can be applied to a single vapor compression cycle, they are not
applicable to the multi-evaporator systems used in supermarkets. [Wang et al., 2007a]
presents a dynamic mathematical model for coupling the refrigeration system and phase
change materials. The model can predict the refrigerant states and dynamic COP.

A more generalized model is introduced in [Shao et al., 2008a] based on a two-phase
fluid network. The proposed model can simulate different kinds of complex refrigeration
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systems in different operating modes and conditions. It can estimate the steady-state
values in different operating modes. Applications of the developed model to estimate
the different operating points of the multi-unit inverter air conditioner, heat pump with
domestic hot water and multi-unit heat pump dehumidifier are demonstrated in [Shao
et al., 2008b]. It should be noted that the steady-state models without considering cold
room dynamics cannot be employed for demand-side managements, in which playing
with the cold room temperatures is required for energy solutions. Another example of an
steady-state model is presented in [Zhou et al., 2010].

The model presented in [Petre et al., 2009] provides an analytical method for COP
optimization. Although the model does not simulate the system operation, it can be em-
ployed for commissioning the refrigerating machines in terms of the selection, design and
optimization of the main parameters. With focus on local controls, [Schurt et al., 2010]
proposes a model-driven linear controller as well as giving an assessment for a single
vapor compression cycle [Schurt et al., 2009]. A dynamic model of a transcritical CO2
system is developed by using the equation-based modeling language, Modelica, which
can be simulated e.g. in Dymola [Shi et al., 2010]. Only gas cooler equations and model
validation are provided in that paper. With a different perspective, a numerical model are
developed for evaluation of the use of thermoeconomic diagnosis in transcritical refriger-
ation [Ommen and Elmegaard, 2012]. In order to simulate the energy use in supermarket
refrigeration systems, a model is developed in [Ge and Tassou, 2011a]. Nevertheless, the
cold room dynamics are not given by the model and the map-based routing proposed for
estimating the compressor power consumption is not quite accurate. Considering power
consumption in refrigeration systems, [Hovgaard et al., 2011] proposes a modeling for
optimization purposes.

In an industrial PhD project supported by Danfoss, [Larsen, 2005], a static model is
developed for set-point optimizing control of refrigeration systems. Since the objective is
to find the optimum operating point in terms of the energy efficiency in the steady-state
condition, there is no dynamical model required. On the contrary, in the second part of
that thesis, a low order nonlinear continuous-time dynamical model of the supermarket
refrigeration system is presented where the relevant dynamics of the suction manifold and
the display cases are captured. The model is used for improving the dynamic behavior of
the thermostatic control system by preventing the simultaneous ON/OFF operation of the
cooling power in all display cases which is known as synchronization problem. The dy-
namical model developed by [Larsen, 2005] is slightly modified by [Petersen et al., 2012]
and extended to include some static nonlinearities to model a high pressure CO2 refrig-
eration system with booster configuration. A gray-box method using lumped parameter
modeling approach is taken and parameter estimation and model validation are performed
using the data obtained from a medium-size supermarket in Denmark. The detailed ther-
modynamic analysis of such CO2 systems as well as explanation of the transcritical cycle
are given by [Ge and Tassou, 2011b].

Supermarket refrigeration systems are seen as large-scale systems including several
components that makes the laboratory set-up of such systems very expensive. Moreover,
such thermal systems have very slow dynamic response such that some experiments may
need couple of weeks or even months to be accomplished. Consequently, simulation tools
are needed to speed up the development of control algorithms and accomplishment of the
performance analysis for these systems. A nonlinear continuous model of the VCC sys-
tems was developed by [Rasmussen, 2002] based on which the Thermosys toolbox for
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Matlab/Simulink environment has been created [CU Aerospace, 2013]. It is a nonlinear
simulation tool capturing a broad range of dynamics of the air-conditioning and refriger-
ation systems. It also has the capability to simulate the transient behavior including the
startup and shutdown dynamics. Although it is a powerful tool for simulation of the ther-
mal systems with different configurations and refrigerant in use, it is too slow to be used
for long run simulations of the supermarket refrigeration systems including several cold
reservoirs. A comprehensive survey in dynamic modeling and simulation of the VCC
systems is given by [Rasmussen, 2012a] and [Rasmussen, 2012b]. Depending on the
application in mind, there is a trade-off between the model accuracy and the simulation
speed.

Fig. 10.16 shows how the dynamical models can be used in a simulation environment
for control system developments. A higher order nonlinear model can be used for simula-
tion of the plant dynamics. But those kind of models might be to detailed to be employed
directly by the control system. Instead, a lower order simplified or even linearized model
can be used for control design. In spite of that, in order to evaluate the control perfor-
mance, it is a good idea to apply the control algorithm to the full model of the plant which
mismatches the model used in the control algorithm.

2
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Figure 1.4: Simulation environment for development of the control algorithms. A higher
order nonlinear model is used for simulation of the plant dynamics, and a lower order
simplified model is employed by the control system.

1.2.2 Model Predictive Control

Model predictive control (MPC) is a technique for digital implementation of optimal con-
trol formulations. Different constraints in the system such as input saturation limits and
state or output constraints are handled using this method which also accommodates sys-
tems with multiple inputs and outputs [Maciejowski, 2002]. Fig. 10.4 shows the basic
idea of the MPC implementation for set-point regulation problems. At time instant k, an
optimization problem is solved for the next Np samples — known as the prediction hori-
zon — where the future output is predicted using a model. The future inputs can freely
move within the next Nc samples — known as the control horizon — to minimize the
output deviation from the set-point. The first move in the predicted inputs is applied as
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the control signal to the system. In the next time instant the optimization problem will be
solved again by updating the output measurements and moving the prediction and control
horizon one step forward.
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Figure 1.5: A typical MPC implementation for set-point regulation problems which is
also known as receding horizon optimal control.

MPC has been widely used in HVAC&R applications as an advanced control tech-
nique for effectively accommodating input (e.g compressor) and output (temperature
range) constraints. Several different studies have successfully applied MPC to build-
ing HVAC&R systems. A simplified linear thermal model is developed in [Candanedo
et al., 2013] to predict the required cooling power which is utilized as the primary ma-
nipulated variable for the MPC formulation in the control of a building. The problem of
model uncertainty in different operating conditions is considered in [Kim, 2013] where
multiple local models are used in the MPC formulation to make it responsive to the entire
operation regime. The results show the superior performance comparing to the traditional
logic based control. Regarding the smart grid applications, in [Chen et al., 2013] and [Ma
et al., 2014] the total cost of electricity is minimized using the MPC which systematically
takes the electricity price prediction into account. [Chen et al., 2013] proposes the for-
mulation of a finite horizon optimization problem for scheduling the thermal appliances.
In [Ma et al., 2014] a dynamic thermal process as well as power model of the building
thermal mass are incorporated by the MPC to shift the peak demand to off-peak hours
under the time-of-use price policy. Regarding the efficiency improvement and energy op-
timization, MPC is employed in [Aswani et al., 2012], [Hu and Karava, 2014], [Zakula
et al., 2015] and [Castilla et al., 2015] to minimize the total energy consumption of the
cooling systems. A novel learning-based MPC algorithm, [Aswani et al., 2013], is im-
plemented by [Aswani et al., 2012] in an air-conditioning laboratory set-up which results
in 30%-70% reduction of the energy consumption compared to the typical thermostatic
control. An application to a complex mixed-mode cooling system (window opening po-
sition, fan assist, and night cooling schedule) is investigated by [Hu and Karava, 2014].
Because of the model complexity, the MPC could only be implemented off-line. The sim-
ulation results show a significant reduction in the cooling requirements while maintaining
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the temperature limits compared to a heuristic rule-based algorithm typically used for the
window opening position which may even cause overcooling with lower thermal comfort
acceptability. Another advanced cooling system, known as low-lift cooling system, is
analyzed by [Zakula et al., 2015]. It comprises thermally activated building surfaces and
a parallel dedicated outdoor air system for dehumidification and ventilation. Compared
with the variable air volume system, 24% electricity saving is achieved by the low-lift
cooling when MPC is used in both cases. A two-layer hierarchical control structure is
proposed by [Castilla et al., 2015]. A nonlinear MPC is used in the upper layer to guaran-
tee the thermal comfort conditions, and the lower layer contains a PI controller combined
with a split-range controller to obtain energy saving. The two objectives of the electricity
cost reduction and efficiency improvement are achieved in [Ma et al., 2012b] where an
MPC for the chilling system operation is proposes for optimal usage of the water tank in
the system.

Several MPC formulations have successfully been applied for various improvements
in refrigeration systems. With hybrid system formulation, MPC is employed in [Ricker,
2010, Sarabia et al., 2009] and [Sonntag et al., 2007] to solve the synchronization prob-
lem in display cases that causes wearing of the compressors. [Fallahsohi et al., 2010]
applies predictive functional control to minimize the superheat in an evaporator. For
multi-evaporator systems, a decentralized MPC is proposed to control the cooling ca-
pacity of each evaporator [Elliott and Rasmussen, 2008]. A nonlinear predictive control
scheme is designed in [Leducq et al., 2006] to reduce the total power consumption of the
compressor in a vapor compression cycle. The cooling capacity is regulated by a variable
speed compressor. But this method cannot be applied directly to the refrigeration systems
with different cooling units in which the cooling capacity is regulated by expansion valves
as well. As a thorough study that proposes an MPC to reduce the operating cost of such
systems, one can refer to [Hovgaard et al., 2012].

1.2.3 Demand-Side Management

In order to have a high quality electricity (in terms of frequency and voltage stability)
available by the power system, it is crucial that the power generation and consumption
maintain balanced. In an extreme case the imbalance may even cause a black out in
the system. Demand-side management (DSM) is a promising technology to improve
the energy system at the side of consumption. The main advantage of DSM is that it
is less expensive than the alternative solutions which may need to build a new power
plant or install some electric storage devices. The following taxonomy of DSM is given
by [Palensky and Dietrich, 2011] depending on the timing and the impact of the applied
measures on the costumer process.

a) Energy Efficiency: It results in immediate and permanent energy and emissions saving
and is evaluated as the most welcome method.

b) Time of use: Thereby electricity prices are scheduled to be higher for certain periods
of time on an advance or forward basis, typically not changing so often.

c) Demand response: It is categorized into incentive-based DR and time-based rates
DR [Han and Piette, 2008].
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d) Spinning reserve: This term is used in [Palensky and Dietrich, 2011] for the loads that
can act as virtual spinning reserve in an autonomous way (similar to primary control)1

or in a coordinated way (similar to secondary control)2.

The problem of peak shaving is addressed by [Mahmood et al., 2014] using an energy
consumption scheduling scheme. It considers the case where each subscriber has a smart
meter equipped with an energy consumption controller. A distributed algorithm is run
in each local controller and the users can interact with each other through a local area
network. [Hayes et al., 2014] analyzes the role of network operators in encouraging and
adding value to the implementation of specific DSM schemes. The results show that by
the optimum network locations, it is possible to maximize the total benefit from DSM.
Focusing on demand response and user engagement techniques, [Gelazanskas and Gam-
age, 2014] gives an overview of DSM technologies. All of the discussed techniques are
based on load shifting strategy.

Whatever strategy is used, control and optimization methods play the key role in the
energy management ranging from a simple scheduling method to sophisticated model-
based approaches. DSM control policies for distributed energy resources (DER) are clas-
sified into four categories [Kosek et al., 2013]:

a) Direct control: Controllable DER receives specific commands from an external con-
troller which has detailed information about the DER operation.

b) Indirect control: A control signal which is not a must followed command is issued and
it is up to DERs to make their own decision regarding the issued signal.

c) Transactional control: It is based on negotiations in a bid-based market where DERs
are competing for resources. Each DER puts a bid amount independently and can have
its own control method according to the finalized bid.

d) Autonomous control: Here each DER is equipped with local controllers by which it
can participate in frequency and voltage regulation as a virtual spinning reserve that
was mentioned earlier in this section.

The first two methods are used for implementation of control strategies for supermar-
ket refrigeration systems in this thesis. Consequently, there are explained in more details
in the succeeding subsections.

Direct Load Control

In the direct control scheme, the consumer energy consumption is directly managed by
an external utility3 and may require one-way or two-way communication for information
exchange. Four different types of direct control schemes are defined by [Gehrke and
Isleifsson, 2010] for energy management of the consumers as:

1Primary control is the local, automatic control action that adjusts the active power output of the generation
units in direct response to measured frequency variations.

2Secondary control is responsible for removing any steady-state error introduced by the primary control.
3An electric utility, or simply utility, is an electric power company that operates in a power/energy regulated

market.
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1) Deferred consumption: A certain amount of energy usage is shifted in time such that
the amount of power consumption as well as the duration of the consumption are
remained unchanged. Here the control command is a time shift ∆t.

2) Delta consumption: The consumption is increased or decreased by an offset issued as
a power difference signal ∆P.

3) Scheduled operation: The unit receives an operation schedule consisting of series of
power set-point and time stamp pairs as (ti,Pi), i = 1 . . .N.

4) Direct power control: At runtime, a power set-point, P, is assigned to the unit.

The definitions has been extended by [Kosek et al., 2013] to cover DER operation
control. The last scheme (i.e., direct power control) is employed for the direct load control
(DLC) implementation in this thesis. It is the most flexible scheme in terms of shaping
the consumption profile.

[Ng and Sheblé, 1998] explains how load management may benefit both utilities and
customers. It introduces profit-based management and differentiates it from cost-based
approach. Furthermore, a linear programming algorithm is proposed for solving a load
scheduling problem. [Battegay et al., 2015] presents a method to quantify the benefits
of load control for reducing the reinforcement costs of power distribution networks. For
this purpose, a linear model is developed to estimate the impact of DLC on the modifica-
tion of electric demand. A hierarchical direct control structure in smart grid is proposed
by [Trangbaek et al., 2012]. The structure consists of a higher level control system bal-
ancing the production and consumption, a second level of aggretaors each aggregating
several loads, and the lowest level autonomous consumers. It is shown how power and
energy constraints of different consumers can be incorporated into the aggregated loads
to achieve the full consumer flexibility. [Petersen et al., 2013] presents a taxonomy for
modeling of the consumers flexibilities based on the power and energy constraints. Three
different models are presented and denoted as Bucket, Battery and Bakery. The bucket
model is a power and energy constraint integrator and represents consumers with energy
storage capabilities. The battery model also describes a power and energy constraint in-
tegrator but with a further limitation on the charging duration. Consumers with further
constraints to the extent that the process must run in one specified continuous time slot at
constant power consumption level, those are identified by the bakery model.

[Molina et al., 2000] presents a DLC algorithm using constrained predictive control
to shape the overall load demand by controlling a group of residential HVAC systems. A
thermal comfort controller of air-conditioning systems is proposed by [Chu et al., 2005]
to the energy saving efficiency such that it can be employed by a DLC program to prolong
the load shedding time duration. This method is later extended to a group DLC concept
that enables the load management program to take account of the direct controller as an
aggregated load [Chu and Jong, 2008]. [Callaway and Hiskens, 2011] reviews different
load control programs initiated for the provision of power system services. It argues that
direct load control is required to achieve full responsiveness defined as enabling high-
resolution system-level control across multiple time scales. The load following problem
for aggregated thermostatically control loads, such as refrigerators, air-conditioners, and
electric water heaters, is investigated by [Mathieu and Callaway, 2012] considering the
situation in which measured state information are not available. [babar et al., 2013] pro-
poses a DLC algorithm for an incentive-based program in the form of demand reduction
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bidding. It utilizes a dynamic programming technique for design of a consumer selection
method. Thermal environments and thermal comfort impacts of DLC events on a uni-
versity building are explored by [Zhang and Dear, 2015] by investigating the influences
of various off cycle fractions, cycling periods, cooling set-point temperatures, thermal
performance of the building envelope, and ventilation rates. It concludes that to maintain
acceptable thermal comfort, DLC algorithms must be applied judiciously and customized
to the specific building.

Refrigeration systems in particular have also been subject of research for DLC imple-
mentations. The bucket model introduced by [Petersen et al., 2013] can be extended to
a leaking bucket model describing the energy storage in refrigerated goods in the pres-
ence of thermal disturbances [Pedersen et al., 2013]. Subsequently, the leaking bucket
model can be used by an MPC algorithm in a direct smart grid control scheme [Pedersen
et al., 2013]. DLC implementation for aggregation of a large number of supermarket re-
frigeration systems is investigated by [Pedersen et al., 2014]. Therein simulation results
show that a peak reduction of 24.7% is achieved at a cost of 13.5% increase in the overall
energy consumption. The problem of additional energy consumption due the provision
of balancing services is handled in a contract between the supermarket owners and the
aggregator company.

Indirect Load Control

A conceptual understanding and classification of indirect control strategies are given
by [Heussen et al., 2012]. Therein, two central characteristics of indirectness are defined:
(i) the relationship between control objective and observables is indirect in a sense that
the actual response to the demand control signal is not observed and/or the signal is an
incentive instead of being a direct command; and (ii) the decision is made independently
of demand side resource objectives at the local consumer level. The most common ap-
proach is indirect control via price signals where electricity usage by end-use customers
is altered in response to changes in the price of electricity over time. [Albadi and El-
Saadany, 2007] highlights different demand response programs including classical, new
marker-based and dynamic pricing scenarios. It classifies price-based programs into time
of use, critical peak pricing, extreme day critical peak pricing, extreme day pricing, and
real time pricing. A review of pilot studies given in [Newsham and Bowker, 2010] indi-
cates that a peak load reduction of at least 30% can be achieved in a critical peak pricing
program, in contrast to an alternative simple time of use program which can only expect
to realize 5% reduction. The price-based DSM not only can reduce the electricity cost
at the consumption side, but also can facilitate integration of more renewable resources
into the power system. The significance of the load flexibility in Irish electricity mar-
ket in order to minimize the curtailment of wind energy is illustrated in [Newsham and
Bowker, 2010]. Following the same goal as the previous study, the impact of indirect
control of two industrial electricity consumers on increasing the share of wind energy in
their consumption is analyzed in [Finn and Fitzpatrick, 2014]. The results indicate that
for every 10% reduction in a consumer’s average unit price of electricity, the consumer’s
consumption of wind generation increases by approximately 5.8%.

In the previous paragraph, we mentioned the studies which show the significance and
benefits of indirect load control for the power system. Implementation of indirect con-
trol for various types of consumers in different markets demands a tremendous effort
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of designing appropriate control strategies at the consumer side. A widely used control
strategy for building DSM is temperature set-point control for shifting the thermal load
from a peak pricing period to the time when the electricity price is cheaper. Prediction of
the building required thermal load and the peak price hours plays a key role in indirect
load control implementations. The effectiveness of the set-point control using thermo-
static control strategies for saving peak energy consumption and overall cost is evaluated
by [Surles and Henze, 2012]. It turns out that the peak energy saving using thermostatic
control extremely depends on the climate conditions. It is also found that, in a time-of-use
tariff, there might be more saving in electricity cost for building owners than for utility
companies. When price and weather forecast are taken into account for indirect control,
MPC is a suitable control candidate. It provides a strong tool for formulation of the eco-
nomic objective using the price prediction while incorporating the weather forecast into
process dynamics. When MPC is used for priced-based control purposes, it is usually
referred as economic model predictive control (EMPC) [Ma et al., 2012a]. Set-point op-
timization using economic MPC is employed in [Ma et al., 2014] for energy cost saving
in building HVAC systems under a time-of-use rate structure. Taking into account the
extended forecast of disturbances (e.g., weather and electricity price) requires longer pre-
diction horizon for MPC implementation which imposes heavy computational burden. It
will be even more demanding if there is nonlinearities in the control algorithm. [Touretzky
and Baldea, 2014] faces this challenge by proposing a hierarchical EMPC for buildings
such that the nonlinearity arises from the discrete operation of a thermal energy storage
unit is handled by a dynamic scheduling algorithm in a slower time scale, and an MPC
scheme is in charge of the comfort temperature control in a fast pace.

There are also some research focusing on indirect load control for refrigeration sys-
tems. Potential of refrigerated warehouses for load shedding and shifting from baseline
electricity use in critical peak pricing programs is investigated by [Goli et al., 2011]. The
results confirm the abilities of refrigerated warehouse for those DR implementations, but
it varies depending on the facilities in use. An extended research reveals the impact of
control technology on the DR potential of industrial refrigerated facilities [Scott et al.,
2012]. Taking advantage of variation of electricity price and weather temperature, it is
possible to formulate an optimization problem for minimizing the cost of operation. Us-
ing this possibility, an optimizing control scheme is presented in [Hovgaard et al., 2011]
in which a linear approximation model for prediction of the electric power consumption
of refrigeration system is introduced. [Hovgaard et al., 2013] proposes a method to tackle
with a nonconvex cost function in the optimization formulation. The method is supported
by a full year simulation of operation of a commercial refrigeration system showing that
30% cost saving can be achieved in case of real-time variation in electricity prices. Two
different objectives are formulated under EMPC design in [Hovgaard et al., 2012]. One
objective takes the electricity price signal into account for cost minimization, and the
other one aims at power regulation in regard with a balancing power market. Due to
the nonlinearity introduced in the optimization problem, a nonlinear optimization tool is
employed resulting in significant saving chiefly because of incorporation of the second
objective into the EMPC scheme.

13



Introduction

1.2.4 Data-Driven Control

Developing a high fidelity model for an industrial process is a time-consuming task re-
quiring tremendous efforts. Those models are usually not generally applicable and need
to be tuned carefully for each specific process. In some cases, the model order and struc-
ture should be changed to fit a new system configuration. From control perspective, there
might also be some priors and assumptions on the model that need to be satisfied in order
for the control system to operate with the expected performance. Fig. 1.6 illustrates the
model-based control concept.
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ẋ = f (x,u, t)
y = g(x,u, t)
x ∈ RN

Control System{
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Figure 1.6: In model-based control, the control system utilizes a mathematical model of
the process. The model is developed using system information (e.g., physical parameters
and input/output data) and modeling assumptions (e.g., model structure and order).

On the other hand, data-driven control methods use measured data from the process in-
put and output to optimize the control objective without any explicit information from a
mathematical model. A simplified concept of the data-driven control is shown in Fig. 1.7.
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Figure 1.7: In data-driven control, the control objective is optimized using measured data
from the process input and output.

A survey on different data-driven control methods is given by [Hou and Wang, 2013].
It presents different classifications of the methods in accordance with the use of measured
input-output data and controller structure. We briefly list the main data-driven control
strategies in the following disregarding the class which each method may belong to.

• Approximate dynamic programming: It is used for control of nonlinear processes
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2 State-of-the-Art and Background

using input-output data. This approach provides approximate solutions for stochas-
tic control problems through dynamic programming [Lee and Lee, 2005]. It in-
cludes four main schemes [Hou and Wang, 2013]: heuristic dynamic program-
ming, dual heuristic dynamic programming, action dependent heuristic dynamic
programming, and action-dependent dual heuristic dynamic programming.

• Simultaneous perturbation stochastic approximation: In this approach, the con-
troller is parametrized to approximate the nonlinear dynamics of the process from
the closed-loop input-output data. Optimal controller parameters are obtained by
utilizing an stochastic search algorithm in which all of the parameters in the prob-
lem are varied simultaneously (and randomly) [Spall, 2000].

• Virtual reference feedback tuning: The controller is directly obtained from a data-
base through an optimization procedure where the optimization variables are the
controller parameters. A reference model is assigned, and a virtual reference signal
is constructed using the inverse of the reference model which is a (nonlinear) func-
tion of the output data [Campi and Savaresi, 2006]. This virtual reference is then
utilized to formulate the optimization problem.

• Model free adaptive control: As opposed to the model-based nonlinear control,
in this method, an equivalent dynamical linearization model replaces the general
discrete-time nonlinear system. A dynamic linearization technique with a novel
concept called pseudo-partial derivative is used to build the equivalent linearization
model along the dynamic operating points [Hou and Jin, 2011]. Then the time
varying pseudo-partial derivative is estimated on-line merely using the input-output
measurement data.

• Unfalsified control: It is an adaptive switching control scheme which recursively
falsifies control parameter sets that are found inconsistent with performance objec-
tives and past experimental data [Safonov and Tsao, 1997]. A controller candidate
may be falsified ever before inserted in the feedback loop which results in a supe-
rior transient performance compared with the other adaptive methods which require
inserting controller in the loop one-at-a-time to determine if they are suitable.

• Iterative feedback tuning: In this approach, the parameters of a fixed controller
(e.g., PID) are optimized using an iterative gradient-based method. The gradient
of the control performance criterion is estimated from measured closed-loop data
[Hjalmarsson et al., 1998].

• Subspace approach: Here (linear) system dynamics are represented as a subspace
of a finite-dimensional vector space using subspace matrices which are directly
identified from input-output data [Overschee and Moor, 1996]. These subspace
matrices can be utilized to either identify a state-space linear model of the process
or to be directly employed by the controller [Huang and Kadali, 2008].

• Correlation-based tuning: This method attempts to decorrelate the output error
between the achieved and designed closed-loop systems by iteratively tuning the
controller parameters [Karimi et al., 2004].
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• Iterative learning control: For systems that execute the same task multiple times,
this approach can improve the closed-loop performance by learning from the input-
output data of the process obtained from the previous executions [Bristow et al.,
2006]. Two design components are placed: One in the feedforward path which
uses the past information from the control signals, and another in the feedback path
which uses the output data from the previous trials.

As mentioned earlier, model predictive control is the main control strategy for energy
management of HVAC&R systems. Among the above list of data-driven control methods,
subspace approach can be used for predictive control design and would have the key
features of generalized predictive control [Clarke et al., 1987] such as prediction over a
finite horizon, inclusion of the trade-off weighting between the output signal and control
moves in the optimization cost function, and the choice of the prediction and control
horizons [Kadali et al., 2003]. Because of higher relevance of the subspace approach to
the present research – it is actually part of the contributions of this thesis – its state-of-
the-art and background are explained in more details in the succeeding section.

Subspace Approach to Predictive Control Design

Dynamics of the linear multivariable processes can be described by the discrete-time
state-space equations in innovation form as:

xk+1 = Axk +Buk +Kek, (1.1)
yk =Cxk +Duk +ek, (1.2)

where uk ∈Rl , yk ∈Rm, and xk ∈Rn are the process inputs, outputs and states, respectively;
ek ∈Rm is a white noise (innovation) sequence with zero mean and covariance E[ekeT

k ]= S.
The parameters A, B, C, and D are state-space matrices with appropriate dimensions, and
K is the Kalman filter gain. Subspace identification begins with partitioning input and
output measurement data into two parts and then forming block Hankel matrices which
are labeled as past and future (input/output) data as {Up, Yp} and {U f , Yf } [Overschee
and Moor, 1996, Ch. 2]. The underlying idea is to reformulate (9.4) and (9.5) into the
matrix forms (9.6), (9.7) and (9.11) thereby estimating subspace matrices which form the
basis for the state-space model [Huang and Kadali, 2008, Ch. 3].

Yf = ΓX f +HdU f +HsE f , (1.3)

Yp = ΓXp+HdUp+HsEp, (1.4)

X f = AiXp+∆
dUp+∆

sEp, (1.5)

where Γ, H and ∆ are subspace matrices with appropriate dimensions, the superscripts d
and s indicates the correspondence to deterministic and stochastic inputs uk and ek, and the
subscript i denotes the number of block columns. Several subspace identification methods
differ depending on the numerical tools used in the estimation of the basis [Overschee
and Moor, 1996, Ch. 3] such as singular value decomposition (used in [Moonen et al.,
1989] and N4SID [Overschee and Moor, 1994]), QR-decomposition (used in MOESP
[Verhaegen, 1994]), canonical variable analysis (used in CVA [Larimore, 1996]), etc.

The last step in subspace identification is to estimate state-space matrices from the
subspace ones. The data-driven state-space model can then for example be used in model
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predictive control design. It turns out that the derivation of the state-space model is not
necessary and the subspace matrices can be directly used in predictive control design
which is called subspace predictive control (SPC). In many cases the following linear
predictor is identified for SPC design [Favoreel et al., 1998]:

Yf = LwWp+LuU f +LeE f , (1.6)

where Wp = [Y T
p UT

p ]
T

, and Lw, Lu, and Le are subspace matrices corresponding to the
past inputs and outputs (states), the deterministic future inputs, and the stochastic future
inputs, respectively.

Utilization of subspace methods for predictive control design has been investigated for
several applications such as buildings [Cigler and Privara, 2010], [Prívara et al., 2011], a
turbo-generator pilot plant [Gambier and Unbehauen, 1999], solid oxide fuel cells [Wang
et al., 2007c], a blast furnace ironmaking process [Zeng et al., 2010], a boiler-turbine
unit [Wu et al., 2013], wind turbines [Navalkar et al., 2014], etc.

The linear predictor is identified using the data obtained from open-loop or closed-
loop experiment. The performance of the data-driven control depends on the extent which
the information – contained in the identification data – is rich. For stable plants like re-
frigeration systems, the open-loop experiments are of more interest since they are opti-
mal especially when the system inputs are constrained [Agüero and Goodwin, 2007]. But
special care should be taken regarding the input and output constraints that makes the
experiment design more complicated.

When the identification part in SPC implementation is based on a method for which
there exist fast and robust numerical computation algorithms (e.g., QR-decomposition),
it provides an opportunity for adaptation of the method by on-line updating the subspace
matrices [Lovera et al., 2000]. The online adaptation can improve the control performance
in case of variation of the system parameters, which is likely to happen in the large-scale
thermal systems.

1.2.5 Thermal Energy Storage

In some thermal processes (e.g., HVAC&R and heat pumps), it is possible to store energy
in a thermal energy storage (TES) device by cooling or heating a material. Then the device
can retain the thermal energy for a later use. The storage is charged by being supplied
by the energy through a thermodynamic process and discharged later on by supplying the
process with the stored energy. TES systems can be classified into the following three
main categories [Arteconi et al., 2012]:

1) Sensible TES: The energy is stored by changing the temperature of the storage mate-
rial. The types of devices vary depending on the storage medium in use. In thermally
stratified TES tanks, the storage medium is water and they are characterized by sep-
arate volumes of water in the tank at different temperatures (see Fig. 1.8). The main
application is in heating and air-conditioning systems. Another storage medium is
concrete. As an smart grid application, it is shown in [Tahersima et al., 2011] that
concrete can be employed for energy storage in an underfloor heating system to man-
age the electric power consumption of heat pumps in order to compensate power im-
balance in the grid. In applications with higher temperature (above 100 ○C) where
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water temperature cannot raise to that point, rock TES can be used. However, it has
a lower volumetric thermal capacity. Rock TES is utilized for instance in home air-
conditioning systems and domestic hot water production, coupled with solar collec-
tor [Arteconi et al., 2012].

2) Latent TES: In latent TES, phase change materials (PCMs) are used where the state of
the medium is changed by releasing or absorbing energy. As apposed to the sensible
TES, the process of energy storage happens in nearly constant temperature. In general,
the energy stored in form of latent heat is higher than that of sensible heat for a given
mass consequently a smaller storage volume is required. Typical PCMs used are water,
salt hydrates and certain polymers [Arteconi et al., 2012]. A geometrical layout of a
latent TES constructed by fins and tubes are shown in Fig. 1.9.

3) Thermochemical energy storage: Reversible chemical reaction can also be used to
store thermal energy. The advantages are high storage energy density and long du-
ration of detaining the storage. A particular application is in absorption heat pumps
where energy is accumulated in a chamber containing vapor absorbing salt and heat is
exchanged through condenser/evaporator containing the working fluid.
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Figure 1.8: Stratified storage tank in a water-cooled chiller system. When the chiller is
turned on, the cold water flows into (warm water flow out of) the tank, hence charging
the storage. The reverse cycle can discharge the storage when the chiller system is turned
off. A boundary layer or thermocline is established to separate the two zones.

Control technology plays a key role in increasing the efficiency of HVAC&R systems
in buildings by active utilization of TES units. In [Ma et al., 2012b] a simple switching
nonlinear model of a storage tank is developed and weather prediction is included in an
MPC scheme for optimization of a chiller’s operation. A novel configuration of a TES in
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Figure 1.9: Geometry of a latent TES constructed by fins and tubes: (a) interior view
of a cylinder: the PCM is placed inside the tubes being cooled by the refrigerant flow
through the tube center thereby charging the TES; (b) exterior view of the device: when
discharging, the TES can operate like an evaporator to cool the return air coming from
the cooling medium.

a water chiller system is presented in [Cole et al., 2012] where the MPC is proposed to
optimize the charge and discharge of the TES for minimizing both the energy consump-
tion and operation cost. A simplified linear thermal model is developed in [Candanedo
et al., 2013] to predict the required cooling power. The problem of model uncertainty in
different operating conditions is considered in [Kim, 2013] where multiple local models
are used in the MPC formulation to make it responsive to the entire operation regime. The
results show the superior performance comparing to the traditional logic based control.

Thermal energy storages can be employed for demand-side management purposes
using MPC as the dominant control scheme. A range of operational strategies for a TES
in a heating system are investigated in [Fischer et al., 2014]. Therein the effect of different
price signals as well as the storage size are analyzed and the results show that the heat
pump efficiency can be improved by increasing the size of the storage, but on the other
hand it would lead to additional losses in the storage unit hence limit the profitability
in terms of the annual saving in energy costs. In [Mendoza-Serrano and Chmielewski,
2014] TES is employed for shifting power consumption of HVAC systems to low energy
cost periods under an economic MPC scheme, and the impact of weather and electricity
price forecasts on the cost reduction is shown. The switching nature in scheduling the
TES challenges the MPC implementations by incorporating an integer decision variable
into the optimization problem which results in computation difficulties for long horizon
implementation. This problem is addressed in [Touretzky and Baldea, 2014] by designing
a separated dynamic scheduling loop for a chilled water TES in the HVAC systems in a
slower time scale than that of the HVAC control loop. Under the concept of zero energy
buildings where the building has its own distributed power generation, [Zhao et al., 2015]
proposes an MPC based strategy to optimize the power generation and consumption as
well as scheduling of the TES utilization. The type of TES in that study is a stratified
chilled water storage tank and the considered market policy is time-sensitive electricity
pricing.

The application of TES in transport refrigeration systems is not quite as mature as
in the building HVAC case [Walsh et al., 2013]; primarily because the constraints (size,
weight, etc.) are more stringent. Nonetheless, there is a significant potential for different
improvements in transport refrigeration sector by using of thermal storage technology.
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For instance, an exergy analysis in [Javani et al., 2014] shows that the overall exergy effi-
ciency of cooling systems in hybrid electric vehicles can be increased when TES is used.
Depending on the application, different configurations have been proposed. Three differ-
ent placements of the TES, for passive use of PCM in contact with the suction and liquid
lines, are investigated in [Wang et al., 2007b]. The proposed layouts in [Wang et al.,
2007b] can all be framed as a series configuration as explained in [Fasl, 2013]. Series ar-
rangements have benefits and drawbacks, as explained in [Fasl, 2013]. For transportation
applications with highly transient loadings, a parallel configuration may provide more
rapid response to load disturbances. In [Fasl et al., 2014], a detailed nonlinear thermal
model of a refrigeration system is presented with a parallel configuration for an active
TES unit. The TES is configured in parallel with the evaporator heat exchanger and a
heuristic switching control logic is proposed to deal with the different modes of opera-
tions like charging, discharging, etc.

1.3 Research Objectives and Hypotheses

The main and broad goal of the present research outlined in this thesis is to develop
energy management methods for refrigeration systems in regard with the state-of-the-arts
mentioned in the previous section. In the following the broad perspective is divided into
several objectives and the challenges associated with each of them is stated.

a) To enable supermarket refrigeration systems to participate in smart grid energy bal-
ancing.

This is made based on the idea that the thermal mass of refrigerated goods inside the
supermarket display cases and freezing rooms can be employed for storing energy in
form of coldness. Here the objective is to design a suitable control system enabling
demand-side management for supermarket refrigeration systems under realistic smart
grid balancing scenarios. The major challenge is that the designed control should
provide high quality services (in terms of response time, power regulations, load pre-
dictions, etc) as well as ensuring the food temperature requirements.

b) To reduce operation cost of large-scale refrigeration systems using model predictive
control strategies.

As explained in the state-of-the-art section, the dominant control strategy for demand-
response implementation of the buildings HVAC&R is MPC. Here we would like to
design an MPC scheme by taking into account the forecast of different disturbances
such as price variation and weather temperature. Having those predictions, the control
system should be able to manage the energy use of the system such that the overall
energy cost is minimized. The companies like Danfoss, they have their own local
controllers that operate robustly and have been in the product for quite a long time.
Therefore it is preferable if we design a control strategy which does not require having
them replaced.

c) To improve energy efficiency of the refrigeration systems using advanced control meth-
ods.
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In some demand response scenarios like indirect and direct load control, the major
objective is to either reduce the operation cost (previous objective) or follow a certain
reference load. It may result in an increase in the overall energy usage. In any probable
scenario, it is very important to ensure the high efficiency of the system. On the other
hand, it may conflict with the primary objective of the demand response and the trade-
off needs to be handled within the control design.

d) To unleash the full potential of energy management of the state-of-the-art hybrid re-
frigeration systems using advanced control strategies.

The energy management of the advanced hybrid thermal systems is part of the goal
of this research. Although the energy management regarding the smart grid prob-
lems might not be the case for transport refrigerations, but the similar idea of active
utilization of TES devices can be utilized for energy optimization and performance
improvement in hybrid refrigeration systems. It takes the prediction of disturbances
into account under an MPC scheme that has been used for building applications. Com-
pared to building HVAC&R systems, here the restrictions on TES (e.g., size, weight,
etc.) are more strict and variation of the disturbances happens in shorter time, conse-
quently applying more rapid changes in the system dynamics.

The present research which is intended to reach the above objectives is established
based on the following hypotheses:

H1) Electrical power consumption of the compressor racks in supermarket refrigeration
systems can be estimated and predicted using the thermodynamic states of the sys-
tem.

The compressor device in VCC systems is the main electricity using device. It pro-
vides the refrigerant mass circulation required for heat exchanges in the thermody-
namic cycle. Knowing the thermodynamic states like enthalpies, temperatures and
pressures and also the flow of the mass, it can be possible to estimate the electrical
power consumption of the compressor. This hypothesis has already been justified
in previous research for a single VCC cycle. The same seems to be valid for a
large-scale supermarket refrigeration system. It is especially important when we
want to predict the future electricity usage by changing the temperature or pressure
set-points in the system.

H2) Overall electricity cost of supermarket refrigeration systems can be reduced by em-
ploying model predictive control technique and taking the disturbance and price
previews into account.

If we have a good preview of the future price variations and the environmental distur-
bances, then we might know the periods in which the system performance is higher
and/or the electricity price is cheaper. Then we can use the MPC technique to shift
the load to those periods thereby reducing the total cost of operation.

H3) Electricity usage of refrigeration systems can be directly controlled by tailoring the
thermal load of the system.
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According to H1 there is a relationship between the thermodynamic states of the
system and the electricity usage. The thermal load can be tailored by changing the
temperature and pressure set-points. Therefore, the electricity usage can be directly
controlled to follow a desired trajectory by designing a set-point control system.

H4) Optimal direct load control of refrigeration systems can be achieved by only using
the available input and output measured data.

If there is no high fidelity model available for estimating the refrigeration load and
electricity usage, then they can be estimated directly from the measured data. In
that case a data-driven control approach which only uses the measured data from
the process inputs and outputs can be applied for direct load control of refrigeration
systems. By incorporating an optimization scheme into the control design we can
also optimized the direct control objectives.

H5) Total energy consumption of hybrid refrigeration systems can be reduced by active
utilization of thermal energy storages.

In Section 1.2.5 we explained that the energy consumption of the building HVAC
systems can be reduced by active utilization of TES devices. We hypothesize that
the same concept is valid for transport refrigeration systems which are equipped with
TES devices.

H6) Performance of the hybrid thermal energy systems in transport refrigeration can be
improved by applying advanced control strategies and using the disturbance pre-
views.

The logic-based control methods that are proposed for control of TES devices in
transport refrigeration systems cannot release the full potential of the TES for effi-
ciency/performance improvement. There are different disturbances affect the system
performance. The full potential of the TES device for performance improvement can
be unleashed if we use an advanced model-based control strategy which can take the
disturbance previews into account of the performance optimization.

1.4 Outline of the Thesis

So far we have presented the motivation behind this research in Section 1.1, the state-
of-the-art and background in Section 1.2, and research objectives and hypotheses in Sec-
tion 1.3. This PhD dissertation has been written in a format which includes a collection of
papers. Those papers have either been published or been accepted and put in the waiting
lists for publication. Only the papers which include the main contributions relevant to
the previously mentioned hypotheses have been enclosed to this note. The remainder of
the thesis is as follows. Chapter 2 presents a summary of contributions. They have been
divided into for categories: (i) modeling for control and simulations; (ii) indirect load
control; (iii) direct load control; and (iv) control of hybrid thermal systems. Chapter 3
concludes the thesis as well as giving a perspective for future research.

In order to have a quick overview of the contributions, they have been listed in the
following where for each of them a short abstract is provided.

