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Abstract 

Objective. To detect movement intention from executed and imaginary palmar grasps in 

healthy subjects and attempted executions in stroke patients using one EEG channel. 

Moreover, movement force and speed were also decoded. Approach. Fifteen healthy subjects 

performed motor execution and imagination of four types of palmar grasps. In addition, five 

stroke patients attempted to perform the same movements. The movements were detected 

from the continuous EEG using a single electrode/channel overlying the cortical 

representation of the hand. Four features were extracted from the EEG signal and classified 

with a support vector machine to decode the level of force and speed associated with the 

movement. The system performance was evaluated based on both detection and 

classification. Results. ~75% of all movements (executed, imaginary and attempted) were 

detected 100 ms before the onset of the movement. ~60% of the movements were correctly 

classified according to the intended level of force and speed. When detection and 

classification were combined, ~45% of the movements were correctly detected and classified 

in both the healthy and stroke subjects, although the performance was slightly better in 

healthy subjects. Significance. The results indicate that it is possible to use a single EEG 

channel for detecting movement intentions that may be combined with assistive technologies. 

The simple setup may lead to a smoother transition from laboratory tests to the clinic.   

 

Keywords: Movement-related cortical potentials, movement intention, brain-computer 

interface, movement kinetics, EEG, signal processing.  

 



1. Introduction 

Brain-computer interfaces (BCIs) have been used for several years as a means for communication and control 

[1], but more recently has been extended to neurological rehabilitation (for inducing cortical plasticity) [2]. The 

induction of plasticity has been shown to correlate with motor learning [3]; therefore, it seems reasonable to 

propose the use of BCIs for rehabilitation where lost motor skills (including grasping [4]) must be relearned, for 

example after stroke [5, 6]. Recently, a protocol was proposed to induce long-term potentiation-like plasticity, a 

proposed mechanism for declarative and procedural memory [7], where motor cortical activation is paired with 

somatosensory feedback from peripheral electrical stimulation in a similar way as paired associative stimulation 

[8]. This approach has been tested when targeting the lower extremities in healthy subjects and stroke patients 

[9-11]. The procedure includes cortical activation through kinaesthetic motor imagination (MI) of a contraction 

of the target muscle, and somatosensory feedback provided by stimulating the nerve innervating that muscle [9]. 

Plastic changes were observed when the afferent feedback reached the cortex during the execution phase of MI. 

Therefore, the imaginary movement onset must be predicted (due to the propagation time of the afferent 

feedback) for triggering the electrical stimulator, so that the afferent feedback reaches the cortex at the correct 

time.  

It has been shown that in both imagined and real movements there is a slow depression in the EEG up to 2 s 

prior the onset of the imagined or real movement. This property allows for early detection of movement onset 

[10, 12]. This negative brain potential in the low frequency band (<1 Hz) is known as the movement-related 

cortical potential (MRCP), and it can be further divided into the bereitschaftspotential [13] and contingent 

negative variation [14] if the movements are self-paced or cued, respectively. The MRCP consists of an initial 

negative phase which is associated with the movement preparation or intention and a movement-monitoring 

positive phase [15]. The movement intention is observed prior the onset of the movement (executed or 

imaginary) and the movement-monitoring phase after the onset of the movement. The movement intention is 

modulated by various factors, such as fatigue, level of intention and movement selection [16]. Kinetic 



information such as the level of force and speed of the movement is encoded in the movement intention for 

plantar- [15] and dorsiflexion of the ankle joint [17]. This information has been decoded from single-trial 

MRCPs for both the lower extremities and wrist movements in previous studies [17-23].  

Before movement kinetics can be classified for useful BCI purposes, the movements themselves must be 

detected. Several approaches have been used to discriminate movements from the idle state for finger, arm and 

foot movements [10, 12, 23-31]. However, the detection of movement intention and decoding of kinetic 

information from MRCPs associated with functional movements such as palmar grasps from healthy subjects 

and stroke patients have not yet been fully investigated. By detecting and classifying movement intentions 

associated with different levels of force and speed, it is possible to provide afferent feedback from electrical 

stimulation or rehabilitation robots, in such a way that the afferent feedback matches the efferent activity from 

the motor cortex. Furthermore, the classification of movement-related parameters would allow for control of 

multiple degrees of freedom. 

The aim of this study was two-fold: 1) to detect MRCPs from a single EEG channel during palmar grasping 

tasks in healthy and stroke subjects, and 2) to classify two levels of force and speed from the MRCP using a 

single EEG channel. The performance obtained using a single EEG channel was compared to that using a 

Laplacian channel. This is a spatial filter which is state-of-the-art for MRCP detection [10, 12, 23, 25, 26, 31-

34], derived from nine EEG channels to provide evidence for an easier setup that may assist in the technology 

transfer from the laboratory to the clinic.  

