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Abstract

Nowadays, consumers are demanding customized products, contrary to mass
produced ones. This demand needs to be satisfied directly at the manufactur-
ing level, and requires transformable manufacturing systems. The pinnacle of
flexibility in manufacturing is human labor; however, this is not economically
viable in high-wage countries. The alternative is the advancement of robot-
based automation technologies, towards robots that are flexible and easily re-
purposed or reconfigured. We argue that this can be achieved through the use
of general, object-centered robot skills.

This dissertation focuses on the implementation and uses of a robot pro-
gramming paradigm, focused on robot skills, that facilitates intuitive and ex-
plicit task-level programming by laymen, such as factory workers, as well as
ad-hoc task planning in the skill domain.

We start by giving an overview of the uses of skills, and why the skill-based
programming paradigm is an important next step in industrial robotics. We
present a conceptual model of a robot skill, that incorporates both sensing
and action operations, by leveraging appropriate primitives that perform these
operations. A robot skill is parametric in its execution; able to estimate if it
can be executed in a particular instant; and able to verify whether or not it
was executed correctly. This means that the model assumes the important
property of self-sustainability, meaning that the skill can “stand alone,” as
well as be concatenated with other skills to form more complex tasks, or robot
programs.

We show how the skills can be implemented on a robot by leveraging state
of the art primitives available from the robotics community, as well as ad-hoc
implemented ones. Since the skills are combinations of primitives, we show
that by maintaining the interfaces to these primitives within the skill, they
can be transferred to different robots with relative ease. We also show that it
is sufficient to implement skill-relevant world knowledge, e.g. knowledge of
those objects in the scenario that can be used as input for the skills.

Since a task is a sequence of skills, using the skills for task programming
is a matter of specifying both the sequence and the input parameters for each
skill. We demonstrate how this can be achieved through a combination of
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Abstract

a touchpad GUI and human gesture recognition. The sequence is created in
the GUI, and the parameters are specified simply by pointing at objects to
manipulate. Experiments reveal that this approach is intuitive, even for robot
novices, and programming a complete transportation task can be done in as
little as 2 minutes by inexperienced users.

The preprogrammed task might be sufficient for some scenarios, or even de-
sirable when complete control over the skill sequence is necessary. However,
for most tasks it is sufficient to have the robot create tasks ad hoc through
task-level planning, given a desired goal. We demonstrate how the robot is
capable of doing exactly this, through a formal representation of the skills in a
planning language and the associated world model. In this case, a task speci-
fication simply becomes the desired setting of certain state variables, and the
system plans a sequence of parameterized skills that accomplish the necessary
changes in the world. Since the planning is carried out on the current state of
the world, we also show that execution errors and discrepancies between the
world model and the physical world can be overcome simply be replanning.

Overall, this dissertation shows that the use of robot skills is a valid solution
to applying transformable robot systems in factories of the future. Through
the use of general robot skills, the robot can handle a great variety of tasks in
the relatively limited scenarios in the industry. Since the skills are intuitive,
even for robotics novices, they can effectively be used for task programming,
when reprogramming of the robot is necessary. And since the skills contain
the necessary information for task planning, i.e. preconditions, predicted out-
come, and skill-relevant world knowledge, task programming can even be
automated, when it is desirable.

It is the firm belief of this researcher that industrial robotics need to go in a
direction towards what is outlined in this dissertation, both in academia and
in the industry. In order for manufacturing companies to remain competitive
in Western countries, where it is not possible to compete on salary, robotics is
the definite way to go – and current industrial robot systems are plainly too
difficult to program for new tasks on a regular basis.
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Resume
Dansk Titel: Robot-færdigheder til transformerbare produktionssystemer

Nu om dage forlanger forbrugere skræddersyede, i modsætning til masse-
producerede, produkter. Det er nødvendigt at dette behov bliver dækket
på produktions-niveau, hvilket kræver transformerbare produktionssystemer.
Toppunktet af fleksibilitet er menneskelig arbejdskraft; dog er dette ikke en re-
alistisk løsning ud fra en økonomisk betragtning i højtlønnede lande. Alterna-
tivet er udviklingen af robot-baserede automatiseringsteknologier, hen imod
robotter der er fleksible of nemt rekonfigurerbare. Vores argument er, at dette
kan opnås gennem brugen af generelle objekt-fokuserede robot-færdigheder.

Denne afhandling fokuserer på implementeringen og brugen af et robot-
programmeringsparadigme, der er fokuseret på robot-færdigheder, og som
muliggør intuitiv og eksplicit programmering på robotters opgave-niveau, og
ad hoc planlægning af opgaver, baseret på disse færdigheder.