Paper A [Shafiei et al., 2013c]
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Modeling Supermarket Refrigeration Systems for Demand-Side Management

In this paper, a nonlinear gray-box model of a supermarket refrigeration system
is presented. Both the thermodynamic states such as cold unit temperatures, suc-
tion line pressures, etc. and the electricity usage of the compressors racks can be
predicted by the model. The whole system is divided into several modules each
is modeled separately. Individual models as well as the integration of them are
validated against real data obtained from a supermarket in Denmark. Moreover, a
simulation benchmark is created based on the produced model for developing and
examining the demand-side management methods in smart grid.

Paper B [Shafiei et al., 2013e]

A Supervisory Control Approach in Economic MPC Design for Refrigeration Sys-
tems

In this paper, a supervisory model predictive control strategy is proposed for min-
imization of electricity cost for supermarket refrigeration systems. The forecasts
of electricity price signal and weather temperature are employed under the MPC
scheme. The pressure and temperature set-point control loops are separated in the
control structure that can facilitate formulation of a convex optimization problem.

Paper C [Shafiei et al., 2013b]

Model Predictive Control for a Thermostatic Controlled System

In this paper, once again the problem of energy cost minimization for supermarket
refrigeration systems is addressed by taking into account the forecasts of electricity
price and weather temperature. Temperature of the cooling units are governed by
thermostatic controllers. The nonlinearity arises from the hysteresis behavior of
the local controllers makes the MPC objective nonconvex. An MPC algorithm is
proposed which still allows for formulating a convex optimization problem.

Paper D [Shafiei et al., 2013a]

A Decentralized Control Method for Direct Smart Grid Control of Refrigeration
Systems

In this paper, a decentralized supervisory control method is proposed for direct load
control of supermarket refrigeration systems. No model information is required in
this method. The temperature limits/constraints are respected. A novel adaptive
saturation filter is also proposed to increase the system flexibility in storing and
delivering the energy.

Paper E [Shafiei et al., 2014]

Model Predictive Control for Flexible Power Consumption of Large- Scale Refrig-
eration Systems
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In this paper, an MPC scheme is proposed for direct load control of refrigeration
systems. The proposed approach contains the control of cooling capacity as well
as optimizing the efficiency factor of the system. A convex optimization prob-
lem is formulated under the MPC scheme by introducing a fictitious manipulated
variable, and novel incorporation of the evaporation temperature set-point into the
optimization problem.

Paper F [Shafiei et al., 2015]
Data-Driven Predictive Direct Load Control of Refrigeration Systems

In this paper, a predictive control using subspace identification is applied for the
smart grid integration of refrigeration systems under a direct load control scheme.
Two important objectives are fulfilled: To secure high coefficient of performance,
and to participate in power consumption management. The control method is fully
data-driven without an explicit use of model in the control implementation. As an
important practical consideration, the control design relies on a cheap solution with
available measurements than using the expensive mass flow meters.

Paper G [Shafiei and Alleyne, 2015]
Model Predictive Control of Hybrid Thermal Energy Systems in Transport Refrig-
eration

In this paper, a predictive control scheme is designed to control a transport refrig-
eration system, such as a delivery truck, that includes a vapor compression cycle
configured in parallel with a thermal energy storage (TES) unit. A novel approach
to TES utilization is introduced and is based on the current and future estimate of
the vehicle driving state and load prediction. A cascade control structure is pro-
posed consisting of (i) an outer loop controller that schedules the TES charging
profile using a receding horizon optimization, and (ii) an inner loop model predic-
tive controller (MPC) which regulates the TES state of charge while maximizing a
derived efficiency factor.
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2 Summary of Contributions

This section summarizes different contributions given by seven papers enclosed in this
thesis (Papers A to G). For the time being, Papers A to E have been published through
pear review processes, Paper F has been accepted and will be appeared in an special issue
of IET Control Theory and Applications and Paper G is under the second review for a
journal publication. The papers appear in a chronological order in accordance with the
progress of the research in the present PhD study. The contributions are divided into four
categories:

1) Modeling for control and simulations: As it might be the case for many control en-
gineering researches, this research started by developing a mathematical model for
the system under the study (i.e., supermarket refrigeration systems). The primary re-
sults has been presented in [Shafiei et al., 2013d], and the final results as well as
more detailed explanations of the system operation and dynamics has been published
in [Shafiei et al., 2013c] which the latter is enclosed as Paper A. A simulation tool
based on the model obtained in this study has been developed in Matlab that can
be accessed through the refrigeration lab homepage at Aalborg University [SRSim,
2013].

2) Indirect load control: The results of control design for demand-side management un-
der indirect load control scheme for supermarket refrigeration systems have been pre-
sented in Paper B [Shafiei et al., 2013e] and Paper C [Shafiei et al., 2013b].

3) Direct load control: Three different control methods have been applied for demand-
side management under indirect load control scheme for supermarket refrigeration
systems and the results have been presented in Paper D [Shafiei et al., 2013a], Paper
E [Shafiei et al., 2014] and Paper F [Shafiei et al., 2015].

4) Control of Hybrid Thermal Systems: The last part of this research has been dedicated
to design an advanced control strategy for an state-of-the-art hybrid refrigeration sys-
tem. The results have been submitted for a journal publication which is presented in
Paper G [Shafiei and Alleyne, 2015].

The author also contributed to several other works through supervision of master stu-
dents’ projects and collaboration with other PhD students at Aalborg University. An
implementation of direct load control in a laboratory test setup of a water chiller system
is presented in [Pedersen et al., 2013]. It was our first attempt to examine an smart grid
concept for refrigeration systems. In [Juelsgaard et al., 2013] the connection between a

25



Summary of Contributions

coordination algorithm for smart grid balancing services and optimal control algorithms
for consumer demand response has been analyzed. An evaluation of using simplified
models for aggregator design has been given in [Rahnama et al., 2014] where the model
developed in Paper A [Shafiei et al., 2013c] together with the direct load controller pro-
posed in Paper E [Shafiei et al., 2014] have been used for simulation study. In another
work, two different objectives, one for energy cost optimization and another for regula-
tory power services have been formulated in one MPC scheme and the results has been
presented in [Hermanus et al., 2014].

2.1 Modeling for Control and Simulations

Developing a model for supermarket refrigeration systems seeks two goals within this
study. The first one is that the model is required for model-based control design (i.e., MPC),
and the second goal is to create a simulation benchmark to examine the smart grid control
algorithms devised for refrigeration systems. The modeling results are presented in Paper
A [Shafiei et al., 2013c].

The model proposed in Paper A [Shafiei et al., 2013c] possesses most advantages of
the preceding researches such as (i) simplifying the behavior of supermarket refrigeration
systems as a simulation benchmark for supervisory control; (ii) being very accurate de-
spite its simplicity; (iii) having modularity and reconfigurability; and (iv) being validated
by real data. The first principle method is chosen for modeling in which the physical
insight is used to define the model structure.

The modeling exercise is performed by a modular approach in which the system is
separated into different subsystems (modules), each is modeled and validated separately.
This modularity leaves open the possibility of modeling refrigeration systems with differ-
ent configurations that are adopted in various supermarkets.

2.1.1 Description of CO2 Booster Configuration System

Danfoss provided real data collected from normal operation of a supermarket refrigeration
system in Denmark. The data collection was performed under a separated project [Pe-
tersen et al., 2012]. Those data have been used for parameter estimation and model vali-
dation in Paper A [Shafiei et al., 2013c].

For refrigeration systems with two temperature zones, medium temperature (MT) and
low temperature (LT), the LT zone suction line can be separated from that of the MT by its
own rack of compressors. A second rack of compressors is placed at the MT side which
further boosts the pressure in the thermodynamic cycle. A basic layout of the booster
configuration system is shown in Fig. 2.1. This system has 7 MT and 4 LT display cases.

Due to the fact that the CO2 refrigeration system described in Paper A [Shafiei et al.,
2013c] has been the case of study for control design in Papers B to F, it is described in
more details here which help the reader to understand the contribution summaries pro-
vided in this part of the thesis. The similar description of the system is given in any of
those papers that the reader can easily skip them when going through the papers.

Basically, the whole cycle is based on the vapor-compression cycle explained in Sec-
tion 1.1.2. The thermodynamic cycle associated with the system in Fig. 2.1 is illustrated
by the pressure-enthalpy (P-H) diagram in Fig. 2.2. Starting from the receiver (REC),
two-phase refrigerant (mix of liquid and vapor) at point “8” is split out into saturated
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Figure 2.1: Basic layout of a CO2 booster configuration refrigeration system.

liquid (“1”) and saturated gas (“1b”). The latter is bypassed by BPV, and the former
flows into expansion valves where the refrigerant pressure drops to the medium (“2”) and
low (“2′”) pressures. The expansion valves EV_MT and EV_LT are driven by hystere-
sis ON/OFF controllers to regulate the temperatures of the MT and LT display cases,
respectively. Flowing through medium and low temperature evaporators (EVAP_MT
and EVAP_LT), the refrigerant absorbs heat from the cooling medium while a super-
heat controller is also operating on the valves. That is to make sure the refrigerant leaving
the evaporators toward compressors is completely vaporized (only in gas phase). Both
pressure and enthalpy of the refrigerant are increased by the low stage compressor rack
(COMP_LO) from “3′” to “4′”. All mass flows at the outlet of COMP_LO, EVAP_MT
and BPV are collected by the suction manifold at point “5” where the pressure and
enthalpy are increased again to the highest point, “6”, by the high stage compressors
(COMP_HI). Afterward, the gas phase refrigerant enters the condenser to deliver the
absorbed heat from cooling mediums to the surrounding where its enthalpy decreased
significantly from “6” to “7” accompanied by a small pressure drop. At the outlet of the
high pressure control valve (CV_HP), the pressure drops to an intermediate level and the
refrigerant, which is now in two-phase, flows into the receiver and the cycle is completed.
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Figure 2.2: P-H diagram of (subcritical) thermodynamic cycle associated with the booster
system shown in Fig. 2.1.

2.1.2 Modeling and Validation

The required dynamics that should be modeled are dictated by the modeling purpose. For
smart grid control intentions, three types of output variables are of great importance to be
predicted by the model: display cases temperatures, suction line pressures and electrical
power consumptions of the compressor racks. Estimation of the display cases tempera-
tures are needed to ensure the food temperature constraints. Suction line pressures affects
both the evaporation temperatures (accordingly the air temperatures) and the system COP.
Estimation of the electric power consumption is required for energy management objec-
tives. The gray-box model presented in Paper A [Shafiei et al., 2013c] only captures
the necessary dynamics which are essential for estimation of those three variables, and
some other dynamics needed for simulation of the overall cycle. The essential parts of the
model is presented in this section, and more details are found in Paper A [Shafiei et al.,
2013c].

An off-line identification is performed to estimate the constant parameters and coef-
ficients. The modeling error, computed by dividing the maximum absolute error over the
maximum amplitude of variation of the measured signal, is provided on each plot. We
use two sets of data:

a) Training set: This contains the measured input/output data required for the estima-
tions. The data are selected from an interval during the day time when no defrost
cycle takes place.
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b) Validation set: This contains the measured input/output data required for validating
the model after estimation. The data are selected in the same hours of interval as
the previous one but from a different working day.

A modular parameter estimation approach is introduced in which the parameters of each
subsystem are identified by providing related input-output pairs from measurement data.

Display Cases

In display cases, heat is transferred from foodstuffs to evaporator, Q̇ f oods/dc, and then
from evaporator to circulated refrigerant, Q̇e, also known as the cooling capacity. There
is however heat load from the environment, Q̇load , formulated as a variable disturbance.
Here, we consider the measured air temperature at the evaporator outlet as the display
case temperature, Tdc. Assuming a lumped temperature model, the following dynamical
equations are derived based on energy balances for the foregoing heat transfers.

MCp f oods
dTf oods

dt
= −Q̇ f oods/dc (2.1)

MCpdc
dTdc

dt
= Q̇load + Q̇ f oods/dc− Q̇e (2.2)

where MCp denotes the corresponding mass multiplied by the heat capacity. The energy
flows are

Q̇ f oods/dc =UA f oods/dc(Tf oods−Tdc), (2.3)

Q̇load =UAload(Tindoor −Tdc) (2.4)

and
Q̇e =UAe(Tdc−Te) (2.5)

where UA is the overall heat transfer coefficient, hoe and hie are enthalpies at the outlet
and inlet of the evaporators and are nonlinear functions of the evaporation temperature,
and Tindoor is the supermarket indoor temperature.

Identification results for the display case temperatures are illustrated in Fig. 2.3. For
a fair comparison, all temperature plots have the same scale. The value of the modeling
error provided on each plot shows the best fit for the 5th and the worst fit for the 7th
display case. The result for the LT display cases are given in Paper A [Shafiei et al.,
2013c].

Suction Manifold

The suction manifold is modeled by a dynamical equation by using the suction pressure
as the state variable and employing the mass balance as [Sarabia et al., 2009],

dPsuc

dt
=

ṁdc+ ṁdist −V̇compρsuc

Vsuc dρsuc/dPsuc
, (2.6)

where the compressor bank is treated as a big virtual compressor, ṁdc is the total mass
flow of the display cases, ṁdist is the disturbance mass flow including the mass flow from
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Figure 2.3: Estimation of display case temperatures. The 5th display case shows the best
fit and the worst fit is related to 7th display case, which is still a good estimation. (a)
Estimation using training data; (b) Estimation using validation data.

the freezing rooms and the bypass valve, and Vsuc is the volume of the suction manifold.

30



1 Modeling for Control and Simulations

V̇comp is the volume flow out of the suction manifold,

V̇comp = fcompηvolVd , (2.7)

where fcomp is the virtual compressor frequency (total capacity) of the high stage com-
pressor rack in percentage, Vd denotes the displacement volume, and ηvol is clearance
volumetric efficiency. The following equation is used for calculation of the electrical
power consumption:

Ẇcomp =
1

ηme
ṁre f (ho,comp−hi,comp), (2.8)

where ṁre f is the total mass flow into suction manifold, and ho,comp and hi,comp are the
enthalpies at the outlet and inlet of the compressor bank. These enthalpies are nonlin-
ear functions of the refrigerant pressure and temperature at the calculation point. The
constant ηme indicates overall mechanical/electrical efficiency considering mechanical
friction losses and electrical losses [Pérez-Segarra et al., 2005]. The enthalpy of refriger-
ant at the manifold inlet is bigger than that of the evaporator outlet (hi,comp > hoe) due to
disturbance mass flows.

Fig. 2.4 shows the result of identification practice for estimating the suction line pres-
sure and the power consumption of the higher stage compressor rack. The result for the
LT zone are given in Paper A [Shafiei et al., 2013c].
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Figure 2.4: Suction pressure and power consumption estimations. Variation of consump-
tion is mainly because of changing mass flow due to hysteresis and superheat control of
expansion valves. Mechanical-electrical efficiency is obtained as ηme = 0.65. (a) Estima-
tion using training data; (b) Estimation using validation data.

Even though the simple first order model introduced for suction manifold cannot gen-
erate the high frequency parts of the pressure signal, it can fairly estimate a low pass
filtered version of the suction pressure. The bottom plots show the estimation of the
power consumption.
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2.2 Indirect Load Control

In this sections the problem of energy cost minimization for supermarket refrigeration
systems is considered assuming that the forecast of disturbances like electricity price and
weather temperature are available. This problem is addressed in Papers B and C [Shafiei
et al., 2013e, Shafiei et al., 2013b]. The following aspects are the same in both of them:

• The refrigeration system is the booster system presented in Section 2.1.1.

• The cost optimizing control is placed in a supervisory level and the local controllers
are remained unchanged.

• The supervisory controller is an MPC.

• A heuristic algorithm is designed for set-point control of the suction pressures

• A linear estimation of the system COP is presented.

Due to the nonlinearities present in calculation of the power consumption, the problem
of cost minimization is in this case a nonconvex problem that is not computationally
efficient for real-time implementations. It is shown in Papers B and C [Shafiei et al.,
2013e, Shafiei et al., 2013b] that how a convex optimization problem can be formulated
in a supervisory control level under an MPC scheme. Contributions of the two papers are
different in terms of the type of the local controllers which are in operation. Consequently
two different MPC algorithms are used for the supervisory control design. In Paper B
[Shafiei et al., 2013e] the local controllers are linear (PI) in contrast to the nonlinear
(Hysteresis) local controllers considered in Paper C [Shafiei et al., 2013b].

Supervisory Control Strategy

Fig. 2.23 shows the control system structure consists of two control loops, the local con-
trollers are placed in an inner loop and the supervisory controller is located in the outer
loop. The local controllers are responsible for regulation of the pressures and temper-
atures to the required set-points, and the supervisory controller should decide optimal
set-points by which the total energy cost is minimized.

The compressors are responsible for regulating the suction pressure to a usually fixed
set-point. Due to the different timescales between the dynamics of the compressors and
the display case (The suction pressures can be regulated much faster than the display
cases temperatures), the static model (2.7) is used for the compressors.

In Paper B [Shafiei et al., 2013e] the display case temperatures are regulated by dis-
tributed PI controllers using pulse width modulation techniques for expansion valves
available in Danfoss products. Using linear local controllers gives the possibility of ap-
plying the supervisory MPC formulation proposed in [Balbis et al., 2006]. If nonlinear
hysteresis (thermostatic) local controllers were used, it makes the MPC formulation more
difficult. Paper C [Shafiei et al., 2013b] addresses this difficulty by proposing a new MPC
formulation for thermostatic control systems. The set-point control structure in this case
is shown in Fig. 2.6.
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Figure 2.5: A supervisory control structure for refrigeration systems.
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Intuitive Pressure Control

We have proposed the following heuristic algorithm for the pressure set-point control us-
ing the fact that the near optimal pressure value will be achieved by increasing the suction
pressure until one of the expansion valves is kept almost fully open, Paper B [Shafiei et al.,
2013e]. A sampling time equal to one minute for the set-point controller ensures that the
compressor speed is regulated to its steady-state value. Moreover, an upper limit Psuc,max
is put to keep a safety margin for pressure difference required for circulating the refrig-
erant. The lower limit Psuc,min is put due to the limitations of compressor total capacities,
and also the safety issues regarding the high pressure difference.

Because of the ON and OFF states of the valves in case of using thermostatic tem-
perature controllers, the algorithm has been slightly modified in Paper C [Shafiei et al.,
2013b] by applying moving average of the opening degrees for calculating the maximum
state between the valves.
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Algorithm 1 Calculation of the set-point value for the suction pressure
if Psuc < Psuc,max and max(ODi) < δmax then

Increase the pressure set-point
else if Psuc > Psuc,min and max(ODi) > δmin then

Decrease the pressure set-point
else

Keep the previous set-point

Supervisory MPC

Here, the control objective is to minimize the operating cost. The economic objective
function is achieved by multiplication of the real-time electricity price ep(t) by the power
consumption Ẇc,tot at given time t. So, the energy cost, Jec is computed over the specified
time interval [T0 TN] as

Jec = ∫

TN

T0
epẆc,totdt. (2.9)

Replacement of (2.8) for power calculation in (2.9) results in a nonconvex objective
function (The details are given in Paper B [Shafiei et al., 2013e]). The nonconexity can
be avoided by recovering the power calculation from the COP definition. The total COP
is defined as ratio of the total cooling capacity over the total power consumption of the
compressors.

COP =
Q̇e,tot

Ẇc,tot
(2.10)

The cost function (2.9) is rewritten using (2.10) as

Jec =
N−1

∑
k=0

∥ep
Q̇e,tot

COP
∥

2

2
, (2.11)

where the COP calculation based on the mass flow and thermodynamic states is given

in Paper B [Shafiei et al., 2013e], and Q̇e,tot =
m
∑
i=1

Q̇e,i with m indicating the number of

cooling units. As shown in Fig. 2.7a, the COP is linearly estimated from the outdoor
temperature. Fig. 2.7b shows the COP prediction for the next horizon based on the linear
fit estimation obtained from the previous 24 hours of the historical data, and the prediction
of the outdoor temperature for the next 24 hours. Since the pressure may change during
the operation and also the outdoor temperature varies during the day, the linear fit is
updated in each time step to avoid the significant bias in predictions.

The temperature dynamics (2.1)-(2.4) for each display case can be expressed by the
following linear discrete-time state-space equation:

⎧⎪⎪
⎨
⎪⎪⎩

x[k+1] = Ax[k]+B1u[k]+B2d[k]
y[k] =Cx[k]

(2.12)

with the states x = [Tf oods Tcr]
T

, the input u = Q̇e, and the disturbance d = Tindoor. The
food temperature in Paper C [Shafiei et al., 2013b] is estimated using a reduced order
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Figure 2.7: COP estimation and prediction. (a): Estimation of the system COP as a linear
function of the outdoor temperature. (b): Prediction of the system COP using the obtained
linear estimation and prediction of the outdoor temperature.

linear observer and is subject to the following constraint:

Tmin−ε∆Tf oods ≤ Tf oods ≤ Tmax+ε∆Tf oods,
ε ≥ 0, (2.13)

where ε is a slack variable used to soften the constraint and ensure the feasibility of
soliving the optimization problem. The violations from temperature limits are penalized
by adding the term ρε ε to the objective function. ∆Tf oods and ρε should be defined such
that the violation occurs rarely. The input is also constrained as

0 ≤ u ≤ Q̇e,max. (2.14)

Linear local controllers — In the case where linear local controllers are placed, the
MPC formulation proposed in [Balbis et al., 2006] can be applied which results in the
following optimization problem. The state-space equation in (2.15) includes both the
system and local controller dynamics where r is the temperature set-point. The derivation
of this equation is given in Paper B [Shafiei et al., 2013e].

minimize
r,ε

Jec+J∆u+ρε ε

sub ject to
⎧⎪⎪
⎨
⎪⎪⎩

Xs[k+1] = AXs[k]+B1r[k]+B2d[k]
Ys[k] =CXs[k]+Dr[k]

Tmin−ε∆Tf oods ≤ Tf oods ≤ Tmax+ε∆Tf oods
ε ≥ 0
0 ≤ u ≤ 1

, (2.15)

with

J∆u =
N−1

∑
k=1

∥R∆u (r[k]− r[k−1])∥2
2 . (2.16)
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where R∆u is a diagonal matrix of tuning weights. The above objective function penalizes
the rate of change of the set-point to avoid the oscillatory behavior in control commands.
In this control design the input is the opening degree of the expansion valve u−OD as-
suming

Q̇e = βkOD, (2.17)

where βk is a time varying parameter updated at each time instant when the next move
for MPC is calculated. The power consumption resulted from applying the MPC scheme
using (2.15) is depicted in Fig. 2.9. An cost reduction of 32% is achieved compared with
a low-energy simple scenario where the temperature set-points are fixed to highest levels
(only 0.5 ○C below the maximum limits).
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Figure 2.8: Power consumptions resulted from applying economic MPC and a low-energy
operation.

Thermostatic local controllers — If thermostatic local controllers are used, the MPC
scheme presented in Paper B [Shafiei et al., 2013e] cannot be applied due the nonlinearity
imposed by the hysteresis behavior of the local control system. Instead, we have proposed
a new MPC algorithm in Paper C [Shafiei et al., 2013b] which is provided in Algorithm
2. At each MPC trial the optimal cooling capacity u = Q̇e is calculated. Then the linear
dynamics (2.12) is used to predict the future display case temperature at the next time in-
stant (x2[k+1]). Finally this temperature is applied as the set-point Tsp to the thermostatic

controllers. Note that x = [x̂1 x2]
T

where x̂1 is the estimation of the food temperature.
Fig. 2.9 shows the power consumption after applying the designed MPC together with

Algorithm 1. An economic saving of 34% is achieved that is very close to the achievement
when using the supervisory control in Paper B [Shafiei et al., 2013e].
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Algorithm 2 Supervisory MPC algorithm for set-point control with economic objective.
Prediction

Load

COP and Toutdoor from previous horizon
ep and Toutdoor predictions

Compute

COP prediction based on its previous horizon values and Toutdoor

Solve
minimize

u,ε
Jec+J∆u+ρε ε (over the horizon)

subject to x[k+1] = Adx[k]+Bd,1u[k]+Bd,2d[k]
x̂1 ≥ Tmin−ε∆Tf oods
x̂1 ≤ Tmax+ε∆Tf oods
ε ≥ 0
0 ≤ u ≤ Q̇e,max

Update

u[k] = first move in obtained u

x[k+1] = Adx[k]+Bd,1u[k]+Bd,2d[k]

Tsp = x2[k+1] where x = [x̂1 x2]
T
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Figure 2.9: Power consumption after applying MPC (Algorithm 2) together with intuitive
suction pressure control (Algorithm 1).

2.3 Direct Load Control

In this contribution, the refrigeration system undertakes both upward and downward
power consumption management under the direct load control framework for a specific
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period of time in response to an activation signal. An independent service operator ag-
gregates a large number of loads for this purpose and sends the activation signals in ac-
cordance with the contingency conditions [Heffner et al., 2007]. During the activation
period, refrigeration systems should follow the power reference assigned by the aggrega-
tor which operates within a hierarchical structure shown in Fig. 2.10.

Market

DSO TSO

BRP

Aggregator

Consumer 1 Consumer n

Pr,1(t) Pr,n(t)
Ic,1 Ic,n

Figure 2.10: Hierarchical direct smart grid control layout. The higher level parties trade
the flexibility, in terms of the energy management, with the aggregators according to the
market conditions. The aggregators, on other hand, are in the two-way communication
with the energy consumers. They receive the consumer information Ic and send the power
reference signal Pr during the DR event.

This set-up enables the aggregator to offer flexibility, in terms of the energy man-
agement, to the higher level operators like TSO (Transmission System Operator), DSO
(Distribution System Operator) or BRP (Balance Responsible Party). The problem of
aggregator design, information flow and grid side strategies is outside the scope of this
work, but the general and specific relevances can for example be found in [Trangbaek
et al., 2011] and [Rahnama et al., 2014].

We have employed three different control strategy for the direct load control of super-
market refrigeration systems:

1) Decentralized control: This is a simple approach using decentralized P and PI con-
trollers for regulation of the power consumption by manipulating the temperature set-
points. The contribution has been presented in Paper D [Shafiei et al., 2013a].

2) Model predictive control: This method requires a high fidelity model of the refriger-
ation system specific for the system under control. The control performance in terms
of the power regulation is higher than the first method, but on the other hand the com-
plexity in terms of the real-life implementation is also increased due to the fact that
for each specific supermarket with a certain configuration, the dynamic model needs
to be obtained. Paper E [Shafiei et al., 2014] presents this method.
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3) Data-driven predictive control: This approach has been adopted to take the advantage
of having high performance using prediction of the system dynamics, and at the same
time to facilitate the real-life implementation by making the method generally appli-
cable for a broad range of supermarket refrigeration systems. This method has been
presented in Paper F [Shafiei et al., 2015].

2.3.1 Decentralized Control Approach

In Paper D [Shafiei et al., 2013a], we have proposed a simple but efficient supervisory
control structure including P and PI controllers that enable balancing services of super-
market refrigeration systems in the smart grid. The heuristic algorithm proposed in Paper
B [Shafiei et al., 2013e] for the pressure set-point control is replaced by a proportional
controller. Similar to the control strategy adopted in Paper B [Shafiei et al., 2013e], the su-
pervisory controller (which is now simply a PI) assigns set-points to the air temperatures
inside the cooling units. No model information is required for the control implementation.
The food temperatures should be constrained within the permissible limits. So we put a
saturation filter at the control output that restricts the air temperature and consequently
the food temperature. To handle integrator windup because of using the saturation filter,
a decentralized structure equipped with anti-windup features is designed. In contrast to
the MPC schemes, the model free controller cannot predict the future temperatures of
the air and of the foodstuffs. To conclude the food safety, the same limits for the food
temperatures should be considered for saturation limits applying to the air temperature.
This however limits the range of control effort, and consequently decreases the control
system flexibility in governing the power consumption. We have proposed an adaptive
saturation filter that can effectively remove this restriction as well as respecting the food
temperatures.

Practical considerations for facilitating industrial implementations are, first, we do
not use any model information in our control practice, and second, we do not replace the
existing local distributed controllers in the system.

Pressure Set-Point Control

Recalling from Section 2.2, Algorithm 1 is based on the optimality hypothesis that the
optimum suction pressure is achieved by increasing the suction pressure such that one
the expansion valves (corresponding to the most loaded cooling medium) needs to be
almost fully open. Here we apply the same optimality condition by designing a simple
proportional controller with saturation limits (to respect the pressure constraints). In order
to prevent a large proportional gain and consequently a large variation of the set-point,
the control command is considered as the change of the set-point,

∆Pre f =Kp(rOD−ODmax) (2.18)

where Kp is the proportional gain, OD is the vector of opening degree of the valves,
ODmax is the maximum value between the opening degrees, rOD = 1− ε is the reference
value that the mostly opened valve should follow. Note that rOD should be a little bit
smaller than 1 to ensure that only one valve is almost fully open at the same time thereby
ensuring the minimum cooling capacity required for maintaining the temperature limits.
The pressure set-point control structure is shown in Fig. 2.11.
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Figure 2.11: Control structure for set-point control of the suction pressure. The local
controllers use a very shorter sampling period (ts) than that of the supervisory P controller
(Ts). More details are given in Remark 2 in Paper D [Shafiei et al., 2013a].

Temperature Set-Point Control

The electrical power consumption of the compressors is regulated by changing the tem-
perature set-points. This approach is appropriate for the situation where the power refer-
ence ramps up/down from the baseline with an slow rate. Temperature set-point control
structure is presented in Fig. 2.12. The temperature constraints are applied by putting the
saturation filters with the following saturation bounds at the output of the ith PI controller.

U i = (T i−T0,i), (2.19)

and
U i = (T i−T0,i), (2.20)

where T and T are respectively the upper and lower limits of the food temperature, and T0
is the fixed set-point for normal operation (that is when the system is not under the direct
control feedback loop).

Using the decentralized structure we can add an anti-windup block to each PI con-
troller. This might not be possible to apply in the same way when a centralized PI con-
troller (with distributed gains) is used. The input error feedbacks es,i in Fig. 2.12 are
used for avoiding the integrator windups [Åström and Hägglund, 2006]. A sample PI unit
including the anti-windup block is shown in Fig. 2.13.

Adaptive Saturation Filter

Putting the same temperature limits as required for the foods on the air temperatures in-
side the cooling units is quite restrictive. The air temperature can go beyond the limits for
some time before the food temperature can reach the limit point. The adaptive saturation
filter designed in Paper D [Shafiei et al., 2013a] provides more freedom to change the air
temperature while ensuring the food temperature to be within the limits. In the proposed
filter, saturation limits are adaptively updated based on the current value of the food tem-
perature. Each PI unit in the control structure of Fig. 7.3 should be updated to the one
shown in Fig. 2.14.

The adaptive algorithm for updating the saturation limits is described by

umax,i(t) =U i+Ku,i(T i−Tf oods,i(t)), (2.21)
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Figure 2.12: Control structure for set-point control of the air temperatures in cooling sites.
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Figure 2.13: PI controller with anti-windup.
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Figure 2.14: PI controller with anti-windup and adaptive saturation filter.

and
umin,i(t) =U i+Kl,i(T i−Tf oods,i(t)), (2.22)

where Ku,i and Kl,i are constant parameters defined as saturation limit gains. The right-
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hand side of the above equations are the adaptive terms added to (2.19) and (2.20). Anal-
yses about the filter tuning and functioning are given in Paper D [Shafiei et al., 2013a].

Power Regulation Service

In a period of 24 hours, the power reference scenario is such that the aggregator demands
the base-line power consumption until 5:00 AM. Following that, it demands an increase
up to 20% over the base-line for 5:00-15:00, and a reduction down to 20% below the
base-line for 15:00-20:00. Finally the reference gets back to the base-line from 20:00-
24:00 to be ready for demand response for the next day. The power regulation results are
shown in Fig. 2.15. Three cases of using different controllers are illustrated for the sake of
comparison, one using a centralized PI, another using the decentralized PIs including anti-
windups, and the last one using the decentralized PIs equipped with adaptive saturation
filters. All three methods perform the same when increasing the power consumption
(5:00-15:00), but the last method outperforms the other two for the decreasing period
(15:00-20:00). The reason is that for this power reduction period the air temperatures
reach the limit values that can be effectively handled by the adaptive saturation filter. The
centralized controller cannot govern the power consumption back to the baseline after
20:00 h because of the integrator windup.
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Figure 2.15: Electrical power consumption of the compressor racks in case of centralized
control (dotted), decentralized control (dashed), and decentralized control with adaptive
saturation filter (solid).
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2.3.2 Model Predictive Control Approach

It is shown in Paper E [Shafiei et al., 2014] that by virtue of the faster dynamics of the
flow change inside the evaporator comparing to the thermal dynamics, it is possible to
describe the cooling capacity by static nonlinearity in terms of the valve opening degree
and the evaporation temperature. It is simply achieved by choosing an appropriate sam-
pling time for the MPC. At this point, the model would look like a Hammerstein model.
Then, by taking the cooling capacity as fictitious manipulated variable, a model predictive
control is formulated using a novel incorporation of the evaporation temperature into the
optimization problem. It leads to 22% higher system coefficient of performance (COP).

Problem Statement

Here we would like to design a control algorithm for large-scale refrigeration systems
such that their power consumptions would follow the references assigned by an aggrega-
tor while their coefficient of performances being optimized as a secondary objective. The
system COP is highly influenced by the evaporation temperature (see Paper E [Shafiei
et al., 2014] for detailed explanations) and its maximum value can be achieved by maxi-
mizing the evaporation temperature.

The objective function for a power following optimization problem is defined as:

JPow =
N

∑
k=1

∥Powc[k]−Powre f [k]∥2
2, (2.23)

where Powre f is the power reference, k denotes the current time instant, and N is the
prediction horizon in terms of number of time steps (samples). Manipulated variables
are the opening degrees of the expansion valves (OD) and the evaporation temperature
set-point (T̂ ). As previously discussed in Section 2.2 the power consumption can be
calculated from (2.10) as

Powc =
Q̇e,tot

COP
. (2.24)

Due to the nonlinearities associated with the COP calculation, replacing (2.24) into
(2.23) give a nonconvex cost function. In the sequel it is shown that how a convex opti-
mization problem can be formulated by (i) introducing a fictitious manipulated variable;
(ii) novel incorporation of Te into the MPC scheme; and (iii) choosing appropriate sam-
pling time and prediction horizon.

Problem Convexification using Synthetic Input

Considering u = Q̇e as a fictitious manipulated variable, the temperature dynamics can be
described linear system (2.12). The cooling capacity Q̇e is given by

Q̇e =UAe(Tair −Te), (2.25)

where UA is the overall heat transfer coefficient, Te is the evaporation temperature, and
Tindoor is the supermarket indoor temperature. The heat transfer coefficient between the
refrigerant and the display case temperature, UAe, is described as a linear function of the
mass of the liquefied refrigerant in the evaporator [Sarabia et al., 2009],

UAe = kmMr, (2.26)
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where km is a constant parameter. The refrigerant mass, 0 ≤ Mr ≤ Mr,max, is subject to the
following dynamic [Petersen et al., 2012],

dMr

dt
= ṁr,in− ṁr,out , (2.27)

where ṁr,in and ṁr,out are the mass flow rate of refrigerant into and out of the evaporator,
respectively. The entering mass flow is determined by the opening degree of the expansion
valve and is described by the following equation:

ṁr,in =OD KvA
√

ρsuc(Prec−Pe) (2.28)

where OD is the opening degree of the valve with a value between 0 (closed) to 1 (fully
opened), Prec and Pe are receiver and suction manifold (evaporating) pressures, ρsuc is the
density of the circulating refrigerant, and KvA denotes a constant characterizing the valve.
The leaving mass flow is given by

ṁr,out =
Q̇e

∆hlg
(2.29)

where ∆hlg is the specific latent heat of the refrigerant in the evaporator, which is a non-
linear function of the suction pressure (or equivalently evaporation temperature). When
the mass of refrigerant in the evaporator reaches its maximum value (Mr,max), the entering
mass flow is equal to the leaving one. The input constraints are

0 ≤ u ≤ umax, (2.30)

with umax =UAe,max(Tair −Te) where UAe,max = kmMr,max. Now the convex cost function
can be formulated using (2.24) and sum of the fictitious control inputs as

JPow =
N

∑
k=1

∥
∑

m
i=1 ui[k]
COP

−Powre f [k]∥
2

2
. (2.31)

Novel Incorporation of Te into MPC Scheme

Note that evaporation temperature (T̂e) of the MT section is different from of the LT
section, and remind the fact that several cooling units at each section have the same cor-
responding evaporation temperature. The COP can be preserved at the highest point by
maintaining Te as high as possible up to the point that enough cooling capacity is provided
to cold reservoirs to preserve the required temperatures. This can be achieved by adding
the following cost to the objective function.

JTe =
N

∑
k=1

∥T̂e[k]−Te,max∥
2
2 (2.32)

where Te,max is the maximum value that Te is allowed to rise to. Thus the MPC pushes
the evaporation temperature up to the highest value. It should also be constrained as
T̂e ≤ Te,max. Moreover, in order to make sure that the resulted cooling capacity from the
optimization problem is coincide with the evaporation temperature, the upper limit of the
input constraint (2.30) is modified to

umax =UAe,max(x2− T̂e) (2.33)

with x2 = Tair.
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MPC Algorithm

In the proposed MPC provided in Algorithm 3 the objective function consists of the power
tracking cost (2.31), cost of the input change (2.17), performance objective (2.32) and
the term for penalizing the slack variable ε . The outcomes of solving the optimization
problem are the fictitious inputs u and the evaporation temperature set-point T̂e. The
latter can be applied as the set-point control signal, but u is used in (2.34) to calculate the
opening degrees OD to be applied as the control inputs to the expansion valves.

OD =Ke(T̂e)u, (2.34)

where Ke(T̂e) = [∆hlgKvA
√

ρsuc(Prec−Pe)]
−1

is updated at each sample time k (note that
Pe is a nonlinear function of Te).

Algorithm 3 MPC implementation
Prediction

Load

Powre f from higher level aggregator

Compute

COP and keep it fixed all over the horizon

Solve
min
u,T̂e,ε

Jpow+WuJ∆u+WeJTe +Wr∥ε∥2
2

subject to x[k+1] =Ax[k]+Bu[k]+Bdd[k]
x1,min−ε ≤ x1[k] ≤ x1,max+ε

ε ≥ 0
0 ≤ u[k] ≤UAe,max(x2− T̂e)

T̂e ≤ Te,max

Update

u[k] = first move in obtained u
T̂e[k] = first move in obtained T̂e

OD[k] =Ke(T̂e)u[k]
Control inputs

OD[k], T̂e[k]

A simulation experiment is performed which illustrates the capability of the proposed
control algorithm in performing the direct power control in case of significant changes in
the power reference when undertaking upward and downward regulation services. The
result is shown in Fig. 2.16. The power reference is increased 75% at 12 PM up to 13
PM for downward regulation services. For upward regulation, the refrigeration system
needs to store thermal energy sometime ahead of the service start time. Consequently, at
15 PM the power reference is increased 12.5% for energy storage, and then is dropped
significantly (87.5%) at 18 PM up to 19 PM.
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Figure 2.16: Power reference following for energy balancing services.

2.3.3 Data-Driven Predictive Control Approach

So far we have presented two different contributions toward direct load control of refrig-
eration systems. We saw that the decentralized approach proposed in Paper D [Shafiei
et al., 2013a] is easy to be implemented but has some difficulties in following the quick
and significant load changes. On the contrary, the MPC approach presented in Paper
E [Shafiei et al., 2014] shows a superior performance but it may lead to significant perfor-
mance degradation in case of model mismatches. Another issue is that such a model based
approach is not generally applicable to different supermarket systems and, consequently,
a comprehensive modeling effort should be accomplished for each specific refrigeration
system before control system design.

A variation of data-driven control approach using the subspace method presented in
Section 1.2.4 has been adopted in Paper F [Shafiei et al., 2015] for predictive direct load
control design for refrigeration systems. It improves the load following performance com-
paring to Paper D [Shafiei et al., 2013a] and, at the same time, overcomes the mentioned
disadvantages associated with the model based design proposed in Paper E [Shafiei et al.,
2014].

Moreover, an open-loop experiment based on uncorrelated random input sequences is
presented. A new method based on tuning the average duty cycle of the input signals is
proposed. As a practical consideration, the control design does not rely on the mass flow
measurements which is of great interest because these costly measurements are usually
not available in commercial refrigeration applications. But, on the other hand, a flow
measurement could enhance the performance of the suction pressure estimation. As an
alternative, a feedforward inclusion of the condensation pressure into the SPC formulation
is suggested in oder to regain similar performance with a cheaper measurement.

The nonlinear simulation tool [SRSim, 2013] — created based on th model developed
in [?] — is employed for verification of the proposed approach.
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For the rest of this section where we are presenting the data-driven approach, the
specific notation of (x1, ⋯, xn) = [xT

1 ⋯ xT
n ]

T
is used.

Design of Experiment

In order to make the approach generic, we need to design a data collection experiment
which is intuitive and applicable to various supermarket refrigeration systems. Here we
explain the design of excitation signals required for identification practice and propose a
new method for tuning those signals.

The input signal should be persistently exciting with an appropriate order. For this
purpose, pseudo-random binary signals (PRBSs) are usually applied for identification
of MIMO systems. There are two degrees of freedom for designing such input signals,
i.e., the bandwidth and the amplitude. The data required for tuning the input signal is
obtained from the regular thermostatic control of the cooling units. Fig. 2.17 shows an
example of variation of the air and the food temperatures due to applying the relay feed-
back test or thermostatic control effort.
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Figure 2.17: Periodic temperature change obtained from applying the relay feedback to
the expansion valve. The time spans tu and tu correspond to the ON and OFF cycle of the
expansion device, respectively.

