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a  b  s  t  r  a  c  t

Background:  An antibiogram  (ABG)  gives  the  results  of  in  vitro  susceptibility  tests  performed  on  a  pathogen
isolated  from  a culture  of  a sample  taken  from  blood  or other  tissues.  The  institutional  cross-ABG  consists
of  the conditional  probability  of  susceptibility  for  pairs  of antimicrobials.  This  paper  explores  how  inter-
pretative  reading  of the  isolate  ABG  can  be used  to  replace  and  improve  the prior  probabilities  stored  in
the  institutional  ABG.  Probabilities  were  calculated  by  both  a naïve  and  semi-naïve  Bayesian  approaches,
both  using  the  ABG  for the  given  isolate  and  institutional  ABGs  and  cross-ABGs.
Methods  and Material:  We  assessed  an isolate  database  from  an  Israeli  university  hospital  with  ABGs  from
3347  clinically  significant  blood  isolates,  where  on average  19  antimicrobials  were  tested  for  suscepti-
bility,  out  of  31  antimicrobials  in regular  use  for patient  treatment.  For  each  of  14  pathogens  or  groups
of  pathogens  in the  database  the  average  (prior)  probability  of  susceptibility  (also  called  the  institutional
ABG)  and  the  institutional  cross-ABG  were  calculated.  For  each  isolate,  the  normalized  Brier  distance  was
used as  a measure  of  the  distance  between  susceptibility  test  results  from  the  isolate  ABG  and  respec-
tively  prior  probabilities  and  posteriori  probabilities  of  susceptibility.  We  used  a 5-fold  cross-validation
to  evaluate  the  performance  of different  approaches  to predict  posterior  susceptibilities.
Results: The  normalized  Brier  distance  between  the  prior  probabilities  and  the  susceptibility  test  results
for  all  isolates  in  the  database  was reduced  from  37.7%  to 28.2%  by  the  naïve  Bayes  method.  The smallest
normalized  Brier  distance  of 25.3%  was  obtained  with  the semi-naïve  min2max2  method,  which  uses  the
two  smallest  significant  odds  ratios  and  the  two  largest  significant  odds  ratios  expressing  respectively
cross-resistance  and  cross-susceptibility,  calculated  from  the  cross-ABG.
Conclusion:  A  practical  method  for predicting  probability  for antimicrobial  susceptibility  could  be  devel-
oped  based  on  a semi-naïve  Bayesian  approach  using  statistical  data  on  cross-susceptibilities  and
cross-resistances.  The  reduction  in  Brier distance  from  37.7%  to  25.3%,  indicates  a  significant  advantage
to  the proposed  min2max2  method  (p < 10 99).

©  2015  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

When a patient presents at a hospital with a bacterial infec-
tion, antimicrobials will be administered to the patient. Before the
antimicrobials are administered, samples will be taken from the
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patient, usually both a blood sample and a “local” sample from
the site of infection, for example a urine sample if the patient is
suspected of a urinary tract infection. Within a day or two bacte-
ria are successfully isolated from these samples in approximately
30% of the patients [1]. Once isolated, the bacteria are tested for
their in vitro susceptibility to a range of antimicrobials. The test
results are called an antibiogram (ABG), which specifies the sus-
ceptibility of the pathogen to each tested antimicrobial. These
ABGs often make it relevant to change the initial “empirical” treat-
ment given to the patient into a “definitive” treatment, where it
is known from the susceptibility results that the isolated bacte-
ria are susceptible to the antimicrobial(s) given in the definitive
treatment.

http://dx.doi.org/10.1016/j.artmed.2015.08.004
0933-3657/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.
0/).
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At any given time a large number of antimicrobials are in use in
a hospital. Out of these only a limited set of antimicrobials is tested
due to practical and economic constraints. Therefore it occasionally
happens that none of the tested antimicrobials are clinically accept-
able. This may  for example be due to allergies, to significant toxicity,
to limited gastrointestinal absorption of the drug in severely septic
patients, to preferences for bactericidal rather than bacteriostatic
antimicrobials or due to preferences imposed by antimicrobial
stewardship programs, where for example quinolones are con-
sidered a less desirable choice relative to cephalosporins (Danish
Health and Medicines Authority, 2013) [2]. In such cases it is desir-
able to have additional information about the susceptibility of the
isolated pathogens to antimicrobials for which no susceptibility
results are available. Some information can be derived from the
expert rules of the European Committee on Antimicrobial Suscep-
tibility Testing (EUCAST) [3].

EUCAST expert rules come in three forms (edited in the interest
of simplicity):

1. Intrinsic resistance: E.g. Rule 2.6: Pseudomonas aeruginosa is
resistant to ampicillin.

2. Exceptional resistance phenotypes: E.g. Rule 6.1: Staphylococ-
cus aureus is (almost always) susceptible to vancomycin, linezolid,
quinupristin/dalfopristin, daptomycin and tigecycline.

3. Interpretive rules: E.g. Rule 8.6: If Enterococcus spp. is resistant
to ampicillin, report as resistant to ureidopenicillins and carbapen-
ems.