2. Methods 

2.1. Subjects 

15 healthy subjects (3 men and 12 women: 27±11 years of age) and five stroke patients (see table 1) participated 

in this study. All patients had residual movement and were able to perform palmar grasps. The score from an 

Action Research Arm Test is reported in table 1. The test is an observational test to determine upper limb 



function; it is divided into 19 items grouped in subtests for grasp, grip, pinch and gross movement. The 

performance of each item is rated from 0 to 3 (normal movement). All subjects understood the instructions and 

the tasks to perform. None of the participants had any prior BCI experience. All subjects and patients gave their 

written informed consent (N-20130081). All procedures were approved by the local ethical committee in 

accordance with the Declaration of Helsinki.   

Patient Diagnosis Affected side 

(limb) 

Gender Age Days since 

event 

ARAT 

1 Infarction Left Female 59 35 11 

2 Hemorrhage Left Female 57 65 31 

3 Hemorrhage Left Male 72 43 24 

4 Infarction Right Male 51 62 - 

5 Infarction Right Female 58 46 47 

Table 1: Patient data. The total score (maximum is 57) from an Action Research Arm Test (ARAT) was 

available for four of the patients. There is great variability in the scores which shows that the group is rather 

heterogeneous in terms of level of functionality.   

2.2. Experimental protocol 

The subjects were seated in a comfortable chair with their right forearm (Patient 1-3 used the left hand; the 

affected side) placed on a table while holding a handgrip dynamometer (Noraxon USA, INC., Scottsdale, 

Arizona). The healthy subjects were asked to execute and imagine four isometric palmar grasp tasks. The stroke 

subjects were asked to perform each grasp as well as possible; this will be referred to as attempted motor 

execution in the following text. At the beginning of the experiment, the maximum voluntary contraction (MVC) 

was determined followed by 40 externally cued repetitions of each of the four grasp tasks. The four grasp tasks 

were as follows: 1) 0.5 s to reach 20% MVC, 2) 0.5 s to reach 60% MVC, 3) 3 s to reach 20% MVC and 4) 3 s to 

reach 60% MVC. To assist the subjects in performing the movements with the correct percentage of MVC and 

time to reach that level (except for the imagined movements), the movements were visually cued (see figure 1). 

Force from the dynamometer was used as input to a custom made program (SMI, Aalborg University) where the 

subjects were asked to produce force (gray line in figure 1) to match a template (black line in figure 1). The 

entire template was shown while a moving cursor (the force that was produced) indicated when to initiate the 



movement. The same template was used by the healthy and stroke subjects. The subjects were given 2 min to 

practice each grasp task; the stroke patients were allowed to practice the movements with their less affected hand 

before the recording started. For the healthy subjects and stroke patients, breaks were allowed when needed. The 

order of the tasks was randomized in blocks.   

 

Figure 1. The black line is the visual trace that was presented to the subject. The grey trace is the force produced 

by a representative stroke patient. The subjects prepared for 3 s followed by the execution phase. The contraction 

was maintained for 0.5 s after which a rest period was given (between 4-5 s). The task onset is at 3 s. 

2.3. Signal acquisition 

2.3.1. EEG  



Continuous monopolar EEG was recorded from nine channels (EEG amplifiers, Nuamps Express, Neuroscan) 

using Ag/AgCl cup electrodes. The EEG from the healthy subjects and the stroke patients with right hemiparesis 

(patient 4 and 5 in table 1) was recorded from F7, F3, Fz, T7, C3, Cz, P7, P3 and Pz. The EEG from the stroke 

patients with left hemiparesis (patient 1-3 in table 1) was recorded from Fz, F4, F6, Cz, C4, T8, Pz, P4 and P8. 

Electroencephalography (EOG) was recorded from Fp1. The EEG and EOG were sampled with 500 Hz and 

analog to digital converted with 32 bits accuracy. All channels were referenced to the right earlobe and grounded 

at nasion. During the experiment, the impedance of all electrodes was kept below 5 kΩ. To synchronize all trials, 

a trigger was sent from the visual cueing program to the EEG amplifier at the beginning of each trial (at 0 s in 

figure 1).   

2.3.2. Force and MVC  

Force was recorded using a handgrip dynamometer and used as input to the visual cueing program to provide 

feedback to the subject. The force was recorded with a sampling rate of 2000 Hz. The MVC was determined at 

the beginning of the experiment as the maximum of three trials of maximal force performed with 1 min of rest in 

between each movement. Besides the trigger sent to the EEG amplifier, force was used to determine movement 

onset for the executed tasks. Specifically, the onset was defined as the initial time instant of the first 200-ms 

window for which all samples had force values above the baseline [23]. The baseline was defined as the mean 

value of the force signal during the resting phase and the first second of the preparation phase (see figure 1). All 

movement onsets were visually inspected.  