Bandwidth of the input sequences — In order for food temperatures to vary as much
as possible within the constrained range, bandwidth of the input frequency should be
limited. The low frequency signal is realized by changing the switching probability up
to αbw times of the normalized Nyquist frequency, where 0 < αbw < 1. The details can be
found in [Soderstrom and Stoica, 1989, Ch. 5, Example 5.11].

In the relay feedback test, the frequency of the air temperature variation is the same
as the input signal and its amplitude varies within the full range, but the food temperature
amplitude is attenuated with the gain of Gr = A f /Aa at the frequency of ωr = 2π/Tr with
Tr = tu+tu as depicted in Fig. 2.17. Having ωr and Gr known, the following low pass filter
transfer function from the air to the food temperature is computed

Ha f =
1

τs+1
. (2.35)
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The filtering effect from the air to the food temperature has a dominant pole compar-
ing to the envisaged transfer function from the input signal to the air temperature. The
attenuation gain below 5%, i.e., ∣Ha f ∣ < 0.05, causes the variation of food temperature to
be within the range of the measurement noise. Let the frequency corresponding to this
gain be denoted by ωbw. Thus, the bandwidth of the input sequences should be limited by

αbw =ωbw/π (2.36)

Magnitude of the input sequences — For constrained and/or ill-conditioned systems,
the dominant approach to respect the constraints is to limit the amplitude of the excitation
signal by the so called rotated input method [Darby and Nikolaou, 2014]. Yet larger input
amplitudes are more favorable to have a better signal to noise ratio. Here, we suggest
to tune the average duty cycle of the PRBS. It is much more intuitive and simpler than
the rotated input approach, [Conner and Seborg, 2004], as well as providing the largest
possible amplitudes for input signals.

The difference between the time span values tu and tu in Fig. 2.17 is because of the dif-
ference in the gain directionality. In order to excite all directions with the same strength,
the average duty cycle of the PRBS, D, is proposed to be designed as

D =
tu

tu+ tu
(2.37)

An example of the PRBS applied to the expansion valve is shown in Fig. 2.18a, where
the first 1000 sequences of the signal used to excite the 6th MT cooling unit dynamics are
illustrated. The temperature of the foodstuff in that unit is shown in Fig. 2.18b.
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Figure 2.18: Identification experiment: (a) The firs 1000 sequences of the PRBS applied
to the expansion valve of the 6th MT cold reservoir; (b) Corresponding food temperature.

Subspace Identification

The deterministic part of (1.6) can be estimated by the following linear predictor:

Ŷf = LwWp+LuU f . (2.38)
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Under some conditions (stated in Paper F [Shafiei et al., 2015]), the subspaces ma-
trices can be consistently identified as the arguments of the following least squares prob-
lem, [Knudsen, 2001]:

min
Lw,Lu

∥Yf −(Lw Lu)(
Wp
U f

)∥

2

F
. (2.39)

where ∥ ⋅∥F stands for the Frobenius norm. An efficient and robust method for numerical
implementation of the above problem is QR-decomposition of (Wp, U f , Yf ) as:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Wp
U f
Yf

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

R11 0 0
R21 R22 0
R31 R32 R33

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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⎢
⎢
⎢
⎢
⎣

QT
1

QT
2

QT
3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (2.40)

in which the subspace matrices L = [Lw Lu] can be calculated as

L = [R31 R32][
R11 0
R21 R22

]

†

(2.41)

where † represents the Moore-Penrose pseudo-inverse. The subspace matrices are identi-
fied as:

Lw = L(p,q), p = 1, . . . , im and q = 1, . . . , i(l+m) (2.42)
Lu = L(p,k), p = 1, . . . , im and k = i(l+m)+1, . . . , i(2l+m). (2.43)

The future outputs of the plant are predicted by (2.38) using the subspace matrices and
future moves in the control signals. This predictor can conveniently be utilized for predic-
tive control formulation without identifying a state-space model [Favoreel et al., 1998].

The controlled outputs are the electrical power consumption of the compressor rack
and the suction pressure. The measured outputs are the air and the food temperatures.
The MT and LT compressor capacities and the opening degree of the electronic expan-
sion valves are chosen as the vectors of manipulated input variables for the specific case
considered in this work. Identification results for the food temperature of the 5th MT
cooling unit and the suction pressure is shown in Fig. 2.19. More results and discussions
are given in Paper F [Shafiei et al., 2015]. The goodness of fit between the nonlinear
simulation model and the linear data-driven subspace predictor is calculated by

fit = (1−
∥y− ŷ∥2

∥y− ȳ∥2
)×100% (2.44)

where y is the measured output, ŷ is the one-step-ahead predicted output, and ȳ denotes
the average of the measured output data [Ljung, 1987].

2.3.4 Subspace Predictive Control

In subspace predictive control, the following objective function should be minimized at
each time instant for the receding horizon implementation:

J =
N f

∑
k=1

(rk+1− ŷk+1)
T Qk(rk+1− ŷk+1)+

Nc

∑
k=1

∆uT
k Rk∆uk, (2.45)
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Figure 2.19: Model validation: (a) Food temperature in the 5th MT cold reservoir; (b)
Suction pressure of the MT section.

where Qk and Rk are weighting matrices, r is the reference signal, N f and Nc are pre-
diction and control horizon, respectively, and ŷk+n, with n = 1, . . . ,N f , is the n-step-
ahead predicted output at time instant k. Defining ŷ f = (ŷk+1, ŷk+2, ⋯, ŷk+N f ) and
u f = (uk+1, uk+2, ⋯, uk+Nc), the above objective can be rewritten in the matrix form
as:

J = (r f − ŷ f )
T Q(r f − ŷ f )+∆uT

f R∆u f , (2.46)

where r f is defined in the same way as ŷ f , and Q ∈RN f l×N f l and R ∈RNcm×Ncm are block
diagonal matrices constructed from Qk, for k = 1, . . . ,N f , and Rk, for k = 1, . . . ,Nc, respec-
tively.
The predicted output is obtained from (2.38) as:

ŷ f = lwwp+ luu f , (2.47)

where wp = (yk−Np+1, ⋯, yk, uk−Np+1, ⋯, uk) is the vector of past input and output data
with the past horizon Np, and subspace matrices are

lw = Lw(p,q), p = 1, . . . ,mN f , and q = 1, . . . ,(l+m)Np, and (2.48)
lu = Lu(p,k), p = 1, . . . ,mN f , and k = 1, . . . , lNc. (2.49)

Incorporating the input and output constraints, SPC algorithm can be implemented
by solving the following quadratic programming (QP) problem in a receding horizon
manner. The derivation of the subspace dynamics in terms of the incremental input ∆u f
is presented in Paper F [Shafiei et al., 2015].

min
∆u f

(r f − ŷ f ,c)
T Q(r f − ŷ f ,c)+∆uT

f R∆u f

subject to ŷ f = yk +Λlw∆wp+Λlu∆u f
(umin−uk) ≤Λ∆u f ≤ (umax−uk)

ymin ≤ ŷ f ≤ ymax

(2.50)
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where ŷ f ,c is the vector of controlled outputs included in ŷ f , (umin −uk) and (umax −uk)

are expanded column vectors of (umin−uk) and (umax −uk) with umin and umax being the
input magnitude constraints, and finally ymin and ymax are expanded column vectors of the
measured output constraints. The reference signal r f consists of power and pressure set-
point which tries to keep the pressure close the maximum possible level. Λ is a coefficient
matrix including zero and identity block matrices given by

Λ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0 ⋯ 0
I I ⋯ 0
⋮ ⋮ ⋱ ⋮

I I ⋯ I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.51)

2.3.5 Direct Load Control and SPC

A realistic balancing service scenario is intended to investigate the ability of the proposed
advanced control strategy for direct load control of the large scale refrigeration system.
The two other methods presented in Paper D [Shafiei et al., 2013a] and Paper E [Shafiei
et al., 2014] are also simulated for the sake comparison with the results achieved in this
work. In each case, the control method is applied to the nonlinear simulation model tool
in [SRSim, 2013].

Fig. 2.20 shows a period of 1300 min operation including the normal operation, a
downward regulation service, and an upward regulation service. The default is the normal
operation, where the food temperatures are kept at the middle of the range that provides a
symmetric flexibility in terms of preparation for the regulation in both directions. At time
300 min, the imbalance contingency takes place which demands a downward regulation
by raising the power to 6 kW in 5 minutes; keeping it regulated for 60 minutes; and then
moving it back to the baseline in 5 minutes.
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Figure 2.20: Total electrical power consumption of the compressor racks. The period
includes two DR events: downward regulation service from 300 to 370 minutes, and up-
ward regulation service from 900 to 970 minutes. (a) Simulation results after applying the
data-driven SPC method proposed in Paper F [Shafiei et al., 2015]; (b) simulation using
the decentralized supervisory control method presented in Paper D [Shafiei et al., 2013a];
(a) simulation using the MPC method presented in in Paper E [Shafiei et al., 2014]; (d)
comparing the three methods in terms of the load following performance where Pdec,
Pmpc and Pspc denote the power consumptions after applying the decentralized control, the
MPC and the SPC, respectively. The two DR event periods are zoomed for a better vis-
ibility. The decentralized method cannot keep the power regulated during the downward
regulation service. The proposed SPC method shows a superior tracking performance
comparing to the other two methods.

2.4 Control of Hybrid Thermal Systems

So far we have presented different control methods for demand-side management of su-
permarket refrigeration systems under the two indirect and direct load control schemes.
Here in the last contribution we present the energy management of hybrid refrigeration
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systems for transport applications.
In Paper G [Shafiei and Alleyne, 2015], we have assumed two basic states of the

vehicle: (a) driving at some nominal speed, similar to a highway or major road, and (b)
driving at a very low, or zero, speed akin to being in traffic or stopped to deliver goods.
The TES unit is utilized depending on which driving state the vehicle is in. An optimal
charge scheduling is proposed to distribute the charging demand across the drive cycle
using load predictions achieved by predicting both the anticipated driving profile and the
thermal load from the ambient temperature. The driving profile can be easily obtained
nowadays from GPS references and cloud-based traffic predictions. Similarly, ambient
temperatures are accessible at any location along a route via cellular communication.
Fig. 2.21 shows the external information utilized in the thermal load prediction.

Higher order nonlinear 
simulation

Decentralized control 
loops and MPC

Optimal charge 
scheduler

X` = AX + BU
Y = CX + DU

P
PI
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Y = CX + DU

Traffic

Route
Ambient 

Conditions

Figure 2.21: Driving profile and environmental conditions are used for thermal load pre-
dictions during the heavy traffic periods. Delivery paths and GPS traffic data are used for
prediction of the driving profile.

From control point of view there are similarities between the method presented in this
contribution and those presented in previous sections for demand-side management. The
similarities might be recognized as using MPC and lumped parameter gray-box model for
control design and taking advantage of the disturbance preview for energy management.
The specific transport refrigeration problem considered in this study is differentiated from
the building energy management challenge in two aspects: (i) the disturbance profile
contains more rapid transients due to the nature of the delivery process; and (ii) building
control systems typically focus on economic cost plus performance optimization while
the focus here is on an energy plus performance optimization. Economic cost is less
relevant than buildings because there is no dynamic pricing of the energy asset (vehicle
fuel) as there is for grid electricity for buildings.
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2.4.1 Parallel Hybrid VCC System

Fig. 2.22 shows a VCC system that includes a TES unit operating in a parallel configura-
tion. The VCC operation has been already explained in Section 1.1.2, here we describe
the TES operation in the system.

The TES unit is in parallel with the evaporation unit. In our configuration, heat will
be taken from the PCM by the refrigerant. This will lead to a solidification of the PCM in
the TES and is considered the charging mode. The TES charging operation is controlled
by the expansion valve (EV2). Similar to the evaporator, the TES unit is also equipped
with a fan to circulate air from the container across the unit. As the solid fraction of PCM
is reduced, the amount of latent heat capacity remaining is being reduced. Consequently,
when the TES fan is running, the unit is discharging. The parallel VCS system in Fig. 2.22
has 4 modes of active operation as detailed in [Fasl, 2013]: (i) using the refrigeration
system only, (ii) charging of the TES either with or without active refrigeration, (iii)
using the TES only, and (iv) both the refrigeration and TES systems active, termed boost.
In the current work, we consider a subset of the first three modes to limit complexity and
demonstrate potential benefits.
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Figure 2.22: A typical parallel hybrid configuration for a VCC system.

2.4.2 Problem Statement and Control Strategy

Given the flexibility of the hybrid transport VCC system, how best is to use this capabil-
ity? We seek to maintain a given temperature within the container and do so as efficiently
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as possible. However, there are now multiple modes in which to achieve this objective
and choosing the mode of operation is the first part of the overall problem.

Once the mode of operation is chosen, the system focus becomes operational effi-
ciency. The controller objectives include both maintaining container temperature as well
as providing sufficient cooling to charge the TES if that is the current mode. Assuming
the primary energy consumer is the compressor, the goals can be expressed as achiev-
ing temperature setpoints, providing charging if necessary, and doing so at the maximum
efficiency of the compressor.

This two-tiered control problem of mode selection followed by operational efficiency
is best met by a two-tiered controller design. First, a logic based algorithm must decide
what mode of operation is best. Second, a continuously operating algorithm must achieve
specific setpoints while minimizing energy consumption. For this purpose a two stage
controller is developed to match the dual stage objectives.

The three modes of operation under consideration are defined, based on TES activity,
as: normal, charging and discharging. Table 2.1 presents the control actions for each
mode. In the normal operation, the container temperature is regulated by controlling the
compressor speed in a standard refrigeration cycle while the evaporator fan is set to its
maximum value. In the charging mode, the compressor regulates the charging demand
while the evaporator fan regulates the container temperature. In the discharging mode,
the container temperature is regulated by controlling the TES fan.

Table 2.1: Three different modes of operation considered.

Mode Evap. valve TES valve Evap. fan TES fan compressor
normal PI closed on off PI

charging PI PI P off MPC
discharging closed closed off P off

In order to deal with the two-tiered controller approach outlined in Section 2.2, a
cascade control loop is proposed in Fig. 2.23. An outer optimization loop is responsible
for selecting the desired charge to hold in the TES, and whether or not the TES is active,
based on the current and predicted thermal loads. An inner control loop includes an
MPC to control the compressor for maximizing efficiency as well as proportional (P)
and proportional-integral (PI) controllers for the other components. The PI controllers
of expansion valves regulate the required superheat temperatures, and the P controllers
of the evaporator and TES fans regulate the container temperature in the charging and
discharging mode. In the normal mode, compressor speed is controlled by a simple PI
controller to regulate the container temperature while the evaporator fan is turned on.

2.4.3 Gray-Box Modeling

The highly nonlinear and high order model obtained in [Fasl, 2013, Fasl et al., 2014]
using a first principles method makes the optimization problem — to be formulated for
implementation of the control strategy in Fig. 2.23 — nonlinear and non-convex. As
such, while it is suitable for system simulation and controller evaluation, it is not suitable
for on-line decision making. In Paper G [Shafiei and Alleyne, 2015] a simpler gray-box
model is presented that captures only the essential dynamics of the refrigeration and TES
system thereby allowing a convex optimization formulation for MPC to be implemented.
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Figure 2.23: Control strategy for handling operating modes and decentralized local con-
trol loops, and inclusion of optimal control scheme.

Here we describe the general relevance and skip the details of the mathematical formulas.
Some of the results are also presented in this section.

Parameters of the gray-box model are estimated and the model is validated against
a more complicated nonlinear MATLAB/Simulink model presented in [Fasl, 2013, Fasl
et al., 2014].

Container Model

The dynamics of the container being cooled by the hybrid VCS/TES are described using
the energy balance principle and lumped parameter modeling similar to the approach
taken in Paper A [Shafiei et al., 2013c]. A linear approximation method is proposed to
estimate the UAe value needed for calculation of the cooling capacity in (6.5).

To identify the parameters associated with container dynamics, a simulation experi-
ment is performed based on the relay-based thermostatic control of the container temper-
ature with compressor speed as an input. The result is shown in Fig. 2.24.
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Figure 2.24: Estimation of the container temperature governed by only VCC (Q̇s = 0): (a)
identification; (b) model validation.

56



4 Control of Hybrid Thermal Systems

2.4.4 TES Model

The full TES model presented in [Fasl, 2013] uses the fixed grid method [Dincer and
Rosen, 2010] to solve the heat transfer and phase change problem where the enthalpy is
used for the thermodynamic state variable. The following assumptions have been made
to avoid a very high order model while capturing the relevant dynamics within the PCM.

Assumption 1: Heat is transferred in the radial direction through the fins and in the azimuthal
direction between the PCM and the fin in each node.

Assumption 2: The PCM has lumped thermodynamic properties in single phase regions.

Assumption 3: The pressure in the PCM is constant over time, space and phase.

Assumption 4: The density in the PCM is constant over time and space but can vary through phase
change.

Assumption 5: The fin nodes are assumed to have no heat storage capacity.

It is shown in paper G [Shafiei and Alleyne, 2015] that the PCM solid fraction within
the TES can be estimated in two ways: (a) in terms of the cooling power applied by the
VCC system when the TES is charging, and (b) in terms of the cooling capacity applied
by the TES when it is discharging. When charging, it is assumed that the solid fraction is
linearly correlated with the cooling energy received from the VCC, i.e.,

ds f

dt
=KsQ̇rs, (2.52)

where s f is the PCM solid fraction, Ks is a constant, and Q̇rs is the heat transfered from
refrigerant to the storage. Similar to the charging mode, when the storage is discharging,
the dynamic behavior of the PCM solid fraction is given by a simple integrator

ds f

dt
= −KsQ̇s (2.53)

where Q̇s is the cooling capacity applied by the thermal storage unit when activated.
Fig. 2.25b presents the variation of Ks across discharging time. It shows that Ks can be
considered constant in the simplified model. Estimation of the solid fraction is illustrated
in Fig. 2.26. Even though the TES is modeled as a simple linear integrator, the estima-
tion results are sufficiently satisfactory for incorporation into a model-based predictive
controller.

Compressor Model

The compressor drives the mass flow throughout the entire VCC system and can be used
to control the suction pressure (or equivalently the saturation temperature). Without a di-
rect mass flow measurement, the relation between the compressor speed and the saturated
refrigerant temperature can be reasonably modeled as a black-box transfer function

Tst(s) =G(s)ωc(s), (2.54)
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Figure 2.25: Simplification of the TES model: (a) cooling power applied to the container
when discharging the TES; (b) justification of assuming Ks to be constant.
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Figure 2.26: Estimation of the TES solid fraction when: (a) charging; (b) discharging.

where ωc is the compressor speed used here as a control input variable. Fig. 2.27 shows
the results of the compressor model in predicting the saturation temperature.

2.4.5 Control System Design

The design of the two cascaded loops proposed in Fig. ?? is provided in this section.
In order to simulate the hybrid VCC system, we have used a nonlinear modeling tool,
the Thermosys Toolbox, [Rasmussen, 2002], for MATLAB/SIMULINK, which has been
previously validated on a variety of thermal systems. The Thermosys blocks are config-
ured as shown in Fig. 2.22.Fig. 2.28 illustrates the simulation environment where the full
nonlinear model is included in the rightmost block to simulate the hybrid VCC system
and the developed simplified model is included in the middle block and is employed by
the control system.
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Figure 2.27: Estimation of the evaporation temperature using compressor model: (a)
identification; (b) model validation.
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Figure 2.28: Simulation environment for testing the proposed approach. The three blocks
correspond to that of Fig. 10.3 with the same placement order. A detailed nonlinear
simulation model is employed to simulate the hybrid VCC/TES dynamical behavior.

Performance Objective

The control objectives is to minimize the power/energy consumption of the overall VC-
C/TES system by focusing on the compressor consumption. In general a detailed deriva-
tion of the compressor power in terms of the relevant variables such as compressor speed
or suction/discharge pressure leads to a nonlinear and non-convex formulation which is
not appropriate for MPC implementations. Empirical evidence indicates that the volumet-
ric efficiency of the compressor can be estimated as a 2nd order convex function of the
compressor speed and the pressure ratio across the compressor [Rasmussen and Alleyne,
2006] as

ηv = c1ωc+c2ω
2
c +c3ωc poi+c4 poi+c5 p2

oi (2.55)

where ci are constants and poi is the ratio of the outlet pressure over the inlet pressure of
the compressor. The relationship in (2.55) will be used for the MPC formulation. The
parameters ci are estimated using the lab experimentation data obtained by [Rasmussen
and Alleyne, 2006]. The estimation results are shown in Fig. 2.29.
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Figure 2.29: Volumetric efficiency: (a) parameter estimation; (b) objective function to be
used in convex optimization.

Charge Scheduler

The outer loop in Fig. 2.23 schedules the charging demands for a specific period of time
using a given driving profile and thermal load predictions. Here, for simplicity, we clas-
sify traffic data patterns into either light or heavy traffic with the primary difference being
average vehicle speed. In the light traffic case, the vehicle travels with an average nominal
speed VN and in the heavy traffic case, it operated with average speed V0. The specifics
of traffic data analysis and identification of average speed levels are outside the scope of
the current study but readers may refer to [Walkowicz et al., 2014] for details of how this
would be accomplished.

For a time horizon Tp, using the on-line traffic and GPS data and the average vehicle
speed, a driving profile may be obtained. An example of such profile is shown in Fig. 2.30.
Maximizing the COP associated with the air flow over the condenser, the intuition would
be that the storage unit should be charged during the light traffic (high average velocity)
periods and discharged during the heavy traffic (low average velocity) intervals.
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Figure 2.30: An example of a predicted driving profile.

60



4 Control of Hybrid Thermal Systems

The gray-box model is employed to calculate the thermal load in the discharging peri-
ods and the corresponding charging demand. The charge scheduling problem is solved by
optimal distribution of charging demand among the available charging periods for which
the following optimization problem is proposed:

min
ωc, s f

−
No
∑
i=1

ηv+Wo
No
∑
i=1

∥∆ωc∥
2
2

subject to

{
Xst[k+1] =AstXst[k]+Bstωc
Tst[k] =CstXst[k]

k ∈ Ich

s f [k+1] = s f [k]+ tsoKrs (Ts−Tst[k]) k ∈ Ich

Q̇s =UAa(Ta−Tw)

s f [k+1] = s f [k]− tsoKsQ̇s k ∈ Idis

0 ≤ s f ≤ 100
0 ≤ωc ≤ωmax
SI ≥ L
Xst[No+1] ≤ ST

, (2.56)

where No is the prediction horizon, tso is the sampling time, ∆ωc is the rate of change of
the compressor speed which is penalized in the cost function by the weighting factor Wo,
ωmax is the maximum speed of the compressor, and SI and L are vectors including si and li
as their elements, respectively. The output of the optimization problem (10.31) is the next
time instant during the driving profile where charging would be initiated, i.e., s∗1 = s∗f [t1]
where s∗f is the argument resulting from solving the above problem. Note that t1 is updated
at each sampling instant where optimization problem should be solved again. Further
details regarding the discretized dynamics and constraints used in (2.58) is given in Paper
G [Shafiei and Alleyne, 2015].

Model Predictive Control

The objective of maximizing the efficiency factor ηv clearly falls within the scope of a
well-designed MPC. The second objective is to regulate the TES charge to the solid frac-
tion set-point si at time ti as given by the outer loop controller. Consider the nominal
desired solid fraction trajectory provided in Fig. 2.31 where the goal is to transition from
s∗0 at time t0 to s∗1 at time t1. At any time instant, an optimization problem is solved to
maximize ηv. The following constraint on the rate of solidification is imposed to guaran-
tee si regulation:

∆s f ≥ δ smin (2.57)

where ∆s f = s f [k]− s f [k−1], and δ smin = (s1 − s f (t))/(t1 − t). Satisfying the constraint
in (2.57) means that the s f trajectory would always lie above the dashed line shown in
Fig. 2.31. This guarantees reaching the s∗1 level before time t1.

If the value of the s∗1 level is reached at time tr as shown in Fig. 2.31, then the TES
should deactivate and the refrigeration system works in the normal mode to regulate the
container temperature and MPC is stopped until the next charging period. To summarize,
the following optimization problem is proposed for the MPC implementation:
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Figure 2.31: An example of a solid fraction trajectory.

max
ωc, s f

−
Ni
∑
j=1

ηv+Wi
Ni
∑
j=1

∥∆ωc∥
2
2

subject to

{
Xst[k+1] =AstXst[k]+Bstωc
Tst[k] =CstXst[k]

s f [k+1] = s f [k]+ tsiKrs (Ts−Tst[k])
0 ≤ s f ≤ 100
0 ≤ωc ≤ωmax
∆s f ≥ δ smin

, (2.58)

where Ni is the prediction horizon, tsi is the sampling time, and Wi is the weighting factor.
The output of the above problem is the optimum compressor speed ω

∗

c applied as a control
signal.

The driving profile used in the following simulations is shown in Fig. 2.32. Intention-
ally, it is designed to include long periods of heavy traffic (e.g. a delivery stop) such that
the overall cooling required for load compensation is larger than the capacity of the TES.
Doing so, the capability and effectiveness of the optimal charging scheme for distribution
of charge demand across the heavy traffic periods are tested.

The TES solid fraction resulting from the optimal control is shown in Fig. ??. As
can be seen, the whole charging demand is shifted to the first and third charging modes
and no charging takes place during the second cycle. Examining Fig. ??, the compressor
speed during the charging mode is approximately 1,200 rpm which is approximately the
optimal efficiency point as given in Fig. 10.15b. Therefore, the proposed optimal control
scheme ensures that the compressor will charge TES unit with maximum efficiency while
guaranteeing the cooling requirements will be met during the heavy traffic period.

In Paper G [Shafiei and Alleyne, 2015] three different simulation scenarios are per-
formed. The first simulation illustrates the importance of taking the current traffic mode
(light vs. heavy) into account for performing the TES charging. The second simulation
shows that further energy saving can be achieved by scheduling the charging demand ac-
cording to the predicted load using the predicted traffic mode. Finally, the third simulation
illustrates the effectiveness of the proposed optimal control to maximize the compressor
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Figure 2.33: Optimal charge scheduling and model predictive control: (a) PCM solid
fraction (state of charge); (b) compressor speed.

volumetric efficiency factor. To compare the results an integrated coefficient of perfor-
mance IC is defined as the ratio of the total cooling energy over the total electrical power
consumption for the entire drive cycle

IC =
Qrs+Qe

E f +Ec
, (2.59)

where E f and Ec are the energy consumption of the evaporator fans and the compressor.
The corresponding power consumptions of the two latter components are illustrated in
Fig. 10.24. The results of integrated COP calculations are

ICn =
550+4179
993+2280

= 1.44, ICopt =
840+4065
713+2070

= 1.76 (2.60)
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where ICn is the performance resulting from the simple logic based control and load
prediction, and ICopt is the performance in the case of the proposed optimal control. The
results show that a 22% performance improvement is achieved by the optimal control over
the logic-based hybrid VCC/TES system operation, even accounting for load preview.
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3.1 Conclusions

Throughout this research, we have addressed an smart grid challenge in terms of main-
taining the balance between the consumption and supply in case of large integration of
renewable resources by means of energy management at the consumption side. Super-
market refrigeration systems have been considered as the consumers with significant po-
tential for demand-side management. Then the research was extended to which we have
investigated the energy management of an state-of-the-art hybrid thermal energy system
in transport refrigeration. Different research objectives have been established and we
have shown that advanced control methods play a significant role in achievement of those
objectives. Allocated control strategies have been proposed for enabling demand-side
management for supermarket refrigeration systems under realistic smart grid balancing
scenarios. It has been accomplished based on the idea that the thermal mass of refriger-
ated goods inside the supermarket display cases and freezing rooms can be employed for
storing energy in form of coldness, which can be used later on when it is needed to reduce
the power consumption.

We have developed a nonlinear gray-box model by which we can estimate the ther-
modynamic states such as the cooling unit temperatures and suction line pressures as well
as estimation of the electrical power consumption of the compressors. It justifies the first
hypothesis that the electricity usage of the compressors in supermarket refrigeration sys-
tems can be estimated using the thermodynamic states. Based on the obtained model, a
simulation benchmark has been built for developing and examining the demand-side man-
agement methods in smart grid. The model has been validated against real data collected
from a supermarket in Denmark.

Two different demand-side management schemes has been investigated: Indirect and
direct load control schemes. The problem of energy cost minimization for supermarket
refrigeration systems is considered under the indirect load control scheme and assuming
that the forecast of disturbances like electricity price and weather temperature are avail-
able. An intuitive method for controlling the suction pressure has been proposed that can
separate it from the temperature set-point control loops thereby facilitating formulation
of the MPC. Two different supervisory controllers using MPC have been designed such
that for each a convex optimization problem has been formulated. In the first one, the
dynamics of the local linear controllers are embedded inside the system dynamics. In
the second design, thermostatic local controllers are used that impose discrete dynamics
into the system due to the hysteresis behavior. For this case we have proposed an MPC
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algorithm that can still allow for convex programming. In both cases an electricity cost
reduction of around 30% has been achieved that justifies our second hypothesis on cost
reduction using MPC. All input and output constraints are also respected in the presented
model predictive controllers.

We have presented three different control strategies for direct load control of refrig-
eration systems which are verifications for hypothesis H3. In the first strategy, a decen-
tralized set-point control structure including P and PI controllers has been proposed that
can enable balancing services of supermarket refrigeration systems in the smart grid. The
heuristic algorithm proposed in the earlier methods for the pressure set-point control is
replaced by a proportional controller. An adaptive saturation filter has been designed to
maintain the food temperatures within the safety limits and at the same time to provide
more flexibility on variation of the air temperatures inside the cooling units. No model in-
formation is required in this method and the local controllers are remained unchanged in
the system. In the second control strategy, we have formulated an MPC by using the cool-
ing capacity as fictitious manipulated variable. The MPC method outperforms the simple
decentralized control in terms of the power tracking performance. We have also shown
that by means of a novel incorporation of the evaporation temperature into the optimiza-
tion problem a COP improvement of around 22% can be achieved. In the third direct load
control strategy, we have applied a data-driven subspace predictive control scheme sub-
stantiating hypothesis H4. It improves the load following performance comparing to the
first control strategy and, at the same time, overcomes the disadvantages associated with
the model based predictive control design such as significant performance degradation in
case of model mismatches and the fact that it is not generally applicable to different super-
market systems. Moreover, a method for input signal design for subspace identification
of refrigeration systems has been proposed.

Exploration of TES control for energy management of refrigeration systems has been
addressed at the final round of this research. We have investigated the optimal utilization
of TES devices for transport refrigeration. A particular parallel-hybrid vapor compression
system has been considered where the TES unit can preserve the container temperature
when discharging. A simplified model has been introduced for the purpose of controller
design and implementation and a more detailed nonlinear simulation model has been em-
ployed for simplified model validation and controller simulations. Initially, results show
that active TES charging and discharging corresponding to the traffic status was benefi-
cial. For TES charging, a 17% energy saving can be achieved by performing the energy
storage activity during light traffic vs heavy traffic. It verifies the hypothesis H5. We have
proposed a cascade optimal control approach which uses preview of disturbances and road
profile using traffic data for charge scheduling of TES and performance optimization of
the VCC. The results indicate that a 22% performance improvement can achieved by the
proposed approach over the type of logic based switching approach which confirms our
last hypothesis.

3.2 Perspectives

There are several recommendations for future research based on the findings of the present
study. If we contemplate the research in control system society as an spectrum having
fundamental research of control theories in one side, developing control methods in be-
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tween, and investigating applications of the methods in the other side, then the present
study belongs mostly to the application side. Nonetheless, in the following we will give
some recommendations that may include the other side of the spectrum that has not been
investigated here.

In large chain supermarkets there exist other thermal subsystems such as HVAC and
heat recoveries that may interact dynamically with the refrigeration systems. Investigation
of those dynamical interactions and their inclusion in a complete model of a supermar-
ket system might reveal the full potential of supermarkets as smart buildings which can
contribute to demand-response programs.

In order for flexible energy consumers to take part in an energy balancing market, their
flexible consumption should be aggregated to provide a significant potential. An abstract
level mathematical formulation can be devised to characterize the consumer flexibilities
by giving exact definitions. The level and rate of energy storage can be described by sets
of trajectories. Then partial ordering can be utilized to compare the different consumer
flexibilities as such be of use for aggregator design.

We have proposed a supervisory MPC algorithm for thermostatic control systems.
This MPC scheme can be generalized to include a class of system with ON/OFF logic
local controllers. Different analysis can be given on the constraint sets and reachability of
the set-points in case of applying the full gain controllers. This approach can avoid mixed
integer programming when a convex programming is preferred.

The identification part in the subspace predictive control relies on a simple QR de-
composition for which there exist fast and robust numerical computation algorithms. This
provides an opportunity for adaptation of the method by online updating the subspace ma-
trices [Lovera et al., 2000]. The online adaptation can improve the control performance
in case of variation of the system parameters, which is likely to happen in the large-scale
thermal systems. The use of such adaptive algorithm can be investigated in the future
works.

To the knowledge of the author, this work reports some of the earliest results on opti-
mal hybridization and management of transport refrigeration systems. The reader should
note that the numbers given here will obviously change depending on the particular op-
erating conditions and they should be interpreted as such. Additionally, the approach
could be extended to include other types of modes (e.g boost) or operating characteristics
(constraints of fixed speed compressors). However, from this investigation, the potential
should be clear. There is significant value to be explored in (i) the hybridization of trans-
port refrigeration systems, (ii) model-based optimization of these systems, and (iii) the
use of preview information that is currently available in most vehicle systems.
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1 Introduction

Abstract

Modeling of supermarket refrigeration systems for supervisory control in the
smart grid is presented in this paper. A modular modeling approach is proposed
in which each module is modeled and identified separately. The focus of the work is
on estimating the power consumption of the system while estimating the cold reser-
voir temperatures as well. The models developed for each module as well as for the
overall integrated system are validated by real data collected from a supermarket in
Denmark. The results show that the model is able to estimate the actual electrical
power consumption with a high fidelity. Moreover a simulation benchmark is in-
troduced based on the produced model for demand-side management in smart grid.
Finally, a potential application of the proposed benchmark in direct control of the
power/energy consumption is presented by a simple simulation example.

Nomenclature:

dc display case
e evaporator
o outlet
i inlet
suc suction manifold
comp compressor
cnd condenser
ref refrigerant

REC receiver
EV expansion valve
MT medium temperature
LT low temperature
EVAP evaporator
COMP_HI high stage compressor rack
COMP_LO low stage compressor rack
BPV bypass valve
CV_HP high pressure control valve

1 Introduction

The increase of renewable energy sources and distributed generation, like wind farm-
s/PVs, creates new challenges for the power system. Power generations with intermittent
and unpredictable characteristics create a significant balancing strain and are therefore
difficult to integrate in large capacity in the electrical grid. To compensate, the power
system will be required to manage actively not only the generation, but also the consump-
tion.

The thermal mass existing in foodstuffs in supermarket refrigeration systems (SRS)
makes it possible to store some amount of electrical energy as coldness by lowering the
temperatures of the display cases and the freezing rooms down to permissible points.
Considering the total number of supermarkets in a country (for example of around 4500
with a consumption of approximately 540 TWh/year in Denmark with 5.5 mio. inhab-
itants), this constitutes a significant potential for energy storage. In order to utilize this
storage capability in either grid balancing or overall consumption cost (the economic cost
of electricity consumption) reduction, a supervisory controller (in communication with
the grid) should be responsible for doing so as demand-side management. Here, the su-
pervisory controller is the control unit that provides the set-points (usually obtained as
a result of an optimization algorithm) to the local/distributed controllers. The local con-
trollers regulate the feedback signals to the assigned set-points. Producing a model that
can fairly estimate the power consumption of the system as well as the cold reservoir
temperatures can pave the way for developing such supervisory control methods.
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Articles that present models for refrigeration systems can be divided into two main
categories. The first category includes the modeling of individual components, like com-
pressor [1], condenser [2], evaporator [3], etc. These models are usually too detailed and
specific for the purpose at hand. They are suitable for doing performance and efficiency
improvements at local control levels. The second category (e.g., [4–6]) presents the inte-
grated refrigeration systems including several components but in various configurations
and with different level of model complexities. Depending on the application in mind,
there is a trade-off between model complexity and its accuracy. For smart grid applica-
tions, the modeling of refrigeration systems would be a challenging exercise. On one
hand, we need a model that simplifies the behavior of the system while estimating the
critical variables with desired degree of accuracy. On the other hand, developing a very
detailed and highly accurate model, including all variables and factors, requires consid-
erable amount of data, and also is not computationally efficient to simulate, for example,
monthly operation of the system under demand-side management strategies.

This paper presents a model for the blocks included in the dashed box in Figure 5.2.
It contains refrigeration system including different modules as well as distributed con-
trollers that regulate the system states to the applied set-points. In order to develop su-
pervisory control methods for demand-side management in smart grid as shown by dot-
dashed box in the figure, the model should be able to predict the power consumptions
of the compressors for the given set-points while estimating other required variables like
cold room temperatures, suction pressure, etc.

Refrigeration
System

Distributed
Controllers

Supervisory
Control

Grid
Interface

local feedbacks

Set-points and power feedbacks

System (grid node) data

Outer Control Loop

Grid 
Signal

Set-point 
commands

Control 
signals

Modeling for smart grid control

power 
reference

PI

Gn

G1

G2

∆T1

∆T2

∆Tn

Refrigeration
System

Supervisory controller

Power consumption feedback

T1

T2

Tn

Figure 4.1: A typical control system structure for connecting supermarket refrigeration
systems to the smart grid.

As mentioned above, numerous studies in the literature have been dedicated to mod-
eling refrigeration systems with various levels of details and emphasis on different parts
of the system behavior. In the sequel, we shall describe a few, which have inspired the
present work in particular. A mathematical model for industrial refrigeration plants has
been proposed by [7] for simulation of food refrigeration processes. Only the air tem-
perature of the cold rooms is estimated by the model and there is discrepancy between
predicted and measured air temperatures. The development of a Modelica library for
CO2 refrigeration systems have been presented by Pfafferott and Schmitz [8]. The heat
exchanger model has been explained, and only the steady-state conditions have been
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validated by experimental data. Subsequently, they extended their model for transient
simulation and validation provided in [9]. The pressures are well estimated, but the air
temperature of cold rooms is not reported, and estimation of the mass flow rate is not
very accurate. The study of a thermodynamic model supported by experimental analysis
has been accomplished in [4]. The method has been proposed to improve the coefficient
of performance (COP) by matching the compressor capacity to the load, replacing the
classical thermostatic control. A similar work has been performed by [10] to provide
an excellent transient characteristics by using a decoupling model. Although the latter
two methods can be applied to a single vapor compression cycle (VCR), they are not
applicable to the multi-evaporator systems in supermarkets. Ref [5] presents a dynamic
mathematical model for coupling the refrigeration system and phase change materials.
But this model can only predict the refrigerant states and dynamic COP.

A more generalized model has been introduced by [11] based on a two-phase fluid
network. The proposed model can simulate different kinds of complex refrigeration sys-
tems in different operating modes and conditions, but it can only estimate the steady-state
values in different operating modes. Applications of the developed model to estimate the
different operating points of the multi-unit inverter air conditioner, heat pump with do-
mestic hot water and multi-unit heat pump dehumidifier have been demonstrated in [12].
It should be noted that the steady-state models without considering cold room dynam-
ics cannot be employed for demand-side managements, in which playing with the cold
room temperatures is required for energy solutions. Another such steady-state model is
proposed in [6].

The model presented in [13] provides an analytical method for COP optimization.
This model does not simulate the system operation and has applicability to the design
of the refrigerating machines in terms of selection, design and optimization of the main
parameters. With focus on local controls, Schurt et al. proposed a model-driven linear
controller as well as its assessment for a single vapor compression cycle in [14, 15]. A
dynamic model of a transcritical CO2 SRS has been developed by [16] using the equation-
based modeling language Modelica, which can be simulated e.g., in Dymola. Only gas
cooler equations and model validation are provided in that paper. As a different perspec-
tive, a numerical model has been recently developed by [17] for the evaluation of the use
of thermoeconomic diagnosis in transcritical refrigeration.

None of the integrated models in the above cited works can predict the power con-
sumption of compressors that is necessary for demand-side management of supermarket
refrigeration systems. There is however a model developed by [18] for simulating the
energy consumption of supermarket refrigeration systems. In this work, however, the
cold room dynamics have not been modeled and the map-based routing proposed for es-
timating the compressor power consumption is not very accurate. Considering power
consumption in refrigeration systems, Ref [19] has proposed a modeling for optimization
purposes. There is however no identification and model validation reported by that work,
and the first order model presented for the cold room regarding its air temperature results
in storing the energy in the air instead of foodstuffs.

By analyzing the thermodynamics of the system, we develop a model that simu-
lates the electrical behavior. This enables us to control the electrical power consump-
tion (needed for demand-side management) by controlling the cooling capacity (utilizing
the existing thermal mass). The proposed model possesses most advantages of the pre-
ceding researches like (i) simplifying the behavior of supermarket refrigeration systems
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as a simulation benchmark for supervisory control; (ii) being very accurate despite its
simplicity; (iii) having modularity and reconfigurability; and (iv) being validated by real
data. Our modeling is the first principle approach using the physical insight to define the
model structure.