Vi begynder med at give et overblik over brugen af færdigheder, og hvor-
for det færdigheds-baserede programmeringsparadigme er et vigtigt næste
skridt inden for industriel robotteknik. Vi præsenterer en konceptuel model
af en robot-færdighed, der indeholder både sansning- og handlingsprocesser,
ved at udnytte passende primitiver der udfører disse processer. En robot-
færdighed er parametrisk i dens eksekvering, i stand til at estimere om den
kan eksekveres korrekt på et givent tidspunkt, og i stand til at verificere om
den blev eksekveret korrekt. Dette betyder at modellen antager den vigtige
egenskab at den er selvbærende, hvilket betyder at færdigheden kan “stå
alene,” og desuden kan kombineres med andre færdigheder, og derved danne
mere komplekse opgaver eller robotprogrammer.

Vi viser hvordan færdighederne kan implementeres på en robot ved at ud-
nytte avancerede primitiver, både tilgængelige fra robotsamfundet og ad hoc
udviklede primitiver. Siden færdighederne er kombinationer af primitiver,
viser vi at ved at bibeholde interfacene til disse primitiver inden i hver fær-
dighed, kan de overføres til andre robotter relativt omkostningsfrit. Desuden
viser vi at det er tilstrækkeligt at implementere færdigheds-relevant kendskab
til verden, f.eks. kendskab til de objekter i miljøet der kan bruges som input
til færdighederne.

v



Resume

Siden en opgave er en sekvens af færdigheder kan færdighederne bruges til
at programmere opgaver ved at specificere både sekvensen af færdigheder, og
deres parametre. Vi demonstrerer hvordan dette kan opnås ved at bruge en
kombination af et touchpad-interface og genkendelse af operatørens positurer.
Sekvensen specificeres i interfacet, og parametrene specificeres enkelt ved at
pege på objekter der skal håndteres. Eksperimenter afslører at denne frem-
gangsmåde er intuitiv, selv for nybegyndere i robotteknik, og programmering
af en komplet transport-opgave kan udføres på blot 2 minutter af uerfarne
brugere.

En forudprogrammeret opgave kan være tilstrækkelig i nogle situationer,
eller sågar ønskelig når komplet kontrol over sekvensen af færdigheder er
nødvendig. For de fleste opgaver er det dog tilstrækkeligt at få robotten til at
planlægge opgaven, givet et ønsket mål. Vi viser hvordan robotten er i stand
til at gøre præcist dette, gennem en formulering af færdighederne i et formelt
planlægningssprog og den tilknyttede kendskab til miljøet omkring robotten.
I dette tilfælde bliver en opgavespecifikation udelukkende en specifikation
af værdien af bestemte variable, og systemet planlægger selv sekvensen af
færdigheder, og deres parametre, der udfører de nødvendige ændringer i den
virkelige verden. Siden planlægningen udføres baseret på den nuværende til-
stand af området omkring robotten, kan robotten også håndtere eksekverings-
fejl og uoverensstemmelser mellem den modelerede og den virkelige verden,
ved at lave en ny plan.

Alt i alt viser denne afhandling at brugen af robot-færdigheder er en gang-
bar løsning til at implementere transformerbare robotsystemer i fremtidens
fabrikker. Gennem brugen af generelle robot-færdigheder kan robotten hånd-
tere en lang række opgaver i det relativt begrænsede scenarie i industrien.
Fordi færdighederne er intuitive, selv for nybegyndere i robotteknik, kan de
effektivt bruges til programmering af opgaver, når robotten skal omprogram-
meres. Og siden færdighederne indeholder den nødvendige information for
at kunne planlægge opgaver, dvs. formelle betingelser før og efter eksekver-
ing, samt færdigheds-relevant viden om miljøet omkring robotten, kan pro-
grammeringen af opgaver automatiseres, når det er ønskværdigt.

Det er denne forskers faste overbevisning at industriel robotteknik bliver
nødt til at bevæge sig imod hovedtrækkene i denne afhandling, både inden
for den akademiske verden, og den industrielle. For at produktionsselskaber
kan forblive konkurrencedygtige i vestilige lande, hvor det ikke er muligt at
konkurrere på lønninger, er robotteknik vejen frem. Og nuværende indus-
trirobotter er ganske simpelt for vanskelige at omprogrammere jævnligt til at
udføre nye opgaver.
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Introduction

Nowadays, consumers are demanding customized products, contrary to mass
produced ones; for instance, it is possible to completely configure and order
a car in your web browser. This demand needs to be satisfied directly at the
manufacturing level – which raises the need for transformable manufacturing
systems that can be reconfigured, or even repurposed, when necessary. The
only way to satisfy this demand is currently by having a high degree of hu-
man labor, which is not cost efficient, especially in high-wage countries. In
these countries, manufacturing companies must instead rely on, and imple-
ment, complex automation equipment, such as robots. Furthermore, in nearly
all production facilities there are humdrum, trivial tasks, like transportation,
inspection or part feeding, that are still handled by human workers – simply
because they are too difficult to automate. This project aims to do something
about that.

1. Background

Manufacturing in Western countries is facing serious challenges, and has been
for quite some time. Todays manufacturing paradigm is shifting from mass
production to mass customization, requiring transformable production facili-
ties that can rapidly accommodate changes in production volume and product
variety due to volatile global markets. Hartmann [1–3] defines transformabil-
ity as

• fast, active adaptation of structures to unforeseen changes in tasks and

• the possibility to evolve structures responding to foreseeable and con-
stantly changing requirements.

