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Spectral edge regularity of magnetic Hamiltonians

Horia D. Cornean and Radu Purice

Abstract

We analyse the spectral edge regularity of a large class of magnetic Hamiltonians when the
perturbation is generated by a globally bounded magnetic field. We can prove Lipschitz regularity
of spectral edges if the magnetic field perturbation is either constant or slowly variable. We also
recover an older result by G. Nenciu who proved Lipschitz regularity up to a logarithmic factor
for general globally bounded magnetic field perturbations.

1. Introduction and main results

This is the second paper of the authors on the spectral regularity with respect to perturbations
induced by Peierls-type magnetic flux phases. We assume that the flux is generated by a globally
bounded magnetic field whose intensity is proportional with ε ∈ R. In a previous paper [13],
the regularity of the Hausdorff distance between the perturbed and unperturbed spectra was
investigated. In the current paper, we analyse the regularity of spectral edges when ε varies.

It is well known that the magnetic perturbation induced by a non-decaying magnetic
field is a singular perturbation and the spectral stability is not obvious. The first proof of
spectral stability of nearest-neighbour Harper operators with constant magnetic fields can be
found in [15], while in [10], it is shown that the gap boundaries/spectral edges are 1

3 -Hölder
continuous in ε. Later results [4, 16, 18, 19] show that Hausdorff distance between spectra goes
like |ε− ε0|1/2. This result is optimal in the sense that it is known that gaps can appear/close
down precisely like |ε− ε0|1/2 if ε0 generates a rational flux or if the lattice is triangular, see
[5, 7, 17, 19].

The first proof of Lipschitz continuity of gap edges for Harper-like operators with constant
magnetic fields was given by Bellissard [6] (later on Kotani [23] extended his method to more
general regular lattices and dimensions larger than 2).

In the continuous case of Schrödinger operators with bounded magnetic fields, the stability of
gaps was first proved in [3, 28]. Then in [8] the Hölder exponent of gap edges was shown to be
at least 2

3 , while [11] provided a new proof of the results of [6] and extended them to continuous
two-dimensional Schrödinger operators perturbed by weak constant magnetic fields. We note
that purely magnetic Schrödinger operators of Iwatsuka type (see [14] and references therein)
have magnetic bands whose width is proportional with the total variation of the magnetic field.
An interesting open problem would be to see whether such a behaviour remains true when the
magnetic field is slightly perturbed around a non-zero constant value, and this perturbation is
not a function of just one variable.
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A general discrete problem was formulated by Nenciu [30], where he worked with more
general real and antisymmetric phases obeying a certain area condition (see (1.7)). These
phases appear very naturally in different physical problems, see [9, 12, 21, 24–26, 29, 31, 32].

Using a completely different method of proof, Nenciu showed in [30] that the gap edges are
Lipschitz up to a logarithmic factor. His method uses a regularity property of almost mid-convex
functions, and works for arbitrary bounded magnetic fields, not necessarily constant.

In the current paper, we significantly improve our previous results in [11, 13]. In particular,
we recover the results of [30] and, moreover, we can prove Lipschitz regularity of spectral edges
if the magnetic field perturbation is either constant or slowly variable. We also obtain results
in the case in which the off-diagonal localization of the unperturbed kernels is weak.

The structure of the paper is as follows. This section continues with a detailed description
of the physical motivation, then we state the main results in Theorem 1.1 and Corollary 1.2,
where we also discuss which class of magnetic Hamiltonians/ΨDO’s are covered. The last two
sections contain the proofs.

1.1. Physical motivation coming from magnetic Bloch systems

In order to better motivate our paper, let us argue why the problem of spectrum location for
magnetic Bloch systems described by magnetic Schrödinger operators can be reduced to the
study of integral operators perturbed by magnetic phases.

We use the notation 〈x〉 := (1 + |x|2)1/2 for any x ∈ R
d. Let V be a bounded, Z

d-periodic
scalar potential. Assume that the Hamiltonian H0 = −Δ + V has an isolated spectral island σ0

which consists of the range of a finite number of Bloch bands. Up to the addition of a constant,
we may assume that min(σ0) < 0 < max(σ0). The orthogonal projector P0 corresponding to
σ0 can be written as a Riesz integral, which implies that the band Hamiltonian reads as:

T0 := H0P0 =
i

2π

∫
C
z(H0 − z)−1 dz,

where C is a simple, positively oriented contour which surrounds σ0 and no other part of the
spectrum of H0. The resolvent (H0 − z)−1 has an integral kernel (H0 − z)−1(x,x′), which is
continuous outside the diagonal, behaves like ln |x − x′| at the diagonal when d = 2, and like
|x − x′|−d+2 when d � 3, and decays like e−α(z)|x−x′| when |x − x′| > 1 with some α(z) > 0.
Using the formula:

(H0 − z)−1 =
n∑

j=1

(z − i)j−1(H0 − i)−j + (z − i)n(H0 − z)−1(H0 − i)−n, n � 1,

we obtain

T0 =
i

2π

∫
C
z(z − i)n(H0 − z)−1(H0 − i)−n dz ∀n � 1.