 

2.4. Detection 

The EEG signals were bandpass filtered from 0.05-10 Hz in the reverse and forward direction with a digital 2nd 

order Butterworth filter. The movements were detected in two scenarios: using a single channel (C3 or C4) or 

using a Laplacian channel (linear combination of nine channels). The Laplacian channel was obtained as C3-

(F7+F3+Fz+T7+Cz+P7+P3+Pz)/8 for right hand movements. For left hand movements, it was computed in the 

same way but with centre electrode C4 instead of C3. 



The methodology for detecting cued and self-paced movements has been described previously [10, 12, 23], but 

will be outlined in the following paragraph. The procedure for estimating the online performance of a BCI based 

on executed, imagined and attempted movements is similar. 

The four pre-processed continuous recordings (one for each of the four grasp types) were concatenated to one 

continuous recording (~30 min). The recording was divided randomly into four parts: three parts for training and 

one part for testing, with a similar number of the four movement types in each part. Moreover, an additional 

simulation was performed where the first half of each of the four pre-processed recordings was concatenated into 

one continuous training recording (~15 min), and the other halves were concatenated into one continuous testing 

recording (~15 min). This simulation was used to indicate the performance of the system in a real-world 

application where data are collected first to calibrate the system.  

From the training data, a template of the initial negative phase of the MRCP was extracted from an average of all 

the training trials from the peak of maximum negativity and 2 s prior to this point (see figure 2). After the 

template was extracted, the detection threshold was determined by using a receiver operating characteristics 

(ROC) curve that was obtained through three-fold cross-validation on the training set. The detection threshold 

was selected at the upward convex part of the ROC curve to obtain a trade-off between the true positive rate 

(TPR) and the number of false positive detections. The detector decisions were based on the likelihood ratio 

(Neyman Pearson lemma) calculated between the template and the signal from the testing set (single or 

Laplacian channel) using a 2 s window with a 200 ms shift. Detections occurred when two out of three 

consecutive windows exceeded the detection threshold, and the EOG amplitude in Fp1 was below 125µV peak-

to-peak. To quantify the performance of the detector, the TPR, number of false positives (FPs) per minute 

(FPs/min) and the detection latency were calculated. The detection latency was defined as the point of detection 

with respect to the onset of the movement (or task onset for imagined movement).     



 

Figure 2. The detection template for the single (dashed grey line) and Laplacian (solid black line) channel is 

shown for a representative stroke patient.  

2.5. Feature extraction and classification 

2.5.1. Feature extraction 

Four features were extracted from the 2 s data window from the averaged point of detection and 2 s prior to this 

point for each epoch. The following features were extracted: i) peak of maximum negativity, ii) mean amplitude, 

iii) slope of a linear regression fitted to the data window and iv) the average power in the interval from 0-5 Hz. 

The average power was calculated using the power spectral density which was calculated using a Hamming 

window with a width of 250 samples and 125 samples overlap. Epochs were rejected when the EOG amplitude 

in Fp1 exceeded 125µV peak-to-peak.   



2.5.2. Movement classification 

The classification of movements was divided into two categories: 2-class and 4-class problems. In the 2-class 

problem, all pairwise comparisons (0.5 s to reach 20% MVC versus 0.5 s to reach 60% MVC, etc.) were 

calculated. The features were classified using a support vector machine (SVM) with a linear kernel, and the 

classification accuracies were obtained using leave-one-out cross-validation. For the 4-class problem, the binary 

SVM classification was extended to four classes using the ‘one-versus-one’ scheme. A classifier was constructed 

for each task pair, and a test sample was classified by all classifiers; the label to the test sample was given based 

on the class with most votes.  

2.6. System performance 

The detection and classification were performed separately, but it was assumed that the two events are 

independent. Given this assumption, the estimated system performance of a BCI that can detect and classify the 

movement type can be calculated using the following formula: 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
CA(1,2) ∗ [TPR(1) + TPR(2)]

2
 

CA(1,2) is the classification accuracy of the task pair (2-class system) of task 1 and 2 while TPR(1) is the TPR 

for task 1. To estimate the performance of a 4-class system, the classification accuracy of the specific task is 

multiplied with the corresponding TPR. 

2.7. Statistics 

Three 2-way analysis of variance (ANOVA) tests were performed to find differences between: the TPRs 

(average across tasks), detection latencies and number of FPs/min. The two factors were: ‘movement type’ and 

‘channel’. The factor ‘movement type’ had three levels: ME, MI and attempted ME, while ‘channel’ had two 

levels: single channel and Laplacian channel. Also, three similar 2-way ANOVAs were performed with 

‘movement type’ and ‘simulation’ as factors. ‘Simulation’ had two levels: cross-validation and 50/50 training 



and testing.  Two 3-way ANOVA tests were performed for the classification accuracies and system performance 

(average across task pairs and tasks in the 2-class and 4-class problem, respectively). The two factors were the 

same as above, and the third factor was ‘number of classes’ which had two levels: 2 and 4. Two similar 3-way 

ANOVAs were performed where ‘channel’ was substituted with ‘simulation’. Significant test statistics were 

followed up with post hoc analysis with Tukey’s correction for multiple comparisons. Statistical significance 

was assumed when the p-value < 0.05.  