Currently, the use of automation technologies such as robots can not fully
satisfy this production paradigm and sustain a transformable production. The
alternative is human labor, which is easily scalable and reconfigurable – how-
ever, this is a too expensive alternative in high-wage countries. As a conse-
quence, manufacturing companies are in many cases forced to outsource the
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Introduction

production to low-wage countries, in order to remain competitive on todays
global market.

Current automation lines, although highly efficient, are usually very inflex-
ible, due to fixed layouts of the factory and locations of manufacturing equip-
ment, such as robot cells, conveyors, etc. Even mobile robots or AGVs1 in
the industry are relatively inflexible, in that they usually follow fixed paths
or markers on the factory floor, that are difficult to change. These automa-
tion technologies are thus difficult, time-consuming and expensive to adjust
with respect to production volume and product variety. Furthermore, since
they require expert knowledge to integrate and maintain in the manufactur-
ing system, start-up manufacturers, or manufacturers with low throughput,
are reluctant, and in some cases even afraid, to introduce robots in their facto-
ries.

One metric for measuring the productivity of production systems is the
Overall Equipment Efficiency (OEE). This 3-tier metric specifies the efficiency
of a production system, with one tier focusing on availability of production
equipment, calculated as planned uptime vs. unscheduled downtime of the
equipment. If this metric is applied to current robot systems in factories that
strives to be transformable, calculated as ideal runtime vs. programming time,
it would result in a poor ratio, especially in periods where new products are
introduced.

It is essential that the automation lines in factories of the future can eas-
ily be adjusted to accommodate changes in production demand. It is a clear
need that an advancement of robot-based automation technologies is neces-
sary, to enable manufacturing companies to overcome the issues presented
above. This will enable production to remain in high-wage countries, while
maintaining global competitiveness of the manufacturing companies. This
need calls for robots that can be rapidly and effortlessly adjusted or even re-
purposed to solve new tasks in the factories – without having to stop the com-
plete automation line, so an expert robot integrator can reprogram the robot.
However, these robots are simply not available in todays markets.

2. Motivation

Currently, industrial robots are notoriously difficult to program. Usually the
robot is equipped with a form of Teach Pendant (see Fig. 2.1a), which the ex-
pert robot integrator can use to program simple motions of the robot arm

1Automated Guided Vehicles
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or input/output signals to external production equipment, usually in some
proprietary programming language. It is only in recent years that industrial
robot manufacturers have started addressing the issue of intuitive program-
ming of industrial robots, the most prominent examples being the compliant
robot arms from Universal Robots, or more recently the Baxter robot from Re-
think Robotics (Fig. 2.1b). These are both examples of addressing the needs of
industrial robots that are intuitive to use, and both are currently very popu-
lar, since they are somewhat satisfying the demands outlined in the previous
section. However, they are still stationary robots, and it still takes significant
training to use these systems.

(a) KUKA KCP2 [4]
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(b) The Baxter robot [5]

Fig. 2.1.: A standard proprietary teach pendant, the KUKA KCP2, and the Baxter Robot from
Rethink Robotics.

Let us instead give a motivating example of the ideal robots for the factories
of the future. Consider the scenario visualized in Fig. 2.2, showing two mobile
manipulators working alongside factory workers. These are not typical indus-
trial robots, performing the same sequence of motions repetitively in the same
location, and requiring expert knowledge and experience to program. These
particular robots are handling a variety of tasks, exactly when it is needed;
tasks such as transporting parts to stations that need them, loading assembly
machines and inspecting the quality of produced products. The robots are
working alongside factory workers, that use the robots like any other tool at
their disposal, and instruct the robots much like they would instruct a fellow
worker, allowing the human workers to avoid mundane or even unhealthy
tasks.

From a roboticist’s point of view, there are several essential and interesting
questions regarding the particular robots from the example:

• How can a robot be designed and programmed to handle such a variety
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Fig. 2.2.: Two mobile manipulators working alongside factory workers

of tasks?

• How can a robot be instructed to complete new tasks, previously un-
known to it?

• Who is able to instruct a robot to do these tasks?

• How is a robot able to act and react in a human-populated environment,
which is prone to disturbances?

In this dissertation, we will focus on how to make it possible for laymen,
inexperienced in robotics, to program tasks like the ones mentioned in the ex-
ample, or to completely offload the programming effort by automated plan-
ning. This should be possible on, in principle, any robot, and not just specific
robots with specific capabilities. We argue that the key to this is the integra-
tion and use of a small set of general robot skills, that can be concatenated to
form a great variety of tasks.