Choosing n large enough (depending on d), one can prove that T0 has a jointly continuous
integral kernel K0(x,x′), and there exist α > 0 and C <∞ such that

|K0(x,x′)| � C e−α|x−x′| ∀x,x′ ∈ R
d. (1.1)

From now on, C will denote a generic numerical constant. Now let us introduce the magnetic
perturbation. For us, a stationary magnetic field will be described by a closed 2-form B on R

d

(that is, dB = 0) with bounded and smooth components Bjk(x) = −Bkj(x). Given B, we can
always consider the ‘transverse magnetic vector potential’ A with the components

Am(x) :=
d∑

k=1

∫1

0

dt tBkm(tx)xk (1.2)

which obeys
∑d

j=1 xjAj(x) = 0 and B = dA, that is, Bjk(x) = ∂jAk(x) − ∂kAj(x).
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A quantity we are interested in is the flux of this 2-form through triangles (here 〈x,y,x′〉
denotes the triangle with vertices x, y, and x′ in R

d):

ΦB(x,y,x′) :=
∫
〈x,y,x′〉

B =
∑
j,k

(yj − xj)(x′k − yk)

×
∫1

0

dt

∫ t

0

dsBjk(x + t(y − x) + s(x′ − y)). (1.3)

We define

φA(y, z) := −
∫
[y,z]

A = −ΦB(0,y, z)

= −
∑
j<k

(yjzk − ykzj)
∫1

0

dt

∫ t

0

dsBjk(ty + s(z − y)). (1.4)

In the case of a constant unit magnetic field, we have Bjk = −Bkj = 1 if j < k and Bjj = 0.
Thus (1.4) gives

φA(x,y) = −1
2

∑
j<k

(xjyk − xkyj). (1.5)

It is easy to see that φA is antisymmetric and, due to the Stokes theorem, we have

φA(x,y) + φA(y,x′) − φA(x,x′) = −ΦB(x,y,x′). (1.6)

Thus if the components of B obey ‖Bjk‖∞ � const, then we see that we have constructed a
2-point function φ : R

d × R
d → R satisfying the following properties:

φ(x,y) = −φ(y,x), and |φ(x,y) + φ(y, z) + φ(z,x)| � const |〈x,y, z〉|. (1.7)

If ε � 0, then consider the magnetic Schrödinger operator Hε := (−i∇− εA)2 + V . For
simplicity, assume that d = 2. Fix a compact set C ⊂ ρ(H0). Then (see Section 4 in [11]) there
exist ε0 > 0, α <∞ and C <∞ such that for every 0 � ε � ε0 we have that C ⊂ ρ(Hε) and

sup
z∈C

|(Hε − z)−1(x,x′) − eiεφA(x,x′)(H0 − z)−1(x,x′)|

� Cε e−α|x−x′| ∀x �= x′ ∈ R
2. (1.8)

This estimate also implies that Hε has an isolated spectral island σε close to σ0 when ε is small
enough. Moreover, one can prove (see [8, 13]) that the Hausdorff distance between σε and σ0

is of order
√
ε.

The main physical question to be addressed in this paper is the following: can one show that
max(σε) − max(σ0) and min(σε) − min(σ0) can go to zero faster than

√
ε?

Let us show how we can reduce this question to the study of integral operators perturbed
by magnetic phases. Let Pε be the spectral projection corresponding to σε and HεPε the
corresponding band operator. Applying the Riesz integral formula (remember thatH0P0 = T0),
we obtain

|HεPε(x,x′) − eiεφA(x,x′)K0(x,x′)| � Cε e−α|x−x′|. (1.9)

Denote by Tε the bounded self-adjoint operator with the kernel

KεA(x,x′) := eiεφA(x,x′)K0(x,x′).

Up to a Schur-type estimate, (1.9) implies

‖HεPε − Tε‖ � Cε. (1.10)
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In general, if A and B are two bounded and self-adjoint operators and u is a norm-one vector,
then we have

〈u,Au〉 � 〈u,Bu〉 + ‖A−B‖ � maxσ(B) + ‖A−B‖
which leads to

maxσ(A) � maxσ(B) + ‖A−B‖, |max σ(A) − maxσ(B)| � ‖A−B‖, (1.11)

hence (1.10) leads to
|max σ(HεPε) − maxσ(Tε)| � Cε. (1.12)

The spectrum of HεPε is the set {0} ∪ σε. Since we assumed that min(σ0) < 0 < max(σ0) and
σ0 = [min(σ0),max(σ0)], we have that {0} ∪ σ0 = σ(T0) = σ0; in [13] he has proved that the
Hausdorff distance between σ(Tε) and σ(T0) goes at least like

√
ε, hence

|max σ(Tε) − maxσ(T0)| � C
√
ε. (1.13)

Together with (1.12), this implies that maxσ(HεPε) converges to max(σ0) > 0, which
means that maxσ(HεPε) = max(σε) for ε small enough. Then (1.12) shows that max(σε) −
maxσ(Tε) ∼ ε, hence the only remaining question is whether we can improve the exponent of
ε in (1.13).

The conclusion is that the ε-regularity of the edges of σε is given by the ε-regularity of the
spectral edges of Tε.

1.2. The main theorem

Definition 1. We say that a linear bounded operator TK ∈ B(L2(Rd)) has an off-diagonal
polynomial decay of order α � 0 if it is defined by an integral kernel K such that

‖TK‖α := max

{
sup
x∈Rd

∫
Rd

|K(x,y)|〈x − y〉α dy, sup
y∈Rd

∫
Rd

|K(x,y)|〈x − y〉α dx
}
<∞.

We denote by C α the complex linear space of these operators with the norm ‖ · ‖α, including
by definition the identity operator Id.

Remark 1. Throughout this paper, A indicates the transverse magnetic gauge (1.2)
associated to a magnetic field B whose components Bjk are continuous and bounded on
R

d, together with their partial derivatives of all orders (no decay conditions are imposed on
the field).

A different situation is when the magnetic field perturbation comes from a slowly varying
vector potential Aε(x) := a(εx), where the partial derivatives of all orders of each aj are globally
bounded and continuous (note that a can grow linearly in x). In this case, the magnetic field
perturbation is of the form εBε(x) with Bε(x) := (da)(εx). Then we define

φAε(x,x′) := −εΦBε(0,x,x′), KAε
(x,y) := eiφAε (x,y)K(x,y). (1.14)

For every operator TK ∈ C α ⊂ B(L2(Rd)), we can define a family of bounded linear operators
TKA

∈ C α whose kernels are given by

KA(x,y) := eiφA(x,y)K(x,y).