The first two  forms extend the ABG with knowledge of respec-
tively resistance and susceptibility for antimicrobials, which have
not been tested. The third form extends the susceptibility results
from the tested antimicrobials to some of those not tested.

These rules represent an improvement in the reporting of
susceptibility results, but cover only a very limited number of
pathogen/antimicrobial combinations.

It would therefore be desirable to have a computationally feasi-
ble method that retains the advantages of the EUCAST expert rules,
but which may  also provide some help when none of these apply.
This will be achieved by compiling institutional ABGs from the
isolate databases maintained by most clinical microbiology labo-
ratories. For example, in the institutional ABG compiled from the
isolate database used in this study, we can read that the prior
probability of Escherichia coli (E. coli) isolates being susceptible to
cefuroxime is 83%. This information indicates that prescription of
cefuroxime against an E. coli infection may  well be useful, even
if the E. coli isolate’s susceptibility to cefuroxime has not been
tested. Institutional cross-ABGs, containing statistics on the condi-
tional probabilities of susceptibility for pairs of antimicrobials can
likewise be compiled. For example, in the cases where E. coli was
susceptible to ofloxacin, we can read from the institutional cross-
ABG that the conditional probability of susceptibility to cefuroxime
given susceptibility to ofloxacin is 96%. This can be used to pre-
scribe cefuroxime with good certainty (96%) that it will cover the
E. coli infection. This particular case, where the quinolone, ofloxacin,
may  be replaced by the cephalosporin, cefuroxime, would be an
example of antibiotic stewardship, in line with for example the
Danish guidelines on prescribing of antibiotics [2], where the use
of quinolones is more restricted than the use of cephalosporins.
We will refer to the conditional probabilities as institutional cross-
susceptibilities, or institutional cross-resistances, if conditional on
resistance. Jointly, the institutional cross-susceptibilities and the
cross-resistances will be referred to as the institutional cross-
ABGs.

The purpose of this paper is to develop a method of inter-
pretative reading of susceptibility test results where posterior
probabilities of susceptibilities of an isolate to untested antimicro-
bials are calculated from the institutional ABG (the priors) and the
institutional cross-ABG, given the tested isolate’s ABG.

2. Methods and Material

2.1. The isolate database

An isolate database of bacterial pathogens isolated from blood
cultures taken from patients suspected of bacterial infections will
be used to illustrate the methods for estimation of posterior proba-
bilities of susceptibility. The database was compiled between 2002
and 2004 at Rabin Medical Center in Israel and includes 3347 clin-
ically significant pathogens.

The isolate database contains the pathogen identity and an ABG
for each isolate. The susceptibility results are reported in the so-
called S-I-R system. If S (sensitive) is reported as the result of
the susceptibility test, then the antimicrobial can eradicate the
pathogen in vitro and with some exceptions this will also lead to
clinical success, i.e. in vivo eradication of the pathogen. R (resistant)
is expected to result in clinical failure and I (intermediate) may  lead
to either. For the purposes of this paper intermediate test results
(I) will be considered as resistant (R).

2.2. Compilation of institutional ABGs and institutional
cross-ABGs

For each of the 14 pathogen groups in the isolate database an
institutional ABG was compiled, containing the (prior) probabil-
ity of an isolate from a given group being susceptible to a given
antimicrobial. From the isolate database the cross-susceptibility
and cross-resistance tables can also be compiled, as previously
described by Zalounina et al. (2007) [4]. These tables contain condi-
tional probabilities of susceptibility for pairs of antimicrobials and
they are called cross-susceptibilities when conditional on suscepti-
bility and cross-resistances, when conditional on resistance. Table
IV gives an example of the compilation of cross-susceptibilities and
cross-resistances. The cross-susceptibilities and cross-resistances
are joined into the institutional cross-ABG tables where they are
expressed as odds ratios for increased or decreased susceptibility
(Appendix Eq. (8)). Fisher’s exact test is used to determine the sig-
nificance of the odds ratios. When most isolates are tested with the
same antimicrobials the observations are dependent, with miss-
ing values. Therefore Fisher’s exact test may  underestimate the
significance of some odds ratios.

2.3. Calculation and validation of posterior probabilities of
susceptibility

The posterior probabilities will be calculated by several ver-
sions of naïve and semi-naïve Bayesian methods. In the naïve Bayes
method all significant odds ratios in the cross-ABG will be used. In
the semi-naïve Bayesian methods only some of the significant odds
ratios will be used.

Each method for calculation of posterior probabilities is val-
idated by 5-fold cross-validation, where the isolate database is
divided in a learning set and a validation set. The institutional ABGs
and institutional cross-ABGs compiled from the learning set are
used to calculate posterior probabilities in the validation set. The
quality of the calculated probabilities will be assessed by deleting
one susceptibility test result at a time for a given isolate in the
validation set and then using the method to calculate the posterior
probability of susceptibility given the remaining susceptibility test
results for that particular isolate. This will be repeated for each of
the test results for the given isolate and subsequently for all isolates
in the 5-fold validation set. The accuracy of the posterior probabili-
ties will be assessed by calculating the distance (Appendix Eq. (11))
between each test result in the ABG and its calculated posterior
probability. The normalized Brier distances are then calculated
by adding all distances and normalizing (Appendix Eq. (12)).
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Table  1
A segment of the isolate database.