 



 



Figure 3. The grand averages of the epochs for the four palmar grasp tasks using a single channel are plotted for 

executed (A), imaginary (B) and attempted (C) movements. ‘Fast’ refers to 0.5 to reach the desired level of 

MVC, and ‘slow’ refers to 3 s to reach that level. Epochs for imaginary movements are aligned to the task onset 

(t = 3 s in figure 1) since no force was produced to determine the onset of the imaginary movement.  

3. Results 

The results are summarized in tables 2-7 for detection, classification and system performance, respectively. 

3.1. Detection 

The performance of the detector (table 2) was similar when using a single channel or the Laplacian filtered 

channels. On average (across tasks), ~75% of all movements were correctly detected with similar TPRs for the 

executed, imaginary and attempted movements. The difference in the TPRs was not significant when using the 

two approaches (F(1,64)=0.23; P=0.64), and no significant differences were observed between the movement types 

(F(2,64)=0.18; P=0.84). The interaction between the factors ‘channel’ and ‘movement type’ was not significant 

(F(2,64)=1.05; P=0.36). In general, the highest TPRs were observed for fast movements when the movements were 

executed. Conversely, the greatest TPRs were obtained for slow movements in MI. The movements were 

detected with similar latencies with respect to the movement onset for the three movement types and the two 

channels. The interaction between the two factors was not significant (F(2,64)=0.061; P=0.94); nor was the effect 

of ‘channel’ (F(2,64)=0.68; P=0.41) and ‘movement type’ (F(2,64)=1.09; P=0.34). Lastly, the number of FPs/min 

was similar when comparing the single channel with the Laplacian derivation (F(1,64)=0.23; P=0.63), but more 

FPs were observed per minute for the stroke patients (F(2,64)=11.85; P=0.000042) compared to the executed and 

imaginary movements from the healthy subjects.       

Task ME 

C3 / Laplacian 

MI 

C3 / Laplacian 

Attempted ME 

C3-4 / Laplacian 

Fast 20% MVC 73/71±12 / 67/68±8 68/70±10 / 70/72±9 82/78±8 / 76/80±10 

Fast 60% MVC 76/77±8 / 74/74±10 74/72±10 / 73/74±8 78/78±6 / 78/82±8 

Slow 20% MVC 78/75±16 / 73/73±8 73/75±9 / 78/80±11 64/63±3 / 74/71±11 

Slow 60% MVC 77/74±11 / 76/76±11 74/73±9 / 76/78±8 74/75±12 / 66/63±9 



 

Median/Mean across tasks 

 

76/74±12 / 73/73±10 

 

73/73±10 / 

75/76±10 

 

73/74±10 / 75/74±12 

    

FPs/min 1.6/1.5±0.7 / 

1.8/1.7±0.5 

1.5/1.5±0.6 / 

1.7/1.6±0.5 

2.6/2.7±1.0 / 

3.0/2.7±1.0 

Detection latency [ms] -117/-126±80 / -152/-

148±72 

-78/-102±77 / -87/-

111±68 

-82/-114±94 / -154/-

138±85 

 Median/Mean±SD Median/Mean±SD Median/Mean±SD 

Table 2. The performance of the detector is presented for executed and imaginary movements from healthy 

subjects and executed movements from stroke patients (rightmost column).  The duration of the recordings was 

~30 min. 

The simulation, where the first half of the data was used (table 3), was not significantly different from the 

simulation where cross-validation was used in terms of TPR (F(1,64)=1.83; P=0.18), detection latencies 

(F(1,64)=3.94; P=0.051) and FPs/min (F(1,64)=0.008; P=0.93). 

Task ME MI Attempted ME 

Fast 20% MVC 65/65±10 70/71±12 76/76±5 

Fast 60% MVC 72/72±10 71/70±9 73/73±5 

Slow 20% MVC 75/71±14 78/77±11 63/64±11 

Slow 60% MVC 75/73±15 73/74±10 65/70±11 

 

Median/Mean across tasks 

 

69/70±13 

 

73/73±11 

 

71/71±10 

    

FPs/min 1.4/1.4±0.5 1.6/1.7±0.8 2.9/2.5±0.9 

Detection latency [ms] -53/-64±87 -69/-90±69 -57/-47±125 

 Median/Mean±SD Median/Mean±SD Median/Mean±SD 

Table 3. The performance of the detector is presented for executed and imaginary movements from healthy 

subjects and executed movements from stroke patients (rightmost column) when using the first half of the data 

for training and the other half for testing. The values were calculated using C3 (or C4). The duration of the 

recordings for testing was ~15 min.  