If one uses a different vector potential A′ such that dA′ = dA = B, then Stokes theorem
ensures that

φA(x,y) = −
∫
[x,y]

A′ +
∫
[0,y]

A′ −
∫
[0,x]

A′,

which shows that the operator with kernel e−i
∫
[x,y] A′

K(x,y) is unitarily equivalent with TKA
.
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Let TK ∈ C α be a self-adjoint operator. Since both φεA and φAε are antisymmetric, both
TKεA

and TKAε
belong to C α and are self-adjoint.

Theorem 1.1. Denote by E(ε) = supσ(TKεA
) and by Eε := supσ(TKAε

). The following
statements hold true uniformly in |ε| � 1

2 :

(i) if 1 � α < 2, then there exists a numerical constant Cα > 0 with limα↗2 Cα = ∞, such
that

|E(ε) − E(0)| � Cα‖TK‖α|ε|α/2; (1.15)

(ii) if α � 2, then there exists a numerical constant C > 0 such that

|E(ε) − E(0)| � C‖TK‖2|ε| ln(1/|ε|); (1.16)

(iii) let α � 2 and assume that either B is a constant magnetic field, or the magnetic field
perturbation comes from a slowly varying vector potential Aε. Then there exists a
numerical constant C > 0 such that

max{|E(ε) − E(0)|, |Eε − E0|} � C‖TK‖2|ε|. (1.17)

Remark 2. Because inf(σ(TKA
)) = − sup(σ(T(−K)A

)), the theorem also holds true if
E(ε) = inf σ(TKεA

) and Eε = inf σ(TKAε
).

Remark 3. We have the general identity

‖TKA
‖ = max{− inf(σ(TKA

)), sup(σ(TKA
))}.

If F (ε) := max{f1(ε), f2(ε)}, then let us show that |F (ε) − F (0)| � maxn |fn(ε) − fn(0)|.
Assume without loss that F (ε) � F (0). If F (ε) = fj(ε) and F (0) = fj(0), then the inequality
is trivial. If F (ε) = fj(ε) and F (0) = fk(0) with j �= k, then we have

|F (ε) − F (0)| = F (ε) − F (0) = fj(ε) − fk(0) � fj(ε) − fj(0)
� max

n=1,2
|fn(ε) − fn(0)|.

Thus the theorem also holds true if E(ε) = ‖TKεA
‖ and Eε = ‖TKAε

‖.

Remark 4. Since φεA = εφA = (ε− ε0)φA + ε0φ
A, we can absorb eiε0φA(x,y) into the

kernel K without changing its off-diagonal decay properties. Thus the above results for E(ε)
can be easily extended near any ε0 ∈ R, with |ε| replaced by |ε− ε0|. The dependence on ε of
φAε is nonlinear, and it seems that the results on Eε cannot be extended. In fact, if ε is large,
then we can no longer talk about a slowly varying magnetic field.

1.3. Application to magnetic pseudodifferential operators

Let us briefly present the setting behind them. Denote by X := R
d the configuration space of

a physical system, by X ∗ ∼= R
d its dual (the space of momenta), by 〈·, ·〉 : X ∗ ×X → R the

duality bilinear form, and by Ξ := X × X ∗ the phase space with the canonical symplectic form
σ((x, ξ), (y, η)) := 〈ξ, y〉 − 〈η, x〉. Let us recall from [25, 26] that to any classical Hamiltonian
described by a real smooth function h : Ξ → R (with polynomial growth together with all its
derivatives) and to any bounded smooth magnetic field described by a closed 2-form having
components Bjk ∈ BC∞(X ) (that is, smooth and uniformly bounded with all their partial
derivatives of all orders), we associate a quantum Hamiltonian defined by the following action
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on test functions (as oscillating integrals):

(OpA(h)f)(x) := (2π)−d

∫
X

∫
X∗

ei〈ξ,x−y〉ΛA(x,y)h
(

x + y
2

, ξ

)
f(y) dy dξ, (1.18)

where A is a vector potential such that dA = B, ΛA(x,y) := eiφA(x,y), f ∈ S (X ), and x ∈ X .
Let us remind ourselves here that the quantum Hamiltonian depends on the choice of the
vector potential A, but different choices lead to unitarily equivalent operators. Choosing a
vector potential of class C∞

pol(X ) (that is, its components are smooth and have a polynomial
growth at infinity together with all their derivatives) is always possible and, with such a choice,
Proposition 3.5 in [26] states that the application OpA defines a bijection from the tempered
distributions on Ξ to the continuous operators from S (X ) to S ′(X ). Thus the composition
of operators (when possible) induces a composition law on S ′(Ξ) that we call the magnetic
Moyal product, and is explicitly given by the following formula (for a pair of test functions φ
and ψ from S (Ξ)) that only depends on the magnetic field and not on the vector potential

(φ�Bψ)(X) = π−2d

∫
Ξ

∫
Ξ

e−2iσ(X−Y,X−Z) e−i
∫
T (x,y,z) Bφ(Y )ψ(Z) dY dZ,

where we have introduced the notation of the form X = (x, ξ) for the points of Ξ, and we have
denoted by T (x,y, z) the triangle with vertices x − y + z, y − z + x, and z − x + y.

Before stating the second main result of our paper, we need some more notation. Let Sm
ρ (Ξ)

denote the set of classical Hörmander symbols F (x, ξ) such that

sup
(x,ξ)∈Ξ

〈ξ〉ρ|β|−m|Dα
xD

β
ξ F (x, ξ)| <∞.

An interesting class of symbols, related to Onsager–Peierls effective Hamiltonians, are symbols
from S0

0(Ξ) that do not depend on the first variable x ∈ X , and are periodic in the second
variable ξ ∈ X ∗ with respect to a lattice Γ∗ ⊂ X ∗. We denote by S0

Γ∗
this class of symbols.