Isolate Pathogen OFL MER AMK

1 Acinetobacter spp. R R S
2  E. coli R S R
3  Proteus spp. S NA S

S = susceptible, R = resistant, NA = the susceptibility is not assessed

The normalized Brier distance can be considered as the standard
deviation in percent between calculated and tested susceptibilities.

The normalized Brier distances between susceptibility test
results and respectively prior probabilities and posteriori proba-
bilities of susceptibility were compared using the paired samples
t-test (2-tailed).

3. Results

3.1. The isolate database

The isolate ABGs contained a total of 63590 susceptibility test
results. A segment of the isolate database is illustrated in Table 1. As
an example, susceptibility results are here shown for three antimi-
crobials: ofloxacin (OFL), meropenem (MER) and amikacin (AMK),
but the database contains on average test results for 19 different
antimicrobials per pathogen.

The ABGs in the isolate database were used to compile the
institutional ABG of each pathogen. To avoid estimates based on
very few results, the pathogens were placed in 14 groups with
roughly similar susceptibilities (Table 2). Learning susceptibility
of a pathogen using data from similar pathogens was previously
described by Andreassen et al. (2009) [5].

The choice of antimicrobials used to test susceptibilities
depended on the pathogen. Table 3 illustrates a total of five different
typical sets of antimicrobials tested on:

a) Gram negative bacteria
b) Staphylococci
c) Streptococci
d) Enterococci and
e) Other Gram positive bacteria

Table 3 shows a clear pattern in the sets of antimicrobials
selected for susceptibility test against a pathogen. It reflects a strat-
egy of:

a) Only testing antimicrobials known to have effect on the given
pathogen. This is for example why the narrow spectrum �-
lactam, methicillin, is not tested against Gram negative bacteria.

Table 2
Isolates organized into pathogen groups.

Number of isolates (%) Pathogen group Test group

716 (21.4) E. coli Gram pos.
375 (11.2) Klebsiella spp.
266 (7.9) Acinetobacter spp.
237 (7.1) Pseudomonas spp.
230 (6.9) Proteus spp.
173 (5.2) Other Gram neg.
114 (3.4) Enterobacter spp.
454 (13.6) Staph coag positive Staph spp.
221 (6.6) Staph coag negative
110 (3.3) Other strep Strep spp.
92 (2.7) Strep pneumoniae
50 (1.5) Strep viridans
283 (8.5) Enterococcus spp. Enterococcus spp.
26 (0.8) Other Gram pos. Other Gram pos.
3347 (100) All

b) Using assumptions on cross-resistance and cross-susceptibility
to minimize the number of tests. For example the choice of test-
ing susceptibility to methicillin against staphylococci is based on
knowledge of 100% cross-resistance to other �-lactam antibi-
otics.

3.2. Institutional ABGs and institutional cross-ABGs

Table 4, column 2 gives an example of how the entry for
the antimicrobial cefuroxime in the institutional ABG for E. coli
is compiled. The column is labeled “Prior” contains the number
of E. coli isolates tested against cefuroxime, NCEF = 705; Ncef = 582
is the number of isolates tested susceptible to cefuroxime; and
P(cef) = 0.83 is the prior probability of E. coli being susceptible to
cefuroxime.

In Table 4, column 3 labeled “Cross-suscept.” NCEF|ofl = 522 is
the number of isolates tested against cefuroxime that concurrently
showed susceptibility to ofloxacin; Ncef|ofl = 501 is the number of
isolates tested susceptible to cefuroxime and concurrently sus-
ceptible to ofloxacin, and P(cef|ofl) = 0.96 is then the conditional
probability of susceptibility to cefuroxime, given that the isolate
is susceptible to ofloxacin. The column labeled “Cross-resistance”
shows the corresponding counts and probabilities conditional on
resistance to ofloxacin.

The change from the prior probability of 83% to the posterior
probability of 96%, conditional on susceptibility to ofloxacin, cor-
responds to an odds ratio OR(cef|ofl) = 5.0 (Eq. (9) in the Appendix)
and the change to 44% conditional on resistance corresponds to
OR(¬cef|ofl) = 0.16. These two odds ratios are entered into the cross-
ABG table for E. coli.

In Table 5, as an example we  show the institutional ABG for
E. coli in the column labelled “Prior”. The columns labeled “ORsus”
and “ORres” give the odds ratios in the institutional E. coli cross-ABG
for cefuroxime, conditional on susceptibility to the antimicrobials
listed in the rows. For example, the odds ratios mentioned above
of 5.0 and 0.16 can be found in the “Ofloxacin” row.