 



3.2. Classification 

On average 4±4, 4±4 and 6±8 epochs were rejected per subject for executed, imaginary and attempted 

movements, respectively. The classification accuracies (table 4 and 5) were calculated for each task pair (2-

class) and each task (4-class). In general, the highest classification accuracies for the task pairs were obtained 

when speed was varied. On average, the classification accuracies were 57-64% for the 2-class problem and 32-

40% for the 4-class problem. In figure 4, the variability of the MRCP can be seen for a single task (Fast 20% 

MVC). 

 



Figure 4. Averaged MRCP for a representative healthy subject performing fast movements at 20% MVC. The 

mean value is shown as well as the standard deviation at each time point across epochs. 

The classification accuracies were similar across the movement types, but with slightly higher performance for 

ME and attempted ME, compared to MI. For the classification accuracies, the ANOVA revealed no significant 

interaction between the three factors: ‘channel’, ‘movement type’ and ‘number of classes’ (F(2,128)=0.17; P=0.85), 

but significant effects of ‘channel’ (F(1,128)=6.23; P=0.014), ‘movement type’ (F(2,128)=11.62; P=0.000023) and 

‘number of classes’ (F(1,128)=514.37; P=0.11*10-47) were observed. The classification accuracies were 

significantly higher when the large Laplacian filter was applied, and the post hoc analysis revealed larger 

classification accuracies for ME compared to MI. As expected, the highest classification accuracies were 

obtained for the 2-class problem compared to the 4-class problem.       

Task pair / task ME 

C3 / Laplacian 

MI 

C3 / Laplacian 

Attempted ME 

C3-4 / Laplacian 

Fast 20 vs. Fast 60 59/57±9 / 55/57±9 53/53±9 / 59/59±7 55/53±5 / 56/56±5 

Fast 20 vs. Slow 20 62/61±10 / 60/59±12 60/59±7 / 65/64±9 67/67±4 / 62/62±5 

Fast 20 vs. Slow 60 64/64±10 / 71/71±7 53/57±8 / 58/58±9 65/66±9 / 71/69±5 

Fast 60 vs. Slow 20 61/63±9 / 72/68±8 62/59±9 / 54/55±8 62/56±14 / 66/64±5 

Fast 60 vs. Slow 60 63/66±12 / 68/70±8 56/58±10 / 57/57±9 62/56±11 / 72/72±6 

Slow 20 vs. Slow 60 59/59±7 / 62/59±13 58/55±8 / 55/57±11 61/59±4 / 63/61±4 

    

Median/Mean across task pairs 61/62±10 / 65/64±11 57/57±9 / 58/58±9 61/60±10 / 65/64±7 

    

Fast 20 38/42±17 / 39/39±13 35/33±14 / 43/39±14 38/42±18 / 26/32±10 

Fast 60 27/33±21 / 34/35±13 29/27±18 / 29/26±16 13/15±15 / 38/37±14 

Slow 20 26/31±18 / 25/29±22 37/31±14 / 37/40±20 24/32±17 / 34/31±16 

Slow 60 43/40±17 / 48/46±18 36/35±15 / 28/28±20 46/45±22 / 54/60±19 

    

Mean across tasks 33/37±19 / 38/37±18 34/32±16 / 35/33±19 31/34±22 / 37/40±19 

 Median/Mean±SD Median/Mean±SD Median/Mean±SD 

Table 4. The performance of the classifier is presented for all pairwise combinations of the four tasks (2-class 

problem) and for all tasks together (4-class problem). The performance is presented when using a single channel 

and a Laplacian channel for ME, MI and attempted ME. 



The classification accuracies associated with the simulation, where the first half of the data was used (table 5), 

was not significantly different from the simulation where cross-validation was used (F(1,128)=3.49; P=0.064). 

Task pair / task ME MI Attempted ME 

Fast 20 vs. Fast 60 58/57±9  52/50±8  54/53±3  

Fast 20 vs. Slow 20 56/58±10  55/55±8  62/61±5  

Fast 20 vs. Slow 60 59/61±13  48/51±8  68/66±8  

Fast 60 vs. Slow 20 58/61±11  56/55±10  57/56±11  

Fast 60 vs. Slow 60 65/65±12  51/553±13  58/57±11  

Slow 20 vs. Slow 60 56/56±11  58/57±9  58/57±6  

    

Median/Mean across task pairs 58/60±11  53/54±10  58/58±9  

    

Fast 20 35/35±13  40/37±15  30/38±11  

Fast 60 28/34±20  20/26±20  13/13±12  

Slow 20 32/31±15  29/28±16  20/24±18  

Slow 60 33/32±20  17/22±17  60/59±21  

    

Mean across tasks 33/33±17 26/28±18  29/34±24  

 Median/Mean±SD Median/Mean±SD Median/Mean±SD 

Table 5. The performance of the classifier is presented for all pairwise combinations of the four tasks (2-class 

problem) and for all tasks together (4-class problem) when using the first half of the data for training and the 

other half for testing. The values were calculated using C3 (or C4).  