Here is the second main result of our paper.

Corollary 1.2. Let F be either a symbol in St
1(Ξ) with t < 0, or a symbol in S0

Γ∗
. Let

E(ε) denote either supσ(OpεA(F )), inf σ(OpεA(F )), or ‖OpεA(F )‖. Let Eε denote the same
quantities defined with Aε instead of εA.

(i) There exists a constant C <∞ such that:

|E(ε) − E(0)| � C|ε| ln(1/|ε|), |ε| � 1
2 .

(ii) If the magnetic field is either constant or slowly variable, then the logarithmic factor is
absent:

max{|E(ε) − E(0)|, |Eε − E0|} � C|ε|, |ε| � 1
2 .

Remark 5. Let us recall from [21] that if h is a real elliptic symbol (of Hörmander type),
of strictly positive order m, then the corresponding magnetic ΨDO can be extended to a lower
semibounded self-adjoint operator denoted by HA, acting in L2(X ) with domain a magnetic
Sobolev space (as defined also in [21]). If we work with a Schrödinger symbol h(x, ξ) = ξ2 +
V (x), then HA = (−i∇−A(x))2 + V (x). Moreover, let us recall that Proposition 6.5 from [22]
implies the existence for any z ∈ ρ(HA) of a symbol rB(h, z) ∈ S−m

1 (X ) such that (HA − z)−1 =
OpA(rB(h, z)). In [2, 13], we proved that the spectrum of HεA varies continuously (as a subset
of R) with the parameter ε.
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Remark 6. If h is as before and Φ ∈ C∞
0 (R), then by using the Dynkin–Helffer–Sjöstrand

formula, it was proved in [22, Proposition 6.7] that there exists a symbol ΦB [h] ∈ S−∞
1 (X )

such that the operator Φ(HA) defined by functional calculus with self-adjoint operators is in
fact of the form Φ(HA) = OpA(ΦB [h]). The results in [22] imply that

‖Φ(HεA) − OpεA(Φ0[h])‖ � C|ε|, Φ0[h] ∈ S−∞
1 (X ),

which shows that the eventual non-Lipschitz behaviour in the spectrum of Φ(HεA) can only
come from the phase factor. We observe that OpεA(Φ0[h]) is covered by Corollary 1.2.

Remark 7. With h as before, suppose that the Weyl quantized operator H := Op(h) has
a bounded and isolated spectral island σ0. Then one can find a function Φ ∈ C∞

0 (R) such that
Φ(t) = t on σ0 and the support of Φ is disjoint from the rest of σ(H). Thus σ(Φ(H)) = σ0 ∪ {0}.
Up to a translation in energy we may suppose that 0 ∈ σ0. It follows (using Remark 6 and
mimicking the argument in the introduction) that HεA will still have an isolated spectral
island σε near σ0 if ε is small enough, and its edges behave as in Corollary 1.2.

2. Proof of Theorem 1.1

Let us fix a non-zero and non-negative symmetric function f ∈ C∞
0 (Rd). If δ > 0 and x ∈ R

d,
then we denote by fδ(x) := f(δx) and by f̃(δ) := fδ ∗ fδ. We have

0 � f̃(δ)(x) � ‖fδ‖2
2 =

∫
Rd

dyfδ(−y)fδ(y) = f̃(δ)(0) = δ−d‖f‖2
2.

For any kernel K such that TK ∈ C α for some α � 0, we define

K(δ)(x,y) := K(x,y)f̃(δ)(x − y)‖fδ‖−2
2 . (2.1)

Since |K(δ)(x,y)| � |K(x,y)|, we have ‖TK(δ)‖ � ‖TK(δ)‖α � ‖TK‖α.
Denote by F̃(δ)(x,y) := f̃(δ)(x − y) and Fδ(x,y) := fδ(x − y) the kernels associated to the

obvious convolution operators. We now write two simple but very important identities. The
first one is

‖fδ‖−2
2

∫
Rd

|Fδ(y,x)|2 dy = ‖fδ‖−2
2 F̃(δ)(x,x) = ‖fδ‖−2

2 f̃(δ)(0) = 1 ∀x ∈ R
d. (2.2)

The second one is (we use (1.6))

eiφεA(x,x′)F̃(δ)(x,x′) =
∫

Rd

eiΦεB(x,y,x′)[eiφεA(x,y)Fδ(x,y)][eiφεA(y,x′)Fδ(y,x′)] dy

=
∫

Rd

[eiφεA(y,x)Fδ(y,x)][eiφεA(y,x′)Fδ(y,x′)] dy

+
∫

Rd

[eiΦεB(x,y,x′) − 1][eiφεA(x,y)Fδ(x,y)][eiφεA(y,x′)Fδ(y,x′)] dy

=
∫

Rd

[eiφεA(y,x)Fδ(y,x)][eiφεA(y,x′)Fδ(y,x′)] dy

+ eiφεA(x,x′)

∫
Rd

[eiΦεB(x,y,x′) − 1]Fδ(x,y)Fδ(y,x′) dy

+ eiφεA(x,x′)

∫
Rd

|eiΦεB(x,y,x′) − 1|2Fδ(x,y)Fδ(y,x′) dy. (2.3)
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If we multiply the left-hand side of (2.3) with ‖fδ‖−2
2 K(x,x′) we obtain eiφεA(x,x′)K(δ)(x,x′),

see (2.1). Then we can compute the quadratic form of TK(δ),εA
on some u ∈ L2(Rd) with

‖u‖L2(Rd) = 1:

〈u, TK(δ),εA
u〉 = ‖fδ‖−2

2

∫
Rd

dy〈[eiφεA(y,·)Fδ(y, ·)u(·)], TK [eiφεA(y,·)Fδ(y, ·)u(·)]〉

+ ‖fδ‖−2
2

∫
Rd

dy
∫

Rd

dx
∫

Rd

dx′[eiΦεB(x,y,x′) − 1]