Essentially, we see skills as the general building blocks that make up a robot
program, where skills themselves can be compiled from simple motion and
sensing operations. As skills contain sensing and motion, they are focused on
objects, rather than e.g. 3D coordinates. This also makes them intuitive for the
factory workers that will use the skill in everyday scenarios. If object-centered
skills such as pick object or drive to location exists on the robot, they can be
concatenated to form more complex behavior of the robot system. Complete
robot programs, or tasks, then simply become sequences of skills, that aim to
solve a given goal in the factory, e.g. “bring pallet with part P1 to machine A” or
“insert part P2 in machine C and start it”. As an experimental platform we use
a mobile manipulator built from standard industrial components; the Little
Helper.
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2.1. The Little Helper concept

Research in mobile manipulation has been carried out all over the world since
the late 1980s, especially so during the past decade, and many prototypes have
been built. Implementation of mobile manipulators in the industry is some-
what lacking, since these are all mainly prototypes, concentrated on specific
scenarios, and as such have not been tested extensively in real-world indus-
trial scenarios [6].

At Aalborg University, the mobile manipulator Little Helper (LH) has been
developed in 2008 [7], and has been further improved since then. A new ver-
sion, named Little Helper Plus (LHP), has been developed in 20112, incorpo-
rating the KUKA Light Weight Robot [8]. Both models have been tested in
a real industrial scenario at a production facility at Grundfos A/S, a Danish
pump manufacturer, and was one of the most advanced tests of mobile ma-
nipulators in a real industrial environment at the time [6]. The programming
time for this demo was, however, very high, which emphasizes the need for
robot programming paradigms that facilitate fast programming.

Some of the most advanced mobile manipulators (e.g. TUMs ROSIE, DLRs
Justin, Fraunhofers Care-o-bot or Willow Garages PR2) are mainly humanoid
service robots, which by far is the most prevailing research focus in mobile
manipulation across the world. Although all of them are highly advanced
systems, both regarding software and hardware, the problem regarding easy
programming of them and interaction with them persists. This project aims
towards easy programming of advanced mobile manipulator systems, so they
can be useful in practical domains in the industry, and not just robotics re-
search.

3. Related work

Skills and primitives To establish a fitting representation of robot skills for
task-level programming has been the focus of research around the world [9–
16]. The various concepts of skills is quite different, but most of them are com-
posed of primitive, formal descriptions of sets of robot motions, called action
or motion primitives. These primitives are simple, atomic robot movements
that can be combined to form more complex behavior [17–22], which is often
called a robot skill. As such, no single, unified definition of a skill in terms of
robotics exists. Furthermore, none of these skill representations are focused
on being easy to use and understand for laymen, but rather for experts in the

2Incidentally, by this researcher
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field of robotics. We argue that this is an important aspect of a robot skill for
industrial purposes, and pursue this argument in this dissertation.

The primitives that make up a skill [13, 14, 16] are rather well defined in
the robotics community. Although several different descriptions exist, most
of them loosely follow Mason’s work on compliant controllers [23], which
paved the ground for the Task Frame Formalism (TFF) introduced by Bruyn-
inckx and De Schutter [24, 25]. Recent work has expanded upon this idea,
for instance enabling the use of any sensor and controller in the same task
frame (e.g. visual servoing combined with force control), and operating in a
dynamic task frame [26–28].

Most recent work on motion primitives seem to utilize a variation of the
Dynamic Movement Primitives (DMPs) described in [29–31]. The DMPs spec-
ify a single movement, and represents the desired kinematic state of a robot
limb (or alternatively in the task space) as a mixture of non-linear differential
equations. The DMPs have mainly been used for mapping human to robot
motion in research in Teaching by Demonstration.

The concept of skills presented in this paper is comparable to the manipula-
tion primitive nets, described best in [27]. These nets are sequences of manipu-
lation primitives (MPs), with simple decisions based on the outcome of each
single MP in the net. In these nets, however, each MP needs its own explicitly
specified parameters, e.g. a specific force or velocity in a specific direction.
This makes this particular implementation unsuitable for robotics novices in
a factory hall. Instead, we propose a method for specifying parameters on a
higher level, the skill level, and instead letting the system infer the parameters
for the lower level primitives.

Another relevant skill-concept is the Action Recipes of RoboEarth [32, 33].
However, in RoboEarth, the skills (or Action Recipes) keep sensing and action
separate. With its focus on knowledge sharing between robots, the Recipes
(robot programs) in RoboEarth rather require some capabilities of the robot,
such as object recognition and environment models, and the Recipes are only
action based. There are additional features that this approach lacks; a formal
description of which conditions the program will work under, i.e. precondi-
tions, and a description of the effects of executing the program, i.e. the post-
conditions.

A solution to this could be to associate the program with a skill description
template, as in SKORP [34] – an approach to skill-based robot programming
using a graphical representation of skills, where the skill template serves as
a communication tool between the skill developer and the task programmer.
However, the pre- and postconditions need to be connected to the real robot,
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i.e. to be testable before they actually justify their existence.
Common for all the previous work, is that they have all, in one way or

another, been insufficient to deploy in a real industrial setting, and require
expert knowledge of the robot system to use and implement. This work will
focus on the formulation of skills, and the use of these for task programming
by laymen in industrial environments.