3.3. System performance 

The performance of the 2- and 4-class systems is presented in table 6 and 7; it was calculated with the 

assumption that detection and classification were independent of each other. For the 2-class system 41-47% of 

all movements (ME, MI and attempted ME) were correctly detected and classified while 23-29% of all 

movements were correctly detected and classified in the 4-class system. There was no significant interaction 

between ‘channel’, ‘movement type’ and ‘number of classes’ (F(2,139)=0.048; P=0.95). The ANOVA revealed 

differences in the classification accuracies between the factor ‘channel’ (F(1,139)=4.32; P=0.04), ‘movement type’ 

(F(2,139)=5.16; P=0.007) and ‘number of classes’ (F(1,139)=311.94; P=0.40*10-37).     

Task pair / task ME MI Attempted ME 



[TPR*CA] 

C3 / Laplacian 

[TPR*CA] 

C3 / Laplacian 

[TPR*CA] 

C3-4 / Laplacian 

Fast 20 vs. Fast 60 40/43±7 / 39/41±11 40/38±7 / 44/43±8 42/41±9 / 41/46±8 

Fast 20 vs. Slow 20 43/45±8 / 44/42±10 42/43±7 / 48/49±8 48/47±9 / 46/46±7 

Fast 20 vs. Slow 60 45/47±8 / 48/51±10 41/41±6 / 43/43±8 52/51±10 / 53/50±8 

Fast 60 vs. Slow 20 47/48±8 / 49/50±13 45/43±7 / 41/42±12 39/40±8 / 47/49±9 

Fast 60 vs. Slow 60 48/50±10 / 52/53±16 40/42±7 / 43/43±14 47/44±10 / 51/53±10 

Slow 20 vs. Slow 60 43/44±10 / 44/43±13 41/41±7 / 45/45±12 42/41±9 / 42/41±8 

    

Median/Mean across task pairs 45/46±10 / 46/47±10 41/41±8 / 44/44±8 43/44±9 / 46/47±8 

    

Fast 20 24/30±12 / 29/26±15 22/23±10 / 29/28±10 33/33±14 / 23/25±7 

Fast 60 19/26±17 / 23/26±16 19/20±14 / 25/19±12 10/12±12 / 28/31±14 

Slow 20 21/21±10 / 15/21±20 26/23±10 / 29/31±14 16/20±10 / 25/21±9 

Slow 60 31/29±8 / 33/35±16 25/25±11 / 25/22±14 34/34±19 / 36/37±11 

    

Mean across tasks 23/27±14 / 29/27±14 25/23±11 / 27/25±13 21/25±17 / 27/29±12 

 Median/Mean±SD Median/Mean±SD Median/Mean±SD 

Table 6. The system performance (% correctly detected and classified movements) is presented for all 2-class 

systems (pairwise combination of tasks) and the 4-class system. The performance is presented when using a 

single channel and a Laplacian channel for ME, MI and attempted ME.  

The system performance associated with the simulation, where the first half of the data was used (table 7), was 

lower compared to the simulation where cross-validation was used (F(1,128)=4.3; P=0.04). 

Task pair / task ME 

[TPR*CA] 

MI 

[TPR*CA] 

Attempted ME 

[TPR*CA] 

Fast 20 vs. Fast 60 41/39±8 34/35±8 41/42±2 

Fast 20 vs. Slow 20 38/40±10 40/41±7 42/42±5 

Fast 20 vs. Slow 60 42/42±10 33/37±7 47/48±9 

Fast 60 vs. Slow 20 41/44±13 41/40±7 37/38±5 

Fast 60 vs. Slow 60 43/48±12 34/38±11 40/41±9 

Slow 20 vs. Slow 60 40/40±13 47/43±9 37/38±8 

    

Median/Mean across task pairs 41/42±12 38/39±9 40/41±8 

    

Fast 20 22/23±9 12/18±14 10/9±8 

Fast 60 19/25±15 21/22±13 13/14±11 

Slow 20 23/22±12 13/17±14 44/41±14 

Slow 60 25/24±17 19/21±4 23/23±4 

    



Mean across tasks 22/24±14 18/19±12 20/22±16 

 Median/Mean±SD Median/Mean±SD Median/Mean±SD 

Table 7. The system performance (% correctly detected and classified movements) is presented for all 2-class 

systems (pairwise combination of tasks) and the 4-class system when using the first half of the data for training 

and the other half for testing. The values were calculated using C3 (or C4).  