×KεA(x,x′)Fδ(x,y)Fδ(y,x′)u(x)u(x′)

+ ‖fδ‖−2
2

∫
Rd

dy
∫

Rd

dx
∫

Rd

dx′|eiΦεB(x,y,x′) − 1|2

×KεA(x,x′)Fδ(x,y)Fδ(y,x′)u(x)u(x′)

� E(0)‖fδ‖−2
2

∫
Rd

dy‖eiφεA(y,·)Fδ(y, ·)u(·)‖2
L2(Rd)

+ ‖fδ‖−2
2

∫
Rd

dy
∫

Rd

dx
∫

Rd

dx′[eiΦεB(x,y,x′) − 1]

×KεA(x,x′)Fδ(x,y)Fδ(y,x′)u(x)u(x′)

+ ‖fδ‖−2
2

∫
Rd

dy
∫

Rd

dx
∫

Rd

dx′|eiΦεB(x,y,x′) − 1|2

×KεA(x,x′)Fδ(x,y)Fδ(y,x′)u(x)u(x′). (2.4)

Using (2.2) in the last inequality, we obtain

〈u, TK(δ),±εA
u〉 � E(0) + ‖fδ‖−2

2

∫
Rd

dy
∫

Rd

dx
∫

Rd

dx′[eiΦ±εB(x,y,x′) − 1]

×K±εA(x,x′)Fδ(x,y)Fδ(y,x′)u(x)u(x′)

+ ‖fδ‖−2
2

∫
Rd

dy
∫

Rd

dx
∫

Rd

dx′|eiΦ±εB(x,y,x′) − 1|2

×K±εA(x,x′)Fδ(x,y)Fδ(y,x′)u(x)u(x′). (2.5)

Another simple but very important observation which we want to underline here, is that TK

and TK±εA
have the same Schur α-norms, see Definition 1. Moreover, we have the obvious

identities:

K(x,x′) = eiφ±εA(x,x′)(eiφ∓εA(x,x′)K(x,x′)), TK = T(K∓εA)±εA
. (2.6)

Thus changing K with K∓εA in (2.5), we obtain

〈u, TK(δ)u〉 � E(∓ε) + ‖fδ‖−2
2

∫
Rd

dy
∫

Rd

dx
∫

Rd

dx′[eiΦ±εB(x,y,x′) − 1]

×K(x,x′)Fδ(x,y)Fδ(y,x′)u(x)u(x′)

+ 4‖fδ‖−2
2

∫
Rd

dy
∫

Rd

dx
∫

Rd

dx′|sin(Φ|ε|B(x,y,x′)/2)|2

×K(x,x′)Fδ(x,y)Fδ(y,x′)u(x)u(x′). (2.7)
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This implies

〈u, TK(δ)u〉 � 1
2
E(ε) +

1
2
E(−ε)

+ ‖fδ‖−2
2

∫
Rd

dy
∫

Rd

dx
∫

Rd

dx′(cos(Φ|ε|B(x,y,x′)) − 1)

×K(x,x′)Fδ(x,y)Fδ(y,x′)u(x)u(x′)

+ 4‖fδ‖−2
2

∫
Rd

dy
∫

Rd

dx
∫

Rd

dx′|sin(Φ|ε|B(x,y,x′)/2)|2

×K(x,x′)Fδ(x,y)Fδ(y,x′)u(x)u(x′). (2.8)

Taking the supremum with respect to u ∈ L2(Rd) with ‖u‖L2(Rd) = 1, we obtain

sup(σ(TK(δ))) � 1
2
E(ε) +

1
2
E(−ε) + ‖fδ‖−2

2

×
(

sup
‖u‖=1

∫
R3d

dy dx dx′|cos(Φ|ε|B(x,y,x′)) − 1|

× |K(x,x′)|Fδ(x,y)Fδ(y,x′)|u(x)||u(x′)|

+ 4 sup
‖u‖=1

∫
R3d

dy dx dx′|sin(Φ|ε|B(x,y,x′)/2)|2

× |K(x,x′)|Fδ(x,y)Fδ(y,x′)|u(x)||u(x′)|
)
. (2.9)

Using (1.3) and (1.7), we obtain that for all x,y,x′ ∈ R
d:

|ΦεB(x,y,x′)| � C|ε||〈x,y,x′〉| � C|ε|
2

|x − x′||x − y|1/2|y − x′|1/2. (2.10)

Using (2.10) and elementary properties of sin and cos, we can bound the last two terms from
the right-hand side of (2.9) by

C‖fδ‖−2
2 sup

‖u‖=1

∫
R3d

|ΦεB(x,y,x′)|α|K(x,x′)|Fδ(x,y)Fδ(y,x′)|u(x)| |u(x′)| dy dx dx′

� C|ε|α‖TK‖α‖fδ‖−2
2

(∫
Rd

|y|αfδ(y)2dy
)

� C|ε|αδ−α‖TK‖α, 1 � α < 2,

where the last inequality is due to the fact that |y| � Cδ−1 on the support of fδ. Moreover,

C‖fδ‖−2
2 sup

‖u‖=1

∫
R3d

|ΦεB(x,y,x′)|2|K(x,x′)|Fδ(x,y)Fδ(y,x′)|u(x)||u(x′)| dy dx dx′

� C|ε|2‖TK‖2‖fδ‖−2
2

(∫
Rd

|y|2fδ(y)2 dy
)

� C|ε|2δ−2‖TK‖2, α � 2.