The modeling exercise is performed by a modular approach in which the system is
separated into different subsystems (modules), each modeled and validated separately.
This modularity leaves open the possibility of modeling refrigeration systems with dif-
ferent configurations that are adopted in various supermarkets. Finally, an illustrative
example is provided to show how the developed model can be utilized as a simulation
benchmark for implementing a simple demand-side management scenario.

2 System Description

In this work, the case study is a large-scale CO2 refrigeration system including several
display cases and freezing rooms as well as two compressor banks configured in a booster
layout as shown in Figure 9.1. The corresponding pressure-enthalpy (P-H) diagram de-
scribing the thermodynamic cycle of the system is provided in Figure 4.2b. Due to low
ambient temperature, the high pressure side operates below the critical value, which keeps
the operating condition in the subcritical cycle, as shown in the figure.

Starting from the receiver (REC), two-phase refrigerant (mix of liquid and vapor) at
point “8” is split out into saturated liquid (“1”) and saturated gas (“1b”). The latter is by-
passed by BPV, and the former flows into expansion valves where the refrigerant pressure
drops to the medium (“2”) and low (“2′”) pressures. The expansion valves EV_MT and
EV_LT are driven by hysteresis ON/OFF controllers to regulate the temperature of the
fridge display cases and freezing rooms, respectively. Flowing through medium and low
temperature evaporators (EVAP_MT and EVAP_LT), the refrigerant absorbs heat from
the cold reservoir while a superheat controller is also operating on the valves. That is
to make sure the refrigerant leaving the evaporators toward compressors is completely
vaporized (only in gas phase). Both pressure and enthalpy of the refrigerant are increased
by the low stage compressor rack (COMP_LO) from “3′” to “4′”. All mass flows at the
outlet of COMP_LO, EVAP_MT and BPV are collected by the suction manifold at point
“5” where the pressure and enthalpy are increased again to the highest point, “6”, by
the high stage compressors (COMP_HI). Afterward, the gas phase refrigerant enters the
condenser to deliver the absorbed heat from cold reservoirs to the surrounding where its
enthalpy decreased significantly from “6” to “7” accompanied by a small pressure drop.
At the outlet of the high pressure control valve (CV_HP), the pressure drops to an inter-
mediate level and the refrigerant, which is now in two-phase, flows into the receiver and
the cycle is completed.

88



2 System Description

Condenser

COMP_HI

COMP_LO

BPV

REC

EV_MT

EV_LT
EVAP_LT

EVAP_MT

1 2

2´ 

3

3´ 

4´ 

4 

1b 2b 5

6

7

8

Pr
es

su
re

(×
10

5
Pa

sc
al

)

Enthalpy(kJ/kg)

0 100 200 300 400 500 600

10

20

40

80

30

50

5

1 1b

2´ 

2
3

3´ 

4´ 2b
4

5

67

8

CV_HP

(a)

Condenser

COMP_HI

COMP_LO

BPV

REC

EV_MT

EV_LT
EVAP_LT

EVAP_MT

1 2

2´ 

3

3´ 

4´ 

4 

1b 2b 5

6

7

8

Pr
es

su
re

(×
10

5
Pa

sc
al

)

Enthalpy(kJ/kg)

0 100 200 300 400 500 600

10

20

40

80

30

50

5

1 1b

2´ 

2
3

3´ 

4´ 2b
4

5

67

8

CV_HP

(b)

Figure 4.2: CO2 refrigeration systems, (a): A typical booster configuration; (b): Corre-
sponding P-H diagram of subcritical cycle in the booster system.
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3 Modeling

There are three major subsystems to be modeled, including display cases, suction man-
ifold together with high stage compressors, and condenser. The modeling of low tem-
perature section is similar to the medium temperature and will be addressed at the end of
the modeling section. The operation of the high pressure valve and the receiver are not
modeled since the intermediate pressure at the outlet of the receiver is assumed constant.

Display Cases

In display cases, heat is transferred from foodstuffs to evaporator, Q̇ f oods/dc, and then
from evaporator to circulated refrigerant, Q̇e, also known as the cooling capacity. There
is however heat load from the environment, Q̇load , formulated as a variable disturbance.
Here, we consider the measured air temperature at the evaporator outlet as the display
case temperature, Tdc. Assuming a lumped temperature model, the following dynamical
equations are derived based on energy balances for the foregoing heat transfers.

MCp f oods
dTf oods

dt
= −Q̇ f oods/dc (4.1)

MCpdc
dTdc

dt
= Q̇load + Q̇ f oods/dc− Q̇e (4.2)

where MCp denotes the corresponding mass multiplied by the heat capacity. The energy
flows are

Q̇ f oods/dc =UA f oods/dc(Tf oods−Tdc), (4.3)

Q̇load =UAload(Tindoor −Tdc) (4.4)

and
Q̇e =UAe(Tdc−Te) (4.5)

where UA is the overall heat transfer coefficient, hoe and hie are enthalpies at the outlet
and inlet of the evaporators and are nonlinear functions of the evaporation temperature,
and Tindoor is the supermarket indoor temperature. The heat transfer coefficient between
the refrigerant and the display case temperature, UAe, is described as a linear function of
the mass of the liquefied refrigerant in the evaporator [20],

UAe = kmMr, (4.6)

where km is a constant parameter. The refrigerant mass, 0 ≤ Mr ≤ Mr,max, is subject to the
following dynamic [21],

dMr

dt
= ṁr,in− ṁr,out , (4.7)

where ṁr,in and ṁr,out are the mass flow rate of refrigerant into and out of the evaporator,
respectively. The entering mass flow is determined by the opening degree of the expansion
valve and is described by the following equation:

ṁr,in =OD KvA
√

2ρsuc(Prec−Psuc) (4.8)

90



3 Modeling

where OD is the opening degree of the valve with a value between 0 (closed) to 1 (fully
opened), Prec and Psuc are receiver and suction manifold pressures, ρsuc is the density
of the circulating refrigerant, and KvA denotes a constant characterizing the valve. The
leaving mass flow is given by

ṁr,out =
Q̇e

∆hlg
(4.9)

where ∆hlg is the specific latent heat of the refrigerant in the evaporator, which is a non-
linear function of the suction pressure. When the mass of refrigerant in the evaporator
reaches its maximum value (Mr,max), the entering mass flow is equal to the leaving one.

Suction Manifold

The suction manifold is modeled by a dynamical equation by using the suction pressure
as the state variable and employing the mass balance as [20],

dPsuc

dt
=

ṁdc+ ṁdist −V̇compρsuc

Vsuc dρsuc/dPsuc
(4.10)

where the compressor bank is treated as a big virtual compressor, ṁdc is the total mass
flow of the display cases, ṁdist is the disturbance mass flow including the mass flow from
the freezing rooms and the bypass valve, and Vsuc is the volume of the suction manifold.
V̇comp is the volume flow out of the suction manifold,

V̇comp = fcompηvolVd (4.11)

where fcomp is the virtual compressor frequency (total capacity) of the high stage com-
pressor rack in percentage, Vd denotes the displacement volume, and ηvol is clearance
volumetric efficiency approximated by

ηvol = 1−c((
Pc

Psuc
)

1/γ
−1) (4.12)

with constant clearance ratio c, and constant adiabatic exponent γ [1]. Pc is the compressor
outlet pressure.

Since the main purpose of this modeling is to produce a suitable model for demand-
side management, we need to estimate the power consumption of the compressor bank.
The following equation estimates the electrical power consumption,

Ẇcomp =
1

ηme
ṁre f (ho,comp−hi,comp) (4.13)

where ṁre f is the total mass flow into suction manifold, and ho,comp and hi,comp are the
enthalpies at the outlet and inlet of the compressor bank. These enthalpies are nonlin-
ear functions of the refrigerant pressure and temperature at the calculation point. The
constant ηme indicates overall mechanical/electrical efficiency considering mechanical
friction losses and electrical losses [1]. The enthalpy of refrigerant at the manifold inlet
is bigger than that of the evaporator outlet (hi,comp > hoe) due to disturbance mass flows.
The outlet enthalpy is computed by

ho,comp = hi,comp+
1

ηis
(ho,is−hi,comp) (4.14)
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in which ho,is is the outlet enthalpy when the compression process is isentropic, and ηis is
the related isentropic efficiency given by [6] (neglecting the higher order terms),

ηis = c0+c1( fcomp/100)+c2(Pc/Psuc) (4.15)

where ci are constant coefficients.

Condenser

Most of the models developed for condensers need physical details like fin and tube
dimensions [2, 22, 23] and thus are not directly applicable here since our modeling ap-
proach is mainly based on general knowledge about the system. So, neglecting the con-
denser dynamics, the steady-state multi-zone moving boundary model developed in [6] is
utilized here with further considerations.

The condenser is supposed to operate in three zones (superheated, two-phase, and
subcooled). A pressure drop is assumed to take place across the first zone (superheated)
given by [6],

∆Pc ≜ Pc−Pcnd = (
ṁre f

Ac
)

2
(

1
ρcnd

−
1
ρc

)+∆Pf (4.16)

where Ac is the cross-sectional area of the condenser, and Pcnd and ρcnd are the pressure
and density at the outlet of the superheated zone. The first term at the right hand side of
Equation (4.16) indicates acceleration pressure drop and the last term stands for the fric-
tional pressure drop (∆Pf ) assumed constant. The Rate of the heat rejection is described
by Equation (4.17) for superheated (first) and subcooled (third) zones,

Q̇c,k =UAc,k
Ti,k −To,k

ln[
Ti,k−Toutdoor
To,k−Toutdoor

]
, k = 1,3 (4.17)

and the following is for the two-phase (second) zone,

Q̇c,2 =UAc,2(Ti,2−Toutdoor) (4.18)

where UAc is the overall heat transfer coefficient of the corresponding condenser zone,
Ti and To are the refrigerant temperature at the inlet and outlet of each zone, and Toutdoor
is the outdoor temperature. Note that the inlet and outlet temperatures of the two-phase
zone are the same when pressure does not change across it.

The heat transferred by refrigerant flow across the kth zone is provided by the follow-
ing energy balance equation:

Q̇c,k = ṁre f (hi,k −ho,k), k = 1,2,3 (4.19)

in which hi and ho are enthalpies at the inlet and outlet of the kth zone. Accordingly, the
total rate of the heat rejected by the condenser is:

Q̇c =
3

∑
k=1

Q̇c,k (4.20)
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4 Parameter Estimation

The system under study is a large-scale CO2 refrigeration system operating in a super-
market in Denmark. The system consists of seven display cases, four freezing rooms and
two stages of the compressor banks configured in the booster setup explained in Section
2. The system is not a test setup and needs to keep its normal operation. Thus, we identify
the model from the data collected by every minute logging the measurements. An off-line
identification is performed to estimate the constant parameters and coefficients introduced
before. The modeling error, computed by dividing the maximum absolute error over the
maximum amplitude of variation of the measured signal, is provided on each plot. We
use two sets of data:

– Training set: This contains the measured input/output data required for the estima-
tions. The data are selected from an interval during the day time when no defrost
cycle takes place.

– Validation set: This contains the measured input/output data required for validating
the model after estimation. The data are selected in the same hours of interval as
the previous one but from a different working day.

After estimating the model using the training data, we plot the simulated response of the
estimated model using the validation data for comparison.

Thus far we have used the first principle modeling approach to describe the system
with mathematical equations. For system identification, we make a nonlinear model us-
ing the foregoing equations with unknown parameters. An iterative prediction-error min-
imization (PEM) method, implemented in System Identification Toolbox of MATLAB,
is employed to estimate the model parameters [24]. A modular parameter estimation
approach is introduced in which the parameters of each subsystem are identified by pro-
viding related input-output pairs from measurement data. An example of estimating non-
linear models using PEM is given by [25].

Nonlinear thermophysical properties of the refrigerant (e.g., enthalpies) are calculated
by the software package “RefEqns” [26].

(1) Display cases estimations: In this subsystem, the model should be able to estimate
mass flow and display case temperatures. The mass flows are controlled by thermostatic
actions as well as superheat control. These two result in a specific opening degree for the
each expansion valve. So the input and output vectors used for estimation are

Udc = [Psuc Tindoor OD1 ⋯ OD7]
T

(4.21)

and

Ydc = [ṁdc Tdc,1 ⋯ Tdc,7]
T

(4.22)

Estimated parameters for the total seven display cases are collected in Table 4.1 assuming
constant superheat Tsh = 5 [○C], and constant receiver pressure Prec = 38×105 [pascal]. A
frame of five hours’ data sampled every minute is used.
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Table 4.1: estimated parameters of the display cases.

D.C. No. UAload UA f oods/dc MCpdc×105 MCp f oods×105 km KvA×10−6

1 41.9 72.9 1.9 4.6 141.7 2.33
2 56.3 82.6 4.8 88.6 250.9 2.27
3 57.5 118.5 2.7 2.8 175.3 2.71
4 32.2 230.5 4.1 2.7 182.9 0.86
5 36.1 158.9 6.3 1.5 810.6 2.38
6 58.2 75.3 1.7 6.5 196.8 2.33
7 24.1 150.2 4.6 60 800 0.70

The inputs are presented in Figure 4.3. The suction pressure, Psuc, is regulated around
26× 105 [pascal] by the high stage compressors, and the indoor temperature, Tindoor is
regulated around 26 [○C] by an air-conditioning system. The ON/OFF behavior of the
OD signals is caused by the simple hysteresis control actions. During the ON period of
action, the superheat controllers operate on the valves to ensure the completed vaporiza-
tion of the refrigerant at the evaporator outlets. Incorporating the superheat control into
the display case models needs a more complicated (e.g., a moving boundary) model for
the evaporators. This incorporation seems unnecessary for our control purposes in the
supervisory level. Thus for simplicity, we assume a constant superheat temperature and
identify the plant directly instead of the closed loop system.

Estimation results for the display case temperatures and the overall mass flow from
the expansion valves are illustrated in Figure 4.4 and Figure 4.5, respectively. For a fair
comparison, all temperature plots have the same scale. Also, the value of the model-
ing error provided on each plot shows the best and worst fit for the 5th and 7th display
case, respectively. The high fluctuation in the overall mass flow is the result of ON/OFF
(thermostatic) actions of the expansion valves.

Despite the use of a simple model and relatively large number of estimated parameters
(42 parameters), the display case models show satisfactory results.

(2) Suction manifold estimations: Although one of the main goals of modeling in
this section is to estimate power consumption of the compressor bank, we also need to
estimate Psuc for this purpose as stated in the previous section.

Suction pressure is computed from Equation (4.10) by entering the following inputs
and output into the identification process and assuming Vsuc = 2 and knowing Vd = (6.5×
70/50+12.0)/3600 from compressor label.

Usuc = [ṁdc ṁdist Pc fcomp]
T
, Ysuc = Psuc (4.23)

This results in estimating parameters required for volumetric efficiency in Equation (4.12)
as c = 0.65 and γ = 0.47.

It is worth mentioning that the compressor speed is regulated by a local PI controller
having a transient faster than the one minute used for data log. So the closed loop re-
sponse of the compressor speed is considered in estimating the suction pressure and the
compressor power consumption. The following inputs and output are chosen to estimate
the power consumption of the compressor bank.

Ucomp = [Psuc Pc fcomp ṁre f ]
T
, Ycomp = Ẇcomp (4.24)
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Figure 4.3: The input signals provided in the training set for the display case estimations.

The parameters needed for calculating isentropic efficiency are estimated as c0 = 1, c1 =

−0.52 and c2 = 0.01, and the mechanical/electrical efficiency is also obtained as ηme =

0.65. Figure 4.6 shows estimation results for the suction pressure and power consumption.
Even though the simple first order model introduced for suction manifold cannot generate
the high frequency parts of the pressure signal, it can fairly estimate a low pass filtered
version of the suction pressure. The bottom plots show a very good estimation of the
power consumption in so far as the validation result shows even a better estimation.

(3) Condenser estimations: In the condenser model, the corresponding parameters
should be estimated such that the heat transfer generated by the steady-state model has
to be equal to the heat transfer delivered by the refrigerant mass flow. The speed of the
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Figure 4.4: Estimation of display case temperatures. The 5th display case shows the best
fit and the worst fit is related to 7th display case, which is still a good estimation. (a)
Estimation using training data; (b) Estimation using validation data.

condenser fan has been fixed to the maximum value, so the developed static model can
fairly describe its behavior without incorporating the fan speed. The input vector used for
identification is

Ucnd = [Ti,cnd ṁre f Toutdoor]
T

(4.25)
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Figure 4.5: Estimation of the total mass flow from display cases. It is the sum of the mass
flows through the expansion valves. (a) Estimation using training data; (b) Estimation
using validation data.
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Figure 4.6: Suction pressure and power consumption estimations. Variation of consump-
tion is mainly because of changing mass flow due to hysteresis and superheat control of
expansion valves. Mechanical-electrical efficiency is obtained as ηme = 0.65. (a) Estima-
tion using training data; (b) Estimation using validation data.

where Ti,cnd is the refrigerant temperature at the condenser inlet, which is also the inlet
of the first zone. Enthalpies ho,1 = hi,2 and ho,2 = hi,3 are the enthalpies of saturated vapor
and saturated liquid at the pressure Pcnd , respectively. The output temperature is also
calculated by assuming 2 ○C constant subcooling. The desired output for estimation is

Ycnd = Pc (4.26)

Estimation results are shown in Figure 4.7 with the following parameters. The asso-
ciate result for the pressure drop can justify the assumption that it mainly takes place in the
first (superheated) condenser zone. Despite considering a simple steady-state model for

97



Paper A

 

 

time [min]

P
c

[1
0

5
P

a
] Error = 0.403

estimationmeasurement
∆

P
c

[1
0

5
P

a
]

Error = 0.348

100 200 300
45

50

55

0

1

2

3

(a)

 

 

time [min]

P
c

[1
0

5
P

a
] Error = 0.445

estimationmeasurement

∆
P

c
[1

0
5

P
a
]

Error = 0.334

100 200 300
45

50

55

0

1

2

3

(b)

Figure 4.7: Estimation of the pressure drop and the pressure at the condenser inlet. (a)
Estimation using training data; (b) Estimation using validation data.

condenser and also not using any of its physical details, the estimation is still acceptable
and valid.

Ac ∆Pf UAc,1 UAc,2 UAc,3
0.0073 0.52 332 3185 148

5 System Integration and Simulation Benchmark

Thus far, three separate models have been developed for different subsystems using the
corresponding measured input and output pairs. In this section, we integrate all subsys-
tems to build a complete model for supermarket refrigeration systems ready for use as a
simulation benchmark.

The inputs used in the model are the opening degree of expansion valves (ODi) and
the running capacity of the compressor bank ( fcomp).

Usys = [OD1 ⋯ OD7 fcomp] (4.27)

The disturbance vector is

Udist = [ṁdist Tindoor Toutdoor] (4.28)

In order to simulate the control strategy depicted in Figure 5.2, the SRS model should
be able to estimate display case temperatures and compressor power consumptions with
satisfactory degrees of accuracy. Figures 4.8 and 4.9 show the results of running the model
by Equations (4.27) and (4.28) using the data set used for both identification and valida-
tion in the previous section. As can be seen from these results, estimation errors do not
increase significantly and the results are still convincing and can satisfy our expectation
to have a model as a simulation benchmark.

The modularity of the model makes it possible to simply add the freezing rooms
and low stage compressors to the model. There is no need to do changes in the model
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Figure 4.8: Estimation of display case temperatures after system integration. The esti-
mation error increases slightly due to modeling error associated with each subsystem. (a)
Estimation using training data; (b) Estimation using validation data.

since the mass flow of this section is already included in the disturbance mass flow in
Equation (4.10). The estimated parameters for the total four freezing rooms are collected
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Figure 4.9: Power consumption estimation of the compressor bank after system integra-
tion. The estimation is still satisfactory in spite of existing estimation errors associated
with each subsystem model. (a) Estimation using training data; (b) Estimation using
validation data.

in Table 4.2.

Table 4.2: estimated parameters of the freezing rooms.

F.R. No. UAload UA f oods/ f r MCp f r ×105 MCp f oods×106 km KvA×10−6

1 23 185 1.7 84.5 184.4 2.97
2 28 250 1.9 38 218.9 1.28
3 4 83 0.7 52 395.9 0.54
4 17 250 7.7 20.8 237.2 2.47

Figures 4.10 and 4.11 show the estimation results for the freezing room temperatures
and the corresponding power consumption of the low stage compressor bank. The pulse
shape of power consumption in the low stage compressor rack is due to the fact that
it contains several ON/OFF controlled compressors, in contrast with the high stage rack
that contains a continuous frequency control compressor as well as other ON/OFF control
types.

So far we have applied the expansion valve control signals (OD) and the compressor
capacity ( fcomp) to the model from the values obtained from data to have a fair compar-
ison with measured outputs. In order to complete the simulation benchmark, the model
should contain these local controllers to be ready for demand-side management as will
be explained in the next section. As realized from the measurements, condenser fans are
working in their full speed and thus the high-side pressure is not regulated to a specific
value in this system.

The expansion valve control is a hysteresis controller operating between hysteresis
bounds defined based on the temperature limits. We can estimate the compressor ca-
pacity such that the suction pressure and low-side pressure are regulated to predefined
set-points. For this purpose, the compressor capacity should provide a volume flow in
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Equation (4.11) that keeps Equation (4.10) equal to zero at the desired pressure set-point.
The result illustrated in Figure 4.12 justifies that the proposed estimation method is nearly
the same as what is used in the real system.
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Figure 4.10: Estimation of freezing room temperatures. The temperature peaks at the 4th
freezer may be caused by unmodeled disturbances like personnel activities. (a) Estimation
using training data; (b) Estimation using validation data.

The disturbances can be modeled by sinusoidal signals with the amplitudes and fre-
quencies equal to the average values for real disturbances. The simulation benchmark is
now largely ready to be employed by a supervisory control in order to develop different
demand-side management scenarios.
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Figure 4.11: Power consumption estimations for low stage compressor bank of the freez-
ing section. (a) Estimation using training data; (b) Estimation using validation data.
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Figure 4.12: Estimation of compressor capacity such that the suction pressure and low-
side pressure are regulated to 26 × 105 [pascal] and 14 × 105 [pascal], respectively.

6 Demand-Side Management

There are two major approaches for demand-side management in smart grid: direct con-
trol and indirect control. In the case of direct control, consumers in a smart grid should
follow the power reference sent by the grid in accordance with their storage and con-
sumption limitations [27]. On the other hand, in the indirect approach, consumers receive
real-time price signal from the grid and manage their consumption such that the operating
cost in a specific time interval is minimized [28].

Discussing the flexibilities, and the corresponding storage and consumption limits,
and other details in this context is however out of the scope of this paper. In the fol-
lowing, we will show by a simple example how the produced model can be utilized in
implementing direct control with the structure explained in Figure 5.2.

The supervisory controller (see Figure 4.13) includes a PI controller that regulates
the power consumption (sum of low stage and high stage compressor powers) to the
reference level received from the grid. The output of the PI controller is downscaled by
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the gains Gi to provide the required differences ∆Ti for the set-points for each cold room.
This difference values are added to predefined set-points Ti and the results are applied as
new set-points to the refrigeration system model. The suction and low-side pressures are
regulated to constant levels.

power 
reference

PI

Gn

G1

G2

∆T1

∆T2

∆Tn

Refrigeration
System

Supervisory controller

Power consumption feedback

T1

T2

Tn

Figure 4.13: A simple direct control structure. Ti are temperature set-points
for normal operation of the system, and ∆Ti are temperature changes applied for
consumption regulation.

Figure 4.14 shows the power consumption in a normal operation when no supervisory
control affects the system on the top, and the related direct control at the bottom. The
system is simulated for one day. The 60-minute moving average of the power is shown in
the plot. A sinusoidal shape of change in the average consumption in normal operation is
because of the sinusoidal change assumed for the outdoor temperature.
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Figure 4.14: Power consumption for one day operation. High frequency fluctuations are
mainly caused by hysteresis control of display cases. Direct control can successfully
follow the reference.

The objective of the control is to have the average power consumption of refrigeration
system follow the power reference while respecting the temperature limits in cold reser-
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voirs. The corresponding cold reservoir temperatures are also depicted in Figure 4.15.
The regulator gains Gi are defined such that each display case or freezing room tempera-
ture remains in the permissible range required for no food damage.

It is worthwhile to mention that this is only a simple example to show how the pro-
duced model can be employed for demand-side management in smart grid. The design
of advanced controllers with predictive ability and conducting COP optimization is left
for the future works. In order to respect the limitations on food temperatures, a predictive
controller can be supported by a state estimator for estimating food temperatures.
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Figure 4.15: Cold reservoir temperatures are changed by supervisory controller to reg-
ulate the power/energy consumption. (a) Display case temperatures; (b) Freezing room
temperatures.
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7 Conclusions

A supermarket refrigeration system suitable for supervisory control in smart grid is mod-
eled. The system was divided into three subsystems, each modeled and validated sepa-
rately. The proposed modular modeling approach leaves open the possibility of modeling
refrigeration systems with different configurations and operating conditions. A first prin-
ciple approach was taken and supported by the PEM method for parameter estimation.
The models give satisfactory results in which the electrical power consumption is esti-
mated very accurately by the accurate estimation of the thermal states. These subsystem
models were finally integrated to make a booster configuration and the corresponding
results confirmed the effectiveness of the proposed modeling approach. It was also ex-
plained how a simulation benchmark including the integrated model and local controllers
can be configured for the purpose of supervisory control implementations. Using the pro-
duced model, appropriate control algorithms can be developed to govern the electrical
power consumption (required for demand-side management) by controlling the cooling
capacity. At the end, a simple simulation example was provided to demonstrate the uti-
lization of the developed benchmark in demand-side management in smart grid within a
direct electrical power control scenario.
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1 Introduction

Abstract

A model predictive control at supervisory level is proposed for refrigeration sys-
tems including distributed local controllers. Prediction of the electricity price and
outdoor temperature are assumed available. The control objective is to minimize the
overall energy cost within the prediction horizon. The method is mainly developed
for demand-side management in the future smart grid, but a simpler version can be
applied in the current electricity market. Due to the system nonlinearity, the mini-
mization is in general a complicated nonconvex optimization problem. A new super-
visory control structure as well as an algorithmic pressure control scheme is presented
to rearrange the problem to facilitate convex programming. A nonlinear continuous
time model validated by real data is employed to simulate the system operation. The
results show a considerable economic saving as well as a trade-off between the saving
level and the design complexity.

1 Introduction

The structure of power systems, especially in Europe, is changing from a centralized one
to a decentralized one due to distributed generation with high penetration of renewable
sources. This change leads to several new challenges that can be handled in a smart
grid, where both production and consumption of electricity are managed efficiently. To
achieve such efficient demand-side management, consumers should be equipped with
control systems that can actively respond to grid requirements.

Supermarket refrigeration systems are one of the consumers that have significant po-
tential to take part in demand-side management by shifting their energy consumption. The
large potential for demand-side management can be illustrated by Denmark alone with 5
mio. inhabitants having approx. 4.500 supermarkets, using annually approx. 540.000
MWh for refrigeration. This can be achieved by storing energy as coldness in foodstuffs.
The authors believe that this storage capability can be utilized effectively by developing
appropriate control methods. However, existing nonlinearities and constraints in refriger-
ation systems challenges the control design.

One of the best control schemes that can take into account the required predictions
and can handle such a multivariable system as well as respecting the state and input con-
straints is model predictive control (MPC), [1]. Various MPC formulations have suc-
cessfully been applied for different improvements in refrigeration systems. With hybrid
system formulation, MPC was employed in [2, 3] and [4] to solve the synchronization
problem in display cases that causes wearing of the compressors. Fallahsohi, et al in [5]
applied predictive functional control to minimize the superheat in an evaporator. For
multi-evaporator systems, a decentralized MPC was proposed to control the cooling ca-
pacity of each evaporator [6]. A nonlinear predictive control scheme was designed in [7]
to reduce the total power consumption of the compressor in a vapor compression cycle.

An optimal demand-side management can be realized in a real-time electricity pric-
ing market by taking price predictions into account [8]. Optimizing economic objectives
in MPC formulation for process systems was presented in [9]. A thorough study has
been performed by Hovgaard, et al, [10], where an economic MPC was designed to re-
duce operating costs of refrigeration systems by utilizing the thermal storage capabilities.
Predictions of the electricity price and the outdoor temperature were considered and a
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nonlinear optimization tool was used to handle the nonconvex cost function. They also
showed that their proposed method can successfully contribute with ancillary services to
balance power markets in the smart grid.

In this paper, we propose a new supervisory control structure for commercial refrig-
eration systems. In order to minimize the energy consumption, the optimizing value for
cooling capacity of each unit as well as the optimal set-point for suction pressure (com-
mon evaporation temperature) should be calculated. This will however lead to solve a
nonlinear and nonconvex optimization problem. To avoid this nonconvexity, we propose
a simple heuristic algorithm to regulate the suction pressure in the local control level.
The energy consumption is reduced significantly as a result of this algorithmic pressure
control. Finally, a model predictive control in the supervisory level is proposed that can
further reduce the total energy costs using predictions of the price and the outdoor tem-
perature. The supervisory MPC controls the cooling capacity of each unit by providing
an optimal temperature set-point for each distributed PI controller.

2 Refrigeration System

A basic layout of a typical refrigeration system including several fridge and freezer dis-
play cases with two compressor banks in a booster configuration is shown in Fig. 9.1.
Starting from the receiver (REC), two-phase refrigerant (mix of liquid and vapor) at point
‘8’ is split out into saturated liquid (‘1’) and saturated gas (‘1b’). The latter is bypassed by
a bypass valve (BPV), and the former flows into expansion valves where the refrigerant
pressure drops to medium (‘2’) and low (‘2′’) pressures. The expansion valves EV_MT
and EV_LT are driven by thermostatic ON/OFF controllers to regulate the air tempera-
ture inside the fridge and freezer display cases, respectively. Flowing through medium
and low temperature evaporators (EVAP_MT and EVAP_LT), the refrigerant absorbs heat
from the cold reservoir. The pressure of low temperature units (LT) is increased by the
low stage compressor rack (COMP_LO). All mass flows from COMP_LO, EVAP_MT
and BPV outlets are collected by a suction manifold at point ‘5’ where the pressure is
increased again by high stage compressors (COMP_HI). Afterward, the gas phase re-
frigerant enters the condenser to deliver the absorbed heat from cold reservoirs to the
surroundings. The detailed thermodynamic analysis of such systems is described in [11].

Dynamical Model

In the cold reservoirs (display cases and cold rooms), heat is transfered from the foodstuffs
to the cooled air, Q̇ f oods/cr, and then from the cooled air to the circulated refrigerant, Q̇e,
which the latter is also known as cooling capacity. There is however heat load from
supermarket indoor, Q̇load , formulated as a variable disturbance. Here, we consider the
measured air temperature at the evaporator outlet as the cold reservoir temperature, Tcr.
Assuming a lumped temperature model, the following dynamical equations are derived
based on energy balances for the mentioned heat transfers.

MCp f oods
dTf oods

dt
= −Q̇ f oods/cr (5.1)

MCpcr
dTcr

dt
= Q̇load + Q̇ f oods/cr − Q̇e (5.2)
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Figure 5.1: Basic layout of a typical supermarket refrigeration system with booster con-
figuration.

where MCp denotes the corresponding mass multiplied by the heat capacity. The energy
flows are

Q̇ f oods/cr =UA f oods/cr(Tf oods−Tcr), (5.3)

Q̇load =UAload(Tindoor −Tcr), (5.4)

and
Q̇e = ṁr∆hlg, (5.5)

where UA is the overall heat transfer coefficient, ∆hlg is the specific latent heat of the re-
frigerant in the evaporator, which is a nonlinear functions of the evaporation temperature
(or equivalently the suction pressure), and Tindoor is the supermarket indoor temperature.
The term ṁr denotes the mass flow of refrigerant into the evaporator which is determined
by the opening degree of the expansion valve and described by the following equation:

ṁr =OD KvA
√

2ρsuc(Prec−Psuc)105 (5.6)

in which OD stands for the opening degree of the valve with a value ranging from 0
(closed) to 1 (fully opened), Prec and Psuc are the receiver and the suction pressures in
[bar], ρsuc is density of the circulating refrigerant, and KvA denotes a constant character-
izing the valve [12].
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Compressor Power and System COP

The electrical power consumption of each compressor bank is calculated by

Ẇc =
1

ηme
ṁre f (ho,c−hi,c), (5.7)

where ṁre f is the total mass flows into the compressors, and ho,c and hi,c are the enthalpies
at the outlet and inlet of the compressor bank and are nonlinear functions of the refrigerant
pressure and temperature at the calculation points. The constant ηme indicates overall me-
chanical/electrical efficiency considering mechanical friction losses and electrical motor
inefficiencies [13]. The outlet enthalpy is computed by

ho,c = hi,c+
1

ηis
(his−hi,c), (5.8)

in which his is the outlet enthalpy when the compression process is isentropic, and ηis is
the related isentropic efficiency given by [14] (neglecting higher order terms).

ηis = c0+c1( fc/100)+c2(Pc,o/Psuc) (5.9)

Where fc is the virtual compressor frequency (total capacity) of the compressor rack in
percentage, Pc,o is pressure at the compressor outlet, and ci are constant coefficients.

The total coefficient of performance (COP) is defined as ratio of the total cooling
capacity over the total power consumption of the compressors.

COP =
Q̇e,tot

Ẇc,tot
(5.10)

The COP is calculated by

COP =
xMT ∆hlg,MT +xLT ∆hlg,LT

1
ηMT

(hoc,MT −hic,MT )+
xLT
ηLT

(hoc,LT −hic,LT )
, (5.11)

where indices MT and LT relate the calculated values to the medium and low temperature
sections, respectively. Parameters xMT and xLT are ratio of the refrigerant mass flow
of MT and LT evaporators to the total flow rate, and ηMT = ηme,MT ηis,MT and ηLT =

ηme,LT ηis,LT .

3 Supervisory Control

Fig. 5.2 shows the control system structure including local inner loop control and super-
visory outer loop one. The local controllers are responsible for regulating the pressures
and the temperatures to the required set-points, and the supervisory control, here, has to
send the temperature set-points to the cold reservoirs such that the total energy cost is
minimized.
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Figure 5.2: A supervisory control structure for refrigeration systems.

Distributed/local Controllers

In the most available set-ups of refrigeration systems, air temperature inside a display case
is governed by a thermostatic expansion valve between an upper and a lower temperature
limit. The new technologies of the expansion valves allows the pulse with modulation
techniques in the control signals. Consequently, air temperature inside the displace cases
can be regulated by local PI controllers instead of the thermostatic ON/OFF operations.

The compressors are responsible for regulating the suction pressure to a usually fixed
set-point. Due to the different timescales between the dynamics of the compressors and
the display case, a static model for the compressors are considered [15].

We propose the following algorithm that keeps the suction pressure as high as pos-
sible while ensuring the system functionality in presence of varying loads. A sampling
time equal to one minute ensures that the compressor speed is regulated to its steady-
state value. Moreover, an upper limit Psuc,max is put to keep a safety margin for pressure
difference required for circulating the refrigerant. The lower limit Psuc,min is due to the
limitations of compressor total capacities, and also the safety issues regarding the high
pressure difference.

Algorithm 4 Calculate set-point value for the suction pressure
if Psuc < Psuc,max and max(ODi) < δmax then

Increase the pressure set-point
else if Psuc > Psuc,min and max(ODi) > δmin then

Decrease the pressure set-point
else

Keep the previous set-point

The above algorithm is based on an optimality hypothesis, where the pressure should
be increased until one of the expansion valves is kept almost fully open. It increases and
decreases the pressure set-point with a constant ramp and within the pressure limits.

Now, we have a system with higher energy efficiency. Still, there exists a potential
to further reduce the energy cost by shifting the power consumption using a predictive
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control algorithm.

Economic MPC

The control objective of economic MPC is to minimize the operating cost while respect-
ing the operation and imposed constraints. The economic objective function is simply
formulated by the instantaneous energy cost as multiplication of the real-time electricity
price ep(t) by the power consumption at given time t. So, the energy cost, Jec is computed
over the specified time interval [T0 TN] as

Jec = ∫

TN

T0
epẆc,totdt. (5.12)

Linear Model and Constraints

Considering Q̇e in (6.2) as an input manipulated variable, we will have a linear system
with the standard form. But we cannot directly apply Q̇e as an input signal to the system.
Considering (8.5) and (6.6), Q̇e is a function of OD, Prec, and Psuc. Prec is regulated
to a fixed set-point and is taken constant. At each time step we can measure Psuc and
assumed it constant all over the horizon. Bearing in mind that Algorithm 5 tries to keep
the pressure at its maximum possible level, it would not be a highly restrictive assumption
for our predictive model. So at time step k we will have

Q̇e = βkOD (5.13)

where
βk = ∆hlgKvA

√
2ρsuc(Prec−Psuc)105 (5.14)

is assumed constant for the next N samples of prediction (i.e., βk∣k = βk∣k+i for i = 1⋯N).
Now the following linear model is derived for each cooling unit.

⎧⎪⎪
⎨
⎪⎪⎩

ẋp = Apxp+B1,pu+B2,pd
yp =Cpxp

(5.15)

with the states xp = [Tf oods Tcr]
T

, the input u =OD, and the disturbance d = Tindoor. The
parameters are

Ap =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
UA f oods/cr
MCp f oods

UA f oods/cr
MCp f oods

UA f oods/cr
MCpcr

−
UA f oods/cr+UAload

MCpcr

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (5.16)

B1,p = βk [
0
−1

MCpcr

] , B2,p = [
0

UAload
MCpcr

] , (5.17)

and
C = [1 1] . (5.18)

The output yp1 = xp1 is the measured variable and subjected to constraint, and yp2 = xp2
is the output to be controlled.
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System (6.13) is subjected to the constraints

Tf oods,min ≤ yp1 ≤ Tf oods,max, (5.19)

and
0 ≤ u ≤ 1, (5.20)

where Tf oods,min and Tf oods,max are defined based on the types of foods are placed in the
display cases.

MPC Formulation

We use a discrete-time receding horizon approach, in which at each time step, an opti-
mization problem is solved over a prediction N step horizon. The result consists of the
N moves of manipulated variables where the first one is applied as the MPC control law.
So, for the MPC formulation we should discretize the plant model (6.13) with sampling
time Ts which results in

⎧⎪⎪
⎨
⎪⎪⎩

xp[k+1] = Adxp[k]+Bd,1u[k]+Bd,2d[k]
yp[k] =Cdxp[k]

(5.21)

with the discrete-time system matrices Ad , Bd,1, Bd,2 and Cd . To keep the optimization
problem feasible in case of uncertain loads, the state constraint (5.19) is changed to the
set of soft constraints

Tf oods,min−ε∆Tf oods ≤ yp1 ≤ Tf oods,max+ε∆Tf oods
ε ≥ 0 (5.22)

where the violations from temperature limits are penalized by adding the term ρε ε to the
objective function. ∆Tf oods and ρε should be defined such that the violation occurence is
very rare and its amount is also negligible.

In order to implement the MPC scheme in a cascade configuration shown in Fig. 9.1,
the predictive model should also include the local controller dynamics [16],

⎧⎪⎪
⎨
⎪⎪⎩

xc[k+1] = Acxp[k]+Bce[k]
u[k] =Ccxc[k]+Dce[k]

(5.23)

The error signal is defined as e[k] = r[k]−yp2[k], where r[k] is the temperature set-point.
The combined predictive model for the cascade structure is derived as follow:

⎧⎪⎪
⎨
⎪⎪⎩

X[k+1] = AX[k]+B1r[k]+B2d[k]
Y [k] =CX[k]+Dr[k]

(5.24)

where X = [xp xc]
T

, and Y = [yp u]
T

. The corresponding state space matrices for this
formulation can be found in [16]. Using the state-space model (5.24) the control signal
applying to the system will be the temperature reference r.

The cost function (6.12) is rewritten using (8.13) as

Jec =
N−1

∑
k=0

∥ep
Q̇e,tot

COP
∥

2

2
, (5.25)
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where COP is given by (9.1), and Q̇e,tot =
m
∑
i=1

Q̇i
e with m indicating the number of cooling

units. In the next section we will show how we can predict the COP by estimating it as a
linear function depending on the outdoor temperature. Now, the optimization problem is
defined as

minimize
r,ε

Jec+J∆u+ρε ε

sub ject to system dynamics (5.24)
state constraints (5.22)
input constraints (5.20)

, (5.26)

with

J∆u =
N−1

∑
k=1

∥R∆u (r[k]− r[k−1])∥2
2 . (5.27)

where R∆u is a diagonal matrix of tuning weights. The above objective function penalizes
the rate of change of the set-point to avoid the oscillatory behavior in control commands.
The tuning parameters are defined by considering two opposing objectives: cost and sta-
bility. From the cost point of view, the units (e.g. display cases) with larger costs of
storing energy should be more penalized, and from the stability point of view, the units
with faster dynamics should be assigned larger values for their corresponding weights in
R∆u.