4. Discussion 

Four hand movement types were detected from the continuous EEG using a single channel, and the levels of 

force and speed were classified. Approximately 75% of the movements (ME, MI and attempted ME) were 

detected ~100 ms before the onset of the movement/task, with 1.5 and 2.7 FPs/min for healthy subjects and 

stroke patients, respectively. When the level of force and speed was decoded, 57-62% of the movement 

intentions was correctly decoded with slightly lower classification accuracies for MI and attempted ME. With 

combined detection and classification, 41-46% of the movements were correctly detected and classified. This 

indicates that it may be possible to detect movements using only one EEG channel in a BCI that can activate 

assistive technologies for providing afferent feedback.    

4.1. Detection 

In general, the TPRs were similar when comparing the mean across tasks for healthy subjects and stroke patients 

which is also reflected in a similar signal-to-noise ratio for healthy subjects and stroke patients (see figure 3). 

The MRCP had similar amplitude in stroke patients and healthy subjects despite the neural injury which may be 

due to better motivation, or the fact that less mental effort and shorter planning is needed [35, 36]. It should be 

noted that the number of FPs/min was 2.7 for the patients, compared to 1.5 for the healthy subjects. This may 

indicate that the stroke patients had difficulties in resting between the movements, which may have triggered the 

detector. The detector threshold was based on a trade-off between the number of FPs and TPR; thus, a reduction 

in the number of FPs/min would lead to lower TPRs. In addition, more epochs were removed from the analysis 

for the stroke patients due to EOG; this indicates that the detector was disabled during the movements due to the 

EOG threshold. In general, the detector is relatively resistant to movement and EMG artefacts that do not have 



overlapping frequency ranges with the MRCP; this is in contrast with EOG, wherein the detector needs to be 

disabled. Despite this, there are still some FPs/min, which could be a result of the inherent variability in the 

EEG. To account for this and reduce the number of FPs, the system could potentially be implemented as a 

synchronous BCI whereby the detector is only active when the subjects are supposed to perform the movements.  

The tasks that were easiest to discriminate from the idle state varied for ME, MI and attempted ME, although the 

performance was quite similar. It was expected to see greater TPRs for the fast movements due to the highest 

signal-to-noise ratio; this was also the case for the patients, but not for the healthy subjects performing ME and 

MI, on the contrary to the findings from foot movements [23]. The TPRs for hand movements, when using a 

single channel and a Laplacian channel, were slightly lower for ME compared to previous studies where foot 

movements were detected, on the contrary to MI and attempted ME that showed higher TPRs [10, 12, 23, 32, 

37]. The lower TPRs for healthy subjects performing ME are surprising since the motor cortical representation 

of the hand is more superficial, and therefore closer to the recording electrode, than the representation of the 

foot, which will lead to a greater signal-to-noise ratio. Small adjustments of the hand in the rest period could 

potentially increase the detection threshold (a trade-off between the TPR and FPs) to avoid many FP detections; 

this will decrease the TPR. The size of the cortical representation of the hand, and the fact that only nine 

recording sites were used, may be an explanation for the similar performance when using a single electrode 

instead of nine. This suggests that enhancing the activity of a particular spatial location (e.g. C3) through spatial 

filtering does not improve the performance significantly since a large area of the cortex contribute to the 

generation of a hand movement, and the electrode that captures the greatest movement-related activity change 

during the movement preparation.    

4.2. Feature extraction and classification 

The classification of the movement intentions was performed with two and four classes. The classification 

accuracies for the 2-class problem were in the range of 57-62% when using one EEG channel and 58-64% for 

the Laplacian channel. The statistical analysis revealed that the performance was improved when the spatial filter 



was applied. The application of a spatial filter has been shown to improve single trial analysis by improving the 

signal-to-noise ratio [38]; this will make it easier to detect the small differences in the MRCP morphology 

associated with different levels of force and speed [15].  

The best classification accuracies, although they were similar, were obtained for ME and attempted ME 

compared to MI; this is due to greater separation between the movement types (see figure 3). The classification 

accuracies are on average lower compared to previous studies where decoding of movement kinetics for the foot 

and wrist was investigated [18-20, 22, 23]. The task pairs associated with the greatest classification accuracies 

are similar to previous findings where movements performed with different levels of speed are easier to 

discriminate [23]. The averaged classification accuracies for the 2-class and 4-class problems were at chance 

level calculated with a confidence interval (α=0.05) [39]. 