Using this in (2.9), we obtain

sup(σ(TK(δ))) � 1
2E(ε) + 1

2E(−ε) + C|ε|αδ−α‖TK‖α, 1 � α < 2,

sup(σ(TK(δ))) � 1
2E(ε) + 1

2E(−ε) + C|ε|2δ−2‖TK‖2, α � 2.
(2.11)

Applying (1.11) with A = TK and B = TK(δ) , and using (2.11) we have

E(0) � 1
2E(ε) + 1

2E(−ε) + C|ε|αδ−α‖TK‖α + ‖TK(δ) − TK‖, 1 � α < 2,

E(0) � 1
2E(ε) + 1

2E(−ε) + C|ε|2δ−2‖TK‖2 + ‖TK(δ) − TK‖, α � 2.
(2.12)
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Because TK(δ) − TK = TK(δ)−K , using the Schur–Holmgren bound we have

‖TK(δ) − TK‖ � ‖fδ‖−2
2 sup

x∈Rd

∫
Rd

|f̃(δ)(x − x′) − f̃(δ)(0)||K(x,x′)| dx′. (2.13)

The following bound is valid for all x ∈ R
d:

|f̃(δ)(x) − f̃(δ)(0)| � δ|x|
∫1

0

∫
Rd

|∇f(δtx − δy)| |f(δy)| dy dt � C|x|δ1−d.

Moreover, because f̃(δ) has a maximum at x = 0, by expanding up to the second-order around
x = 0, we have

|f̃(δ)(x) − f̃(δ)(0)| � δ2|x|2
∫1

0

dt

∫ t

0

ds

∫
Rd

√ ∑
1�j,k�d

|∂2
jkf(δsx − δy)|2|f(δy)| dy

which leads to
|f̃(δ)(x) − f̃(δ)(0)| � C|x|2δ2−d. (2.14)

If 1 � α � 2, then we can combine the last two inequalities and get

|f̃(δ)(x) − f̃(δ)(0)| � C|x|αδα−d. (2.15)

Introducing (2.15) in (2.13), we obtain

‖TK(δ) − TK‖ � Cδd sup
x∈Rd

∫
Rd

|x − x′|αδα−d|K(x,x′)| dx′

� Cδα‖TK‖α, 1 � α � 2. (2.16)

If TK ∈ Cα with α � 2, then we introduce (2.14) into (2.13) and obtain

‖TK(δ) − TK‖ � Cδ2‖TK‖2, α � 2. (2.17)

Introducing the last two estimates in (2.12), we obtain

E(0) � 1
2E(ε) + 1

2E(−ε) + C‖TK‖α(δα + |ε|αδ−α), 1 � α < 2,

or
E(0) � 1

2E(ε) + 1
2E(−ε) + C‖TK‖2(δ2 + |ε|2δ−2), α � 2.

Until now, δ and ε have been independent. Keeping ε fixed and minimizing the right-hand side
with respect to δ imposes the condition δ = |ε|1/2 in both cases. Thus we obtain

E(0) � 1
2E(ε) + 1

2E(−ε) + C‖TK‖α|ε|α/2, 1 � α < 2,
E(0) � 1

2E(ε) + 1
2E(−ε) + C‖TK‖2|ε|, α � 2.

(2.18)

As we commented in Remark 4, the above estimates can be obtained near any ε0 by redefining
K. Thus we have just proved that the map R � x �→ E(x) ∈ R is a bounded, almost mid-convex
function which obeys

E
(
a+ b

2

)
� 1

2
E(a) +

1
2
E(b) + C‖TK‖2β

∣∣∣∣b− a

2

∣∣∣∣β , 1/2 � β := α/2 < 1,

E
(
a+ b

2

)
� 1

2
E(a) +

1
2
E(b) + C‖TK‖2

∣∣∣∣b− a

2

∣∣∣∣ , α � 2.
(2.19)

Regularity of bounded and almost mid-convex functions. Now we shall prove that (2.19)
implies (1.15), essentially following Nenciu [30]. Assume that 1/2 � β < 1 is fixed and denote
by M := C‖TK‖2β . Thus we have

E
(
a+ b

2

)
� 1

2
E(a) +

1
2
E(b) +M

∣∣∣∣b− a

2

∣∣∣∣β ∀a, b ∈ R.
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The strategy is to construct a constant Cβ > 0 such that for every x ∈ R and 0 < η < 1/2 to
have

− Cβη
β � E(x+ η) − E(x) � Cβη

β . (2.20)

One can easily prove by induction the following two inequalities (assume that a < b and n � 1):

E((2−1 + · · · + 2−n)a+ 2−nb) � (2−1 + · · · + 2−n)E(a) + 2−nE(b)

+M

(
b− a

2n

)β (
1 +

1
21−β

+ · · · + 1
(21−β)n−1

)
(2.21)

and

E(2−na+ (2−1 + · · · + 2−n)b) � 2−nE(a) + (2−1 + · · · + 2−n)E(b)

+M

(
b− a

2n

)β (
1 +

1
21−β

+ · · · + 1
(21−β)n−1

)
. (2.22)

Given η ∈ (0, 1/2), we define Nη := �ln(1/η)/ln(2)� + 1. We have Nη − 1 � ln(1/η)/
ln(2) < Nη, that is, 1 < η2Nη � 2. Replace a = x, b = x+ η2Nη , and n = Nη in (2.21). We have
(2−1 + · · · + 2−Nη )a+ 2−Nηb = x+ η and

E(x+ η) − E(x) � η
E(b) − E(a)

b− a
+Mηβ 1

1 − 2β−1
.

Since E is bounded and we always have 1 < b− a � 2, the right-hand side is of order ηβ . Thus
the right-hand side of (2.20) is proved.

For the other inequality in (2.20), we replace a = x+ η − η2Nη , b = x+ η and n = Nη

in (2.22). We have 2−Nηa+ (2−1 + · · · + 2−Nη )b = x and

E(x) − E(x+ η) � −ηE(b) − E(a)
b− a

+Mηβ 1
1 − 2β−1

.