All odds ratios for the typically tested antimicrobials in the E.
coli example in Table 5 are significant (with p < 0.1), except the
carbapenems and colistin. Carbapenems and colistin have prior
susceptibilities close to 100%, which implies that resistance and
thereby cross-resistance is very rarely or never observed (since
the pathogen is almost always susceptible). It is also difficult to
observe significant cross-susceptibility to these antimicrobials and
also irrelevant since we already know that the pathogen is suscep-
tible. The odds ratio conditional on susceptibility to cephalothin
is infinity, which implies that susceptibility to cephalothin, which
is a first generation cephalosporin guarantees susceptibility to
cefuroxime, a second generation cephalosporin. The odds ratios,
conditional to resistance to ceftazidime and ceftriaxone, both third
generation cephalosporins, and to cefepime, a fourth generation
cephalosporin, is zero or very close to zero. This means that resis-
tance to one of these three cephalosporins implies resistance to
cefuroxime as well.

The columns labeled ORsus and ORres in Table 5 shows only
a small part of the cross-ABG for E. coli. The complete institu-
tional ABG for E. coli contains Table 5, but also “ORsus” and “ORres”
columns for all other antimicrobials besides cefuroxime. Such data
are compiled for each of the 14 pathogen groups.

The EUCAST interpretative rules can be entered directly into
tables of institutional cross-ABGs, as defined in the methods sec-
tion. For the 14 groups of pathogens and 31 antimicrobials in
the isolate database the cross-ABG tables have 14*31*31*2 = 26908
entries. The interpretative EUCAST rules only allow 70 or 0.26%
of these entries to be filled. In comparison the statistical compi-
lation from the isolate database of entries intro the institutional
cross-ABG tables allow 4682 or 17.4% of the entries to be filled.
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Table 3
ABG sets used for pathogen test groups.

Antibiotic Class Antibiotic Gram neg. Staph spp. Strep spp. Enterococcus spp. Other Gram pos.

Penicillin

Penicillin x x x x
Ampicillin x x x x
Ampicillin/Sulbactam x
Amoxicillin/Clavulanate x
Piperacillin x
Piperacillin/Tazobactam x
Methicillin x

Cephalosporin

Cephalothin x x a x
Cefuroxime x x a x
Ceftazidime x x a x
Ceftriaxone x x a x
Cefepime x x x

Carbapenem
Ertapenem b
Imipenem a a a a
Meropenem x x x x

Monobactam Aztreonam x

Glycopeptide Vancomycin x x x x

Macrolide Erythromycin x x x x

Tetracycline
Minocycline x a
Tetracycline x x x x x

Aminoglycoside
Amikacin x a x a x
Gentamicin x x x a x
Tobramycin x

Quinolone
Ciprofloxacin x a a a a
Ofloxacin x x a a a

Other

Chloramphenicol x x x x
Clindamycin x x x x
Colistin x
Fusidic acid x x x x
Rifampicin x x x x
Sulfa-Trim x x x a x

a: This test was  phased out during the study period. b: This test was  phased in during the study period.

The institutional ABG and the odds ratios in the institutional
cross-ABG can be used to calculate the posterior probability of sus-
ceptibility to an untested antimicrobial, given a susceptibility test
result for another antimicrobial. If we consider a situation where
susceptibility to cefuroxime of an E. coli isolate has not been tested,
and that the E. coli isolate is tested susceptible to ofloxacin, then the
posterior probability of susceptibility cefuroxime can be calculated.
This is done by converting the prior probability of susceptibility to
cefuroxime into odds (OD) for susceptibility:

OD(cef) = 0.83/(1 − 0.83) = 4.88 (1)

in accordance with Eq. (6) in the Appendix.
The posterior odds for cefuroxime, given susceptibility to

ofloxacin, is then calculated as:

OD(cef|ofl) = OR(cef|ofl) ∗ OD(cef) = 5.0 ∗ 4.88 = 24.41 (2)

in accordance with Eq. (9) in the Appendix.
Finally, the odds are converted back to a probability:

P(cef|ofl) = OD(cef|ofl)/(1 + OD(cef|ofl))

= 24.41/(1 + 24.41) = 0.96 (3)

which can be recognized as the already known conditional proba-
bility from Table 4.

3.3. Methods for calculation of posterior probabilities of
susceptibility from the ABG

In the ABG presented in Table 6, the susceptibility to cefuroxime
was tested and the isolate was  found to be susceptible to cefurox-
ime. If we again imagine that the susceptibility to cefuroxime had
not been tested, then we can ask if we could have predicted the
in vitro susceptibility to cefuroxime from the other 20 test results.

3.3.1. Calculation from Bayes theorem
The straightforward solution is to compile the 20 dimensional

probability matrix for cefuroxime, conditional on the other 20
results in the ABG. Bayes theorem can then be used directly to
calculate the posterior probability of susceptibility to cefuroxime.
This is far from a viable solution, because it would be impossible
to populate the 220 elements in this matrix even with an isolate
database compiled over many years in a large hospital.

Table 4
Susceptibility of E. coli to cefuroxime given knowledge of susceptibility to ofloxacin.

Pathogen: E. coli Prior (cefuroxime) Cefuroxime conditional on ofloxacin

Cross-susceptibility Cross-resistance

Number of isolates NCEF Ncef NCEF|ofl Ncef|ofl NCEF|¬ofl Ncef|¬ofl

705 582 522 501 181 79
Susceptibility P(cef)

582/705 = 0.83
P(cef|ofl)
501/522 = 0.96

P(cef|¬ofl)
79/181 = 0.44
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Table  5
Institutional ABG for E. coli, odds ratios for E. coli being susceptible to cefuroxime given susceptibility test results to other antimicrobials and example of an isolate ABG.