The classification accuracies could potentially be improved by identifying discriminative physiological 

meaningful features. This could be obtained through recordings with an increased density of electrodes over the 

cortical representation of the hand and performing e.g. time-frequency representations of the different movement 

types to identify where and at what time instances the tasks differ. Moreover, with an increased density of 

electrodes the classification accuracies could potentially be improved by performing feature extraction on each 

channel instead of a single EEG channel or surrogate channel. This would lead to a large feature vector, where 

discriminative features can be identified through feature selection techniques. In this way, the simple EEG 

electrode setup is lost, but with more electrodes to choose from, the heterogeneity of stroke patients may be 

accounted for by selecting features from potentially more optimal sites than a fixed spatial location (e.g. C3). In 

this scenario, subject-dependent features will be used instead of subject-independent features as in this study.   

4.3. Implications 

It is not known which level of system performance is needed to induce plasticity [2]. System performance (only 

discrimination between imaginary movements and the idle state) of ~60-70% was sufficient to induce a 



significant increase in the cortical projections of the target muscle when combined with correctly timed electrical 

stimulation [10, 25]. The system performance for a 2-class system in this study was 41-46%, which was reduced 

mainly due to many cases of incorrect classification of correctly detected movements. The performance of the 

detector (73-76%) was in the range of what has been reported to induce plasticity by combining it with assistive 

technologies such as functional electrical stimulation or rehabilitation robotics. A question that should be 

addressed is if it is needed to provide sensory feedback that matches the exact efferent signal kinetics which may 

be difficult if the performance of the classifier is impeding the system performance.  

The results indicated that the system could work with a single EEG channel. The use of only one electrode will 

reduce the time spent on preparation in a clinical setting, so that the patient can spend more time on training. It 

may make it easier for the clinic personnel to utilize the technology, and it is a step towards moving the BCI 

from the lab to the clinic. From the patient’s point of view, not just stroke patients but also permanent users of 

BCIs such as those suffering from spinal cord injury and amyotrophic lateral sclerosis, a lower number of 

electrodes is desirable e.g. washing the hair every day is an annoying task for many patients and wearing many 

electrodes can be uncomfortable [40, 41]. For BCI technology to be used on a daily basis in rehabilitation 

clinics, several issues still need to be addressed. From a physiological point of view, clinical effects of BCI-

based rehabilitation must be documented, and the design of rehabilitation protocols still needs to be optimised 

e.g. by the use of various feedback modalities and methods to maintain the attention and motivation of the 

patients. From a technical point of view, the system should be reliable, as well as fast and easy to calibrate, or 

their use will not be taken up by clinicians and patients alike.          

4.4. Limitations 

In this study, the data were processed offline but simulated as an online system by detecting the movements in 

the continuous EEG through cross-validation. Also, a real-world setting was simulated where the first half of the 

data was used to calibrate the system (training session), and the other was used to test the system (feedback 

session). The performance of the detector in both scenarios was similar, but it was slightly lower for the 



classification. This indicates that more training data improve the performance of the classifier, which will 

prolong the training session since more movements must be performed. It is expected that similar detection 

performance would be obtained for an online system, as it has been shown previously using the same 

methodology for detecting movement intentions from foot movements [10, 12]. In the current study a zero-phase 

shift filter was applied, which potentially could lead to later detections in an online system when data are 

imported in blocks (all samples are needed to perform the forward and reverse direction filtering). The delay 

could be reduced by decreasing the number of samples in each block; however, there is a risk of edge effects 

from the filtering. Another approach is to use a causal filter, which also will induce a delay when data are 

streamed continuously, but the magnitude of this delay is determined by the order of the filter. With the template 

matching approach it was shown that movements could be detected 100-150 ms before the movement onset. It 

means that a delay from the filtering is acceptable to fulfil the temporal association for induction of long-term 

potentiation-like plasticity [9]. The detection and classification were performed separately, and there is a 

possibility that the classification accuracies may vary in an online system since the point of detection will vary. 

If the movements are detected earlier less discriminative information is available for feature extraction and 

classification, which will lead to lower classification accuracies. However, if the movements are detected later, 

more discriminative information is available [23]. There is still a constraint that the movements must be detected 

with limited detection latencies, so there is a trade-off on how much discriminative information can be obtained 

for the BCI to be functional for inducing plasticity [9]. A way to control the detection latency and obtaining 

shorter latencies with respect to the onset of the movement is to increase the detection threshold. This will come 

on an expense of reducing the TPR or increasing the number of FPs/min since the threshold is obtained as a 

trade-off between these two parameters.  

5. Conclusion 

Executed and imaginary movements by healthy subjects, as well as attempted movements by stroke patients, can 

be detected from the continuous EEG using a single channel. This may be useful for the technology transfer of 



BCIs from the laboratory to the clinic. Force and speed can be decoded from the movement intention. This 

property is relevant for BCIs that can be combined with assistive technologies in neurological rehabilitation 

where the afferent feedback can be provided according to the efferent activity from the motor cortex. 
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