4 Simulation Results

In this section, the proposed methods are applied to a high-fidelity simulation benchmark
developed based on the model explained in [15]. The model is validated against real
data obtained from a supermarket including 7 MT and 4 LT fridge and freezer display
cases and a cold room, and the two-stage compressor racks. A two-step simulation is
provided to show the gradually improvement from a simple PI replacements together with
Algorithm 1 to the complicated supervisory MPC. For each case, the simulation results
for a 24-hour operation are presented.

The outdoor temperature is obtained from an hourly measurement with linear inter-
polation between the hours. The temperature prediction can for example be provided by
the national meteorological institute, sometimes on a commercial basis. One week pe-
riod of hourly el-spot price was downloaded from NordPool spot market [17]. Fig. 5.3
shows the Toutdoor and ep for 24 hours related to the next results. In the simulations, we
used a normalized version of the electricity prices and compare the methods based on the
percentage in reduction of the operating cost.

Distributed PI Temperature Control together with Algorithmic Pressure
Control

At this step, the thermostatic controllers are replaced by PI ones and the Algorithm 1 is
applied for the pressure set-point control. The temperature set-points for each PI is set
to the middle of the range of the display case temperature the same as the thermostatic
control case. The power consumption for 24 hours with thermostatic control is shown
in Fig. 6.4. Fluctuations in power consumption is mainly because of the mass flow
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Figure 5.3: Outdoor temperature and electricity price.

change due to thermostat actions. The total energy consumption and electricity cost are
Etot = 95.1 [kWh] and ec = 47.6.
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Figure 5.4: Power consumption in case of the thermostatic control valves. The total
energy consumption and the corresponding electricity cost are Etot = 95.1 [kWh] and
ec = 47.6.

The energy consumption and the corresponding electricity cost in case of using the
PI control valves as well as applying the Algorithm 1 are reduced to Etot = 76 [kWh]
(20% reduction) and ec = 38.4 (19% reduction). The suction pressures of two LT and MT
sections are illustrated in Fig. 7.6b. The design parameters are δmax,MT = 0.95, δmin,MT =

0.9, δmax,LT = 0.95,δmin,LT = 0.85, Pmax,MT = 34 and Pmax,LT = 15. The suction pressures
vary between δmin and δmax with a constant ramp.
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Further improvement can be achieved by running the system in an energy-efficient
scenario, where the temperature set-points are fixed to highest levels (only 0.5 ○C below
the maximum limits). The result is shown in the same plot with the MPC case in Fig. 6.6.
Using this simple scenario Etot and ec are reduced to Etot = 67.8 [kWh] (29% reduction)
and ec = 34.3 (28% reduction) which is a considerable reduction.
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Figure 5.5: Suction pressures of two LT and MT sections after applying Algorithm 5.

Economic MPC

Considering the slow dynamics of the display cases, and different time constant for the
food temperatures ranging from 1 hour to more than 10 hours, a 15 minute sampling
period and a 24 h prediction horizon (N = 96) is chosen for implementation. The tuning
parameters are ρε,MT = 106, ρε,LT = 100, and R∆u = 0.01Im×m, where m = 7 for MT and
m = 4 for LT units. To solve the optimization problem (8.23) we have used CVX, a
package for specifying and solving convex programs [18, 19].

Considering (9.1), the COP is a nonlinear function of the both suction and the con-
densation pressures. So its relation cannot be placed directly in the convex programming.
Since we have already assumed the pressure set-point unchanged for the prediction hori-
zon (note that it is updated at each sample), the COP would mainly depend on the conden-
sation pressure which is highly correlated with the outdoor temperature. So it is rational
to calculate it from (9.1) based on the measurements and then use it as the historical data
for prediction. As shown in Fig. 5.6a, the COP is linearly estimated from the outdoor
temperature. Fig. 5.6b shows the COP prediction for the next horizon based on the linear
fit estimation obtained from the previous 24 hours of the historical data, and the predic-
tion of the outdoor temperature for the next 24 hours. Since the pressure may change
during the operation and also the outdoor temperature varies during the day, the linear fit
is updated in each time step to avoid the significant bias in predictions.

The power consumption resulted from applying the economic MPC scheme in the
supervisory level is depicted in Fig. 5.7. The food temperatures of the fridge display
cases are represented in Fig. 5.8. The trends for the freezer units are almost similar.
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Figure 5.6: COP estimation and prediction. (a): Estimation of the system COP as a linear
function of the outdoor temperature. (b): Prediction of the system COP using the obtained
linear estimation and prediction of the outdoor temperature.

Using the economic MPC, the energy consumption is reduced to Etot = 64.6 [kWh] (32%
reduction) that justifies the COP prediction method. The electricity cost become ec = 30.3
(36% reduction) which indicates the effectiveness of the proposed scheme. As can be
seen from Fig. 5.3, around 3 h both ep and Toutdoor are low (the COP is high), so the
supervisory control starts storing energy by lowering the temperatures while respecting
the imposed constraints. Around 15 h, ep is low but Toutdoor is high (the COP is low),
but the proposed control can handle this trade-off very well by storing some amount of
energy in an optimal way.
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Figure 5.7: Power consumption after applying economic MPC (solid) and the energy-
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Figure 5.8: Food temperatures in the fridge display cases. The temperature limits are [1,
4].

5 Discussions

From the results provided in the previous section, one can recognize a big gap between
a very simple traditional thermostatic control in a commercial refrigeration system and a
complicated economic MPC regarding the operating cost (36% reduction was reported).
In order to avoid jumping from a primary design to an advanced one, we explained how
we can increase the efficiency of the system, regarding its energy consumption, by simple
practically applicable methods. For this purpose, we proposed a predictive control in a
supervisory level to minimize the cost of operation. The following steps were investigated
concerning the economic saving they can offer with respect to the simple non-efficient
thermostatic control.

1. Using PI control together with Algorithm 5, (19%)

2. Using the energy-efficient scenario, (28%)

3. Using the economic MPC scheme, (36%)

The largest saving is realized by using the economic MPC, but the method is com-
plicated and needs advanced numerical methods to solve an optimization problem. On
the other hand, the proposed energy-efficient scenario can be easily applied, but the op-
erating cost is not minimized by this method. So, there is a visible trade-off between the
performance and the design complexity.

6 Conclusions

In general, the economic cost function in refrigeration systems including the cooling ca-
pacity of each cold reservoir as well as the suction pressure as manipulated variables
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6 Conclusions

is a nonconvex function which makes the optimization problem more troublesome. To
avoid this nonconvexity, we have proposed a supervisory control structure with a simple
algorithm for set-point control of the suction pressure that facilitates a reformulation of
the problem to a more numerically efficient convex programing. Incorporating the PI
controller dynamic into the predictive model enables the MPC to apply the tempreture
set-point as the manipulated variable. The results showed the superiority of the proposed
economic MPC with 36% reduction of the operating cost over an energy-efficient scenario
offering 28% reduction.
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1 Introduction

Abstract

This paper proposes a model predictive control scheme to provide temperature
set-points to thermostatic controlled cooling units in refrigeration systems. The con-
trol problem is formulated as a convex programming problem to minimize the overall
operating cost of the system. The foodstuff temperatures are estimated by reduced
order observers and evaporation temperature is regulated by an algorithmic suction
pressure control scheme. The method is applied to a validated simulation benchmark.
The results show that even with the thermostatic control valves, there exists signifi-
cant potential to reduce the operating cost.

1 Introduction

Increasing the energy demand, on one hand, and penetration of the intermittent renewable
recourses into the electricity grid, on the other hand, enforce a lot of researches to cope
with the current and the future challenges. Control theory has been proven to be able
to offer strong solutions for various problems regarding from the production units to the
end-point consumers.

To be able to implement advanced cost efficient control algorithms, some systems
need significant redesigns like hardware replacements, system reconfiguration, software
changes, etc. Hysteresis controllers that regulate the controllable variables within hys-
teresis bounds can be found in various process systems like a thermostatic controller that
regulate the temperature in a cooling unit. So, it would be more cost effective if we can
implement the advanced control methods without replacing these simple local controllers
by more expensive ones. This paper proposes a solution for such a control problem in
refrigeration systems.

Model predictive control (MPC) has successfully been applied to refrigeration sys-
tems for intending different kinds of improvements. With hybrid system formulation,
MPC was employed in [1,2] and [3] to solve the synchronization problem in display cases
that causes wearing of the compressors. Fallahsohi, et al in [4] applied predictive func-
tional control to minimize the superheat in an evaporator. For multi-evaporator systems,
a decentralized MPC was proposed to control the cooling capacity of each evaporator [5].

There are also valuable researches that use MPC to reduce the energy consumption
and/or electricity cost. A nonlinear predictive control scheme was designed in [6] to re-
duce the total power consumption of the compressor in a vapor compression cycle. The
cooling capacity is regulated by a variable speed compressor. But this method cannot
be applied directly to the refrigeration systems with different cooling units in which the
cooling capacity is regulated by expansion valves as well. As a thorough study that pro-
poses a MPC to reduce the operating cost of such systems, we can point to [7]. But it
replaced the hysteresis control valves with the floating point control ones for implemen-
tation. Moreover, the nonlinear optimization tool employed to handle a nonconvex cost
function imposes a heavy computation burden into the control system.

This paper proposes a MPC for thermostatic controlled cooling units in commercial
refrigeration systems. To deal with nonlinear dynamics of the cooling units, the cooling
capacity is treated as a fictitious manipulated variable by which we can formulate the
standard linear system dynamics for each cooling unit. A simple efficient algorithm, pro-
posed by the authors in [8], is slightly modified and employed for set-point control of the
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suction pressures. The predictions of the electricity price and the outdoor temperature are
used in the MPC formulation. In order to preserve food temperatures within the permis-
sible range, a reduced order observer is designed to estimate those temperatures for each
cooling unit. Finally, the formulated MPC is implemented using a convex programming
on a validated simulation benchmark including several fridge and freezer display cases.

2 Refrigeration System

Fig. 9.1 shows a typical refrigeration system with a booster configuration. The cool-
ing section consists of a low temperature (LT) section including display cases and low
stage compressor racks (COMP_LO), and a medium temperature section including freez-
ing rooms and high stage compressor racks (COMP_HI). The air temperatures at the
evaporator outlets are considered as controllable variables regulated by ON/OFF thermo-
static control valves (EV_MT and EV_LT). A detailed thermodynamic analysis of such a
booster configuration is explained in [9].
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Figure 6.1: Basic layout of a typical supermarket refrigeration system with booster con-
figuration.
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2 Refrigeration System

Display Case Dynamics

Considering energy balances, the heat transfers in display cases are described by the
following equations based on a lumped temperature model.

MCp f oods
dTf oods

dt
= −Q̇ f oods/cr (6.1)

MCpcr
dTcr

dt
= Q̇load + Q̇ f oods/cr − Q̇e (6.2)

Where MCp denotes the corresponding mass multiplied by the heat capacity, and Tcr is
the controllable air temperature inside the cooling unit. Q̇ f oods/cr is the heat transfer from
food to cooled air,

Q̇ f oods/cr =UA f oods/cr(Tf oods−Tcr), (6.3)

Q̇load is the heat load due to indoor temperature, Tindoor,

Q̇load =UAload(Tindoor −Tcr), (6.4)

and Q̇e is the heat transfer from cooled air to the circulated refrigerant,

Q̇e = ṁr(hoe−hie), (6.5)

where UA is the overall heat transfer coefficient, hoe and hie are enthalpies at the outlet and
the inlet of the evaporators which are nonlinear functions of the evaporation temperature
(or equivalently suction pressure). The term ṁr denotes the mass flow of refrigerant into
the evaporator described by the following equation:

ṁr =OD KvA
√

2ρsuc(Prec−Psuc)105 (6.6)

where OD stands for the opening degree of the valve with value between 0 (closed) to 1
(fully opened), Prec and Psuc are receiver and suction pressures in [bar], ρsuc is the density
of the circulating refrigerant, and KvA denotes a constant characterizing the valve [10].
However, in case of thermostatic control, OD is only 0 or 1.

There is also a superheat controller operating on the valve when the valve state is ON
(OD = 1). From the energy consumption point of view, and also regarding the control
design in a supervisory level, the superheat control dynamics are negligible. So, here
we have assumed a constant superheat degree for the model as explained by the authors
in [11].

Power Consumption and COP

The electrical power consumption of each compressor bank is calculated by

Ẇc =
1

ηme
ṁre f (ho,c−hi,c), (6.7)

where ṁre f is the total mass flows into the compressor, and ho,c and hi,c are the enthalpies
at the outlet and inlet of the compressor bank. These enthalpies are nonlinear functions
of the refrigerant pressure and temperature at the calculation point. The constant ηme
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indicates overall mechanical/electrical efficiency considering mechanical friction losses
and electrical losses [12]. The outlet enthalpy is computed by

ho,c = hi,c+
1

ηis
(his−hi,c), (6.8)

in which his is the outlet enthalpy when the compression process is isentropic, and ηis is
the related isentropic efficiency given by [13] (neglecting higher order terms),

ηis = c0+c1( fc/100)+c2(Pc,o/Psuc), (6.9)

where fc is the virtual compressor frequency (total capacity) of the compressor rack in
percentage, Pc,o is the pressure at compressor outlet, and ci are constant coefficients.

The total coefficient of performance (COP) is defined as the ratio of total cooling
capacity over the total power consumption of the compressors.

COP =
Q̇e,tot

Ẇc,tot
(6.10)

The COP is calculated by

COP =
xMT (hoe,MT −hie,MT )+xLT (hoe,LT −hie,LT )

1
ηMT

(his,MT −hi,c,MT )+
xLT
ηLT

(his,LT −hi,c,LT )
, (6.11)

where indices MT and LT relate the calculated values to the medium and low temperature
sections, respectively. Parameters xMT and xLT are the ratio of refrigerant mass flow
of MT and LT evaporators to the total flow rate, and ηMT = ηme,MT ηis,MT and ηLT =

ηme,LT ηis,LT .

3 Set-Point Control

In the control structure illustrated in Fig. 6.2, the distributed controllers are responsi-
ble for regulating controllable variables to the values provided by the set-point control
unit. Distributed controllers consist of thermostatic and PI controllers regulating the tem-
peratures and compressors speeds, respectively. So, the desired set-points are the air
temperatures of display cases and the suction pressures of LT and MT sections.

In general, providing optimal set-points for both the suction pressure and the display
cases temperatures leads to solve a nonconvex optimization problem which imposes a
heavy computational burden. To avoid this nonconvexity, we use a simple algorithm pre-
sented in [8] for the pressure set-points, and a new MPC scheme using convex programing
for the temperature set-points. This leads to a nearly optimal solution.

Algorithmic Pressure Control

The authors proposed a heuristic algorithm for the pressure set-point control using the fact
that the near optimal pressure value will be achieved by increasing the suction pressure
until one of the expansion valves is kept almost fully open [8]. Because of the ON and
OFF states of the valves, we slightly modified the algorithm by taking the moving average
of the opening degree for calculation of the maximum state between the valves.
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Figure 6.2: Set-point control structure for refrigeration systems.

A sampling time equal to one minute (for implementing this static control algorithm)
ensures that the compressor speed is regulated to its steady-state value. Thus, the static
model for the compressors are considered for the simulations [11]. The upper limit
Psuc,max gives a safety margin for the pressure difference required for circulating the refrig-
erant. The lower limit Psuc,min is due to the limitations of the compressor total capacities,
and also the safety issues regarding the high pressure difference.

Algorithm 5 Calculate the set-point value for each suction pressure
if Psuc < Psuc,max and max(ODavr) < δmax then

Increase the pressure set-point
else if Psuc > Psuc,min and max(ODavr) > δmin then

Decrease the pressure set-point
else

Keep the previous set-point
end

In the above algorithm, ODavr is the moving average vector of opening degree of the
expansion valves, and δmax and δmin are design parameter.

Model Predictive Control

Here, the control objective is to minimize the operating cost while respecting the imposed
constraints. The economic objective function is simply formulated by the instantaneous
energy cost as multiplication of the real-time electricity price ep(t) by the power con-
sumption Ẇc,tot at given time t. So, the energy cost, Jec is computed over the specified
time interval [T0 TN] as

Jec = ∫

TN

T0
epẆc,totdt. (6.12)

Linear Model and Constraints

Considering Q̇e in (6.2) as a fictitious input manipulated variable, we will have a linear
system with the standard form,

ẋ = Ax+B1u+B2d (6.13)
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with the states x = [Tf oods Tcr]
T

, the input u = Q̇e, and the disturbance d = Tindoor. The
parameters are

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
UA f oods/cr
MCp f oods

UA f oods/cr
MCp f oods

UA f oods/cr
MCpcr

−
UA f oods/cr+UAload

MCpcr

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (6.14)

and

B1 = [
0
−1

MCpcr

] , B2 = [
0

UAload
MCpcr

] . (6.15)

System (6.13) is subjected to the constraints

Tf oods,min ≤ Tf oods ≤ Tf oods,max, (6.16)

and

0 ≤ Q̇e ≤ Q̇e,max, (6.17)

where Tf oods,min and Tf oods,max are defined based on the type of foods in the display cases,
and Q̇e,max is calculated from (6.5) and (6.6) by putting OD = 1.

Note that the Q̇e in (6.17) is not directly applicable to the system. In [8], a supervisory
MPC was formulated by incorporating the local controllers dynamics in the predictive
model. Here, due the nonlinearity of the thermostatic action, we cannot formulate the
same supervisory MPC. Instead, we propose a new MPC scheme for this purpose, where
the fictitious input is used to one step prediction of the next temperature value, and then
it is applied as the temperature set-point to the cooling unit. This practical point will be
addressed in section 3.

Estimator Design

In order to estimate the food temperature in each cooling unit, we design a reduced order
observer [14, Ch. 8]. We rewrite (6.13) as

[
ẋ1
ẋ2

] = [
a11 a12
a21 a22

][
x1
x2

]+[
b11 b12
b21 b22

][
u
d] . (6.18)

The reduced order observer is designed to estimate x1 = Tf oods with the following estima-
tor equation,

˙̂x1 = Aox̂1+Bo,1uo+Bo,2d+L(yo−Cox̂1), (6.19)

where Ao = a11, Bo,1 = [a12 b11], uo = [x2 u]
T

, Bo,2 = b12, Co = a21, and

yo = ẋ2−a22x2−b21u−b22d. (6.20)

The observer gain L is defined based on the classical pole placement method. Implemen-
tation of the above estimator needs further considerations explained in [14, Ch. 8].
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MPC Design

We use a discrete-time receding horizon approach, in which at each time step, an opti-
mization problem is solved over a N-step prediction horizon. The result consists of the
N moves of manipulated variables where the first one is applied as the MPC control law.
So, for this MPC formulation, we should discretize the multivariable extension of system
(6.13) with sampling time Ts which results in

x[k+1] = Adx[k]+Bd,1u[k]+Bd,2d[k]. (6.21)

with the discrete-time system matrices Ad , Bd,1 and Bd,2. The states are x = [x̂T
1 xT

2 ]
T

where x̂1 is the vector of estimated food temperatures and x2 is the vector of air tempera-
ture.

To keep the optimization problem feasible in case of uncertain loads, the state con-
straint (6.22) is changed to the set of soft constraints

Tmin−ε∆Tf oods ≤ x̂1 ≤ Tmax+ε∆Tf oods
ε ≥ 0 (6.22)

where the violations from temperature limits are penalized by adding the term ρε ε to the
objective function. ∆Tf oods and ρε should be defined such that the violation occurs rarely.
To avoid the temperature violation caused by state estimation error, a safety margin is
imposed by defining Tmin = Tf oods,min+Tsa f e and Tmax = Tf oods,max−Tsa f e.

The cost function (6.12) is rewritten using (8.13) as

Jec =
N−1

∑
k=0

∥ep
Q̇e,tot

COP
∥

2

2
, (6.23)

where COP is given by (9.1), and Q̇e,tot =
m
∑
i=1

Q̇i
e with m indicating the number of display

cases. In the next section, we will show how we can predict the COP by estimating it as
a linear function depending on outdoor temperature. Now, the optimization problem is
defined as

minimize
Q̇e,ε

Jec+J∆u+ρε ε

subject to system dynamics (6.21)
state constraints (6.22)
input constraints (6.17)

, (6.24)

with

J∆u =
N−1

∑
k=1

∥R∆u (Q̇e[k]− Q̇e[k−1])∥
2
2 , (6.25)

where R∆u is a diagonal matrix of tuning weights. The above objective function penalizes
the rate of change of cooling capacity to avoid the oscillatory behavior in set-point com-
mands. The tuning parameters are defined by considering two opposing objectives: cost
and stability. From the cost point of view, the units (e.g. display cases) with larger costs
of storing energy should be more penalized, and from the stability point of view, the units
with faster dynamics should be assigned larger values for their corresponding weights in
R∆u.
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At each time step a new set of control commands Q̇e are given by the above MPC. But
as mention in section 3, these commands are not directly applicable to the cooling units.
So we use the predicted states (Tre f ,cr = x2[k+1]) by updating (6.21) using the obtained
Q̇e, and then apply them as temperature set-points to the corresponding cold rooms. The
ON/OFF limits of thermostatic controllers are also set to the small values around the
set-point. The proposed supervisory MPC is summed up in Algorithm 7.

Algorithm 6 Supervisory MPC including the economic cost in its objective function
Prediction

Load

COP and Toutdoor from previous horizon
ep and Toutdoor predictions

Compute

COP prediction based on its previous horizon values and Toutdoor

Solve
minimize

u,ε
Jec+J∆u+ρε ε (over the horizon)

subject to x[k+1] = Adx[k]+Bd,1u[k]+Bd,2d[k]
x̂1 ≥ Tmin−ε∆Tf oods
x̂1 ≤ Tmax+ε∆Tf oods
ε ≥ 0
0 ≤ u ≤ Q̇e,max

Update

u[k] = first move in obtained u

x[k+1] = Adx[k]+Bd,1u[k]+Bd,2d[k]

Tre f ,cr = x2[k+1] where x = [x̂1 x2]
T

4 Simulation Study

In this section, the proposed method is applied to a high-fidelity simulation benchmark
including 7 fridge display cases, 4 freezer display cases and cold room, and the two-stage
compressor racks. The details of the model validation against real data are found in [11].
At first, we apply a traditional scenario in which the thermostat action occurs between
the upper and the lower temperature limits. For a fair comparison, the pressure set-points
are fixed to the maximum values. The designed MPC together with algorithmic pressure
control are applied to the system.

Simulation Set-up

The outdoor temperature is obtained from an hourly measurement with linear interpo-
lation between hours. The temperature prediction can for example be provided by the
national meteorological institute, sometimes on a commercial basis. One week period of
hourly el-spot price was downloaded from NordPool spot market [15]. Fig. 6.3 shows
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the Toutdoor and ep for 24 hours related to the upcoming results. In the simulations, we
used a normalized version of the electricity prices and evaluate the results based on the
percentage in reduction of the operating cost.
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Figure 6.3: Outdoor temperature (top) and electricity price (bottom).

The estimator is designed as a digital observer with sampling time of 1 min where the
observer poles are selected as follows.

Po = [0.99, 0.995, 0.99, 0.99, 0.99, 0.99, 0.9, ...
0.999, 0.5, 0.999, 0.1]

Because of the slow dynamics of the cooling parts, the MPC sampling time is set
to 15 min. A 24 h prediction horizon is considered which needs N = 96 samples for
implementation. The tuning parameters are ρε = 5 and

R∆u = diag(0.1, 0.1, 0.1, 0.1, 0.1, 0.05, 0.1, ...
0.0025, 0.01, 0.0025, 0.01),

with the first 7 elements for the fridge and the last 4 for the freezer units. The safety
temperatures are chosen as Tsa f e = 0.5 ○C for display cases and Tsa f e = 1 ○C for freezing
rooms. A 5 min moving average as well as γOD = 0.9 are used for the implementation
of Algorithm 5. To solve the optimization problem (8.23) we used CVX, a package for
specifying and solving convex programs [16, 17].

Simulation Results

Power consumption of the compressors, resulted from applying the traditional scenario
explained before, is depicted in Fig. 6.4. The total energy consumption and corresponding
electricity cost are Etot = 64 [kWh] and ec = 32.5.The air and food temperatures of the first
and third fridge display cases are provided in Fig. 6.5 for a 6 h period. The trends are
similar for the other units.
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Figure 6.4: Power consumption in case of traditional fixed set-point control.
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Figure 6.5: Air temperatures of the first and third fridge display cases, Tdc, and the corre-
sponding food temperatures. Dashed red lines indicate the temperature limits.

Fig. 6.6 shows the power consumption after applying the designed MPC together
with Algorithm 5. The energy consumption and operating cost are Etot = 50 [kWh] and
ec = 21.4 (34% reduction) which are considerable reductions.

The actual food temperatures for fridge units are illustrated in Fig. 6.7. The details of
the COP prediction with correlation to the outdoor temperature are explained in [8]. As
can be seen from Fig. 6.3, around 3 h both ep and Toutdoor are low (the COP is high), so the
supervisory control starts storing energy by lowering the temperatures while respecting
the imposed constraints. Around 15 h, ep is low but Toutdoor is high (the COP is low),
but the proposed control can handle this trade-off very well by storing some amount of
energy in an optimal fashion.

The suction pressures for both low and medium temperature sections regulated by low
and high stage compressor banks are shown in Fig. 7.6b. The pressure related to MT units
is kept at the maximum level. It is because there is not a quick change in display case
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Figure 6.6: Power consumption after applying MPC (Algorithm 7) together with algo-
rithmic suction pressure control (Algorithm 5).
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Figure 6.7: Actual food temperatures in fridge display cases. The temperature limits for
are [1, 5] except the lower one which is [1, 3].

set-points that causes a quick variation in cooling capacity. Thus, the moving average of
opening degree of the related valves do not exceed the decision value (γOD = 0.9). On the
other hand, the pressure related to LT units is decreased by quickly increasing the request
for cooling capacity due to quickly lowering the freezing room temperatures by MPC.

The state estimation results given by the reduced order observer are provided in Fig.
6.9 for display cases 1, 3 and 7, and freezing rooms 1, 2 and 4. Some temperature plots
show perfect estimations and a small (0.5 ○C) estimation error is seen in the second freez-
ing room. The imposed safety margin in MPC state constraints can very well prevent the
constraint violation in the presence of such estimation errors.

137



Paper C

S
u
ct

io
n

p
re

ss
u
re

[b
ar

]

time [hour]

6 12 18 24
20

26

32

38

Figure 6.8: Suction pressures of two LT and MT sections resulted from applying Algo-
rithm 5.
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Figure 6.9: Estimation of the food temperatures by reduced order observer. The imposed
safety margin prevent the violation of temperature constraints due to the estimation error.
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5 Conclusions

This paper presented a set-point control method for reducing the overall operating cost of
a refrigeration system. A model predictive control algorithm was proposed to set-point
control of the thermostatic controlled cooling units. In order to preserve food tempera-
tures within the permissible range, a reduced order estimator was designed to estimate
those temperatures. The formulated MPC was implemented by convex programming.
Moreover, a simple and efficient algorithm was used for set-point control of the suction
pressures. A considerable 34% cost reduction was obtained by applying the designed al-
gorithms to a large scale refrigeration system including several display cases and freezing
rooms.
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1 Introduction

Abstract

A decentralized control method is proposed to govern the electrical power con-
sumption of supermarket refrigeration systems (SRS) for demand-side management
in the smart grid. The control structure is designed in a supervisory level to provide
desired set-points for distributed level controllers. No model information is required
in this method. The temperature limits/constraints are respected. A novel adaptive
saturation filter is also proposed to increase the system flexibility in storing and deliv-
ering the energy. The proposed control strategy is applied to a simulation benchmark
that fairly simulates the CO2 booster system of a supermarket refrigeration.

1 Introduction

The growing demand for electrical energy and the increasing utilization of renewable
energy sources create significant challenges for the power grid to provide a stable and
sustainable supply of electricity. As part of the smart grid solutions, the consumption of
electricity should be actively managed as well as the generation.

Demand response (DR) is a component of smart energy demand for managing cos-
tumer consumption of electricity. One strategy for DR implementation is real-time pric-
ing [1] in which the load level of a consumer is optimized in response to electricity prices.
Another strategy (considered for this study) is to directly manage the energy consumption
of consumers. Implementation of such strategy requires at least two levels of design [2]: a
higher level to dispatch the energy/power demand to consumers, and a lower level control
design specific for each autonomous consumer providing balancing services. The latter
is the focus of this paper.

Industrial refrigeration systems have been proven to be highly potential consumers for
DR implementations [3]. Utilizing full DR potential of such consumers requires devel-
opment of advanced control methods like model predictive control (MPC) [4]. Different
MPC schemes have been proposed to minimize the cost of operation of refrigeration sys-
tems in smart grid. An economic-optimizing MPC scheme has been proposed by [5],
where the objective function is formulated for cost minimization as well as peak load re-
duction. A complex nonlinear solver is employed and the local display case controllers
are replaced by a centralized MPC. In [6] a MPC scheme has been designed in a su-
pervisory control level. Two sets of set-point (i.e., pressure for suction manifold and
temperatures for display cases) are separately calculated in different control loops and
assigned to the distributed local controllers. A direct control implementation for multiple
units of single vapor-compression cycle systems has been presented in [7]. An energy
storage model is proposed and utilized by a predictive controller for implementation. The
main reasons that MPC is widely used in such application are its mightiness at controlling
multi-variable systems subject to constraints, and at incorporation of the model prediction
in an optimal control problem.

Implementation of model-based controllers like MPC for supermarket refrigeration
systems requires developing a high fidelity model which is itself a nontrivial and ex-
pensive procedure; especially considering the fact that the system dimension and con-
figuration vary from one supermarket to another. Moreover, utilization of an optimizing
controller for large-scale systems highly increases the complexity regarding the practical
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implementations. Nevertheless, the model-based controls are still valuable methods for
investigating the full potential of demand response implementations.

In this paper, we propose a simple but efficient supervisory control structure includ-
ing P and PI controllers that can enable balancing services of SRSs in smart grid. The
heuristic algorithm proposed in [6] for the pressure set-point control is replaced by a pro-
portional controller, and an agility factor is also introduced. Like [6], the supervisory
controller (which is now simply a PI) assigns set-points to the air temperatures inside the
cooling sites. No model information is required for the control implementation. The food
temperatures should be constrained within the permissible limits. So we put a saturation
filter at the control output that restricts the air temperature and consequently the food
temperature. To handle windup problem due to the saturation filter, a decentralized struc-
ture equipped with anti-windup features is designed. In contrast to the MPC schemes, the
model free controller cannot predict the future temperatures of the air and of the food-
stuffs. So, to ensure the food safety, the same limits for the food temperatures should
be considered for saturation limits applying to the air temperature. This however limits
the range of control effort, and consequently decreases the control system flexibility in
governing the power consumption. We have proposed an adaptive saturation filter that
can effectively remove this restriction, yet respecting the food temperatures.

2 System Description and Problem Statement

In this section, we briefly explain a CO2 booster configuration of a typical supermarket
refrigeration system. Subsequently, the thermodynamics involving the cooling sites are
introduced, and finally, the control problem is stated.

CO2 Booster Refrigeration System

A basic layout of a typical refrigeration system including several display cases and freez-
ing rooms with two compressor banks in a booster configuration is shown in Fig. 9.1.
Starting from the receiver (REC), two-phase refrigerant (mix of liquid and vapor) at point
‘8’ is split out into saturated liquid (‘1’) and saturated gas (‘1b’). The latter is bypassed by
a bypass valve (BPV), and the former flows into expansion valves where the refrigerant
pressure drops to medium (‘2’) and low (‘2′’) pressures. The expansion valves EV_MT
and EV_LT are responsible for regulating the air temperature inside the medium tem-
perature (MT) and the low temperature (LT) cooling sites, respectively, by controlling
the entering mass flow into the evaporators. Flowing through medium and low tempera-
ture evaporators (EVAP_MT and EVAP_LT), the refrigerant absorbs heat from the cold
reservoir. The pressure of low temperature units (LT) is increased by the low stage com-
pressor rack (COMP_LO). All mass flows from COMP_LO, EVAP_MT and BPV outlets
are collected by a suction manifold at point ‘5’ where the pressure is increased again by
high stage compressors (COMP_HI). Afterward, the gas phase refrigerant enters the con-
denser to deliver the absorbed heat from cold reservoirs to the surrounding. The detailed
thermodynamic analysis of such systems is described in [8].
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Figure 7.1: Basic layout of a typical supermarket refrigeration system with booster con-
figuration.

Cooling Unit Dynamics

The purpose of this subsection is to introduce the dynamical equations describing the
thermodynamic processes involve the system. However, the model information are not
used for the control design. The detailed modeling for such control applications have
been explained in [9].

In the cold units (display cases and freezing rooms), heat is transfered from foodstuffs
to cooled air, Q̇ f oods/air, and then from cooled air to circulated refrigerant, Q̇e, which the
latter is also known as cooling capacity. There is however heat load from supermarket
indoor, Q̇load , formulated as a variable disturbance. Here, we consider the measured air
temperature entering the evaporator area as the cold unit temperature, Tair. Assuming
a lumped temperature model, the following dynamical equations are derived based on
energy balances for the mentioned heat transfers.

MCp f oods
dTf oods

dt
= −Q̇ f oods/air (7.1)

MCpair
dTair

dt
= Q̇load + Q̇ f oods/air − Q̇e (7.2)

where MCp denotes the corresponding mass multiplied by the heat capacity. The energy
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flows are
Q̇ f oods/air =UA f oods/air(Tf oods−Tair), (7.3)

Q̇load =UAload(Tindoor −Tair), (7.4)

and
Q̇e =UAe(Tair −Te) (7.5)

where UA is the overall heat transfer coefficient, Te is the evaporation temperature, and
Tindoor is the supermarket indoor temperature. The heat transfer coefficient between the
refrigerant and the display case temperature, UAe, is described as a linear function of the
mass of the liquefied refrigerant in the evaporator [10],

UAe = kmMr, (7.6)

where km is a constant parameter. The refrigerant mass, 0 ≤ Mr ≤ Mr,max, is subject to the
following dynamic [11],

dMr

dt
= ṁr,in− ṁr,out , (7.7)

where ṁr,in and ṁr,out are the mass flow rate of refrigerant into and out of the evaporator,
respectively. The entering mass flow is determined by the opening degree of the expansion
valve and is described by the following equation:

ṁr,in =OD KvA
√

2ρsuc(Prec−Pe) (7.8)

where OD is the opening degree of the valve with a value between 0 (closed) to 1 (fully
opened), Prec and Pe are receiver and suction manifold (evaporating) pressures, ρsuc is the
density of the circulating refrigerant, and KvA denotes a constant characterizing the valve.
The leaving mass flow is given by

ṁr,out =
Q̇e

∆hlg
(7.9)

where ∆hlg is the specific latent heat of the refrigerant in the evaporator, which is a non-
linear function of the suction pressure. When the mass of refrigerant in the evaporator
reaches its maximum value (Mr,max), the entering mass flow is equal to the leaving one.

Problem Statement

In framework of the direct smart grid control, the SRS is supposed to follow a power
reference assigned by the aggregator. Here the problem is to design a control structure
enabling the SRS to regulate its electrical power consumption by storing and delivering
energy into and out from the existing thermal masses in cooling sites.

The practical issues are, first, we do not use any model information in our control
practice, and second, we do not replace the existing local distributed controllers in the
system.
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3 Design of Control Structure

In order to keep the local distributed controllers at their places, the smart grid control
scheme should be implemented in a supervisory level with an outer control loop including
the closed-loop system. There are two sets of control variables to which the supervisory
controllers can assign set-points: the suction pressure, and the air temperatures circulating
inside the cooling sites.

Pressure Set-Point Control

The coupling variable between the cooling units is the suction pressure. If it was possible
to assign the pressure set-points disregarding the cooling air temperatures, then we could
apply the temperature set-point to each unit decoupled from the other ones. A simple
minded method is to assign a constant pressure set-point that is low enough to support
the cooling capacity required for low temperatures. But this will increase the power
consumption in a normal operation.

A near optimal algorithm was designed in [6] by which the pressure set-point is
changed such that always one of the expansion valve is kept fully opened. Here we
apply such optimality by designing a simple proportional controller with saturation limits
(to respect the pressure constraints). In order to prevent a large proportional gain and
consequently a large variation of the set-point, the control command is considered as the
change of set-point,

∆Pre f =Kp(rOD−ODmax) (7.10)

where Kp is the proportional gain, OD is the vector of opening degree of the valves, and
ODmax corresponds to the maximum element of it. rOD = 1−ε is the maximum value that
the fully open valve should follow. It should be a little bit smaller than 1, because the
optimality hypothesis is to keep only one valve fully opened.

Remark 1: The larger ε , the larger gain is applied while decreasing the pressure. This can increase
the flexibility considering the rate of change of the temperatures. So that ε is called agility factor.
It means when the system is demanded to store energy by decreasing the cooling site temperatures,
it can respond more agile with a larger ε . On the other hand, the optimal condition corresponds to
ε = 0. So there is a trade-off between the flexibility and the optimality.

The control command (7.10) is then added to the pressure feedback to form the ap-
plied set-point,

Pre f = ∆Pre f +Pe. (7.11)

In order to respect the pressure limits, this set-point is passed through a saturation filter
before applying to the system. The saturation filter is given by the following relation.

sat(u) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

umax u ≥ umax
u umin < u < umax
umin u ≤ umin

(7.12)

Fig. 7.2 shows the designed structure for set-point control of the suction pressure.
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Figure 7.2: Control structure for set-point control of the suction pressure. The local
controllers use a very shorter sampling period (ts) than of the supervisory P controller
(Ts).

Remark 2: The local controller in Fig. 7.2 regulates the suction pressure to the assigned reference
within the operating range. There are also superheat controllers governing the valve opening de-
grees to ensure the refrigerants exiting the evaporators are completely vaporized. The saturation
filter is imposed to guarantee that the pressure set-point does not exceed the range of operations of
the local pressure controller as well as the distributed superheat controllers. Therefor, the transfer
function from Pre f to Pe describes a stable close loop system. In practice, the settling time of the
inner closed loop system is less than one minute. So, by considering the sampling time larger than
one minute for the outer supervisory loop, and assuming a perfect regulation, the transfer function
of the inner closed loop system would be a unit delay which means Pe[k] = Pre f [k−1].

Temperature Set-Point Control

This section proposes a supervisory control structure for set-point control of the air tem-
peratures of the cooling sites. The main idea is to regulate the electrical power con-
sumption of the compressors by changing these temperature set-points. So that in case
of increasing the power above the base-line — decided by the aggregator — the control
system starts storing energy in cooling sites, and vice versa.

Fig. 7.3 illustrates the designed control structure. Because of the food safety, there are
strict limits on variation range of the food temperatures. The local controllers operating on
the valves control the air temperature inside the cold storages (see (7.1)). Since the food
temperature (due to a higher heat capacity) cannot vary larger than the air temperature,
applying the same limits on the air temperatures can guarantee the limits on the food
temperatures as well (see (7.2)). The constraints are applied by putting the saturation
filters with the following saturation bounds at the output of the ith PI controller.

U i = (T i−T0,i), (7.13)

and
U i = (T i−T0,i), (7.14)

where T and T are respectively the upper and lower limits of the food temperature, and T0
is the fixed set-point for normal operation (that is when the system is not under the direct
control feedback loop).
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Figure 7.3: Control structure for set-point control of the air temperatures in cooling sites.

The supervisory controllers apply the set-point change ∆Ti to each unit. Then this
control command is added to a fixed set-points T0,i to form the temperature reference
(Tre f ,i) for the ith unit.

Tre f ,i = ∆Ti+T0,i (7.15)

The advantages of designing decentralized structure for supervisory PIs instead of
designing a single PI with distributed weighting factors (gains) are explained as follows.
The first reason is that this structure leaves two degrees of freedom in designing the con-
troller for each cooling site. This can however facilitate the future investigations to find
the optimum controller parameters. The second and the most important reason is that be-
cause of the saturation filters, the integral term will windup once the control effort reaches
the limits. The anti-windup feature can be easily supported by this decentralization.

The error feedbacks es,i go to the PI controllers in Fig. 7.3 are required for the anti-
windup design as explained in [12]. A sample PI unit including the anti-windup feature
is shown in Fig. 7.4.
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Figure 7.4: PI controller with anti-windup.
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Putting as the same constraints on the air temperatures as the food temperatures cuts
down the demand response ability of the system from the speed of response point of view.
In model-based designs like MPC, this can be easily handled by just putting the con-
straints on the food temperatures that is honored by the prediction of the future states/out-
puts. In case of lack of the model, there is no specific solution for such problems. The
next section proposes a novel method that can deal with the problem by replacing the
fixed saturation filters by adaptive ones.

Adaptive Saturation Filter

In the proposed adaptive saturation filter, the saturation limits are adaptively updated
based on the current value of the food temperature. Each PI unit in the control structure
of Fig. 7.3 should be updated to the one shown in Fig. 7.5.
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Figure 7.5: PI controller with anti-windup and adaptive saturation filter.