Human-Robot Interaction (HRI) for Industrial Robots HRI is a field, which,
for industrial applications, is heavily influenced by tradition. As such, nearly
all industrial robots are programmed in a native robot programming language,
on a small teach pendant attached directly to the robot controller, with specific
commands for motion, input/output etc.

The use of robot skills for intuitive programming in the industrial context is,
quite interestingly, not gaining much attention from the research community.
When it comes to programming of industrial robots, research focus seems to
be on offline programming by using CAD models [35–37] or online program-
ming using augmented reality (AR) [38–40]. Both of these approaches, how-
ever, do not address the issue of transformable robots, but rather methods
for creating traditional robot programs that perform repetitive motions with
limited sensing.

One method is to create a graphical programming interface (GPI) for the
operator, where he/she can drag and drop predefined skills into a sequence,
and specify the parameters for them. This has been carried out on an exper-
imental state as part of the PACO-PLUS project [41], and will also be carried
out in this project in a similar way.

Researchers have also combined skill primitives and speech recognition for
programming grasping tasks by speech [42], with other work presented in
[43, 44]. This work incorporates task programming using a combination of
human tracking, a user interface, speech recognition and AR to program a
packaging robot. However, the programming is a combination of primitives,
with no higher-level skills between these and the task layer, and it is yet to be
shown how well this system performs in real industrial scenarios.

To advance the field of HRI in the industrial context requires in part intuitive
interfaces and methods for programming the specific skills, as well as for task-
level programming. The problem is to design the interface so it is intuitive
for the user, i.e. an engineer/specialist for skill-level programming and an
operator for task-level programming.
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Task Planning Research on task-planning has been around since industrial
robots were first introduced - in fact it was not that long after the introduction
of industrial robots that researchers realized this would be a necessary next
step in robotics. The most famous of the earliest attempts on task planning
was using the STRIPS planner [45], and many other algorithms has followed,
based on the same ideas, in that they act on a set of actions that alters the
current world state [46, 47]. This includes breaking down assembly tasks into
some form of manipulation primitives the robot can interpret [48].

Task planning often uses motion primitives as the planning domain [46, 49,
50], where the focus seems to be on representing capabilities, or primitives, of
the robot so they can be used for planning. The system then tries to plan a
complete task from the primitives.

A layered structure of skills and tasks similar to ours is also proposed in
[51]. Focus is still planning on the task level, and by utilizing somewhat gen-
eral skills and skill primitives. The implementation of said skills is however
at its current state rather simplistic.

The problem with modeling the world state, and maintaining this model,
persists in these cases. One approach was to use logic programming to de-
scribe available robot actions and their results, using the situation calculus
[52, 53]. In the situation calculus, the world state is only dependent on an ini-
tial state and the actions performed by the robot. This approach did however
lack the interfacing to the actual robot, something GOLEX [54] overcame, al-
though for a very simple scenario. Recent work however suggests to use logic
programming for more advanced scenarios, somewhat resembling skills [55].

In this work have planning in mind from the beginning, which will result
in a skill formalization and world knowledge that will immediately be usable
for planning.

4. Research objectives

The main objective of this PhD project is to investigate intuitive methods of
task-level programming and planning on a mobile manipulator. The approach
to do this is by utilizing a set of general robot skills, which can be concatenated
to form tasks, or complete robot programs.

The first part of this objective is to formulate and implement the skills that
allows intuitive programming and task planning. These skills need to unify
sensing and action - no specifications of coordinate frames or controller set-
tings should be necessary, as this is not easily understandable by people inex-
perienced in robotics. Therefore, skills should not merely be macros or func-
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tions, that perform some operation on the robot system based on numeric in-
put. Instead, the skill must internally handle the necessary computations that
allow the skill to be applied on objects instead.

Secondly, a clear part of the objective is to investigate methods for robot pro-
gramming by using a) a set or sequence of motion primitives to create skills,
and b) the robot skills to create tasks, where the main emphasis will be on the
latter. The goal is to provide an intuitive method for specifying the sequence
of skills, and their parameters, to solve a task in a factory. The keyword here is
intuitive, so that the tasks can be programmed by unskilled shop-floor work-
ers.

The final part of the objective is to use the skills for task planning. Since
humans are programming the skills, we are effectively abstracting away the
lower level aspects of traditional task-level planning (which is usually done
on some formal representation of motion primitives). This results in a lower
dimension of the planning space, since we are doing task-level planning on
the (human-specified) skills instead. Thus, we expect that task-level planning
could be implemented in a useful manner, if the planning is done on the skills,
which is also to be investigated.

The above aspects of the objective can be summarized in the following sci-
entifically important research question:

How can a robot programming paradigm focused on general, object-centered
robot skills be modeled, implemented and used for intuitive task-level pro-
gramming and ad-hoc task-level planning of full robot programs/tasks?

The research question can be expanded into the following intertwined re-
search objectives:

• Determine the appropriate abstraction level of the implementation of
skills, that facilitates both an interface between the low-level robot mo-
tion primitives, and the higher levels of task planning and program-
ming, error handling and ease of use.