Now we have to change sign and note again that 1 < b− a � 2, uniformly in η. Thus (2.20) is
proved, and so is the first part of our Theorem 1.1.

Concerning the second part, that is, the estimate (1.16), we see that both (2.21) and (2.22)
hold true even if β = 1. In this case, we can no longer use the geometric series and we get an
extra Nη. This is the reason for having the logarithmic factor in (1.16). We give no further
details.

Constant magnetic field. Now let us separately treat the case in which the perturbation
comes from a constant magnetic field and α � 2. In this case, we shall see that one can directly
prove a Lipschitz regularity for E , without the logarithmic factor, and without using the trick
based on almost mid-convex functions.

Going back to the inequality (2.5), we see that we can isolate the y integral in the second
term on the right-hand side. This integral is∫

Rd

Fδ(x,y)Fδ(y,x′)(eiΦ±εB(x,y,x′) − 1) dy.

Now let us show that the first-order term in ε is just zero∫
Rd

Fδ(x,y)Fδ(y,x′)Φ±εB(x,y,x′) dy = 0.

Let us start by noticing that the above integral is proportional with∑
j,k

Bjk

∫
Rd

(xk − yk)fδ(x − y)(yj − x′j)fδ(y′ − x′) dy.
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Denote by F and F− the Fourier transform and its inverse. Then

(xk − yk)fδ(x − y) ∼ [F−(∂kFfδ)](x − y), (yj − x′j)fδ(y − x′)

∼ [F−(∂jFfδ)](y − x′).

Hence ∫
Rd

(xk − yk)fδ(x − y)(yj − x′j)fδ(y′ − x′) dy

∼ {[F−(∂kFfδ)] ∗ [F−(∂jFfδ)]}(x − x′) ∼ {F−[(∂kFfδ)(∂jFfδ)]}(x − x′).

But the product (∂kFfδ)(∂jFfδ) is symmetric in k and j while Bjk is antisymmetric, hence
the sum gives zero.

Thus we see that in this case, the linear term disappears without having to appeal to the
arithmetic mean, as we did in (2.9). By performing the same type of analysis as before in order
to deal with the quadratic terms, we obtain in particular that

|E(ε) − E(0)| � C‖T‖2(δ2 + |ε|2/δ2).
Choose δ = |ε|1/2 and the proof is over.

Slowly varying magnetic field. In this case, the antisymmetric form entering the flux formula
(1.3) is of the form B(ε ·), while the total magnetic field perturbation is εB(ε ·). Also, φ±εA

has to be replaced with φ±Aε . Again, the only obstacle in getting the Lipschitz behaviour is
the linear term as before. Let us show that we have the bound∣∣∣∣∫

Rd

Fδ(x,y)Fδ(y,x′)Φ±εBε(x,y,x′) dy
∣∣∣∣ � C|x − x′| |ε|2/δ2. (2.23)

Indeed, using (1.3) and Taylor’s formula, we have∣∣∣∣∣∣ΦεBε(x,y,x′) − ε

2

∑
j,k

Bjk(εx)(yj − xj)(x′k − yk)

∣∣∣∣∣∣
� C|ε|2|〈x,y,x′〉|(|y − x| + |y − x′|).

The contribution coming from ε
∑

j,k Bjk(εx)(yj − xj)(x′k − yk) is zero, as in the constant case.
The right-hand side can be bounded by

C|ε|2|x − x′||x − y|(|y − x| + |y − x′|)
term having a polynomial growth which introduced in the integral will generate a diverging
factor δ−2. Note that |x − x′| can be coupled later on with K(x,x′). Having proved (2.23), the
estimate we get in the end is

|Eε − E0| � C‖T‖1|ε|2/δ2 + C‖T‖2(δ2 + |ε|2/δ2)
which gives the Lipschitz regularity by again taking δ = |ε|1/2. The proof is over.

3. Proof of Corollary 1.2

It was proved in [26] that the magnetic quantization associated to the vector potential A
is a topological vector space isomorphism S ′(Ξ) → B(S (X );S ′(X ∗)). We have also given
the explicit form of this isomorphism by constructing the distribution kernel associated to a
symbol. More precisely, let us denote by SW : X 2 → X 2 the linear isomorphism SW (x,y) :=
((x + y)/2,x − y), by S∗

W : S ′(X 2) → S ′(X 2) its transposed map S∗
W (F ) := F ◦ SW and by

F : S ′(X ) → S ′(X ∗) the Fourier transform (normed in order to give a unitary map L2(X ) →
L2(X ∗)); we shall denote its inverse by F−. Then the map KW := S∗

W ◦ (1⊗F−) : S ′(Ξ) →
S ′(X 2) is a bijection associated to any ‘symbol’ on Ξ an ‘integral kernel’ on X .
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We denote by TK : S (X ) → S ′(X ) the operator associated to the integral kernel K ∈
S ′(X 2), that is,

〈v, TKu〉 := K(v ⊗ u) ∀v, u ∈ S (X ),

or formally

(TKu)(x) :=
∫
X
K(x, z)u(z) dz.

Then we have the equality

Op(F ) = TS∗
W ◦(1⊗F−)F ∀F ∈ S ′(Ξ).

We make the important observation that the magnetic quantization can be expressed as

OpA(F ) = TeiφA S∗
W ◦(1⊗F−)F ,

where φA(x,y) = −
∫
[x,y]

A. If K := S∗
W ◦ (1⊗F−)F , then the ‘magnetic integral kernel’ of

[11, 29, 30] is

KA(x,y) = eiφA(x,y)K(x,y).

Thus we have an explicit way of transferring results and formulas between the two repre-
sentations, working with the one which is more suitable for a given problem. The magnetic
pseudodifferential calculus developed in [21, 22, 26, 27] is an equivalent formulation of the
calculus with magnetic integral kernels proposed in [9, 11, 29–32], the equivalence being
realized through the application taking a symbol into the distribution kernel associated to the
pseudodifferential operator the symbol generates.