The adaptive algorithm for updating the saturation limits is described by

umax,i(t) =U i+Ku,i(T i−Tf oods,i(t)), (7.16)

and
umin,i(t) =U i+Kl,i(T i−Tf oods,i(t)), (7.17)

where Ku,i and Kl,i are constant parameters defined as saturation limit gains. The right-
hand side of the above equations are the adaptive terms added to (7.13) and (7.14). For
the rest of this section we discuss some features of the designed filter considering (7.16);
the similar discussion can be also made for the case of (7.17). For example consider
the case that the food temperature is below of its maximum limit (Tf oods,i < T i) and we
want to increase it to deliver the storage. At this time, depending on the saturation limit
gains, a higher saturation limit is applied by the filter that lets the air temperature goes
to a higher level. The higher air temperature (Tair > Tf oods), the higher absolute value of
Q̇ f oods/air is applied to (7.2) that can govern the food temperature more effectively. While
Tf oods approaching its limit, the saturation limit decreases until once the food temperature
touches the limit, the adaptive term in (7.16) will disappear.

Remark 3: The adaptive saturation filter can compensate the disturbance effect more efficient than
the fixed parameter filter. In case of violation of the upper temperature limit due to a large distur-
bance, the adaptive term in (7.16) becomes negative that makes the saturation limit tighter than of
(7.13). It means that a larger input gain is applied to the food temperature dynamics in the opposite
direction of the disturbance effect.
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Remark 4: The value of the saturation limit gains (Ku or Kl) can be specified by considering the
rate of change of the food temperature. Taking the first derivative of (7.16) gives

dumax,i

dt
= −Ku,i

dTf oods,i

dt
. (7.18)

So, for instance if Ku = 1 , the saturation limit changes with the same rate of the food temperature.

4 Simulation Results

In this section, the proposed method is applied to a supermarket refrigeration system
including 7 MT display cases and 4 LT freezing storages [9, 13]. Each cooling unit is
equipped with a local PI controller regulating the air temperature inside the unit to the
assigned set-point.

Normal Operation

In normal operation the system is not in the closed-loop smart grid control. The temper-
ature limits for food safeties are T = 3.5 ○C and T = 0.5 ○C for the MT sites, and T = −19
○C and T = −25 ○C for the LT sites. The temperature set-points are set fixed to the upper
limits to minimize the energy consumption.

Fixed pressure set-point

The suction pressure set-point is set to Pre f = 24 bar that can provide the pressure low
enough to cool the air temperature down to the lower limit in case of necessity. To-
tal electrical power consumption of the compressor racks with this set-up are shown in
Fig. 7.6a with dotted line.

Pressure set-point control

At this step we apply the pressure set-point control using (7.10) and (7.11). The pressure
limits are Pe = 20 bar and Pe = 31 bar. The proportional gain and the agility factor are
set to Kp = 5 and ε = 0.1, respectively. As can be seen from Fig. 7.6a, the base-line of
the power consumption in normal operation is decreased by applying the pressure control
method. The suction pressure is also shown in Fig. 7.6b.

In a period of 24 hours, the power reference scenario is such that the aggregator
demands the base-line power consumption until 5:00 AM. Following that, it demands
an increase up to 20% over the base-line for 5:00-15:00, and a reduction down to 20%
below the base-line for 15:00-20:00. Finally the reference gets back to the base-line for
20:00-24:00 to be ready for demand response for the next day. In the sequel, different
responses by different controls are compared and the results are shown in a single plot.

Centralized Control

The centralized control has the same feedback structure as Fig. 7.3 but includes only one
centralized PI controller. The controller gain and integration time are K = 0.1 and Ti = 30
for both MT and LT units. The result is shown in Fig. 7.7 where the response to this
control is depicted by dotted line. During the the increase period, saturation limits are not
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Figure 7.6: Simulation results for normal operation. (a) The base-line of the electrical
power consumptions of the compressor racks gets lower by applying the proposed pres-
sure set-point control method. (b) The suction pressure after applying the control method.

reached, so the controller can fairly increase the power. But it cannot decrease the power
enough during the reduction demand because of activation of the saturation limits. After
the reduction period, because of the integrator windup the centralized controller is also
not able to regulate the power back to the base-line.

Decentralized Control

In order to have a fair comparison, the same gain and integration time as the centralized
control are considered for each decentralized PI controller. The anti-windup gain [12]
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is Tw = 0.5Ti. Now the controller can regulate the power back to the base-line after the
reduction period where the saturation limits were activated.

Adaptive Saturation Filter

Fig. 7.8 shows the air and food temperatures of one of the LT display cases after applying
the adaptive saturation filter. The trends are similar for the other cooling sites. The
adaptive saturation filter lets the air temperature goes above the limit and while the food
temperature is getting close to it, the air temperature is decreased adaptively. So the food
temperature limits are not violated using this method. As a result, the power consumption
can be decreased effectively during the reduction period as illustrated in Fig. 7.7. This
result shows the superiority of the proposed method in delivering the stored energy. The
same argument is also valid in case of storing energy when a higher increase of power
is demanded that can lead to activation of the lower saturation limits for the temperature
set-points.
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Figure 7.7: Electrical power consumption of the compressor racks in case of centralized
control (dotted), decentralized control (dashed), and decentralized control with adaptive
saturation filter (solid).
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Figure 7.8: The air and food temperatures for one of the LT display cases. The trends are
similar for the other display cases.

5 Discussions

It should be noted that our purpose here is not a perfect power following control. The
perfect power reference tracking can be obtained by directly controlling the compressor
speeds. But it does not necessarily mean that we are storing energy in display cases
during the increase period. On the other hand, just turning off the compressors during
the reduction period can make problems in the high pressure CO2 systems. By applying
the mentioned power reference we could analyze the control response in case of a likely
upward and downward power demands.

The LT cooling sites due to better isolations and consequently less disturbance loads
are better candidate to be employed in the balancing services than the MT sites. Because
of the booster configuration (Fig. 9.1) the low stage compressors corresponding to LT
units have a lower capacity than the higher stage compressors. By applying the same
control gain to both LT and MT units (as we did here) the low stage compressors are
more excited than of the higher stage that means the LT units will be more involved in the
balancing services that is a desired objective.

The optimal gains for the proposed controllers can be obtained using an accurate
model, or by designing some data-driven experiments to tune the gains. Addressing this
issue is however out of the scope of the current paper. Heuristically, the display cases
with larger existing thermal masses and better isolations should be assigned more gains
for their decentralized controllers.

6 Conclusion

A new control structure including P and PI controllers for direct control of refrigeration
systems in smart grid was proposed. No model information is required for the control
implementation. The control was designed in a supervisory level to provide desired set-
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6 Conclusion

points to the local distributed controllers. Two different control loops were designed for
decoupling the pressure set-point control from the temperature set-point control. In order
to respect the temperature constraints, and at the same time avoiding windup problem, a
decentralized control method was proposed. A new adaptive scheme for the saturation
filter was designed to utilize the most potential of energy storages in the cooling sites.
This is a new control structure for this specific application that leaves the possibility of
further improvements and developments for the future works.

References

[1] A. J. Conejo, J. M. Morales, and L. Barino, “Real-time demand response model,”
IEEE Transactions on Smart Grid, vol. 1, no. 3, pp. 236–242, 2010.

[2] K. Trangbaek, J. D. Bendtsen, and J. Stoustrup, “Hierarchical control for smart
grids,” in Proceedings of the 18th IFAC World Congress. Milan, Italy: IFAC,
Aug. 2011.

[3] S. Goli, A. McKane, and D. Olsen, “Demand response opportunities in industrial
refrigerated warehouses in california,” in 2011 ACEEE Summer Study on Energy
Efficiency in Industry, Niagara Falls, NY, USA, Jul. 2011.

[4] T. G. Hovgaard, L. F. S. Larsen, K. Edlund, and J. B. Jrgensen, “Model predictive
control technologies for efficient and flexible power consumption in refrigeration
systems,” Energy, vol. 44, pp. 105–116, 2012.

[5] T. G. Hovgaard, L. F. S. Larsen, and J. B. Jrgensen, “Flexible and cost efficient
power consumption using economic mpc: A supermarket refrigeration benchmark,”
in 50th IEEE Conference on Decision and Control and European Control Confer-
ence, Orlando, Florida, USA, Dec. 2011.

[6] S. E. Shafiei, J. Stoustrup, and H. Rasmussen, “A supervisory control approach in
economic MPC design for refrigeration systems,” in Proceedings of the European
Control Conference, Zürich, Switzerland, Jul. 2013, pp. 1565–1570.

[7] R. Pedersen, J. Schwensen, S. Sivabalan, C. Corazzol, S. E. Shafiei, K. Vinther,
and J. Stoustrup, “Direct control implementation of a refrigeration system in smart
grid,” in Proceedings of the American Control Conference, Washington DC, USA,
Jun. 2013, pp. 3954–3959.

[8] Y. T. Ge and S. A. Tassou, “Thermodynamic analysis of transcritical CO2 booster re-
frigeration systems in supermarket,” Energy Conversion and Management, vol. 52,
pp. 1868–1875, 2011.

[9] S. E. Shafiei, H. Rasmussen, and J. Stoustrup, “Modeling supermarket refrigeration
systems for demand-side management,” Energies, vol. 6, no. 2, pp. 900–920, 2013.

[10] D. Sarabia, F. Capraro, L. F. S. Larsen, and C. Prada, “Hybrid NMPC of supermarket
display cases,” Control Engineering Practice, vol. 17, pp. 428–441, 2009.

155



Paper D

[11] L. N. Petersen, H. Madsen, and C. Heerup, “ESO2 optimization of supermarket
refrigeration systems: Mixed integer MPC and system performance,” Department of
Informatics and Mathematical Modeling, Technical University of Denmark, Tech.
Rep., 2012.

[12] K. J. Åström and T. Hägglund, Advanced Pid Control. ISA-The Instrumentation,
Systems, and Automation Society, 2006.

[13] SRSim, “A simulation benchmark for supermarket refrigeration systems using mat-
lab,” http://www.es.aau.dk/projects/refrigeration/simulation-tools/, Feb. 2013, ac-
cessed: February 2015.

156



Paper E

Model Predictive Control for Flexible Power Consumption of
Large-Scale Refrigeration Systems

Seyed Ehsan Shafiei, Jakob Stoustrup and Henrik Rasmussen

This paper was published in:
The Proceedings of the American Control Conference, June 2014



Copyright © 2014 AACC
The layout has been revised



1 Introduction

Abstract

A model predictive control (MPC) scheme is introduced to directly control the
electrical power consumption of large-scale refrigeration systems. Deviation from the
baseline of the consumption is corresponded to the storing and delivering of thermal
energy. By virtue of such correspondence, the control method can be employed for
regulating power services in the smart grid. The proposed scheme contains the control
of cooling capacity as well as optimizing the efficiency factor of the system, which is
in general a nonconvex optimization problem. By introducing a fictitious manipulated
variable, and novel incorporation of the evaporation temperature set-point into opti-
mization problem, the convex optimization problem is formulated within the MPC
scheme. The method is applied to a simulation benchmark of large-scale refrigera-
tion systems including several medium and low temperature cold reservoirs.

1 Introduction

The structure of power systems, especially in Europe, is changing from a centralized one
to a decentralized one due to distributed generation with high penetration of renewable
sources. This change leads to several new challenges that can be handled in a smart
grid, where both production and consumption of electricity are managed efficiently. To
achieve such efficient demand-side management, consumers should be equipped with
control systems that can actively respond to the grid requirements.

Demand response (DR) is a component of smart energy demand for managing cos-
tumer consumption of electricity. One strategy for DR implementation is real-time pric-
ing [1] in which the load level of a consumer is optimized in response to electricity prices.
Another strategy (considered for this study) is to directly manage the energy consumption
of consumers. Implementation of such strategy requires at least two levels of design [2]: a
higher level to dispatch the energy/power demand to consumers, and a lower level control
design specific for each autonomous consumer providing balancing services. The latter
is the focus of this paper.

A typology of ancillary services was identified by [3], where different services like
continuous regulation, energy imbalance management, instantaneous contingency reserves,
replacement reserves, voltage control and black start were investigated. Based on this
typology, the present method facilitates the energy imbalance management services for
large-scale refrigeration systems. Regarding the power grid balancing services, the po-
tential of corresponding demand response activities was investigated by [4] for heating,
ventilation and refrigeration systems. Considering the refrigeration systems, the associ-
ated demand response opportunities were reported in [5].

By means of flexible power consumption, the refrigeration system is supposed to
consume at the baseline of its power consumption profile during the normal operation,
increase the consumption for downward regulation, and decrease it for upward regulation
services in favor of the power grid. The thermal capacity of refrigerated goods are em-
ployed for storing and delivering of thermal energy. In the present work, it is assumed
that a power reference signal is provided by an aggregator to be followed.

One important challenge of control design for multiple evaporator refrigeration sys-
tems is coming from the fact that different cooling units have the same evaporation tem-
perature while providing different cooling capacities. The power/energy management
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is performed by controlling the individual cooling capacities each depends on the same
evaporation temperature as others. Finding optimal cooling capacities as well as optimal
evaporation temperature is in general a nonconvex optimization problem. This problem is
addressed in [6] using nonconvex model predictive control in a real-time pricing market.
In [7], the evaporation temperature is controlled in a separated loop while a supervisory
MPC is proposed for energy cost optimization.

Another difficulty arises from the existence of nonlinear dynamics — caused by the
fluid dynamics inside the evaporator — between the expansion valve and the actual cool-
ing capacity. In the relevant works presented in [6] and [8], the cooling capacity is taken
as control variable that simplifies the dynamic model, but the problem is that it cannot be
applied as a control signal to the system.

It is shown in the present paper that by virtue of the faster dynamics of the flow change
inside the evaporator comparing to the thermal dynamics, it is possible to describe the
cooling capacity by static nonlinearity in terms of the valve opening degree and the evap-
oration temperature. It is simply achieved by choosing an appropriate sampling time for
the MPC. At this point, the model would look like a Hammerstein model. Then, by tak-
ing the cooling capacity as fictitious manipulated variable, a model predictive control is
formulated using a novel incorporation of the evaporation temperature into the optimiza-
tion problem. It leads to a higher system coefficient of performance (COP). The proposed
method is applied to a simulation benchmark of large-scale refrigeration systems includ-
ing several medium and low temperature cold reservoirs with a booster configuration of
two racks of compressors.

2 System Description and Problem Statement

In this section, configuration and model of a typical supermarket refrigeration system is
described.

CO2 Booster Refrigeration System

A basic layout of a typical refrigeration system including several cooling units with two
racks of compressors in a booster configuration is shown in Fig. 9.1. Starting from the
receiver (REC), two-phase refrigerant (mix of liquid and vapor) at point ‘8’ is split out
into saturated liquid (‘1’) and saturated gas (‘1b’). The latter is bypassed by a bypass
valve (BPV), and the former flows into expansion valves where the refrigerant pressure
drops to medium (‘2’) and low (‘2′’) pressures. The electronic expansion valves EV_MT
and EV_LT are responsible for regulating the air temperature inside the medium temper-
ature (MT) and the low temperature (LT) cooling units, respectively, by controlling the
entering mass flows into the evaporators. Flowing through medium and low temperature
evaporators (EVAP_MT and EVAP_LT), the refrigerant absorbs heat from the cold reser-
voir. The pressure of low temperature units (LT) is increased by the low stage compressor
rack (COMP_LO). All mass flows from COMP_LO, EVAP_MT and BPV outlets are col-
lected by a suction manifold at point ‘5’ where the pressure is increased again by high
stage compressors (COMP_HI). Afterward, the gas phase refrigerant enters the condenser
to deliver the absorbed heat from cold reservoirs to the surrounding. The receiver pressure
is regulated by the high pressure valve CP_HP. The detailed thermodynamic analysis of
such systems is described in [9].
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Figure 8.1: Basic layout of a typical supermarket refrigeration system with booster con-
figuration.

Cooling Unit Dynamics

In the cooling units, heat is transfered from foodstuffs to cooled air, Q̇ f oods/air, and then
from cooled air to circulated refrigerant, Q̇e, which the latter is also known as cooling
capacity. There is however heat load from supermarket indoor, Q̇load , formulated as a
variable disturbance. Here, we consider the measured air temperature entering the evap-
orator area as the cold unit temperature, Tair. Using lumped modeling approach [10], the
following dynamical equations are derived based on energy balances for the mentioned
heat transfers.

MCp f oods
dTf oods

dt
= −Q̇ f oods/air (8.1)

MCpair
dTair

dt
= Q̇load + Q̇ f oods/air − Q̇e (8.2)

where MCp denotes the corresponding mass multiplied by the heat capacity. The energy
flows are

Q̇ f oods/air =UA f oods/air(Tf oods−Tair), (8.3)

Q̇load =UAload(Tindoor −Tair), (8.4)

and
Q̇e =UAe(Tair −Te) (8.5)

where UA is the overall heat transfer coefficient, Te is the evaporation temperature, and
Tindoor is the supermarket indoor temperature. The heat transfer coefficient between the
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refrigerant and the display case temperature, UAe, is described as a linear function of the
mass of the liquefied refrigerant in the evaporator [11],

UAe = kmMr, (8.6)

where km is a constant parameter. The refrigerant mass, 0 ≤ Mr ≤ Mr,max, is subject to the
following dynamic [12],

dMr

dt
= ṁr,in− ṁr,out , (8.7)

where ṁr,in and ṁr,out are the mass flow rate of refrigerant into and out of the evaporator,
respectively. The entering mass flow is determined by the opening degree of the expansion
valve and is described by the following equation:

ṁr,in =OD KvA
√

ρsuc(Prec−Pe) (8.8)

where OD is the opening degree of the valve with a value between 0 (closed) to 1 (fully
opened), Prec and Pe are receiver and suction manifold (evaporating) pressures, ρsuc is the
density of the circulating refrigerant, and KvA denotes a constant characterizing the valve.
The leaving mass flow is given by

ṁr,out =
Q̇e

∆hlg
(8.9)

where ∆hlg is the specific latent heat of the refrigerant in the evaporator, which is a non-
linear function of the suction pressure (or equivalently evaporation temperature). When
the mass of refrigerant in the evaporator reaches its maximum value (Mr,max), the entering
mass flow is equal to the leaving one.

Compressor Power and System COP

The electrical power consumption of each compressor bank is calculated by

Powc =
1

ηme
ṁre f (ho,c−hi,c), (8.10)

where ṁre f is the total mass flows into the compressors, and ho,c and hi,c are the enthalpies
at the outlet and inlet of the compressor bank and are nonlinear functions of the refrigerant
pressure and temperature at the calculation points. The constant ηme indicates overall me-
chanical/electrical efficiency considering mechanical friction losses and electrical motor
inefficiencies [13]. The outlet enthalpy is computed by

ho,c = hi,c+
1

ηis
(his−hi,c), (8.11)

in which his is the outlet enthalpy when the compression process is isentropic, and ηis is
the related isentropic efficiency given by [14] (neglecting higher order terms).

ηis = c0+c1( fc/100)+c2(Pc,o/Psuc) (8.12)

Where fc is the virtual compressor frequency (total capacity) of the compressor rack in
percentage, Pc,o is pressure at the compressor outlet, and ci are constant coefficients.
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The total coefficient of performance is defined as ratio of the total cooling capacity
over the total power consumption of the compressors.

COP =
Q̇e,tot

Powc,tot
(8.13)

The COP is calculated by

COP =
xMT ∆hlg,MT +xLT ∆hlg,LT

1
ηMT

(hoc,MT −hic,MT )+
xLT
ηLT

(hoc,LT −hic,LT )
, (8.14)

where indices MT and LT relate the calculated values to the medium and low temperature
sections, respectively. Parameters xMT and xLT are ratio of the refrigerant mass flow
of MT and LT evaporators to the total flow rate, and ηMT = ηme,MT ηis,MT and ηLT =

ηme,LT ηis,LT . The enthalpy terms are nonlinear function of the evaporation temperature
(Te) and/or the condensation pressure (Pc) as ∆hlg(Te), hoc(Pc), and hic(Te) as well as the
corresponding refrigerant temperatures.

Problem Statement

Here the problem is to designing a control algorithm enabling large-scale refrigeration
systems to follow the assigned power reference by an aggregator while optimizing the
coefficient of performance.

It can be seen from (8.14) and the corresponding dependences of enthalpies that the
COP is a function of mass flows coming from evaporators, condensation pressure, and
evaporation temperature. The mass flows are dictated by operating conditions of the
display cases and controlled by the corresponding expansion devices. We assumed the
condenser fan speed is at the maximum level, so the condensation pressure is changed
by changing the outdoor temperature. The only remained manipulated variable to change
the COP is the evaporation temperature. Therefore, the maximum COP can be achieved
by maximizing the evaporation temperature.

3 MPC Formulation

A model predictive control scheme that can address the above problem is formulated in
this section. The objective function for power following is defined as:

JPow =
N

∑
k=1

∥Powc[k]−Powre f [k]∥2
2 (8.15)

where Powre f is the power reference, k denotes the current time instant, and N is the
prediction horizon in terms of number of time steps (samples). Manipulated variables
are the opening degrees of the expansion valves (OD) and the evaporation temperature
set-point (T̂ ).

Looking into system dynamics, it turns out that the power consumption (Powc) is
the nonlinear function of the evaporation temperature (Te); and the cooling capacity (Q̇e)
is also a nonlinear function of both the evaporation temperature and opening degree of
expansion valves (OD). In the following it is shown that how a convex optimization

163



Paper E

problem can be formulated by (i) introducing a fictitious manipulated variable; (ii) novel
incorporation of Te into the MPC scheme; and (iii) choosing appropriate sampling time
and prediction horizon.

Problem Convexification using Synthetic Input

Considering Q̇e as fictitious manipulated variable, the indoor temperature (Tindoor) as mea-
surable disturbance and the cold reservoir temperatures (Tair, Tf ood) as state variables, we
can formulate the discrete-time linear dynamics for each cooling unit as follows.

x[k+1] = Ax[k]+Bu[k]+Bdd[k] (8.16)

where x = [Tf oods Tair]
T

, u = Q̇e, and d = Tindoor. The parameters are

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
UA f oods/air
MCp f oods

UA f oods/air
MCp f oods

UA f oods/air
MCpair

−
UA f oods/air+UAload

MCpair

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (8.17)

and

B1 = [
0
−1

MCpair

] , B2 = [
0

UAload
MCpair

] . (8.18)

The first state variable is subject to the following constraint due to food safety promise:

x1,min ≤ x1 ≤ x1,max (8.19)

where x1,min =Tf oods,min and x1,max =Tf oods,max are the limitations on the food temperature.
The input constraint is given by

0 ≤ u ≤ umax (8.20)

with umax =UAe,max(Tair −Te) where UAe,max = kmMr,max.
Substituting (8.13) into (8.15) and treating Q̇e,tot as the sum of fictitious control inputs

give

JPow =
N

∑
k=1

∥
∑

m
i=1 ui[k]
COP

−Powre f [k]∥
2

2
, (8.21)

where COP is calculated using (8.14) at time instant k and kept constant all over the
horizon. In order to avoid the oscillation of the control signal, the following cost function
is introduced that is a standard approach in MPC formulations.

J∆u =
N

∑
k=1

∥u[k]−u[k−1]∥2
2 (8.22)

For now, the optimization problem ca be defined as:

min
u

Jpow+WuJ∆u

subject to x[k+1] =Ax[k]+Bu[k]+Bdd[k]
x1,min ≤ x1[k] ≤ x1,max
0 ≤ u[k] ≤ umax

(8.23)

where the vector and matrix notations are used to show all cooling dynamics as a large-
scale multivariable system, and Wu is a weighting factor.

Note that the solution of the above optimization problem, u, cannot directly be applied
as a control input to the system. This is more elaborated in the sequel.
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Novel Incorporation of Te into MPC Scheme

Note that the T̂e of MT section is different from of LT section, and remind the fact that
several cooling units at each section have the same corresponding evaporation tempera-
ture. The COP can be kept at the highest point by keeping Te as high as possible up to the
point that enough cooling capacity is provided to cold reservoirs to preserve the required
temperatures. This can be achieved by adding the following cost to the objective function.

JTe =
N

∑
k=1

∥T̂e[k]−Te,max∥
2
2 (8.24)

where Te,max is the maximum value that Te is allowed to reach. Thus the MPC pushes
the evaporation temperature up to the highest value. It should also be constrained as
T̂e ≤ Te,max. Moreover, in order to make sure that the resulted cooling capacity from the
optimization problem is coincide with the evaporation temperature, the upper limit of the
input constraint (8.20) is modified as

umax =UAe,max(x2− T̂e) (8.25)

with x2 = Tair. Now, the MPC algorithm can be formulated using the following optimiza-
tion problem with novel incorporation of T̂e.

min
u,T̂e

Jpow+WuJ∆u+WeJTe

subject to x[k+1] =Ax[k]+Bu[k]+Bdd[k]
x1,min ≤ x1[k] ≤ x1,max
0 ≤ u[k] ≤UAe,max(x2− T̂e)

T̂e ≤ Te,max

(8.26)

where We is the weighting factor for compromising between the evaporation temperature
and the other terms in the objective function.

Remark 5: Choosing a small value for We may result in a lower Te (larger distance to Te,max)
which is equivalent to a smaller COP value. Choosing a large value for We, on the other hand,
leads to a higher T̂e and consequently a better COP, but a smaller constraint set for the decision
variable (cooling capacity). So it curtails the flexibility in controlling the power consumption.
Thus, depending on the DR services that the refrigeration system would provide, We compromises
between the flexibility of power consumption control and optimality of COP.

Remark 6: The direct physical relationship between Q̇e and Te is not included in the optimization
problem. In lieu, to make sure that the resulted Q̇e is feasible to achieve at the concluded Te, its
constraint set is manipulated by T̂e as another decision variable in (8.26).

Control Inputs

As pointed out in Section 3, the cooling capacity (u = Q̇e) resulted from the optimization
problem is not an actual control signal. It is however function of the manipulated vari-
ables, i.e., the evaporation temperature and the opening degree of expansion valve. The
former is directly given by the MPC algorithm, but the latter needs more elaboration.
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After applying a new OD, the latent mass dynamic (8.7) reaches the steady-state after
around 4 minutes which results:

steady-state ⇒ Ṁr ≃ 0 ⇒ ṁr,in ≃ ṁr,out . (8.27)

Using (8.27), (8.8), and (8.9), the opening degree is calculated as

OD ≃
Q̇e

∆hlgKvA
√

ρsuc(Prec−Pe)
, (8.28)

where Prec is assumed constant [10], and ∆hlg, ρsuc and Pe all are functions of Te which is
regulated to T̂e. All in all, for MPC implementation, at each sampling time, u and T̂e are
the solutions for (8.26) based upon which the opening degree is calculated as

OD =Ke(T̂e)u, (8.29)

where Ke(T̂e) = [∆hlgKvA
√

ρsuc(Prec−Pe)]
−1

is updated at each sample time k. The pro-
posed MPC scheme is summarized in Algorithm 7.

Algorithm 7 MPC implementation
Prediction

Load

Powre f from higher level aggregator

Compute

COP and keep it fixed all over the horizon

Solve
min
u,T̂e,ε

Jpow+WuJ∆u+WeJTe +Wr∥ε∥2
2

subject to x[k+1] =Ax[k]+Bu[k]+Bdd[k]
x1,min−ε ≤ x1[k] ≤ x1,max+ε

ε ≥ 0
0 ≤ u[k] ≤UAe,max(x2− T̂e)

T̂e ≤ Te,max

Update

u[k] = first move in obtained u
T̂e[k] = first move in obtained T̂e

OD[k] =Ke(T̂e)u[k]
Control inputs

OD[k], T̂e[k]

Remark 7: There are local stable superheat controllers operating on the expansion valves to make
sure the refrigerant is completely vaporized (superheated) at the outlet of the valves. This is for com-
pressors safety. The superheat control loop is much faster than the MPC and is in the steady-state
at each MPC step. In this work, we impose a certain value of superheat degree in our simulation
model to take its effect into account.
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4 Simulation Results

Sampling Time and Prediction Horizon

In order to choose an appropriate sampling time, Ts, and prediction horizon, N, the lim-
its of each should be investigated. For energy balancing services, the consumer should
respond in around 10 minutes [3], and for the proposed power following approach even
a faster sampling period, Ts < 10 min, would be more favorable. In accordance with the
discussion made in Section 3, the sampling time should also be Ts > 4 min.

A very short prediction horizon may jeopardize stability of the control system [15]. It
is too difficult — if not impossible — to determine the lowest possible prediction horizon
analytically. In the objective function (8.21), COP is kept constant all over the horizon.
The longer the horizon, the more bias in COP variations due to the variation of the out-
door temperature — the latter affect the condensation pressure and accordingly the COP.
Therefor, the prediction horizon should be long enough to ensure the stability, and, on
the other hand, not be so long to fulfill the prediction performance in terms of the COP
assumption.

4 Simulation Results

In this section, the proposed MPC scheme is applied to a high-fidelity simulation bench-
mark developed based on the model explained in [10]. The model is validated against real
data obtained from a supermarket refrigeration system including 7 MT and 4 LT fridge
and freezer display cases and a cold room, and two stages of compressor racks.

Based upon the discussion made in Section 3, the sampling time and prediction hori-
zon are chosen as Ts = 5 min and N = 12, respectively. In order to have a feasible solution
for the optimization problem, slack variables, ε , are employed to soften the state con-
straints as explained in [16] and also shown in Algorithm 7.

COP Optimization

A simple power reference contains the baseline of the power consumption profile during a
day is applied to investigate the COP improvement made by the novel T̂e control method.
For this purpose, the proposed method is compared to the case where a fixed T̂e in the
middle of its possible range is applied. The MPC design of the latter is the same as of
Algorithm 7, but using a fixed set-point for evaporation temperature.

Fig. 8.2 shows that how the MPC using the T̂e control can track a very low baseline
while the fixed T̂e failed to follow, because, otherwise, it would violate the temperature
constraints. The reason of rising the baseline after around 9 AM is that the load increases
due to increase of the outdoor temperature. The COPs are compared in Fig. 8.3 where an
improvement with the average of 22% is achieved by the COP optimization. The lower
baseline the consumer can follow, the lower energy cost it should pay.

Energy Balancing Service

The purpose of the following simulation experiment is to show the ability of the proposed
control algorithm in case of significant change in the power reference for upward and
downward regulation services. The power reference is increased 75% at 12 PM up to 13
PM for downward regulation services. For upward regulation, the refrigeration system
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Figure 8.2: Following a low baseline profile of a power reference. The MPC scheme with
T̂e optimization shows a satisfactory performance while it fails with the constant T̂e.
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Figure 8.3: A higher COP is achieved by the T̂e control method.

needs to store thermal energy sometime ahead of the service start time. Consequently, at
15 PM the power reference is increased 12.5% for energy storage, and then is dropped
significantly (87.5%) at 18 PM up to 19 PM.

The tracking result is represented in Fig. 8.4. A high performance for the power
regulation is obtained by the MPC algorithm. The first step in the power reference after
9 AM is due to the baseline profile. The evaporation temperatures of MT and LT units
are shown in Fig. 8.5. The two big caves in the figures come about when the MPC needs
to decrease the evaporation temperature to be able to apply the required large cooling
capacity during the significant increase of the power reference.

Fig. 8.6 shows the opening degrees of the expansion valves. There is a visible cor-
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Figure 8.5: Evaporation temperatures for both the MT and LT sections.

relation between the OD variations and variations of the power consumption. The food
temperatures and constraints are provided in Fig. 8.7. The food temperatures increase/de-
crease by decreasing/increasing the power consumption which shows the correspondence
of the electrical power regulations with storing and delivering of the thermal energy.
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Figure 8.7: Food temperatures of the different cooling sites belong to the MT and LT
sections. All the temperature constraints are respected.

5 Conclusions

A model predictive control scheme was proposed for flexible power consumption of re-
frigeration systems. The proposed control strategy facilitates the demand response re-
quired for energy imbalance management services. By introducing a fictitious manipu-
lated variable, a convex optimization problem was formulated within the MPC scheme. A
novel incorporation of the evaporation temperature set-point into MPC formulation was
presented for COP optimization. The COP improvement with the average of 22% and,
consequently, the lower baseline of the power consumption were achieved by the COP
optimization method. Simulation experiments showed that the proposed MPC algorithm
is able to regulate the power references with significant magnitude changes of at least
75% from the baseline.
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1 Introduction

Abstract

A predictive control using subspace identification is applied for the smart grid
integration of refrigeration systems under a direct load control scheme. A realistic
demand response scenario based on regulation of the electrical power consumption is
considered. A receding horizon optimal control is proposed to fulfill two important
objectives: To secure high coefficient of performance, and to participate in power
consumption management. Moreover, a new method for design of input signals for
system identification is put forward. The control method is fully data-driven without
an explicit use of model in the control implementation. As an important practical con-
sideration, the control design relies on a cheap solution with available measurements
than using the expensive mass flow meters. The results show successful implemen-
tation of the method on a large-scale nonlinear simulation tool which is validated
against real data. The performance improvement results in a 22% reduction in the
energy consumption. A comparative simulation is accomplished showing the supe-
riority of the method over the existing approaches in terms of the load following
performance.

1 Introduction

The future smart grid requires smart consumers who are able to manage their energy
consumption profile in a flexible manner. The flexible consumption can be incorporated
either into an incentive on electricity price market, or into a direct load control (DLC)
frameworks provisioned by the power market independent service operator.

The dominant approaches in DLC developments have been load-shedding and load
shifting approaches. In the former, part of the load is curtailed during the demand re-
sponse (DR) event [1, 2], and in the latter, the electricity consumption is moved from
high-pick to off-pick hours [3, 4]. The need for power grid services has been increased
by more integration of variable generation which emphasizes the significance of DLC
in which the electricity consumption should follow a reference load profile (power con-
sumption) during the DR event [5].

Consumers with thermal storage capabilities, such as supermarket refrigeration sys-
tems, are envisioned to contribute to grid balancing services [6]. This valuable potential
can be released under a direct load control framework by provision of advanced control
strategies [7–9].

A direct load control for supermarket refrigeration systems is proposed in [9] where a
convex optimization problem is formulated within an MPC scheme. This proposed MPC
scheme, in particular, and other suggested model based designs [8, 10] in general, may
lead to significant performance degradation in case of model mismatches. Another issue
is that such model based methods are not easily generalizable to include different super-
market systems and, consequently, a comprehensive modeling effort should be accom-
plished for each specific refrigeration system before control system design. As a different
approach, a supervisory control method, based on decentralized proportional-integral (PI)
control loops, is presented in [11]. No model information is required in that method and it
is easily applicable to different supermarket refrigeration systems. The price that should
be paid for this simplification in the method is the performance decay in terms of the load
following, especially during the downward regulation services.
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The problem of load tracking during the DR event is considered in this paper. The
data-driven control method proposed here improves the load following performance com-
paring to [11] and, at the same time, overcomes the mentioned disadvantages associated
with the model based design proposed in [9].

Subspace identification (SSID) methods are outstanding candidates for multivari-
able large-scale process systems to develop state-space model directly from input-output
data [12]. These methods are noniterative and robust, and based on convex optimization
that can avoid the convergence problems existing in conventional prediction-error meth-
ods [13]. Recent surveys on data-driven control and monitoring methods for different
industrial applications can be found for example in [14] and [15].

In this paper, the estimated subspaces matrices are directly employed for predictive
control design indicating which is referred as data-driven predictive control. In this case,
only a single matrix algebraic calculation like a QR-decomposition would be required
for obtaining the prediction matrices. Predictive control using subspace matrices is also
called subspace predictive control (SPC) [16]. No model order assumption nor estimation
needs to be done considering the fact that the state-space matrices are not retrieved here.
The main contribution of this work is a new application of the subspace predictive control
for facilitating the smart grid balancing services by direct load control of supermarket re-
frigeration systems. For balancing services, the power consumption is controlled directly
to undertake the upward and downward regulation services [17]. In order to ensure a high
coefficient of performance (COP), a novel objective function is formulated by incorporat-
ing the suction pressures into the optimization problem.

Moreover, an open-loop experiment based on uncorrelated random input sequences is
presented. A new method based on tuning the average duty cycle of the input signals is
proposed. The tuning is performed using the data available from the normal thermostatic
operation of the system. This is seen as a substantial advantage as it can avoid the dif-
ficulties may arise in formulating and solving the problem of rotated input design [18].
Furthermore, the proposed method does not produce the linearly dependent inputs as op-
posed to the case when using the rotated input approach [19].

As a practical consideration, the control design does not rely on the mass flow mea-
surements which is of great interest because these costly measurements are usually not
available in commercial refrigeration applications. But, on the other hand, a flow mea-
surement could enhance the performance of the suction pressure estimation. As an alter-
native, a feedforward inclusion of the condensation pressure into the SPC formulation is
suggested in oder to regain similar performance with a cheaper measurement.

All in all, the contributions of the present paper are summarized as: (1) demand re-
sponse implementation for refrigeration systems using subspace predictive control; (2)
maximization of the coefficient of performance by incorporating the suction pressure into
the optimal control formulation; (3) a new design of experiment for refrigeration systems;
(4) elimination of mass flow measurements from control implementation.

There were no real supermarket refrigeration system available for test and experiment
during this research. Instead, a nonlinear simulation tool for dynamical simulation of
large-scale refrigeration systems, “SRSim”, is employed for test of the methods for the
design of experiment, identification and control, [20]. It has been produced based on
a high fidelity model created using first principle modeling and validated by real data
obtained from a supermarket in Denmark under another research project [21]. SRSim de-
velopment has been supported by Danfoss, the industrial partner involved in this research.
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2 System Description and Problem Statement

Throughout the paper, the specific notation of (x1, ⋯, xn) = [xT
1 ⋯ xT

n ]
T

is used.

2 System Description and Problem Statement

This section briefly explains a CO2 booster configuration of a typical supermarket refrig-
eration system. Subsequently, the control problem is stated.

CO2 Booster Refrigeration System

A basic layout of a typical refrigeration system including several cold reservoirs (display
cases and cold rooms) with two compressor banks in a booster configuration is shown in
Fig. 9.1. The cycle can be explained by starting from the receiver (REC) where two-phase
refrigerant (mix of liquid and vapor) at point ‘8’ is split into saturated liquid (‘1’) and sat-
urated gas (‘1b’). The latter is bypassed through a bypass valve (BPV), and the former
flows into expansion valves where the refrigerant pressure drops to medium (‘2’) and low
(‘2′’) pressures. The expansion valves EV_MT and EV_LT are responsible for regulat-
ing the air temperature inside the medium temperature (MT) and the low temperature
(LT) cold reservoirs by controlling the entering mass flow into the evaporators. Flowing
through evaporators in medium and low temperature units (EVAP_MT and EVAP_LT),
the refrigerant absorbs the heating load from the cold reservoirs. The suction pressure of
low temperature section is increased by working performed by the low stage compres-
sor rack (COMP_LT). All mass flows from COMP_LT, EVAP_MT and BPV outlets are
collected by a suction manifold at point ‘5’ where the pressure is increased again by the
higher stage compressor rack (COMP_MT). Afterwards, the gas phase refrigerant enters
the condenser to deliver the absorbed heat load from the cold reservoirs to the surround-
ings. The detailed thermodynamic analysis of such systems is described in [22].

Problem Statement

Large inclusion of decentralized electric power generation from intermittent renewable
energy recourses challenges the grid stability and sustainability. In order to keep demand
and supply balanced at all times, the consumption is seen as an extra degree of freedom
in addition to the electricity production of power plants. Various solutions for different
kinds of (consumption) loads are underlined in the framework of demand response. In-
ert thermal processes like refrigeration systems are good candidates for such a demand
response accomplishment where the load is directly controlled.

In the present study, the refrigeration system undertakes both upward and downward
power consumption management under the direct load control framework for a specific
period of time in response to an activation signal. An independent service operator aggre-
gates a large number of loads for this purpose and sends the activation signals in accor-
dance with the contingency conditions [23]. During the activation period, refrigeration
systems should follow the power reference assigned by the aggregator which operates
within a hierarchical structure shown in Fig. 9.2.

This set-up enables the aggregator to offer flexibility, in terms of the energy man-
agement, to the higher level operators like TSO (Transmission System Operator), DSO
(Distribution System Operator) or BRP (Balance Responsible Party). The problem of
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Figure 9.1: Basic layout of a typical supermarket refrigeration system with booster con-
figuration.
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Figure 9.2: Hierarchical direct smart grid control layout. The higher level parties trade
the flexibility, in terms of the energy management, with the aggregators according to the
market conditions. The aggregators, on other hand, are in the two-way communication
with the energy consumers. They receive the consumer information Ic and send the power
reference signal Pr during the DR event.

aggregator design, information flow and grid side strategies is outside the scope of this
work, but the general and specific relevances can for example be found in [24] and [25].
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3 Control Strategy

3 Control Strategy

Three modes of operations can be envisioned according to the regulation services: (1)
normal operation; (2) downward regulation; and (3) upward regulation. In order to keep
the system at the highest performance in all modes of operations, the COP should be
maximized. It is defined as the ratio of cooling capacity (Q̇e) to the electrical power
consumption of the compressors (Pw) as

COP =
Q̇e(ṁr,Po)

Pw
, (9.1)

where the cooling capacity is a nonlinear function of the refrigerant mass flow ṁr, and
the suction pressure Po. The former is controlled by the expansion device and the latter
is regulated by the compressors. The COP is maximized by letting the suction pressures
increase up to the point that still enough cooling capacity can be provided to maintain the
food temperatures within the safety bounds, [11].