• Investigate methods of interacting with the robot during task program-
ming, i.e. intuitive specification of new tasks, utilizing the robot skills.

• Describe and maintain the skill-centered world model in the robot, i.e.
in a manner that facilitates planning on the skill level.

• Investigate the use of skills for task-level planning, based on the above
world model, so that only a desired goal setting of the world state is
necessary to specify a task to the robot.
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In approaching the above objectives, we are not only interested in whether or
not the proposed methods work, but also how well they perform. Therefore,
we ask the additional scientifically important questions:

• To what extent can the programming of robot skills be simplified, in
order to easily expand the usability of the robot system?

• To what extent can a finite sequence of parametric skills be used to de-
scribe a robot program, i.e. a task?

• To what extent is it possible to automate the programming of tasks on
the robot?

5. Research methodology

With respect to the project objectives, several steps need to be carried out,
many of which are highly focused on implementation, as is often the case in
robotics. Implementation will be carried out bottom-up, i.e. by starting with
a clear formalization but simple implementation of the skills, composed of
lower-level primitives. These skills will later be expanded to include the ca-
pabilities that are necessary for task-level programming and planning. This
leads to an overall sequential work methodology, yet iterative in the form of
expanding the findings in each point as the complexity of the problem in-
creases. The work methodology is visualized in Fig. 5.1.

Skill formalization

Paper A

Initial implementation

Paper B

Task-level 

programming

Paper C

Automated task 

planning

Paper D

Fig. 5.1.: Progression of work during the project. Lighter colors show the order of addressed top-
ics, and darker colors show the output. After the initial skill implementation, the imple-
mentation is revised and updated in each of the following blocks.

The skill formalization should already from the beginning contain the as-
pects that make it possible to use them for task programming and planning.
However, the implementation of skills on the robot will be expanded iteratively,
to include these aspects when they are needed in the process. This includes
pre- and postconditions, but also intuitive parameter inputs.

At first, it will be sufficient to make a simple implementation of skills, such
as a pick and place task without complex contact mechanisms in the lab. This
will provide a good starting point for learning how to define parametrized
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5. Research methodology

skills and primitives and to implement them on the robot. Later this can be
expanded to more advanced cases, such as serving a feeder, which is essen-
tially a pick and place task, where the robot has to drive between two loca-
tions. Finally, the implementation of the necessary skills to solve a majority of
logistic tasks can be tested. This will be done as a mock-up in the lab, prior to
experiments at a real production line.

Experiments will need to be carried out in the lab, in order to ensure they
work in a controlled mock-up of the scenario at hand. This is also beneficial
in revealing aspects that are not thought of beforehand, but are required for
the function of the skills. However, it is crucial that the skills are verified and
tested in real environments. As part of the project, actual demonstrations at
real production facilities are also carried out, which will test the setup under
realistic conditions.
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Summary of contributions

This chapter summarizes the papers that make up the main body of the thesis.
In each section we will summarize the main contributions of the specific paper,
and highlight the process that connects it to the following papers. Finally, we
will give a short summary of the principal results of the body of work as a
whole.

6. Paper A
Robot Skills for Manufacturing: from Concept to Industrial Deployment

In this work we thoroughly introduce the reader to the problem at hand, and
why we believe robot skills is part of the solution to this problem. The reader
is introduced to the skill concept, and how skills can be used to construct
higher level tasks. The paper summarizes most of our experiments with skills
and task programming, tested both in lab settings and real production facil-
ities. The key points in this paper is the motivation for using skills, and the
introduction of the skill model and architecture of primitives, skills and tasks.

We summarize the current challenge in manufacturing; to have a produc-
tion facility that is highly responsive to change in product variety or volume.
We argue that having a robot fleet equipped with general skills is the answer
to this challenge. Skill-equipped robots can handle a variety of tasks that are
currently performed by humans, simply because they are too difficult to auto-
mate. This conclusion is reached from an analysis of task instructions given to
the factory workers. These are in the form of Standard Operating Procedures
(SOPs), and we show that all of these SOPs can be decomposed into sequences
of 13 reoccurring, object-centered operations, which we call skills.

A conceptual model of a robot skill is then presented, showing a skill that
is parametrizable, and changes the internal representation of the state of the
world, either through sensing or action. Skills need to contain both sensing
and action in order to be applied on abstract parameters like objects, rather
than 3D coordinates. Furthermore, the skill model contains both a formal de-
scription of preconditions and predicted outcome, and methods that verify
these, either based on the world model or ad hoc sensing. This is important
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both for robustness, and to allow the future extension of task planning on the
skill domain.

The conceptual model is shown in Fig. 6.1. This particular model is more
in-depth than the models included in Papers B, C and D, and is the final ver-
sion of the visual representation of a robot skill, incorporating all of the above
aspects.
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Fig. 6.1.: Conceptual model of a robot skill. The preconditions and prediction (blue blocks) are
informative aspects of the skill. The checking procedures (yellow) verifies the informa-
tive aspects before, during and after execution (orange). Execution is based on the input
parameter and the world state (red), and the skill effectuates a change in the world state
(red).