3.1. Decaying symbols

Using Proposition 1.3.3 from [1] and its variant given in [27], we see that for any symbol F
of the type St

1(Ξ) with t < 0, its partial inverse Fourier transform (1⊗F−)F is a function for
which there exists a constant C such that

sup
x∈Rd

|[(1⊗F−)F ](x,x′)| � C|x′|−d−t, x′ �= 0,

and has rapid decrease in the second variable (thus in x − y for the kernel). Thus through
our identification discussed above, it defines an integral operator with a kernel of class C N for
any N ∈ N (see Definition 1). Thus for this class of symbols, the Corollary is an immediate
consequence of Theorem 1.1.

3.2. Periodic symbols

For any λ ∈ S0
Γ∗

, we denote by λ̃ := (1⊗F−)λ and, taking into account the theorem in [20]
concerning the Fourier transform of periodic distributions and denoting by Γ ⊂ X the dual
lattice of Γ∗, we obtain

(OpA(λ)u)(x) =
∑

γ′′∈Γ

ΛA(x,x − γ′′)λ̃(γ′′)u(x − γ′′) (3.1)

and the operator OpA(λ) has the distribution kernel

KA
λ (x,y) :=

∑
γ′′∈Γ

eiφA(x,y)λ̃(γ′′)δ(x − y − γ′′) (3.2)

with λ̃(γ) having rapid decay with respect to γ ∈ Γ.
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There exists a d-dimensional parallelepiped Ω such that every x ∈ R
d can be uniquely

represented as γ + x, with γ ∈ Γ and x ∈ Ω. We can see OpεA(λ) as an operator in

l2(Γ;L2(Ω)) ∼ l2(Γ) ⊗ L2(Ω), OpA(λ) = {Tγγ′}γ,γ′∈Γ, Tγγ′ ∈ B(L2(Ω)),

where the operator Tγγ′ has the distribution kernel

Tγγ′(x, x′) := KεA
λ (γ + x, γ′ + x′) = eiφεA(x+γ,x′+γ′)λ̃(γ − γ′)δ(x− x′).

We see that Tγγ′ is a multiplication operator

L2(Ω) � f �−→ [Tγγ′f ](x) = eiφεA(x+γ,x+γ′)λ̃(γ − γ′)f(x) ∈ L2(Ω).

Consider the unitary operator

Uε : l2(Γ) ⊗ L2(Ω) �−→ l2(Γ) ⊗ L2(Ω), [UεΨ]γ(x) := eiφεA(γ,x+γ)Ψγ(x).

The operator

T ε := Uε OpεA(λ)U∗
ε , [T ε

γγ′f ](x)

= eiφεA(γ,x+γ)eiφεA(x+γ,x+γ′) eiφεA(x+γ′,γ′)λ̃(γ − γ′)f(x)

will have the same spectrum as OpεA(λ). Define the operator

T̃ ε = {T̃ ε
γ,γ′}γγ′∈Γ, T̃ ε

γγ′ = eiφεA(γ,γ′)λ̃(γ − γ′)1.

The following estimate

|φεA(γ, x+ γ) + φεA(x+ γ, x+ γ′) + φεA(x+ γ′, γ′) − φεA(γ, γ′)|
� |ε|C(|〈γ, x+ γ, x+ γ′〉| + |〈γ, x+ γ′, γ′〉|)

is a consequence of (1.6) applied twice. We observe that since Ω is bounded, the areas of both
triangles are bounded from above by |γ − γ′|. Using a Schur–Holmgren-type bound, we obtain
that

‖T ε − T̃ ε‖ � C|ε|
∑
γ∈Γ

|λ̃(γ)| |γ|,

which shows that the spectrum of OpεA(λ) is at an |ε|-Hausdorff distance from the spectrum of
T̃ ε. Hence the spectral edges of OpεA(λ) have the same regularity as those of T̃ ε. The operator
T̃ ε is independent of the x variable, and we have

T̃ ε = t̃ε ⊗ 1, t̃ε = {t̃εγγ′}γ,γ′∈Γ ∈ B(l2(Γ)), t̃εγγ′ = eiφεA(γ,γ′)λ̃(γ − γ′).

Hence it is enough to study the spectral edges of the discrete operator t̃ε acting on l2(Γ),
which is exactly of the form previously considered in [11, 30]. Although the Lipschitz behaviour
up to the logarithmic factor is essentially proved in [30], let us show how one can modify the
proof of our Theorem 1.1 in order to cover the discrete case.

First of all, the space C α introduced in Definition 1 will now consist of operators t ∈ B(l2(Γ))
for which

‖t‖α = max

⎧⎨⎩sup
γ∈Γ

∑
γ′

|tγγ′ |〈γ − γ′〉α, sup
γ′∈Γ

∑
γ∈Γ

|tγγ′ |〈γ − γ′〉α dx

⎫⎬⎭ <∞.

The proof of Theorem 1.1 remains true if the following replacements take place:

(i) x ∈ R
d and x′ ∈ R

d are replaced by γ ∈ Γ and γ′ ∈ Γ;
(ii) the corresponding integrals over R

d with respect to dx and dx′ are replaced by sums
over Γ;

(iii) L2(Rd) is replaced by l2(Γ).
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Note the important fact that the integration with respect to y must not be replaced with a
discrete sum.

We conclude that the spectral edges (and the norm) of t̃ε (hence OpεA(λ)) obey the
estimates announced in Corollary 1.2, where the constants are proportional with the quantity∑

γ∈Γ〈γ〉2|λ̃(γ)|. The proof is over.

Acknowledgements. Both authors thank Gheorghe Nenciu for many illuminating
discussions.
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18. B. Helffer and J. Sjöstrand, ‘Equation de Schrödinger avec champ magnétique et équation de Harper’,
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