Antibiotic class Antibiotic Prior sus. (%) Cefuroxime Isolate ABG

ORsus p ≤ 0.1 ORres p ≤ 0.1

Penicillins

Penicillin
Ampicillin 31 23 0.63 R
Ampicillin/Sulbactam 53 6.9 0.40
Amoxicillin/Clavulanate 64 5.1 0.30 R
Piperacillin 41 4.5 0.59 R
Piperacillin/Tazobactam 89 1.6 0.11 S
Methicillin

Cephalosporins

Cephalothin 33 ∞ 0.60 R
Cefuroxime 83 ∞ 0 S
Ceftazidime 91 3.4 0.00 S
Ceftriaxone 86 4.5 0 S
Cefepime 90 2.9 0 S

Carbapenems
Ertapenem 100.0 NS NS
Imipenem 99.8 NS NS S
Meropenem 99.3 NS NS S

Monobactams Aztreonam 86 3.4 0.01 S

Glycopeptides Vancomycin

Macrolides Erythromycin

Tetracyclines
Minocycline 54 2.2 0.55 S
Tetracycline 45 2.4 0.63 S

Aminoglycosides
Amikacin 89 1.8 0.09 S
Gentamicin 84 2.0 0.14 S
Tobramycin 81 3.7 0.10 S

Quinolones
Ciprofloxacin 73 5.0 0.18 S
Ofloxacin 74 5.0 0.16 S

Other

Chloramphenicol
Clindamycin
Colistin 98.9 NS NS S
Fusidic acid
Rifampicin
Sulfa-Trim 59 2.0 0.52 S

NS: Odds ratio not significant. Blank field: Susceptibility to this antimicrobial is not tested.

3.3.2. Calculation from naïve Bayes
If a naïve Bayes approach is used, then the posterior probabil-

ity can be calculated from the data available in the susceptibility
database, as shown in the Appendix. This is done by repeat-
ing the procedure given by Eqs. (1)–(3), except that the single
odds ratio in Eq. (2) is replaced by ORall, which is the prod-
uct of all the bolded odds ratios in Table 6. When the test
result is “S”, we include the OR for cross-susceptibility and when
the susceptibility result is “R”, we include the OR for cross-
resistance. This results in the odds ratio product; ORall = 7432
and the posterior probability P(cef|ABG) = 100,00%. This result
indicates a close to perfect prediction of the susceptibility to
cefuroxime.

This attempt at estimating the posterior probabilities is repeated
for the other tested antimicrobials, imagining one at a time
that the test results are not available. The results are shown
in Table 6 in the column labeled “Naïve”. For most of the
antimicrobials the results of the susceptibility-estimation are as
anticipated, but with a few exceptions, notably the susceptibil-
ity to ampicillin/clavulanate, which is estimated to 99%, even
though the result was “R” (0%). A normalized Brier distance
(Appendix Eq. (12)) is used as a measure of the quality of the
posterior estimates. This distance can be interpreted as an aver-
age distance between the posterior probability and the actual
test result. The naïve Bayes estimates gives a normalized Brier
distance of 25.2% for the E. coli isolate considered (last row,
Table 6). This can be considered as an improvement, relative to
the normalized Brier distance for the prior estimates, which is
29.1%.

3.3.3. Calculation from “semi-naïve Bayes”
The naïve Bayes assumption is that the susceptibility test results

are mutually independent. The naïve Bayes approach is known to
produce overconfident results, i.e. results too close to 0% or 100%, if
the underlying assumption of independence is not well met, and the
naïve Bayes estimates in Table 6 could indicate that this is the case.
To manage this, a semi-naïve approach is explored. In this approach
a more modest number of odds ratios are used in the calculations.
We  define a version of semi-naïve Bayes, called min1max1, where
only the largest and the smallest odds ratios from Table 5 are used
to calculate the odds ratio in Eq. (2). Thus, using the odds ratios
shaded gray in Table 5 we get:

ORmin1 max  1(cef|ABG) = 5.0 ∗ 0.3 = 0.15

From this odds ratio follows that the posterior probability of sus-
ceptibility to cefuroxime of 88%, which is a less extreme estimate
than the estimate of 100% from the naïve Bayes method. The nor-
malized Brier distance for this E. coli isolate over all antimicrobials
is down to 18%, which supports the suspicion that the naïve Bayes
results may  be overconfident, and that the more modest semi-
naïve approach may  be better than the naïve Bayes approach. In
the following section, we compare the performance of the naïve
and different versions of semi-naïve methods.

3.4. Validation of the naïve and semi-naïve Bayesian methods

To assess the quality of the naïve and semi-naïve posterior
probabilities of susceptibility, one susceptibility result at a time is
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Table 6
Antibiogram, Prior, and posterior probability of susceptibility of an E. coli isolate.