Due to intermittency of the renewable energy resources, the exact time when the grid
imbalance occurs is almost unpredictable, or at best can be predicted with a high degree
of uncertainty. Thus, the control system should react to the activation signal quickly. In
order for the refrigeration system to be able to react to both the upward and downward
regulation signals, the food temperatures should be kept at the middle of the constraint
limits in the normal operation. The total electrical power consumption of the compressor
racks in this mode is called “baseline consumption”.

The dynamical equations describing the cold reservoir temperatures in terms of cool-
ing capacity are presented in the following. The equations are derived by assuming a
lumped temperature model and based on energy balances for heat transfers, [26].

MC f ood
dTf ood

dt
=UA f ood/air(Tair −Tf ood) (9.2)

MCair
dTair

dt
=UAamb(Tamb−Tair)+UA f ood/air(Tf ood −Tair)− Q̇e, (9.3)

where Tair and Tf ood are the air and food temperatures inside the cold reservoirs, respec-
tively, MC denotes the corresponding mass multiplied by the heat capacity, UA f ood/air
is the overall heat transfer coefficient between the food and the air, Tamb is the ambient
temperature, and UAamb is the associated heat transfer coefficient. It can be seen from
(9.3) that the cooling capacity applied by the refrigeration cycle can cool down the air
temperature by compensating for the ambient load. Then, the cooled air can regulate the
food temperature according to (9.2).

In both normal operation and regulation services, it is also important to maintain a
high COP to keep the energy losses — due to the thermal loads — as low as possible.
The pressure control scheme which will be proposed in Section 5 is for this purpose.

4 Subspace Identification Method

In order to make the presentation self-contained, the subspace identification method is
briefly explained in this section. A discrete-time state-space description of a linear time-
invariant process in innovation form is given by

xk+1 = Axk +Buk +Kek (9.4)
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yk =Cxk +Duk +ek, (9.5)

where uk ∈Rl , yk ∈Rm, and xk ∈Rn are the process inputs, outputs and states, respectively;
ek ∈Rm is a white noise (innovation) sequence with zero mean and covariance E[ekeT

k ]= S.
The parameters A, B, C, and D are state-space matrices with appropriate dimensions, and
K is the Kalman filter gain.

The following subspace matrix input-output equations are derived by recursive sub-
stitution of (9.4) and (9.5), [13],

Yf = ΓX f +HdU f +HsE f (9.6)

Yp = ΓXp+HdUp+HsEp (9.7)

where Yp and Yf are data block Hankel matrices for yk with i-block rows and j-block
columns defined as

Yp =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1 y2 ⋯ y j
y2 y3 ⋯ y j+1
⋮ ⋮ ⋱ ⋮

yi yi+1 ⋯ yi+ j−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (9.8)

Yf =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

yi+1 yi+2 ⋯ yi+ j
yi+2 yi+3 ⋯ yi+ j+1
⋮ ⋮ ⋱ ⋮

y2i y2i+1 ⋯ y2i+ j−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (9.9)

The similar formations are used for generation of data block Hankel matrices for the input
(U) and noise (E) terms. The measured inputs and outputs, uk, yk for k ∈ {1, 2, . . . , 2i+
j − 1}, are partitioned into the past and the future blocks denoted by the subscripts p
and f , respectively. The number of columns in these data matrices j should be much
larger than the number of rows i, [16]. However, the number of row blocks, i, in the past
blocks can be different from that of the future blocks, but for the sake of simplicity of the
presentation, they are considered the same here. In Section 5, they are differentiated from
each other by Np for the number of past row blocks, and N f for the number of future row
blocks. The past and future state sequences are defined as

Xp = [x1 x2 ⋯ x j] , (9.10)

X f = [xi+1 xi+2 ⋯ xi+ j] . (9.11)

The extended observability matrix Γ ∈Rim×n, and lower triangular Toeplitz matrices Hd ∈

Rim×il and Hs ∈Rim×im are given by

Γ = (C, CA, ⋯, CAi−1
) (9.12)

Hd
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D 0 ⋯ 0
CB D ⋯ 0
⋮ ⋮ ⋱ ⋮

CAi−2B CAi−3B ⋯ D

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (9.13)
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Hs
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Im 0 ⋯ 0
CK Im ⋯ 0
⋮ ⋮ ⋱ ⋮

CAi−2K CAi−3K ⋯ Im

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (9.14)

where superscripts d and s of H correspond to deterministic and stochastic inputs uk and
ek.

It is shown in Appendix A in [27] that the future states, X f can be expressed in terms
of the past states, inputs and disturbances, and for sufficiently large data, (9.6) can be
reformulated as:

Yf = LwWp+LuU f +LeE f , (9.15)

where Wp = (Yp, Up), and Lw, Lu, and Le are subspace matrices corresponding to the
past inputs and outputs (states), the deterministic future inputs, and the stochastic future
inputs, respectively. The deterministic part of (9.15) can be estimated by the following
linear predictor:

Ŷf = LwWp+LuU f . (9.16)

Under the conditions that: (i) the input uk is uncorrelated with the noise ek (open loop
condition); (ii) uk is persistently exciting of order 2i; and (iii) the number of measurements
is sufficiently large, i.e., j→∞, the subspaces matrices can be consistently identified as
the arguments of the following least squares problem, [28]:

min
Lw,Lu

∥Yf −(Lw Lu)(
Wp
U f

)∥

2

F
. (9.17)

where ∥ ⋅∥F stands for the Frobenius norm. An efficient and robust method for numerical
implementation of the above problem is QR-decomposition of (Wp, U f , Yf ) as:

⎡
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QT
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QT
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⎥
⎥
⎥
⎥
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⎦

, (9.18)

in which the subspace matrices L = [Lw Lu] can be calculated as

L = [R31 R32][
R11 0
R21 R22

]

†

(9.19)

where † represents the Moore-Penrose pseudo-inverse. The subspace matrices are identi-
fied as:

Lw = L(p,q), p = 1, . . . , im and q = 1, . . . , i(l+m) (9.20)
Lu = L(p,k), p = 1, . . . , im and k = i(l+m)+1, . . . , i(2l+m). (9.21)

The future outputs of the plant are predicted by (9.16) using the subspace matrices and
future moves in the control signals. This predictor can conveniently be utilized for pre-
dictive control formulation without identifying a state-space model [16].

SSID for Refrigeration Systems

An open-loop identification problem is formulated to obtain the subspace matrices.
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Input and Output Variables

The whole system is divided into two medium and low temperature sections for each a
separated subspace data-driven model is developed. The only coupling between the two
sections is the refrigerant mass flow from the LT compressors to the MT suction manifold.
In the commercial refrigeration systems, there is no mass flow measurement available, so
changes in the mass flow in the other sections are regarded as an unknown disturbances.

In the power regulation mode of operation, the controlled outputs are the electrical
power consumption of the compressor rack, Pw, and the suction pressure, Po. The mea-
sured outputs are the air and the food temperatures, Tair and Tf ood . The food temperatures
are necessary to measure due to the safety constraints applied. In the normal operation,
the food temperatures and the suction pressures are the only measured and controlled
outputs. The MT and LT compressor capacities, ωc, and the opening degree of the elec-
tronic expansion valves, ν , are chosen as the vectors of manipulated input variables for
the specific case considered in this work.

Constraints

The opening degree of expansion valves are constrained as 0 ≤ ν ≤ 1. Because a group
of compressors are configured into a single rack, the compressor speed is specified as
the capacity of the rack in terms of the volume flow that it can provide in percentage as
0 ≤ ωc ≤ 100, [26]. The upper bound of the MT suction pressure should be less than a
safety value, i.e., Po,MT ≤ Pmax. The food temperatures should also be within specified
limits as Tmin ≤ Tf ood ≤ Tmax.

5 Data-Driven Predictive Control

In contrast to the classical MPC where an explicit model of the plant is used to predict its
future behavior, in data-driven predictive control, the linear predictor constructed directly
from the input-output data — obtained in a dedicated experiment — is used for the same
purpose. In the following, predictive control combined with the subspace identification
is presented. Subsequently, the subspace predictive control formulation for direct load
control of refrigeration systems is introduced.

Subspace Predictive Control

In subspace predictive control, the following objective function should be minimized at
each time instant for the receding horizon implementation:

J =
N f

∑
k=1

(rk+1− ŷk+1)
T Qk(rk+1− ŷk+1)+

Nc

∑
k=1

∆uT
k Rk∆uk, (9.22)

where Qk and Rk are weighting matrices, r is the reference signal, N f and Nc are pre-
diction and control horizon, respectively, and ŷk+n, with n = 1, . . . ,N f , is the n-step-
ahead predicted output at time instant k. Defining ŷ f = (ŷk+1, ŷk+2, ⋯, ŷk+N f ) and
u f = (uk+1, uk+2, ⋯, uk+Nc), the above objective can be rewritten in the matrix form
as:

J = (r f − ŷ f )
T Q(r f − ŷ f )+∆uT

f R∆u f , (9.23)
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5 Data-Driven Predictive Control

where r f is defined in the same way as ŷ f , and Q ∈RN f l×N f l and R ∈RNcm×Ncm are block
diagonal matrices constructed from Qk, for k = 1, . . . ,N f , and Rk, for k = 1, . . . ,Nc, respec-
tively.
The predicted output is obtained from (9.16) as:

ŷ f = lwwp+ luu f , (9.24)

where wp = (yk−Np+1, ⋯, yk, uk−Np+1, ⋯, uk) is the vector of past input and output data
with the past horizon Np, and subspace matrices are

lw = Lw(p,q), p = 1, . . . ,mN f , and q = 1, . . . ,(l+m)Np, and (9.25)
lu = Lu(p,k), p = 1, . . . ,mN f , and k = 1, . . . , lNc. (9.26)

In order to implement the objective function (9.23), the predictor (9.24) should include
the incremental input ∆u f . In this way integral action can be included in the predictor
design that will also lead to offset free tracking performance. A systematic approach
to include the integral action is proposed by [27] considering the noise input ek as an
integrating noise, i.e.,

ek = ek−1+ak (9.27)

where ak is a white noise signal. Substituting (9.27) in (9.4)–(9.5) and using a difference
operator ∆ = 1− z−1 yields

∆xk+1 = A∆xk +B∆uk +Kak (9.28)

∆yk =C∆xk +D∆uk +ak (9.29)

Following the same procedure, the predictor (9.24) changes to

∆ŷ f = lw∆wp+ lu∆u f (9.30)

that can be rearranged to
ŷ f = yk +Λlw∆wp+Λlu∆u f (9.31)

where yk = (yk, yk, ⋯, yk) and

Λ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0 ⋯ 0
I I ⋯ 0
⋮ ⋮ ⋱ ⋮

I I ⋯ I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (9.32)

Incorporating the input and output constraints, SPC algorithm can be implemented by
solving the following quadratic programming (QP) problem in a receding horizon manner.

min
∆u f

(r f − ŷ f ,c)
T Q(r f − ŷ f ,c)+∆uT

f R∆u f

subject to ŷ f = yk +Λlw∆wp+Λlu∆u f
(umin−uk) ≤Λ∆u f ≤ (umax−uk)

ymin ≤ ŷ f ≤ ymax

(9.33)

where ŷ f ,c is the vector of controlled outputs included in ŷ f , (umin −uk) and (umax −uk)

are expanded column vectors of (umin−uk) and (umax −uk) with umin and umax being the
input magnitude constraints, and finally ymin and ymax are expanded column vectors of
the measured output constraints.
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SPC Formulation for Direct Load Control

Direct Load Control

As already discussed in Section 3, during the balancing service, the power consumption
should track a reference signal while the suction pressures are kept at the highest possible
points. The reference signals and controlled outputs in the QP problem (9.33) are

r f = (Pw,r, Po,r) (9.34)

and
ŷ f ,c = (Pw,tot , Po), (9.35)

where Pw,r is the power reference, Po,r contains the references for the MT and LT suction
pressures to keep them close to the maximum limits. Only the MT suction pressure is
constrained from above as Po,MT ≤ Po,MT,max. Furthermore, Pw,tot is sum of the power
consumptions of both the MT and LT compressor racks

Pw,tot = Pw,MT +Pw,LT . (9.36)

The prediction of the measured output variables, ŷ f ,m, are the food temperatures

ŷ f ,m = Tf ood , (9.37)

with the constraints Tmin < Tf ood < Tmax. The input variables are

∆u f = (∆ν , ∆ωc) (9.38)

where the associated constraints are umin = (0,0) and umax = (1,100).

Remark 8: The matrix weight Q comprises two separated parts,

Q = [
Q1 0
0 Q2

] , (9.39)

where matrices Q1 and Q2 includes weighting factors corresponding to the power and the pressure
regulations, respectively. Therefore, tuning of these weights is actually a trade-off between the
tracking performance in terms of the power following and the efficiency performance in terms of
the higher suction pressures.

Normal operation

For normal operation, the food temperatures should be kept close to the higher limits. This
can be achieved by using the same subspace model employed by the balancing service
operation. However, some small modifications are needed for the QP problem formula-
tion. The power consumption part in the reference signal and in the controlled output are
replaced by the food temperature.

r f = (Tf ood,r, Po,r,) (9.40)

ŷ f ,c = (Tf ood , Po) (9.41)

The input variables and constraints are the same as of Section 5.
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6 Simulation Results

Inclusion of Feedforward Control

As already explained in Section 4, there is no mass flow measurement required for the pro-
posed control method. The mass flows from the LT compressors and the bypass valve are
regarded as unknown disturbances which affect the pressure of the MT suction manifold.
On the other hand, the outlet pressure of the MT compressor rack, Pc is correlated with the
total mass flow (including the disturbance flows) from the compressor rack. Therefore,
this pressure is feedforwarded into the subspace model to improve the suction pressure
(Po) estimation and accordingly the predictive control performance.

Whereas the future information about the outlet pressure is not available, only the data
Hankel matrix of its past measurements are included as an augmented external input, Vp,
in the Wp term of the predictor equation.

Ŷf = L+wW+

p +LuU f (9.42)

where W+

p = (Yp, Up, Vp). Identification of the subspace matrices and the predictive
control algorithm are the same as before but with replacing Up by (Up, Vp).

6 Simulation Results

A nonlinear dynamical simulation tool for a supermarket refrigeration system is utilized
as a fully fledged application to examine the proposed data-driven control method. It
is a high fidelity model identified based on the real data obtained from a supermarket
in Denmark. The model description as well as the estimated parameters are presented
in [26]. It includes 7 MT and 4 LT cold reservoirs and two racks of compressors with a
booster configuration as well as the other subsystems shown in Fig. 9.1.

Design of Experiment

The input signal should be persistently exciting with an appropriate order. For this pur-
pose, pseudo-random binary signals (PRBSs) are usually applied for identification of
MIMO systems. There are two degrees of freedom for designing such input signals,
i.e., the bandwidth and the amplitude.

Thermostatic control is usually used for temperature control in refrigeration systems.
The expansion valve is switched to the ON/OFF state once the air temperature reaches the
upper/lower temperature limit. It ensures the food temperature be within the permissible
range. It looks like a relay feedback experiment used in some self tuning systems. In
the sequel, it is shown how the information contained in the relay feedback data can be
used to tune the PRBS. Fig. 9.3 shows an example of variation of the air and the food
temperatures due to applying the relay feedback test or thermostatic control effort. The
food temperature is modeled as the low pass filtered version of the air temperature.

The sampling rate of applying the input sequences is chosen to be one minute. The
input sequences applied to the expansion valves are designed as follows.

Bandwidth of the input sequences — In order for food temperatures to vary as much
as possible within the constrained range, bandwidth of the input frequency should be
limited. The low frequency signal is realized by changing the switching probability up
to αbw times of the normalized Nyquist frequency, where 0 < αbw < 1. The details can be
found in [29, Ch. 5, Example 5.11].
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Figure 9.3: Periodic temperature change obtained from applying the relay feedback to
the expansion valve. The time spans tu and tu correspond to the ON and OFF cycle of the
expansion device, respectively.

In the relay feedback test, the frequency of the air temperature variation is the same
as the input signal and its amplitude varies within the full range, but the food temperature
amplitude is attenuated with the gain of Gr = A f /Aa at the frequency of ωr = 2π/Tr with
Tr = tu+ tu as depicted in Fig. 9.3. Having ωr and Gr known, the following low pass filter
transfer function from the air to the food temperature is computed

Ha f =
1

τs+1
. (9.43)

The filtering effect from the air to the food temperature has a dominant pole compar-
ing to the envisaged transfer function from the input signal to the air temperature. The
attenuation gain below 5%, i.e., ∣Ha f ∣ < 0.05, causes the variation of food temperature to
be within the range of the measurement noise. Let the frequency corresponding to this
gain be denoted by ωbw. Thus, the bandwidth of the input sequences should be limited by

αbw =ωbw/π (9.44)

Magnitude of the input sequences — For constrained and/or ill-conditioned systems,
the dominant approach to respect the constraints is to limit the amplitude of the excitation
signal by the so called rotated input method [19]. Yet larger input amplitudes are more
favorable to have a better signal to noise ratio. Here, we suggest to tune the average
duty cycle of the PRBS. It is much more intuitive and simpler than the rotated input
approach, [30], as well as providing the largest possible amplitudes for input signals.

The difference between the time span values tu and tu in Fig. 9.3 is because of the dif-
ference in the gain directionality. In order to excite all directions with the same strength,
the average duty cycle of the PRBS, D, is proposed to be designed as

D =
tu

tu+ tu
(9.45)
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6 Simulation Results

System Identification

The PRBSs are designed in accordance with the method presented in Section 6 and ap-
plied to the corresponding input channels such that for the expansion valves ν ∈ {0,1} and
for the compressor racks ωc ∈ {0,100}. An example of the PRBS applied to the expansion
valve is shown in Fig. 9.4a, where the first 1000 sequences of the signal used to excite the
6th MT cold reservoir dynamics are illustrated.

An example of the resulting food temperatures for the 6th MT cold reservoir is pro-
vided in Fig. 9.4b where the temperature constraints are shown by the dotted lines. Am-
plitudes of variation of the food temperature is almost as large as the constraint bounds
which indicates a satisfactory signal to noise ratio. Fig. 9.4c and Fig. 9.4d show the power
consumption and suction pressure of the MT section resulted from the identification ex-
periment.
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Figure 9.4: Identification experiment: (a) The firs 1000 sequences of the PRBS applied
to the expansion valve of the 6th MT cold reservoir; (b) Corresponding food temperature;
(c) Power consumption of the MT compressor rack (note that the first 100 minutes are
illustrated); (d) Suction pressure of the MT section. The whole simulation data for the
temperature and pressure are provided in the plots which show appropriate amplitude of
variations due to the excitation signal applied.
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Before applying the subspace identification, a normally distributed zero-mean mea-
surement noise with a standard deviation of σ = 0.1 was added to each output signal. This
amount of σ seems to be large enough considering the precision of the measurement sen-
sors, even for the commercial applications. The data set is divided into two separate sets,
one for subspace identification and another model validation.

Prediction residuals — The goodness of fit between the nonlinear simulation model
and the linear data-driven subspace model is calculated by

fit = (1−
∥y− ŷ∥2

∥y− ȳ∥2
)×100% (9.46)

where y is the measured output, ŷ is the one-step-ahead predicted output, and ȳ denotes
the average of the measured output data [31].

The values for N f and Np should be chosen small enough to achieve a parsimonious
model and such that the identification performance does not drop significantly. Choos-
ing Np = 5 and N f = 10 shows an acceptable fit in both the identification and the model
validation.

The identification results for the food temperatures of the 5th MT cold reservoir is
shown in Fig. 9.5a. The other cold reservoirs show similar results. The results for the
electrical power consumption and suction pressure of the MT section are illustrated in
Fig. 9.5b and Fig. 9.5c, respectively. Fig. 9.5d shows the improvement in Po,MT estimation
that can achieve up to 68% fit by feedforward inclusion of the outlet pressure of the MT
compressor rack.

Direct Load Control and SPC

A simple scenario for power reference generation is considered here to examine the pro-
posed control system ability to regulate the power consumption with a high coefficient of
performance while respecting the food temperature limits. However, the optimal power
reference generation or the best regulation service design for refrigeration systems is not
within the scope of the present work.

Suction Pressure Control

The effectiveness of the proposed pressure control method is investigated by comparing
two simulations, one with normal pressure control (fixed set-point) and another with the
proposed optimal pressure control in the loop. There is no DR event happen in this
simulation. Since in both cases the temperatures are regulated at the middle of the range
and the load conditions are the same, the same cooling capacity is applied in each case.

The sampling time is Ts = 1 min that is fast enough for the intended imbalance man-
agement service. The past and the prediction horizons are chosen as Np = 5 and N f = 10.
The control horizon is set to Nc = 5. The temperature constraints for all MT units are
considered the same as 1 ≤ Tf ood,MT ≤ 5, and for LT units as −23 ≤ Tf ood,LT ≤ −18. The
references for the normal operation are chosen as Tr,MT = 3 [○C] and Tr,LT = −20.5 [○C]
for the food temperatures, and Pmax,MT = 36 [×105 Pa] and Pmax,LT = 20 [×105 Pa] for the
suction pressures. Note that the suction pressures should not necessarily be regulated to
the assigned set-points. The set-points for the pressures is equivalent to the evaporation
temperature that can provide enough cooling capacity in the absence of the thermal load.
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Figure 9.5: Model validation: (a) Food temperature in the 5th MT cold reservoir; (b)
Power consumption of the MT compressor rack (note that the first 100 samples are illus-
trated); (c) Suction pressure of the MT section; (d) Model accuracy for the MT pressure
is improved by feedforward inclusion of the outlet pressure of MT compressor rack.

Thus, the control effort keeps the pressure close to the upper constraint bound. The latter
terms in the objective functions are assigned more weighting than the pressure term.

Regularization — During the power reference tracking, the food temperatures are
constrained in the optimization problem. To avoid the likely infeasibility may occur by
imposing such constraints, the following soft constraints are considered for the imple-
mentation. The food constraints are changed to

Tf ood < Tmax+ε (9.47)
Tf ood > Tmin−ε (9.48)

ε > 0 (9.49)

where ε is a new optimization variable that should be close to zero. This method is also
called softening the state constraints in the MPC literature. The following term should
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also be minimized by adding it as a extra term into the objective function as

Jreg =wregε
2. (9.50)

where wreg is the tuning weight.
In order to show the COP maximization achieved as one of the main contributions

of the current work, the following simulation is performed. In conventional control of
the refrigeration systems, cold reservoir temperatures are controlled by the thermostatic
control of the valves around the temperature set-points, and the suction pressures are reg-
ulated to the nominal values that can provide enough low pressure and cooling capacity
for the thermostatic action. Fig. 10.22a compares the power consumption of the conven-
tional control to the case of the proposed optimal pressure control where a lower level
of the consumption is achieved. Since the ambient loads are the same in both cases, and
the temperatures are regulated to the same set-points, it can be concluded from (9.2) and
(9.3) that the same cooling capacity is applied in each case. Therefore, the lower power
consumption achieved by the control method implies that the higher COP is obtained ac-
cording to (9.1). An energy saving of around 22% is achieved for the baseline operation.
The suction pressure of the MT section is shown in Fig. 9.6b. As can be seen, the control
algorithm tries to keep the pressure as high as possible.
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Figure 9.6: Baseline operation: (a) Total power consumption of both MT and LT com-
pressor racks: Using conventional control the energy consumption is 92.6 [kWh] that is
considerably decreased by using of the proposed optimal pressure control down to 72.1
[kWh]; (b) Suction pressure of the MT section (results for the LT section is similar).

Direct Load Control

A realistic balancing service scenario is intended to investigate the ability of the proposed
advanced control strategy for direct load control of the large scale refrigeration system.
The two other methods presented in [11] and [9] are also simulated for the sake compari-
son with the results achieved in this work. In each case, the control method is applied to
the nonlinear simulation model derived in [26]. The total energy consumption of the com-
pressor racks are compared for different simulations for the period when the DR events
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are not activated (Off-DR period). It can compare the effectiveness of the different suc-
tion pressure controls to have a better energy efficiency. The tracking performance for the
direct load control is compared for the DR periods.

Fig. 9.7 shows a period of 1300 min operation including the normal operation, a
downward regulation service, and an upward regulation service. The default is the normal
operation, where the food temperatures are kept at the middle of the range that provides a
symmetric flexibility in terms of preparation for the regulation in both directions. At time
300 min, the imbalance contingency takes place which demands a downward regulation
by raising the power to 6 kW in 5 minutes; keeping it regulated for 60 minutes; and then
moving it back to the baseline in 5 minutes.

Subspace predictive control — The presented SPC scheme is utilized in the balancing
service scenario mentioned earlier in this section. The linear data-driven subspace model
is employed by SPC. Fig. 9.7a shows the simulation result. The control system is able
to track the power reference during the DR event very well, even though it uses a linear
data-driven subspace model (note that the method is applied to a nonlinear dynamical
simulation tool [20]). The significant drop in the power consumption right after this
service is due to the fact that the control system regulates the temperatures back to the
middle points to (i) be ready for any likely upcoming balancing services; and (ii) release
the stored energy as soon as possible to compensate for the extra power consumption
during the regulation service. A similar imbalance contingency happens at time 900 min,
but this time demands for an upward regulation service. The total energy consumption of
the compressors for the Off-DR period is 57.5 [kWh] in this case.

Decentralized supervisory control — The decentralized control method presented
in [11] is simulated here. The controller is designed at a supervisory level where the
temperature references are manipulated to perform the direct load control. The supervi-
sory control includes decentralized PI controllers equipped with anti-windup loops. The
temperature limits are respected using an adaptive mechanism implemented as adaptive
saturation filters [11]. The suction pressure is controlled by an heuristic algorithm. The
simulation result is shown in Fig. 9.7b. The energy consumption in this case is 57 [kWh]
which is very close to the SPC case.

Model predictive control — The model predictive control approach presented in [9]
is simulated with the same scenario as the previous two cases. The MPC is based on
a convex optimization and is designed for the direct load control. The suction pressure
control is also included in the optimization scheme. The result of the MPC operation is
shown in Fig. 10.24a where the energy consumption for the Off-DR period is 63.5 [kWh].
It is 9.4% higher than the energy consumption in the case of using SPC which shows that
the proposed SPC approach can improve the coefficient of performance better than the
MPC method presented in [9].

In a direct load control framework, the power tracking performance is important as
the deviation from the reference signal might be penalized according to a contact with the
aggregator. The tracking performance of the three simulated methods are compared in
Fig. 9.7d where the DR periods are zoomed to have a better visibility. The decentralized
control shows a good tracking performance during the upward regulation service but it
cannot keep the power regulated during the downward regulation service. The MPC
method, on the other hand, shows a good tracking performance in the both balancing
services, but it has a slower response and there is also a delay in the response. The reason
for the delay is that to be able to implement the MPC using a convex optimization, it is
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Figure 9.7: Total electrical power consumption of the compressor racks. The period
includes two DR events: downward regulation service from 300 to 370 minutes, and up-
ward regulation service from 900 to 970 minutes. (a) Simulation results after applying
the proposed data-driven SPC method; (b) simulation using the decentralized supervisory
control method [11]; (a) simulation using the MPC method [9]; (d) comparing the three
methods in terms of the load following performance where Pdec, Pmpc and Pspc denote
the power consumptions after applying the decentralized control, the MPC and the SPC,
respectively. The two DR event periods are zoomed for a better visibility. The decentral-
ized method cannot keep the power regulated during the downward regulation service.
The proposed SPC method shows a superior tracking performance comparing to the other
two methods.

suggested in [9] that the MPC sampling time should be higher than 4 minutes where a 5
minute sampling is chosen for the simulation. So the 5 minute delay in the response is due
to the chosen sampling time for the control implementation. Finally, it can be seen that
the proposed SPC outperforms both the other two methods in terms of the load following
performance.

To provide more information about the SPC performance, the suction pressures are
shown in Fig. 9.8a and Fig. 9.8b. They are pushed to the highest possible values while,
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during the balancing services, are being changed accordingly. Fig. 9.8c and Fig. 9.8d
show how the food temperatures in the 6th MT and the 4th LT cold reservoirs changes
within the limits in accordance width the mode of operation. The other food temperatures
also follow a similar pattern, so are omitted.
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Figure 9.8: Direct load control: (a) MT suction pressure; (b) LT suction pressure; (c)
Food temperature in the 6th MT cold reservoir; (d) Food temperature in the 4th LT cold
reservoir. The proposed optimal suction pressure control keep the pressures to the highest
possible point during the normal operation while being manipulated accordingly during
the DR events. The constrained SPC algorithm can successfully keep the food tempera-
tures within the constraint limits.

7 Conclusion

The problem of demand response implementation in the smart grid for large-scale refrig-
eration systems was addressed by directly controlling the electrical power consumption of
the system. A data-driven predictive control based on the subspace identification method
was shown as the key enabler of the envisioned DR services. The proposed control objec-
tive could compromise the two important factors: the system coefficient of performance
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and the performance of the direct load control. Moreover, a method for input signal de-
sign for subspace identification of refrigeration systems was proposed. As an important
practical consideration, the control design relies on a cheap solution with available mea-
surements than using the expensive mass flow meters.

A thorough simulation study considering several practical matters such as food tem-
perature constraints, actuator constraints, measurement noises and so on was carried out.
The results showed 22% reduction in the energy consumption by the proposed COP im-
provement using the optimal pressure control. While keeping COP maximized, the con-
trol method was able to track a power reference accurately for the grid balancing ser-
vice purposes. A comparative simulation study showed the superiority of the method in
the load following performance comparing to the decentralized control method proposed
in [11] and the MPC approach presented in [9].

The identification part in the subspace predictive control relies on a simple QR de-
composition for which there exist fast and robust numerical computation algorithms.
This provides an opportunity for adaptation of the method by online updating the sub-
space matrices [32]. The online adaptation can improve the control performance in case
of variation of the system parameters, which is likely to happen in the large-scale ther-
mal systems. The use of such adaptive algorithm will be investigated in a future work.
Moreover, the future works should include the applications of the design in a whole su-
permarket system containing other systems like HVAC and heat recoveries as well as the
refrigeration system.
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Abstract

A predictive control scheme is designed to control a transport refrigeration sys-
tem, such as a delivery truck, that includes a vapor compression cycle configured in
parallel with a thermal energy storage (TES) unit. A novel approach to TES utiliza-
tion is introduced and is based on the current and future estimate of the vehicle driving
state and load prediction. This assumes vehicle communications are aware of the traf-
fic state along the prescribed delivery route. For the test case under consideration, this
paper first shows that a 17% savings in energy use is achieved for charging the TES
by simply shifting the charging to the time when vehicle is moving above a thresh-
old speed. Subsequently, a cascade control structure is proposed consisting of (i) an
outer loop controller that schedules the TES charging profile using a receding horizon
optimization, and (ii) an inner loop model predictive controller (MPC) which regu-
lates the TES state of charge while maximizing a derived efficiency factor. For the
test case under consideration, and utilizing a specifically derived performance metric,
the cascaded control structure shows a 22% improvement over a baseline logic-based
controller that focuses on state of charge regulation for the TES. A detailed nonlinear
dynamical simulation tool for thermal system development is employed for control
implementations.

Nomenclature:

Acronyms

TES Thermal Energy Storage
MPC Model Predictive Control
HVAC&R Heating, Ventilation, Air-Conditioning and Refrigeration
PCM Phase Change Material
VCC Vapor Compression Cycle
COP Coefficient of Performance
EV Expansion Valve
EVAP Evaporator
ACC Accumulator
COMP Compressor
COND Condenser
REC Receiver
P Proportional
PI Proportional-Integral

Greek Symbols

ωc compressor speed
ηv volumetric efficiency
θ azimuthal direction variable
ρ density

Roman Symbols

MC thermal mass capacity
T temperature
Q̇ heat transfer rate
UA overall heat transfer coefficient
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Lq normalized zone fraction
s solid fraction
poi pressure ratio
Pw power consumption
IC integrated coefficient of performance
E energy consumption
h specific enthalpy
k thermal conductivity
r radial direction variable
cp specific heat capacity
A area
V volume

Subscripts

cr container
e evaporator
s storage
w wall
a ambient
st saturation
sh superheat
eo evaporator outlet
q liquid
r refrigerant
c compressor
f us fusion

1 Introduction

The energy usage of heating, ventilation, air-conditioning and refrigeration (HVAC&R)
systems accounts for a significant amount of the total energy consumption in residential
and commercial buildings. Consequently, improving the performance of these systems
and minimizing their energy consumption have been the subject of many research efforts.
An emerging technology for increasing the efficiency of HVAC&R systems in buildings
is the active usage of thermal energy storage (TES) units. As an existing technology
used in buildings, phase change materials (PCM) like ice storage tanks are employed
by TES units which can provide a substantial heat storage capacity, [Dincer, 2002]. An
exergy analysis in [Javani et al., 2014] shows that the overall exergy efficiency of cooling
systems in hybrid electric vehicles can be increased when TES is used.

Often overlooked in the broader discussion is the energy consumption for various
transport refrigeration applications which are also very important. The analysis provided
by [Tassou et al., 2009] indicates that the refrigeration system commonly employed in
food transportation can account for 40% of the total greenhouse gas emissions from the
corresponding vehicle engines. The vapor compression cycle (VCC) system is the most
common refrigeration system in use for transport refrigeration due to its high coefficient
of performance (COP) compared with alternative solutions [Tassou et al., 2009]. In the
thermal system literature, the integration of conventional refrigeration technology with
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TES results in a hybrid refrigeration system. Optimization of these hybrid systems is the
main focus of the present work since the optimization of the individual VCC process has
been previously addressed in the literature.

The application of TES in transport refrigeration systems is not quite as mature as
in the building HVAC case [Walsh et al., 2013]; primarily because the constraints (size,
weight, etc.) are more stringent. Depending on the application, different configurations
have been proposed. Three different placements of the TES, for passive use of PCM in
contact with the suction and liquid lines, are investigated in [Wang et al., 2007]. The
proposed layouts in [Wang et al., 2007] can all be framed as a series configuration as
explained in [Fasl, 2013]. Series arrangements have benefits and drawbacks, as explained
in [Fasl, 2013]. For transportation applications with highly transient loadings, a paral-
lel configuration may provide more rapid response to load disturbances. In [Fasl et al.,
2014], a detailed nonlinear thermal model of a refrigeration system is presented with a
parallel configuration for an active TES unit. The TES is configured in parallel with the
evaporator heat exchanger and a heuristic switching control logic is proposed to deal with
the different modes of operations like charging, discharging, etc.

It is shown in [Fasl et al., 2014] that the system efficiency is improved by incorporat-
ing an active TES unit with simple switching logic. The question remains as to whether
further energy efficiency can be achieved by advanced control design for this application.
In particular, is it possible to take advantage of existing vehicle information such as GPS,
traffic status, and traffic predictions? This work seeks to answer that question by utilizing
on-line models and prediction in decision making; this naturally leads to model predic-
tive control (MPC) algorithms. MPC has been widely used in HVAC&R applications
as an advanced control technique for effectively accommodating input (e.g compressor)
and output (temperature range) constraints. Several different studies have successfully
applied MPC to building HVAC&R systems. In [Ma et al., 2012a] a simple switching
nonlinear model of a storage tank is developed and weather prediction is integrated into
an MPC scheme for optimization of a chiller’s operation. A novel configuration of a TES
in a water chiller system is presented in [Cole et al., 2012] where the MPC is proposed to
optimize the charge and discharge of the TES for minimizing both the energy consump-
tion and operation cost. A simplified linear thermal model is developed in [Candanedo
et al., 2013] to predict the required cooling power which is utilized as the main manipu-
lated variable for the MPC formulation in the control of a building. The problem of model
uncertainty in different operating conditions is considered in [Kim, 2013] where multiple
local models are used in the MPC formulation to make it responsive to the entire opera-
tion regime. The results show the superior performance comparing to the traditional logic
based control. By comparison there are relatively few efforts to use MPC in the trans-
port refrigeration domain even though it may benefit even more than building systems
due to the tight regulations on food temperature and, as will be discussed, the ubiquity of
real-time traffic information.

The specific transport refrigeration problem considered in this study is differentiated
from the building energy management challenge [Ma et al., 2012b] in two aspects: (i)
the disturbance profile contains more rapid transients due to the nature of the delivery
process; and (ii) building control systems typically focus on economic cost plus perfor-
mance optimization while the focus here is on an energy plus performance optimization.
Economic cost is less relevant than buildings because there is no dynamic pricing of the
energy asset (vehicle fuel) as there is for grid electricity for buildings.
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In this paper, we assume two basic states of the vehicle: (a) driving at some nominal
speed, similar to a highway or major road, and (b) driving at a very low, or zero, speed
akin to being in traffic or stopped to deliver goods. The TES unit is utilized depending
on which driving state the vehicle is in. An optimal charge scheduling is proposed to
distribute the charging demand across the drive cycle using load predictions achieved by
predicting both the anticipated driving profile and the thermal load from the ambient tem-
perature. The driving profile can be easily obtained nowadays from GPS references and
cloud-based traffic predictions. Similarly, ambient temperatures are accessible at any lo-
cation along a route via cellular communication. Fig. 10.1 shows the external information
utilized in the thermal load prediction.

Higher order nonlinear 
simulation

Decentralized control 
loops and MPC

Optimal charge 
scheduler

X` = AX + BU
Y = CX + DU

P
PI

X` = AX + BU
Y = CX + DU

Traffic

Route
Ambient 

Conditions

Figure 10.1: Driving profile and environmental conditions are used for thermal load pre-
dictions during the heavy traffic periods. Delivery paths and GPS traffic data are used for
prediction of the driving profile.

2 System Description and Problem Statement

This section briefly details a parallel hybrid VCC system that was previously developed
in, [Fasl et al., 2014]. Subsequently, the proposed control problem under study is de-
scribed.

Parallel Hybrid VCC System

Fig. 10.2 shows a VCC system that includes a TES unit operating in a parallel configura-
tion. A variety of hybrid configurations are thoroughly discussed and analyzed in [Fasl,
2013] along with the choice of a parallel system for transport refrigeration applications.

Starting at the low pressure side, the refrigerant in a nominal vapor compression cycle
flows through the evaporator where the container temperature is cooled down. An expan-
sion valve (EV1) controls the refrigerant mass flow rate to ensure superheated refrigerant
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exits the evaporator. The superheated refrigerant flows into the suction line where a liquid
accumulator (ACC) is placed. The compressor (COMP) raises the pressure and enthalpy
of the refrigerant by performing work on it. The high pressure refrigerant enters the
condenser (COND) where heat is transferred from the hot refrigerant to the ambient air.
Then the refrigerant flows into a liquid receiver (REC). From the receiver, it enters the
expansion valve where the cycle starts again.

The TES unit is in parallel with the evaporation unit. If the refrigerant circulates into
the TES, thermal energy is transferred between the refrigerant to the PCM contained in
the TES. In our configuration, heat will be taken from the PCM by the refrigerant. This
will lead to a solidification of the PCM in the TES and is considered the charging mode.
The TES charging operation is controlled by the expansion valve (EV2). The TES also has
a discharging mode of operation. Similar to the evaporator, the TES unit is also equipped
with a fan to circulate air from the container across the unit. The inlet air exchanges en-
ergy with the TES in a manner that cools the air returned to the container and heats the
TES. As the solid fraction of PCM is reduced, the amount of latent heat capacity remain-
ing is being reduced. Consequently, when the TES fan is running, the unit is discharging.
Depending on the thermal load, the TES can run independently or in parallel with the
evaporator to boost the cooling capacity. Therefore, the parallel VCS system in Fig. 10.2
has 4 modes of active operation as detailed in [Fasl, 2013]: (i) using the refrigeration sys-
tem only, (ii) charging of the TES either with or without active refrigeration, (iii) using
the TES only, and (iv) both the refrigeration and TES systems active, termed boost. In
the current work, we consider a subset of the first three modes to limit complexity and
demonstrate potential benefits.
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Figure 10.2: A typical parallel hybrid configuration for a VCC system.
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Problem Statement

Given the flexibility of the hybrid transport VCC system, how best is to use this capa-
bility? The basic hybrid strategy problem is as follows. We seek to maintain a given
temperature within the container and do so as efficiently as possible. However, there are
now multiple modes in which to achieve this objective. Therefore, the first decision is
which mode of operation to use at any given time. Here we propose to use the current and
future times as source of information to choose the best mode of operation for a specified
time horizon. Choosing the mode of operation is the first part of the overall problem.

Once the mode of operation is chosen, the system focus becomes operational effi-
ciency. The controller must choose the optimal operating condition to meet the demands.
The demands include both maintaining container temperature as well as providing suffi-
cient cooling to charge the TES if that is the current mode. Assuming the primary energy
consumer is the compressor, the goals can be expressed as achieving temperature set-
points, providing charging if necessary, and doing so at the maximum efficiency of the
compressor.

This two-tiered control problem of mode selection followed by operational efficiency
is best met by a two-tiered controller design. That is the focus of the next section.

3 Control Strategy

As mentioned there are two aspects to the controller design. First, a logic based algorithm
must decide what mode of operation is best. Second, a continuously operating algorithm
must achieve specific setpoints while minimizing energy consumption. For this purpose
a two stage controller is developed to match the dual stage objectives.

The three modes of operation under consideration are defined, based on TES activity,
as: normal, charging and discharging. Table 10.1 presents the control actions for each
mode. In the normal operation, the container temperature is regulated by controlling the
compressor speed in a standard refrigeration cycle while the evaporator fan is set to its
maximum value. In the charging mode, the compressor regulates the charging demand
while the evaporator fan regulates the container temperature. In the discharging mode,
the container temperature is regulated by controlling the TES fan.