We present a three-layered architecture for a skill-equipped robot, contain-
ing a primitive, skill and task layer. Primitives are the fundamental sensing or
motion operations that the robot can perform – such as opening or closing a
gripper or detecting objects in the current field of view. Skills are composed of
these primitives. Tasks are sequences of skills, that aim to solve a specific goal
in the factory, and are composed of skills, either through direct task program-
ming or through task planning, both of which is the focus of the following
work.

We show several experiments with skills as self-contained components, as
well as experiments with task programming using e.g. kinesthetic or gesture-
based teaching. The experiments are presented in summary form, to show the
wide array of use cases where the skills can be used. These experiments verify
the generality of skills, that they can in fact be used for a variety of tasks, and
are useful for task programming by laymen.

Furthermore, we show an array of use cases in real production environ-
ments, where complete robot systems are integrated in running production
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lines, using the implementation of skills and task programming methods out-
lined in the previous experiments.

Progression of work The purpose of this paper has been to formally intro-
duce the background and rationale of the skill concept to the wider academic
community. The paper thoroughly explains the skill concept, and an architec-
ture that permits task-level programming using these skills. The experimental
section is in the form of highlights of a range of experiments, including high-
lights of the following work. In the following we will give additional details
on the work carried out within skill implementation, task programming and
task-level planning, as well as present more advanced experiments in these
areas of the project.

7. Paper B
On the Integration of Hardware-Abstracted Robot Skills for use in
Industrial Scenarios

This paper presents the initial skill implementation, according to the skill
concept. The purpose of the work is to investigate the implementation of
skills, following the model presented in the previous paper, as well as a skill-
centered world model, and hardware abstraction of robot skills.

The focus is on hardware transferability, and we demonstrate how two skills
implemented on one robot, a PR2, can be transferred with relative ease to
a very different robot, the Little Helper. The skill implementation contains
world knowledge, pre- and postcondition checks, as well as object-centered
execution of the skill. What is still lacking in this work is the prediction of the
skills. The two robots used for experiments are shown in Figure 7.1.

We have implemented the pick up object and place at table (x, y)-position
skills. These are very complex skills, in that they require a high degree of both
sensing and motion to be sufficiently general, and we give a detailed outline
of the contents of these important skills.

The implementation leverages sensing primitives readily available from the
robotics community, that can detect common household objects, and shows a
skill-centered, database-like world model, containing previous observations
of these objects. Furthermore, we have implemented a Task-Frame Formal-
ism (TFF) [24, 25] controller primitive for accurate motions with contact-stop
mechanisms for the placing skill. This particular primitive is only running on
the PR2 robot, and we go on to demonstrate how the skills regardless can be
transferred to a different robot.
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(a) (b)

Fig. 7.1.: The two robots used for experiments: (a) the PR2 robot and (b) the Little Helper.

By implementing the same skill primitives on both robots, the skills are
directly transferable. However, we have found that this is not always pos-
sible, as different robots have different capabilities, as was the case in these
experiments. Instead, we have maintained the interfaces to the skill primitives.
For instance, for controlling robot arm movements, we simply give the corre-
sponding primitive a desired pose of the gripper. The PR2 then uses motion
planning to find a collision-free joint trajectory that moves the arm into the
desired position, while the Little Helper system simply relays the coordinate
to the robot controller, which essentially performs a blind movement of the
robot arm.

The paper shows that skills can be implemented with relative ease on a
robot that already has the necessary primitives. This was the case for the PR2
robot, where drivers for all mechanisms on the robot are readily available.
Since the initial work on the PR2 was related to the skill implementation it-
self, little attention was paid to hardware transferability. However, since the
fundamental primitives are the same (e.g. moving the arm or opening the
gripper), and require the same parameters (e.g. a joint/Cartesian pose or a
desired grasp width), transferring the skills to a completely different robot
like the Little Helper proved effortless.

Progression of work This work was highly focused on getting the skills to
work, and has showed how skills can be implemented. In fact, the method by
which the skills were implemented in this work forms the basis of the skills
used in all the following work. There are, however, some key differences. First
and foremost, since the focus of the following work is to investigate the use
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of skills for task programming, we restrict the generality, and thus complex-
ity, of the skills. The reason for this is simple – we want skills that are highly
robust. The second is that, out of necessity of having readable code, the skills
have a more well-defined interface to the primitives. Since this is not the fo-
cus of the following work, however, this will not be discussed further in this
dissertation.

8. Paper C
Intuitive Skill-Level Programming of Industrial Handling Tasks on a
Mobile Manipulator

In this paper, we present an intuitive method for task programming using a
combination of gestures and a touchpad-based graphical user interface. The
purpose of this is to investigate the use of skills for direct task programming,
and how intuitive this approach is for people inexperienced in robotics.