Antibiotic class Antibiotic Isolate ABG Probability of susceptibility (%)

Prior Naïve min1max1

Penicillins

Penicillin
Ampicillin R 31 0 0
Ampicillin/Sulbactam 53
Amoxicillin/Clavulanate R 64 99 57
Piperacillin R 41 47 11
Piperacillin/Tazobactam S 89 100 88
Methicillin

Cephalosporins

Cephalothin R 33 30 9
Cefuroxime S 83 100 88
Ceftazidime S 91 100 99
Ceftriaxone S 86 100 100
Cefepime S 90 100 100

Carbapenems
Ertapenem 100.0
Imipenem S 99.8
Meropenem S 99.3

Monobactams Aztreonam S 86 100 98

Glycopeptides Vancomycin

Macrolides Erythromycin

Tetracyclines
Minocycline S 54 94 87
Tetracycline S 45 83 65

Aminoglycosides
Amikacin S 89 100 94
Gentamicin S 84 100 92
Tobramycin S 81 100 89

Quinolones
Ciprofloxacin S 73 100 98
Ofloxacin S 74 100 100

Other

Chloramphenicol
Clindamycin
Colistin S 98.9
Fusidic acid
Rifampicin
Sulfa-Trim S 59 87 61

Norm. Brier distance (%) 29.1 25.2 18.0

Blank field: Susceptibility to this antimicrobial is not tested.

deleted from the isolate ABG and subsequently the posterior proba-
bility of susceptibility is calculated from the remaining ABG results.
This is repeated for all the 3347 isolates in the database using a
5-fold cross-validation. For each isolate the normalized Brier dis-
tance is used to measure the distance between susceptibility test
results and respectively prior probabilities and calculated posterior
probabilities.

Table 7 shows these normalized Brier distances, averaged over
all isolates in the five validation sets. The first row presents the
normalized Brier distance for prior probabilities and the following
rows presents the normalized Brier distance for different naïve or
semi-naïve Bayesian methods. The methods are named after the
number of odds ratios used to calculate posterior probabilities of
susceptibility. For example, the method named min2max2 uses the
two smallest significant odds ratios and the two largest significant
odds ratios, and the min0max3 method includes zero odds ratios
on cross-resistance and the three highest significant odds ratios on
cross-susceptibility (if they exist).

The methods where the odds ratios for cross-resistance and
cross-susceptibility were weighted equally (shaded gray in Table 7)
performed better than both the naïve method and methods with an
unequal weighting. For example, the min0max3 method has a nor-
malized Brier distance, which is even larger than the normalized
Brier distance of the prior probabilities (first row). The min2max2
method performed the best with a normalized Brier distance of
25.3% (Ranges from 24.8%–25.6% within the five validations sets).
The min2max2 method gave a significant improvement (p < 1099)
when compared to the normalized Brier distance for the prior

Table 7
Normalized Brier distances for posterior estimates of susceptibility including differ-
ent numbers of odds ratios.

Number of ORs Method Norm. Brier distance (%) Range

0 prior 37.7 37.3 - 38.4

1
min0max1 35.3 34.8 - 35.6
min1max0 36.7 36.1 - 37.5

2
min0max2 37.2 37.1 - 37.4
min1max1 25.6 25.3 - 26.0
min2max0 40.2 39.5 - 40.8

3

min0max3 38.2 38.0 - 38.4
min1max2 26.0 25.7 - 26.1
min2max1 26.7 26.2 - 27.2
min3max0 42.1 41.3 - 42.9

4

min0max4 38.6 38.4 - 38.9
min1max3 27.0 26.6 - 27.3
min2max2 25.3 24.8 - 25.6
min3max1 28.5 28.1 - 28.9
min4max0 43.0 42.3 - 43.9

6  min3max3 26.0 25.7 - 26.4

8  min4max4 26.7 26.4 - 27.1

All naïve 28.2 27.8 - 28.5

probabilities, and the distance was  significantly smaller (p < 10−9)
than the distance for the min1max1 method.

Fig. 1 shows the performance of the min2max2 method on each
pathogen group compared to the prior susceptibilities from the
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Fig. 1. Normalized Brier distances for each pathogen group for respectively prior
susceptibilities and the min2max2 method.

institutional ABG. Normalized Brier distances for each pathogen
group were averaged over the five validation sets. For Gram nega-
tive bacteria the min2max2 method gave an average reduction in
normalized Brier distance of 13.3% from the prior susceptibilities
(from 37.3% to 23.9%). For Staphylococcus spp. the method reduced
the distance by 12.0% (from 40.6% to 28.6%), and for the rest of the
Gram positive bacteria the average reduction was 3.5% (from 33.0%
to 29.5%).

In all the above calculations, the posterior probabilities were
calculated from odds ratios, which are significantly different from
1. The limit of significance was arbitrarily chosen as p < 0.1. Results
will depend on the p value chosen and therefore the posterior sus-
ceptibility determinations were carried out with different p values,
ranging from 0.02 to 0.5.