Table 10.1: Three different modes of operation considered.

Mode Evap. valve TES valve Evap. fan TES fan compressor
normal PI closed on off PI

charging PI PI P off MPC
discharging closed closed off P off

In order to deal with the two-tiered controller approach outlined in Section 2.2, a
cascade control loop is proposed in Fig. 10.3. An outer optimization loop is responsible
for selecting the desired charge to hold in the TES, and whether or not the TES is active,
based on the current and predicted thermal loads. An inner control loop includes an
MPC to control the compressor for maximizing efficiency as well as proportional (P)
and proportional-integral (PI) controllers for the other components. The PI controllers
of expansion valves regulate the required superheat temperatures, and the P controllers
of the evaporator and TES fans regulate the container temperature in the charging and
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discharging mode. In the normal mode, compressor speed is controlled by a simple PI
controller to regulate the container temperature while the evaporator fan is turned on.
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Figure 10.3: Control strategy for handling operating modes and decentralized local con-
trol loops, and inclusion of optimal control scheme.

Less common than PI control, model predictive control is a technique for digital im-
plementation of optimal control formulations. Different constraints in the system such as
input saturation limits and state or output constraints are handled using this method which
also accommodates systems with multiple inputs and outputs. Fig. 10.4 shows the basic
idea of the MPC implementation for set-point regulation problems. At time instant k, an
optimization problem is solved for the next Np samples — known as the prediction hori-
zon — where the future output is predicted using a model. The future inputs can freely
move within the next Nc samples — known as the control horizon — to minimize the
output deviation from the set-point and the first move in the predicted inputs is applied as
the control signal to the system. In the next time instant the optimization problem will be
solved again by updating the output measurements and moving the prediction and control
horizon one step forward.
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Figure 10.4: A typical MPC implementation for set-point regulation problems which is
also known as receding horizon optimal control.
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4 Gray-Box Modeling

The mode selection charge scheduler in the outer loop of Fig. 10.3, as well as the MPC
in the inner loop, both rely on model-based optimization approaches. Therefore, a proper
model that balances complexity and accuracy is important. The highly nonlinear and
high order model obtained in [Fasl, 2013,Fasl et al., 2014] using a first principles method
makes the optimization problem nonlinear and non-convex. As such, while it is suit-
able for system simulation and controller evaluation, it is not suitable for on-line decision
making. This section describes a simpler gray-box model that captures only the essential
dynamics of the refrigeration and TES system thereby allowing a convex optimization
formulation for MPC to be implemented. In this section, we present the subsystem mod-
els; Section 6 demonstrates the validity of the assumptions.

Container Model

The dynamics of the container being cooled by the hybrid VCS/TES are described by
the following equations based on the energy balance principle and lumped parameter
modeling approach.

MCcr
dTcr

dt
= −Q̇e− Q̇s+ Q̇w (10.1)

MCw
dTw

dt
= −Q̇w+ Q̇a (10.2)

where MCcr and MCw are the thermal mass capacities of the container air and wall, Tcr
and Tw are the temperatures of the container air and wall. Again, we are lumping the
entire container air temperature into one variable and similarly with the container wall.
The heat transfer equations are given by

Q̇e =UAe(Tcr −Tst) (10.3)

Q̇s =UAs(Tcr −Ts) (10.4)

Q̇w =UAw(Tw−Tcr) (10.5)

Q̇a =UAa(Ta−Tw) (10.6)

where Q̇e is the cooling capacity applied by the evaporator, Q̇s is the cooling capacity
applied by the thermal storage unit when activated, Q̇w is the heat transfer from the con-
tainer wall to the container air, and Q̇a is the heat load from the ambient temperature Ta.
The container wall temperature is represented by Tw. The temperature of the container air
is given by Tcr. The temperature of phase change material inside the TES unit is lumped
in Ts which is simply referred to as the storage temperature. The corresponding lumped
parameter heat transfer coefficients are denoted by UA with appropriate subscripts.

Due to the parallel configuration, both the TES and the evaporator are connected to
the same suction line. Assuming the piping losses are negligible, the suction pressure,
and therefore the saturation temperature, of the refrigerant in both units is the same. The
common saturation temperature is represented by Tst .

The evaporator heat transfer is important in determining the simple gray box models
desired. [Shafiei et al., 2013] showed that UAe has an approximately linear relationship
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with the latent mass inside the evaporator. However, this latent mass is not measurable
and any type of estimation would require mass flow measurements that are usually not
available in commercial applications. To deal with this problem, the following simple
model is put forward. Section 6 will later examine the validity of the model.

Since the superheat, ∆Tsh, can be measured using temperature and pressure sensors, it
can also be used to estimate UAe.

∆Tsh = Teo−Tst ; (10.7)

where Teo is the refrigerant temperature at the outlet of the evaporator. Within the super-
heated zone, there is no liquid refrigerant only vapor. Fig. 10.5 illustrates the evaporator
volume divided into two parts including the liquid refrigerant and the superheated zone.
Hence if we had an idea of the fraction of the evaporator that was superheated, we could
use it to estimate the amount of liquid contained in the rest of the evaporator.
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Figure 10.5: Illustration of the evaporator volume. lq shows the length of the evaporator
part including the liquid refrigerant and lsh shows the length of the superheated zone.

We introduce a normalized zone fraction including the liquid mass, Lq, as follows:

Lq = 1−
∆Tsh

γsh
, (10.8)

where γsh is a positive constant used to project the superheat variations onto a smaller set.
For example, it can be chosen as the norm of the superheat signal captured from a simple
superheat regulation test. The overall heat transfer coefficient for the evaporator is then
estimated by a linear assumption

UAe = a0+a1Lq, (10.9)

where ai are constants. Note that the constant a1 contains the conversion from the nor-
malized zone fraction to actual refrigerant mass. This gives a linear approximation of the
nonlinear system behavior.

TES Model

Because of the importance of the TES in hybridization of refrigeration systems and con-
sidering it as the focus of the control design in this work, this section first presents the
TES dynamical model developed by [Fasl, 2013] in some detail. Subsequently, a simpli-
fied model will be proposed and justified. The geometry of the TES is a bank of coaxial
cylinders. Fig. 10.6 shows a schematic of the interior and exterior view of the unit. It will
be charged by flowing the refrigerant through the inner cylinder, where PCM is placed
within the annulus, and will be discharged by flowing the air over the tubes.
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Figure 10.6: Geometry of a TES unit [Fasl, 2013]: (a) interior view of a cylinder; (b)
exterior view of the unit.

Full Model

The fixed grid method [Dincer and Rosen, 2010] is employed to solve the heat transfer and
phase change problem where the enthalpy is used for the thermodynamic state variable
[Fasl, 2013]. Using this method, the PCM section is divided into several fixed volume
nodes, and energy conservation equations are solved for each node. In order to facilitate
the heat transfer through the PCM, metallic fins are added to the segments that span radial
distance of the annulus. Fig. 10.7 shows a schematic view of the fixed grid method for N
number of nodes with fin enhancements.
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Figure 4.6: Fixed Grid Method with Fin Enhancements Schematic 
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Figure 4.7: Fixed Grid Method with Fin Enhancements Resistance-Capacitance Network 

Figure 10.7: A schematic view of the fixed grid method where the PCM is separated into
N number of nodes including fin enhancements [Fasl, 2013]. Tw,i and Tw,o are the temper-
atures of the inner and outer tube walls, and Tre f denotes the refrigerant temperature.
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4 Gray-Box Modeling

The following assumptions have been made to avoid a very high order model while
capturing the relevant dynamics within the PCM.

Assumption 1: Heat is transferred in the radial direction through the fins and in the azimuthal
direction between the PCM and the fin in each node.

Assumption 2: The PCM has lumped thermodynamic properties in single phase regions.

Assumption 3: The pressure in the PCM is constant over time, space and phase.

Assumption 4: The density in the PCM is constant over time and space but can vary through phase
change.

Assumption 5: The fin nodes are assumed to have no heat storage capacity.

Assuming (4), there is no need for conservation of mass to be calculated. Each interior
node in Fig. 10.7 is a closed system with no inlet and outlet mass flows and heat transfer
only through conduction. So the conservation of energy is given by

∂(ρh−P)

∂ t
=∇(k∇T), (10.10)

where ρ is the density, h is the enthalpy, P is the pressure, k is the thermal conductivity
and T is the temperature. (10.10) is applied for the PCM segments and fins to derive the
dynamical equations. The derivation results are given in the following and the details of
calculations are found in [Fasl, 2013]. The dynamics of the jth interior fin node is given
by

(
k f t f

∆r
+

k∆r
r j∆θ

)Tf , j −(
k f t f

2∆r
)(Tf , j−1+Tf , j+1) = (

k∆r
r j∆θ

)Tj, (10.11)

where t f is the fin thickness, r is the node radius defined at the radial center of each node,
θ is the azimuthal direction angle, and subscript “ f ” denotes the fin related variables.
The grid model is designed such that there is an equal radial spacing (∆r) between node
centers. For the innermost and the outermost nodes we have Tf ,0 = Tw,i and Tf ,N+1 = Tw,o.
The conservation of energy equation for the jth PCM node results in

dh j

dt
=

πk
ρ j(2πr j −N f t f )

[
2r j −∆r
(∆r)2 (Tj−1−Tj) +

2r j +∆r
(∆r)2 (Tj+1−Tj)+

2
πr j∆θ

(Tf , j −Tj)] ,

(10.12)
where N f is the number of fins. Defining the enthalpy to be zero at the point where the
solid PCM just begins to melt, the enthalpy of the liquid PCM at the point of beginning
to freeze would be equal to the latent heat of fusion of the PCM (h f us). The temperature
of the jth PCM node is then defined as

Tj =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

h j
cp,s

+Tm if h j < 0
Tm if 0 ≤ h j < h f us
h j−h f us

cp,l
+Tm if h j ≥ h f us,

(10.13)

where Tm is the freezing point temperature of the PCM, and cp,s and cp,l are the specific
heat capacity of the solid and liquid PCM.
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In a latent heat TES, the state of charge is equivalent to the solid fraction of the PCM
which can be algebraically calculated for an individual node as

s j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if h j < 0
h j

h f us
if 0 ≤ h j < h f us

0 if h j ≥ h f us,

(10.14)

The total solid fraction of the TES (s f ) can then be calculated from the individual volumes
and solid fractions of each node as

s f =

N
∑
j=1

Vjs j

N
∑
j=1

Vj

. (10.15)

When discharging, the TES operates like an evaporator unit equipped with fans and
cools down the container by applying the cooling power Q̇s. The complete evaporator
model as well as the other units like the condenser, compressor, expansion valves, liquid
accumulator, etc. are found in [Fasl, 2013]. Those models are employed for simulation
of the hybrid transport refrigeration in this work.

Simplified Grey-Box Model

The detailed TES model presented in Section 4 includes a broad range of dynamics and is
too detailed to be directly employed by an on-line optimization technique. In this section,
it is shown that the PCM solid fraction within the TES can be estimated in two ways:
(a) in terms of the cooling power applied by the VCC system when the TES is charging,
and (b) in terms of the cooling capacity applied by the TES when it is discharging. When
charging, it is assumed that the solid fraction is linearly correlated with the cooling energy
received from the VCC, i.e.,

ds f

dt
=KsQ̇rs, (10.16)

where s f is the PCM solid fraction, Ks is a constant, and Q̇rs is the heat transfered from
refrigerant to the storage given by

Q̇rs =UArs(Ts−Tst), (10.17)

where UArs is the overall heat transfer coefficient between the refrigerant and the storage.
It turns out that the UArs does not remain constant for different operating conditions at
different suction pressures. Here it is assumed there exist a linear relationship between
UArs and the suction pressure Psuc as UArs = αsPsuc where αs is a constant. This simple
assumption for UArs would result in a better estimation of the solid fraction comparing
to the case where it is assumed constant. The estimation result is shown in Fig. 10.13a.
Combining (10.16) and (10.17) gives the first order relationship

ds f

dt
=Krs (Ts−Tst) , (10.18)
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4 Gray-Box Modeling

with charging constant Krs = KsUArs. In a charging experiment, the values of Ks and αs
cannot be identified independently. Fortunately, the storage parameter Ks can be estimated
independently in the discharging experiment as will be explained in the following.

Similar to the charging mode, when the storage is discharging, the dynamic behavior
of the PCM solid fraction is given by a simple integrator

ds f

dt
= −KsQ̇s (10.19)

with Q̇s given by (10.4) and the discharging constant Ks. By estimating Ks from (10.19),
and Krs from (10.18), the parameter UArs can be uniquely identified.

Fig. 10.8a shows the cooling power applied to the container by discharging the TES.
The result of the simplified model is very close to that of the full model. Fig. 10.8b
presents the variation of Ks across discharging time calculated from (10.19) where s f and
Qs are obtained from the full model. It shows that Ks can be considered constant in the
simplified model.
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Figure 10.8: Simplification of the TES model: (a) cooling power applied to the container
when discharging the TES; (b) justification of assuming Ks to be constant.

Compressor Model

The compressor drives the mass flow throughout the entire VCC system and can be used
to control the suction pressure (or equivalently the saturation temperature). Without a di-
rect mass flow measurement, the relation between the compressor speed and the saturated
refrigerant temperature can be reasonably modeled as a black-box transfer function

Tst(s) =G(s)ωc(s), (10.20)

where ωc is the compressor speed used here as a control input variable.

Discretization

While the basic energy balances used to create the low dimensional models are all based
on continuous time rate assumptions (d/dt), the implementation of the controller will
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take place in the discrete-time digital environment of a micro-processor. Therefore a
conversion is necessary with the continuous time t being replaced by the discrete time
index k. The dynamical equations presented in the previous 3 sub-sections are discretized
using the Euler method. The container dynamics (10.1)–(10.6) are discretized as

[
Tcr[k+1]
Tw[k+1]] =Ad [

Tcr[k]
Tw[k]

]+Bd [
Tst[k]
Ta[k]

] , (10.21)

where Ad and Bd are state-space matrices with appropriate dimensions. The compressor
dynamic is similarly described by

{
Xst[k+1] =AstXst[k]+Bstωc
Tst[k] =CstXst[k]

, (10.22)

where Xst ∈ Rn is the state vector with the same dimension, n, as the order of the trans-
fer function G(s) in (10.20), and Ast ∈ Rn×n, Bst ∈ Rn×1 and Cst ∈ R1×n are state-space
matrices. The TES dynamics (10.18) and (10.19) are discretized as

s f [k+1] = s f [k]+ tsKrs (Ts−Tst) , k ∈ Ich (10.23)

and
s f [k+1] = s f [k]− tsKsQ̇s, k ∈ Idis (10.24)

where ts is sampling time, and Ich and Idis are the sets representing charging and discharg-
ing time periods.

Remark 9: The sampling time of the outer loop charge scheduler in Fig. 10.3 is slower than that of
the inner loop MPC. Therefore, when presenting or using the discrete-time equations for either the
outer or inner loops, it is assumed that the corresponding sampling time is used for discretization.

Remark 10: The time varying parameters UAe and UArs are updated at each sampling instant, but
kept constant during the horizon of an inner-loop optimization calculation. This simplification is
needed for convex formulation.

5 Control System Design

The design of the two cascaded loops proposed in Section 3 is provided in this section.

Performance Objective

As stated in Section 2, one of the control objectives is to minimize the power/energy con-
sumption of the overall VCC/TES system by focusing on the compressor consumption.
In general a detailed derivation of the compressor power in terms of the relevant variables
such as compressor speed or suction/discharge pressure leads to a nonlinear and non-
convex formulation which is not appropriate for MPC implementations [Shafiei et al.,
2014]. Empirical evidence indicates that the volumetric efficiency of the compressor can
be estimated as a 2nd order convex function of the compressor speed and the pressure
ratio across the compressor [Rasmussen and Alleyne, 2006] as

ηv = c1ωc+c2ω
2
c +c3ωc poi+c4 poi+c5 p2

oi (10.25)
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where ci are constants and poi is the ratio of the outlet pressure over the inlet pressure of
the compressor. The relationship in (10.25) will be used for the MPC formulation.

Charge Scheduler

The outer loop in Fig. 10.3 schedules the charging demands for a specific period of time
using a given driving profile and thermal load predictions. Here, for simplicity, we clas-
sify traffic data patterns into either light or heavy traffic with the primary difference being
average vehicle speed. Only two states of vehicle velocity are used for simplicity and
clarity of exposition. Clearly, more detailed gradations of traffic patterns can be utilized
to extend the results presented here but the fundamental framework will apply. In the light
traffic case, the vehicle travels with an average nominal speed VN and in the heavy traffic
case, it operated with average speed V0. These two average speed levels can be identified
by analyzing the historical vehicle speed and road data to determine appropriate classifi-
cations. The specifics of traffic data analysis and identification of average speed levels are
outside the scope of the current study but readers may refer to [Walkowicz et al., 2014]
for details of how this would be accomplished.

For a time horizon Tp, using the on-line traffic and GPS data and the average vehicle
speed, a driving profile may be obtained. An example of such profile is shown in Fig. 10.9.
Maximizing the COP associated with the air flow over the condenser, the intuition would
be that the storage unit should be charged during the light traffic (high average velocity)
periods and discharged during the heavy traffic (low average velocity) intervals. Section
6 will examine the extent to which this intuition would be correct.
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Figure 10.9: An example of a predicted driving profile.

In order to calculate the thermal load in the discharging periods, the steady-state con-
ditions of (10.1) and (10.2) are used with the condition that Q̇e = 0. Thus, the required
cooling capacity provided by the TES unit is given by

Q̇s = Q̇a =UAa(Ta−Tw), (10.26)

and the corresponding charging demand for the ith interval li is calculated using (10.19)
and (10.26) as

li =KsUAa∫

∆Ti

0
(Ta−Tw)dt, i = 1, . . . ,np (10.27)
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where ∆Ti represents the length of the ith discharging interval, and np is the number of
charging or discharging intervals during the prediction horizon.

The charge scheduling problem is solved by optimal distribution of charging demand
among the available charging periods. In order to fulfill the charging demand required for
the ith discharging period, the following constraint is introduced:

si ≥ li (10.28)

where si is the solid fraction at time ti, i.e., si = s f (ti). The following constrained opti-
mization problem is proposed for TES charge scheduling:

min
ωc, s f

−
No
∑
i=1

ηv+Wo
No
∑
i=1

∥∆ωc∥
2
2

subject to

{
Xst[k+1] =AstXst[k]+Bstωc
Tst[k] =CstXst[k]

k ∈ Ich

s f [k+1] = s f [k]+ tsoKrs (Ts−Tst[k]) k ∈ Ich

Q̇s =UAa(Ta−Tw)

s f [k+1] = s f [k]− tsoKsQ̇s k ∈ Idis

0 ≤ s f ≤ 100
0 ≤ωc ≤ωmax
SI ≥ L
s f [No+1] ≤ ST

, (10.29)

where No is the prediction horizon, tso is the sampling time, ∆ωc is the rate of change of
the compressor speed which is penalized in the cost function by the weighting factor Wo,
ωmax is the maximum speed of the compressor, and SI and L are vectors including si and li
as their elements, respectively. The output of the optimization problem (10.31) is the next
time instant during the driving profile where charging would be initiated, i.e., s∗1 = s∗f [t1]
where s∗f is the argument resulting from solving the above problem. Note that t1 is updated
at each sampling instant where optimization problem should be solved again.

Model Predictive Control

The design of a model predictive control strategy for the inner loop in Fig. 10.3 is straight-
forward if the reduced order simplified linear models are utilized. For example, the ob-
jective of maximizing the efficiency factor ηv clearly falls within the scope of a well-
designed MPC. However a challenge arises due to the potential length of the prediction
horizon. The second objective is to regulate the TES charge to the solid fraction set-point
si at time ti as given by the outer loop controller. This means that the prediction horizon
at time t should be chosen long enough to include ti. The longer the prediction horizon,
the larger the computational burden which could tax the type of embedded processors that
would run on a transport refrigeration system.

To circumvent the potential computational challenge we invoke the assumption that
the TES in this study is well insulated. Therefore, the thermal leakage from the TES
to the environment is assumed negligible over the duration of interest. This assumption
remains to be validated but it does proved some flexibility to develop the following MPC
approach.
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5 Control System Design

Prior to presenting the algorithm, we provide a simple illustration to explain it. Con-
sider the nominal desired solid fraction trajectory provided in Fig. 10.10 where the goal
is to transition from s∗0 at time t0 to s∗1 at time t1. At any time instant, an optimization
problem is solved to maximize ηv. The following constraint on the rate of solidification
is imposed to guarantee si regulation:

∆s f ≥ δ smin (10.30)

where ∆s f = s f [k]− s f [k−1], and δ smin = (s1 − s f (t))/(t1 − t). Satisfying the constraint
in (10.30) means that the s f trajectory would always lie above the dashed line shown in
Fig. 10.10. This guarantees reaching the s∗1 level before time t1.
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Figure 10.10: An example of a solid fraction trajectory.

If the value of the s∗1 level is reached at time tr as shown in Fig. 10.10, then the TES
should deactivate and the refrigeration system works in the normal mode to regulate the
container temperature and MPC is stopped until the next charging period. To summarize,
the following optimization problem is proposed for the MPC implementation:

max
ωc, s f

−
Ni
∑
j=1

ηv+Wi
Ni
∑
j=1

∥∆ωc∥
2
2

subject to

{
Xst[k+1] =AstXst[k]+Bstωc
Tst[k] =CstXst[k]

s f [k+1] = s f [k]+ tsiKrs (Ts−Tst[k])
0 ≤ s f ≤ 100
0 ≤ωc ≤ωmax
∆s f ≥ δ smin

, (10.31)

where Ni is the prediction horizon, tsi is the sampling time, and Wi is the weighting factor.
The output of the above problem is the optimum compressor speed ω

∗

c applied as a control
signal.
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6 Simulation Results

Validation Results of the gray-box model

Parameters of the gray-box model are estimated and the model is validated against a more
complicated nonlinear MATLAB/Simulink model presented in [Fasl, 2013, Fasl et al.,
2014]. Separate experiments are performed for the identification of independent parts of
the model.

To identify the parameters associated with container dynamics (10.1)–(10.6), two tests
are performed using a relay-based thermostatic control of the container temperature with
compressor speed as an input. In either case, the collected data is divided into model
identification and model validation data sets. In the first test, the container is cooled
down by the VCC system without using the TES (Q̇s = 0). From Table 1, this would be
considered the case when the system is in the charging mode. The result is shown in
Fig. 10.11. In the second test, the storage is fully charged, and used to cool the container
while the VCC system is turned off (Q̇e = 0). From Table 1, this is the case when the
system is in the discharging mode. The result is shown in Fig. 10.12. The corresponding
parameters are provided in Table 10.2.
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Figure 10.11: Estimation of the container temperature governed by only VCC (Q̇s = 0):
(a) identification; (b) model validation.

The separate TES identification test is performed by charging the storage system using
different magnitude steps in the compressor speed, which provides different saturated
temperatures Tst . Subsequently we turn off the compressor and then discharge the TES
to provide cooling Q̇s. The parameters are estimated as Ks = 1× 10−5 and αs = 0.27.
Estimation results are shown in Fig. 10.13. Even though the TES is modeled as a simple
linear integrator, the estimation results are sufficiently satisfactory for incorporation into
a model-based predictive controller.

The transfer function of the compressor model G(s) is chosen to be of second or-
der. The continuous time representation is shown here for consistency with the gray-box
models of Section 4. For controller design, this gets converted to the discrete formulation
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Figure 10.12: Estimation of the container temperature governed by only TES (Q̇e = 0):
(a) identification; (b) model validation.

Table 10.2: Container parameters

MCcr [kJ/K] MCw [kJ/K] γsh [K] a0
[kW/(m2K)]

1.07×105 9.5×105 20 0

a1
[kW/(m2K)]

UAs
[kW/(m2K)]

UAw
[kW/(m2K)]

UAa
[kW/(m2K)]

628 1001 732 32
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Figure 10.13: Estimation of the TES solid fraction when: (a) charging; (b) discharging.
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illustrated in (10.22).

G(S) =
−0.92×10−5(s−1.6)

S2+S+0.006
. (10.32)

Fig. 10.14 shows the results of the compressor model in predicting the saturation temper-
ature.

 

 
simplified: fit = 76.7 %nonlinear

T
s
t

[◦
C

]

time [sec]

1000 2000 3000

−4

−2

0

(a)

 

 
simplified: fit = 76.5 %nonlinear

T
s
t

[◦
C

]

time [sec]

1000 2000 3000

−4

−2

0

(b)

Figure 10.14: Estimation of the evaporation temperature using compressor model: (a)
identification; (b) model validation.

The parameters ci for volumetric efficiency in (10.25) are estimated using the lab ex-
perimentation data obtained by Rasmussen and Alleyne where similar results are reported
in [Rasmussen and Alleyne, 2006]. They are provided in Table 10.3 and the estimation
results are shown in Fig. 10.15.

Table 10.3: Parameters for estimation of the volumetric efficiency.

c1 [RPM−1] c2 [RPM−2] c3 [RPM−1] c4 [–] c5 [–]

7.4×10−3 -7.9×10−7 -2×10−3 61.45 -9.86

Simulated Controller Results

Three different simulation scenarios are performed in this section. The first simulation
illustrates the importance of taking the current traffic mode (light vs. heavy) into account
for performing the TES charging. The second simulation shows that further energy saving
can be achieved by scheduling the charging demand according to the predicted load using
the predicted traffic mode. Finally, the effectiveness of the proposed optimal control to
maximize the compressor volumetric efficiency factor will be illustrated.

In order to simulate the hybrid VCC system, we have used a nonlinear modeling
tool, the Thermosys Toolbox, [Rasmussen, 2002], for MATLAB/SIMULINK, which has
been previously validated on a variety of thermal systems. The Thermosys blocks are
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Figure 10.15: Volumetric efficiency: (a) parameter estimation; (b) objective function to
be used in convex optimization.

configured as shown in Fig. 10.2 and details about the simulation parameters are provided
in Appendix A. Fig. 10.16 illustrates the simulation environment where the full nonlinear
model is included in the rightmost block to simulate the hybrid VCC system and the
developed simplified model in this paper is included in the middle block and is employed
by the control system. The chosen environmental parameters are provided in Table 10.4.

Higher order nonlinear 
simulation

Decentralized control 
loops and MPC

Optimal charge 
scheduler

X` = AX + BU
Y = CX + DU

P
PI

X` = AX + BU
Y = CX + DU

Figure 10.16: Simulation environment for testing the proposed approach. The three
blocks correspond to that of Fig. 10.3 with the same placement order. A detailed nonlinear
simulation model is employed to simulate the hybrid VCC/TES dynamical behavior.

Simulation I: Driving Profile

When the vehicle is running at a nominal speed (light traffic), the air flow across the
condenser is several times higher than that of the low average speed (heavy traffic) case.
This difference is included in the simulation model by scaling up the air flow of the con-
denser fan in light traffic mode by a factor of 10. The higher airflow across the condenser
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Table 10.4: Environmental Parameters.

Parameter Value

average ambient temperature [○C] 30

average wind speed [m/s] 8.8

solar radiation [W/m2] 887

will decrease the condensation pressure and, consequently, reduce the pressure difference
across the compressor thereby lessening the compressor work required to maintain the
same suction pressure. The relevant equations describing the simulation model for the
condenser unit is found in [Fasl, 2013, Section 2.3.1]. The coefficient of performance is
defined as

COP =
Q̇e

Pw
(10.33)

where Pw is the power consumption of the compressor. Hence, a higher coefficient of
performance is achieved by the higher air flow. In the following it is shown that significant
energy savings are obtained by charging the storage device when the vehicle is running
with a nominal speed.

For this first simulation case, we do not yet introduce the optimal controller to demon-
strate the benefits can accrue with any controller. A simple thermostatic control keeps the
air temperature between the limits by turning on and off the refrigeration cycle while the
TES is being charged when cooling is applied. The operation is performed for a full
charge cycle. Fig. 10.17 shows the result when charging the TES during both the light
and heavy traffic cases. Figure 12b indicates that the COP, when the compressor is on,
is significantly higher for the case when the vehicle is moving at nominal speed thereby
having a higher air flow across the condenser. The higher COP translates to a change
in overall energy consumption to fully charge the TES. The energy consumption in the
heavy traffic operation is 3,460 [kJ] that is reduced to 2,870 [kJ] in the light traffic case.
The results show that for this particular system, and the environmental parameters cho-
sen, a 17% energy saving is achieved by simply shifting the charging periods to the modes
where vehicle is running with a nominal speed.

Simulation II: Charge Scheduling

It was shown in the previous example that shifting the charging operations to the periods
when the vehicle is in light traffic can save considerable amount of energy. However,
we cannot count on the traffic pattern being all of one type. The traffic pattern will vary
throughout the duration of a delivery day for most transport refrigeration systems includ-
ing when they are stopped completely to deliver products to customers. To accommodate
the varying traffic patterns we use the idea of prediction. As stated before, with modern
technology it is possible to obtain a fairly reliable estimate of traffic flow along a route
and continuously update it in real time. This section shows that load prediction can be
employed for improved charge management using a simple switching logic.
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Figure 10.17: Comparison of thermal storage charging in heavy and light traffic condi-
tions. (a) solid fraction: a full charge cycle is considered; (b) coefficient of performance.
(c) container temperature: more cooling applied in case of higher COP.

The driving profile used in the following simulations is shown in Fig. 10.18. Inten-
tionally, it is designed to include long periods of heavy traffic (e.g. a delivery stop) such
that the overall cooling required for load compensation is larger than the capacity of the
TES. Doing so, the capability and effectiveness of the optimal charging scheme for dis-
tribution of charge demand across the heavy traffic periods are tested.
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Figure 10.18: The driving profile considered for simulation experiments.

Fig. 10.19 shows the results for the case where maximum charging up to 100% is
applied in the drive cycle. When the solid fraction becomes 100% (fully charged), the
control switches to the normal mode until the heavy traffic period when it switches to
discharging mode. At the end of the delivery mission, the remaining state of the charge
for the TES is 51.5%. The total energy consumption of the compressor in this case is
2,828 [kJ].

As a simple option for inclusion of load prediction in the above logic-based control,
the charging demand can be given by (10.27) at the end of each drive cycle ti in Fig. 10.9.
The load prediction takes this charge demand and adds 5% more charge demand as a
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Figure 10.19: Maximum charging control scheme: (a) PCM solid fraction (state of
charge); (b) compressor power consumption.

robustness factor to compensate for uncertainty in the load prediction. This charging
demand is updated every 100 seconds and applied as a reference to the switching logic
controller deciding whether to change from charging to normal mode. The control logic
is defined such that if the current solid fraction is greater than or equal to the set-point
the control would switch to the normal operation and the TES would not be activated. In
order to avoid any frequent and unnecessary switching, a hysteresis function is used in
the switching logic as shown in Fig. 10.20.
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Figure 10.20: Hysteresis bound for switching decision from charging to normal mode.

Fig. 10.21 shows the simulation results after applying the simple charge scheduling.
The state of the charge at the end of the mission is 5.5%, which is only slightly higher
than the 5% safety factor. This shows the model effectiveness in load prediction for the
given system. The total energy consumption of the compressor is 2,280 [kJ] which is
significantly lower than the previous case which employed much higher charging control
effort due to a lack of preview.

The simulation results of Fig. 10.21 are all based on a specific design taken from [Fasl
et al., 2014]. If the last heavy traffic interval in the driving profile of Fig. 10.18 is the
longest interval of that type which the vehicle can be expected to see, then the peak solid
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Figure 10.21: Simple charge scheduling and logic based control: (a) PCM solid fraction
(state of charge); (b) compressor power consumption.

fraction in Fig. 10.21a shows that only 60% of the total capacity of the TES is actually
required for compensating the associated load demand. Therefore, using historical data of
delivery missions and the load prediction the results presented here can be used effectively
in sizing studies to determine cost effective dimensioning of TES units for parallel hybrid
transport refrigeration systems. The results state that the TES could be reduced in size
by 40% with commensurate reductions in weight, size and vehicle fuel efficiency. The
results would clearly vary depending on the operating conditions but the user would have
a tool with which to evaluate her/his individual options. Reducing the TES size may also
lead to improve the charging and discharging performance where numerical analysis and
detailed investigation can be found in [Bellan et al., 2014].

Simulation III: Optimal Charge Scheduling and MPC

Operating the compressor at its maximum speed whilst charging the TES is far from
the optimum approach as illustrated by the efficiency surface in Fig. 10.15b. Moreover,
maximum compressor speed may also apply more strain on the compressor causing wear
and tear of the device. Before simulating the optimal control scheme, a simple simulation
is performed for the case where the system is running in the normal mode as presented in
Table 10.1. This is the baseline operation when only the VCC system is in the loop. The
compressor power consumption and the container temperature are shown in Fig. 10.22.
The corresponding energy consumption of the compressor is 3,132 [kJ] which is higher
than of any other cases where the TES is utilized in the hybrid VCC/TES system. It
emphasizes the improvement of energy consumption by hybridization.

In the following, the proposed optimal charge scheduling of simulation 2 as well as the
model predictive control of the compressor are applied to the nonlinear simulation model
used in the previous results. Control tuning parameters are provided in Table 10.5. The
maximum compressor speed is limited to ωmax = 2400 [rpm] and the terminal constraint
ST is chosen to be the same as the robustness factor of 5% in the previous simulation.

The TES solid fraction resulting from the optimal control is shown in Fig. 10.23a.
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Figure 10.22: Baseline operation when only VCC system is in the loop with the normal
mode of operation: (a) power consumption of the compressor; (b) container temperature.

Table 10.5: Control tuning parameters.

tso [s] No Wo ST tsi [s] Ni Wi

100 72 2×10−4 5 10 30 1×10−4

As can be seen, the whole charging demand is shifted to the first and third charging
modes and no charging takes place during the second cycle. Examining Fig. 10.23b, the
compressor speed during the charging mode is approximately 1,200 rpm which is ap-
proximately the optimal efficiency point as given in Fig. 10.15b. Therefore, the proposed
optimal control scheme ensures that the compressor will charge TES unit with maximum
efficiency while guaranteeing the cooling requirements will be met during the heavy traf-
fic period. To compare the results of simulation cases 2 and 3, the following performance
index is defined.

An integrated coefficient of performance IC is defined as the ratio of the total cooling
energy over the total electrical power consumption for the entire drive cycle

IC =
Qrs+Qe

E f +Ec
(10.34)

where Qrs is calculated by integration of (10.16) given the remaining TES charge which
is 8.4% in simulation 3. Qe is calculated by integration of the cooling capacity shown
in Fig. 10.25a, and E f and Ec are the energy consumption of the evaporator fans and the
compressor. The corresponding power consumptions of the two latter components are
illustrated in Fig. 10.24. The results of integrated COP calculations are

ICn =
550+4179
993+2280

= 1.44, ICopt =
840+4065
713+2070

= 1.76 (10.35)

where ICn is the performance resulting from the simple logic based control and load pre-
diction, and ICopt is the performance in the case of the proposed optimal control. The re-
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sults show that a 22% performance improvement is achieved by the optimal control over
the logic-based hybrid VCC/TES system operation, even accounting for load preview.
Fig. 10.25b shows that the proposed control system can regulate the container tempera-
ture around the set-point of 3 [○C] in spite of switching between the different modes of
operation. Therefore, efficiency is improved without sacrificing temperature regulation
performance.
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Figure 10.23: Optimal charge scheduling and model predictive control: (a) PCM solid
fraction (state of charge); (b) compressor speed.
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Figure 10.24: Optimal charge scheduling and model predictive control: (a) compressor
power consumption; (b) power consumption of the evaporator fans.
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Figure 10.25: Optimal charge scheduling and model predictive control: (a) cooling ca-
pacity applied to the container; (b) container temperature.

7 Conclusion

In [Fasl, 2013, Fasl et al., 2014], the potential benefits of a hybrid thermal management
system was introduced and shown to outperform a standalone VCS System. The man-
agement in the previous work was a simple logic-based approach. In this work, we inves-
tigate the optimal utilization of thermal energy storage units for transport refrigeration.
A particular parallel-hybrid vapor compression system was considered where the TES
unit can preserve the container temperature when discharging. A simplified model was
introduced for the purpose of controller design and implementation and a more detailed
nonlinear simulation model was employed for simplified model validation and controller
simulations.

Initially, results showed that active TES charging and discharging corresponding to
the traffic status was beneficial. For TES charging, a 17% energy saving can be achieved
by performing the energy storage activity during light traffic vs heavy traffic. It was also
shown that the use of load predictions could result in a more efficient overall utilization
of TES operations with possible system design sizing implications.

Then, using the 17% advantage, a comparative study was performed between a simple
logic-based controller and a proposed dual-stage controller containing an MPC to see if
the traffic-relevant benefits could apply to an overall drive cycle management approach. A
comparative study was performed between a simple logic-based controller and a proposed
dual-stage controller containing an MPC using prediction to capture the traffic pattern.
For ease of comparison between the two approaches, an integrated coefficient of perfor-
mance, which applies to the whole drive cycle, was introduced. The results indicate that
a 22% performance improvement can achieved by the proposed cascade optimal control
approach over the type of logic based switching approach presented in [Fasl, 2013, Fasl
et al., 2014].

To the knowledge of the authors, this work reports some of the earliest results on opti-
mal hybridization and management of transport refrigeration systems. The reader should
note that the numbers given here will obviously change depending on the particular op-
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erating conditions and they should be interpreted as such. Additionally, the approach
could be extended to include other types of modes (e.g boost) or operating characteristics
(constraints of fixed speed compressors). However, from this investigation, the potential
should be clear. There is significant value to be explored in (i) the hybridization of trans-
port refrigeration systems, (ii) model-based optimization of these systems, and (iii) the
use of preview information that is currently available in most vehicle systems.

A Simulation Parameters

In the following, informative details of the complex nonlinear simulation model repre-
sented in Fig. 10.16 are provided. More details such as dynamical equations, modeling
assumptions, explanation of the physical structure and parameter descriptions are found
in [Fasl, 2013].

Heat Exchanger Parameters

Heat exchangers are modeled using the moving boundary lumped parameter approach
with mode switching capabilities [Fasl, 2013]. There are four possible modes of operation
depending on the number and composition of fluid phase zones present: (i) three-zone
(vapor, two-phase and liquid); (ii) two-zone (vapor and two-phase); (iii) one-zone (two-
phase); and (iv) one-zone (vapor). The parameters for the heat exchangers (i.e., condenser
and evaporator) are provided by Table 10.6.

Table 10.6: Heat exchangers parameters.

Parameter Condenser Evaporator
Refrigerant R404A R404A

Hydraulic diameter [m] 7.3 ×10−3 8.8 ×10−3

Refrigerant length of one pass [m] 14.1 6
Number of parallel refrigerant passes 6 11

Air side cross sectional area of one pass [m2] 0.070 0.028
Air side surface area of one pass [m2] 5.47 0.80

Refrigerant side cross sectional area [m2] 4.22 ×10−5 6.03 ×10−5

Refrigerant side surface area of one pass [m2] 0.32 0.08
Wall mass of one pass [kg] 2.78 1.19

Wall specific heat [kJ/(kg.K)] 0.71 0.59

TES Parameters

The thermal energy storage unit is modeled as a coaxial tube arrangement using a fixed
grid enthalpy approach [Fasl, 2013]. Table 10.7 gives the associated parameters.

Container Parameters and Environmental Conditions

The container model calculates the temperature dynamics associated with refrigerating
an air filled mobile space interacting with ambient conditions [Fasl, 2013]. The container
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Table 10.7: Thermal energy storage parameters.

Parameter Thermal energy storage
Phase change material Water

Number of nodes 10
Fin thickness [m] 1 ×10−3

Number of fins 8
Tube length per parallel pass [m] 6

Number of parallel refrigerant passes 11
Inner tube diameter [m] 8 ×10−3

Outer tube diameter [m] 0.032
Transverse pitch ratio 1.5

Longitudinal pitch ratio 1.25
Number of tube passes per plane 10

Wall material Aluminum
Wall thickness [m] 1.58 ×10−3

parameters and ambient conditions are given in Table 10.8.

Table 10.8: Container parameters and ambient condition.

Parameter Value
Length [m] 7
Height [m] 2.5
Width [m] 2.4

UA value [W/K] 30
Wall capacitance [J/K] 1 ×106

Solar view factor [0-1] 0.25
Surface emissivity factor [0-1] 0.8

Other Component Parameters

The receiver and accumulator are modeled as a constant volume tank with assumption of
lumped uniform thermodynamic properties throughout the entire volume of the tank [Fasl,
2013]. Here the receiver volume is 1.85 ×10−3 [m3], and the accumulator volume is 1
×10−3 [m3].

The compressor is modeled as a fixed displacement unit with a variable speed allow-
ing modulation of the mass flow rate by controlling the rotational speed. The dynamics
associated with compressor shell heat capacitance are simulated by applying a first order
low pass filter to the static outlet enthalpy [Fasl, 2013]. Here, the filter time constant is
τ = 10 [s].

The electronic expansion valve model calculates the mass flow using a static rela-
tionship depending on the stroke fraction value which is regulated by applying an elec-
tronic control signal. The valve coefficient described in [Fasl, 2013] is chosen here to be
Cv = 1×10−4.
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