Fig. 2 shows the mean of estimated susceptibilities for the five
validations sets, and the range the sets varied within (shaded grey).
The ability to estimate susceptibilities was tested using 10 different
p values (from 0.02 to 0.5) for inclusion of significant odds ratios.
For most of the 63590 included susceptibility test results, posterior
probabilities of susceptibility could be calculated from the other
susceptibility test results. With a p value of 0.02 for significance
of odds ratios, 71.9% of the susceptibilities could be calculated,
and with a p value of 0.5, 89.7% of the susceptibilities could be
calculated.

Fig. 3 illustrates that irrespective of p value the naïve Bayes
method had lower normalized Brier distance than the prior proba-
bilities and that the min2max2 method had lower normalized Brier
distances than the naïve Bayes method.

The normalized Brier distance of the naïve Bayes method
tended to increase a little with the p value while the normalized
Brier distance of the min2max2 methods tended to decrease
a little with the p value. The decrease of the normalized Brier
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Fig. 2. Percent of the 63590 susceptibility results included in the five validation sets
for which posterior probabilities could be calculated by the min2max2 method.
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Fig. 3. Normalized Brier distances averaged over the five validation sets when using
respectively the prior susceptibilities, the naïve Bayes method, and the min2max2
method to calculate probabilities of susceptibility.

distance of the min2max2 method with the p value could be seen
as an argument for using a high p value. This should however be
balanced against the risk of obtaining “strange” estimates due to
spurious odds ratios derived from very few susceptibility results.
Since the reduction in normalized Brier distance was  very small
for p values above 0.1, p = 0.1 may  be an appropriate choice.

4. Discussion

This paper explores how interpretative reading of the isolate
ABG can be used to replace the prior probabilities stored in the
institutional ABG, with posterior probabilities, which are at least
closer to susceptibility test results than the prior probabilities. We
explored both a naïve and semi-naïve Bayesian approaches, where
the posterior probabilities were calculated from the isolate ABG,
using data stored in the institutional ABG and the institutional
cross-ABG.

A 5-fold cross-validation showed that the goal was achieved.
The normalized Brier distance between the prior probabilities and
the susceptibility test results for all isolates in the database was
reduced from 37.7% to 28.2% by the naïve Bayes method. The
smallest normalized Brier distance of 25.3% was  obtained with
the semi-naïve min2max2 method. This illustrates that although
the naïve Bayes method actually gave an improvement relative
to the prior probabilities, the naïve Bayes assumption should for
this purpose be used with restraint. The reason for a more poorly
performance for methods including more than two odds ratios
(min3max3, min4max4, and naïve) is probably related to the naïve
Bayes assumption; that the susceptibility test results are mutu-
ally independent. The naïve Bayes approach is known to produce
overconfident results, i.e. results too close to 0% or 100%, if the
underlying assumption of independence is not well met. The E. coli
example in Table 6 indicates that this is the case.

Not surprisingly, the methods where the odds ratios for cross-
resistance and cross-susceptibility were weighted equally (shaded
gray in Table 7) performed better than both the naïve method and
methods with an unequal weighting. In other words, giving a higher
weight to either cross-resistance or cross-susceptibility gives a dis-
tortion in the calculated susceptibilities.

When we looked into the performance of the min2max2 method
on different pathogen groups, the results indicated a better per-
formance on Gram negative isolates compared to Gram positive
isolates. This is could be related to a higher fraction of the cross-
ABG being filled for Gram negative pathogens, i.e. a higher fraction
of significant cross-resistances and cross-susceptibilities. Further
analysis could be done to investigate this correlation and the vari-
ability in the fraction of the cross-ABG being filled.
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The proposed method can be seen as an extension of the EUCAST
interpretive expert rules because:

a) The EUCAST rules are very scarce, covering only a very small part
(0.26% in this study) of the large matrix of pathogens and pairs of
antimicrobials. The naïve or semi-naïve Bayesian methods cover
a much larger fraction of this matrix (17.4% in this study).

b) In contrast to EUCAST the proposed method provides an esti-
mate of the probability of susceptibility, which is relevant since
antimicrobials may  be given, even when the probability of sus-
ceptibility is smaller than 100%.

c) The proposed method is based on statistics, local to the hospi-
tal, and will therefore adapt to local microbial susceptibilities,
while EUCAST rules are based on international clinical and/or
microbiological evidence of varying quality [3].

d) EUCAST interpretative expert rules gives advice on antibiotic
susceptibility to antibiotics in the same antibiotic class as the
ones tested (e.g within the �-lactam group) [3]. The proposed
method works across antibiotic classes, as in the example with
cefuroxime and ofloxacin.

This means that the proposed method and the interpretive
EUCAST expert rules should be used in combination to get the best
possible prediction of susceptibility of a pathogen. The EUCAST
rules can be incorporated as an integrated part of the institutional
ABG.

The min2max2 method will in combination with the EUCAST
rules be incorporated into the TREAT system (a computerized deci-
sion support system for antimicrobial stewardship), which have
been shown to reduce inappropriate antimicrobial treatments at
hospitals [1,6]. Interpretative reading of susceptibility results is
expected to further improve performance of the system.

A limitation of the study is that the methods developed are
approximate methods. As pointed out already, an exact Bayesian
approach would require population of multidimensional con-
ditional probability matrices. This is far beyond reach and in
practice the one-dimensional conditional probabilities in the cross-
ABG represents a practical upper limit. It may  therefore be
considered a virtue, that useful posterior probabilities can be cal-
culated from the limited information compiled in the susceptibility
database.

It may  also be considered a limitation that only probabilistic
methods have been considered. Estimating susceptibilities could
for example be considered as an imputation problem, where the
missing susceptibilities should be imputed from the available sus-
ceptibilities [7]. Alternatively, classifiers could be build based on
neural nets, fuzzy logic or rule induction. We  suspect that the com-
binatorial explosion, which prevented a direct application of Bayes
theorem, will also present problems for these other methods, and
we have therefore refrained from using them.

The isolate database used in this paper provided a rather high
number of susceptibility results - on average each isolate was
tested with 19 antimicrobials. Further validation on isolates with
sparser susceptibility test results would help to strengthen the
results. In general, the ability of the method to predict the suscep-
tibility to an antimicrobial depends on the quality of the relevant
isolate ABG and the quality of the institutional ABG and cross-
ABG.

To conclude, a practical method for predicting probability
for antimicrobial susceptibility could be developed based on a
semi-naïve Bayesian approach using statistical data on cross-
susceptibilities and cross-resistances. By using this method, we
achieved significantly more accurate predictions of pathogen
in vitro susceptibility to antimicrobials, than the prior probabilities
stored in the institutional ABG.
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Appendix A.

A.1. Calculation of posterior probability of susceptibility from an
antibiogram

We  assume that a given pathogen has an antibiogram presenting
a set of T antimicrobials: T = {1, . . . t, . . . T} and a corresponding set
of susceptibility results: AT = {A1, . . . At, . . . AT}, where At is either
S (a “susceptible” result) or R (a “resistant” result).

The prior probability of susceptibility to an antimicrobial B,
which is not a member of the set of T antimicrobials, is denoted
as P(b). The corresponding probability of resistance to B is denoted
as P(¬b).

The aim is to calculate the posterior probability of susceptibility
to antimicrobial B given a set of susceptibility results AT, denoted
as P(b|AT).

A step towards a simple approximation of P(b|AT) can be taken
by using Bayes theorem to write:

P(b|AT ) = P(AT |b)P(b)
P(AT )

(1)

If we  make the “naïve Bayes” assumption of conditional inde-
pendence within the set AT, given b, then

P(AT |b) =
∏

t
P(AT |b) (2)

A Bayes inversion of P(At|b) gives:

P(AT |b) = P(b|At)P(At)
P(b)

(3)

Insertion of Eqs. (2) and (3) in (1) gives:

P(b|AT ) =
∏

tP(AT |b)P(b)

P(AT )
=

∏
t

[
P(b|AT )P(At)⁄P(b)

]
P(b)

P(AT )

=
∏

t

[
P(b|AT )P(At)⁄P(b)

]∏
t[P(AT )]P(b)

P(AT )
(4)

We  now define the prior odds ODb for P(b) as:

ORb = P(b)/P(¬b) (5)

and define the posterior odds for P(b|AT) as:

ODb|AT
= P(b|AT )/P(¬b|AT ) (6)

Inserting Eqs. (4) and (5) into (6) gives:

ODb|AT
=

∏
t

[
P(b|AT )⁄P(b)

]∏
t[P(AT )]P(b)∏

t

[
P(¬b|AT )⁄P(b)

]∏
t[P(AT )]P(¬b)

=
∏

t

[
P(b|AT )⁄P(b)

]
P(b)∏

t

[
P(¬b|AT )⁄P(¬b)

]
P(¬b)

= ODb

∏
t

ODb|At

ODb
(7)

The odds ratio for susceptibility is defined as:

ORb|At
= ODb|At

/ODb (8)



S. Andreassen et al. / Artificial Intelligence in Medicine 65 (2015) 209–217 217

Hence eq.7 can be written as:

ODb|AT
= ODb

∏
t
ORb|At

(9)

Finally the posterior probability can be calculated from Eq. (6)
as:

P(b|AT ) = ODb|AT
/(1 + ODb|AT

) (10)

using that P(¬b|AT) = 1- P(b|AT).

A.2. Evaluation of the accuracy of posterior probabilities of
susceptibility

The ability of a method to accurately calculate posterior proba-
bilities of susceptibility was tested by removing one susceptibility
result At at a time from the susceptibility results AT for a given iso-
late in the isolate database, leaving the set AT\At. Then we use the
methods to calculate P(At| AT\At) and calculate the distance to the
true result At as the Euclidian distance:

Dist = |At − P(At |AT \At)| (11)

where At has the value 1 (susceptible) or 0 (resistant).
The quality of the posterior probabilities provided by a given

method was then assessed from the normalized Brier distance [8,9]
across all antimicrobials AT for which a susceptibility result was
available:

Norm.Brier dist. =

√∑
At∈AT

Dist2
t

NAT

(12)

where NAT was the number of members in the set AT. The nor-
malized Brier distance can be interpreted as a deviation in percent

between the calculated posterior probability of susceptibility and
the measured susceptibility test result.
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