A total of three skills has been implemented, following the implementation
method outline in Paper B; pick up object, place at location and drive to loca-
tion. The implementation of the skills are not the focus of this work, and we
restrict the skill to manipulate small-load-carriers (SLCs), where the SLCs and
valid placing locations are marked by QR codes. The world model is a similar
skill-centric world model as in the previous paper, now containing previous
detections of QR codes. Whenever the robot detects a QR code, its location and
data is stored, or updated if the QR code has been previously detected near
the prior coordinate. We add advanced querying to the world model, such as
querying objects within a specific area, or of a specific type. This ensures a
robust and simple world model and set of skills, so the focus can remain on
the task programming method.

The task programming is divided into two steps; sequencing and teaching.
In the sequencing step, the outline of the task is constructed offline, on the
touchpad. The user has access to a list of the skills available on the robot, and
can drag and drop skills into the desired task sequence. The sequencing tab
in the GUI is shown in Fig. 8.1a. The teaching phase takes place online, where
the robot recognizes distinct gestures performed by the task programmer. This
makes it possible to specify parameters for each skill in the task sequence, by
simply pointing at objects or locations.

The teaching phase is modeled by a finite state machine (FSM), where the
performed gesture determines the state transition. During teaching, the user
has the possibility to cancel or acknowledge saved parameters, simply by per-
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forming specific gestures. Furthermore, the user can instruct the robot to fol-
low him/her around the environment, when necessary. During teaching, the
user is given feedback on the touchpad, showing the available gestures and
the current state of the teaching FSM (see Fig. 8.1b), as well as on a monitor
mounted on the robot, showing the status of gesture recognition.

(a)

(b)

Fig. 8.1.: Two of the GUIs available to the task programmer: (a) The sequencing tab of the touchpad
GUI, where skills are dragged to the desired sequence in the task, and (b) the teaching tab,
where the user is given feedback on the current state and available gestures.

The approach has been verified through experiments with a total of 17 peo-
ple, in two different environments. All users received a 10 minute introduc-
tion to the complete system, and programmed a task of moving SLCs between
two discrete locations – a mock-up of a machine tending task, where an SLC
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is filled with parts and needs to be exchanged with an empty one.
The sequencing step was immediately intuitive for all participants, show-

ing that the skills themselves are also intuitive. The teaching phase was per-
formed three times by all participants, to investigate the learning curve of the
approach. The teaching of the parameters, including navigating the robot to
the different locations, by having it follow the participant, was equally intu-
itive. The teaching phase only took between 2 and 7.5 minutes across partici-
pants, the mean time of all attempts being a little less than 3 minutes. Teaching
was notably reduced on the third attempt, showing a low learning curve for
the system. Furthermore, there were no major difference in programming time
between male/female participants or participants experienced/inexperienced
in robotics. The sequencing time and teaching times across three attempts for
all participants are shown in Figure 8.2.
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Fig. 8.2.: Box charts showing sequencing time (a) and teaching times (b) for all participants. The
black curve in (b) shows the mean teaching time for each attempt.

Progression of work This paper investigated how skills can be used to di-
rectly program a task on a skill-equipped robot. This might be sufficient for
robots working in smaller, semi-static environments, and perhaps even de-
sirable for tasks where the sequence of skills and their parameters is always
the same. But what about unstructured environments? What happens in the
case of only minor task-level disturbances or variability, when applying the
approach outlined above, e.g. when there is suddenly two SLCs at a location
instead of one, or no SLCs at all? The explicitly defined task is simply unable
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to deal with this, as the necessary pre- or postconditions will not be satisfied.
The following work aims to overcome this problem by introducing task

planning, based on the skills. This does not only have the benefit of being
able to deal with disturbances. It also allows the specification, or program-
ming, of a task to be limited to specifying the desired goal state, where the
exact sequence of skills and their parameters is determined online.

9. Paper D
Planning of Industrial Logistic Tasks in the Robot Skill Domain

This paper connects the execution of individual skills in a task with online task
planning, enabling the task programming to be limited to specifying a desired
goal setting of the (partial) environment. This enables much easier and faster
specification of a task, and the possibility for the robot to handle disturbances
at runtime, simply by replanning.

The key to ad hoc, online task planning on the skill level is not the skills
themselves. Since the skills already contains STRIPS-like information, i.e. in-
put parameters, preconditions and effects on the world, they are immediately
useful for planning. However, for online planning, the robot needs a model of
the state of the world, and to concurrently update this model. Furthermore, it
needs to be possible to translate this world model into a formal language like
PDDL3.

We expand the scenario from the previous paper, to include a mock-up of a
feeder at a production line, and several distinct locations. We add the ability
of the robot to empty an SLC in such a feeder, which is the unload in container
skill. Furthermore, we attach a small rack on the chassis of the robot, where
two SLCs can be placed at any time, enabling the robot to carry a total of three
SLCs (including one in the gripper). SLCs can be picked from the rack or
placed on it using the same two skills as for any other location. The scenario
is visualized in Fig. 9.1, and it should be clear that explicit programming of
advanced tasks in this scenario is no longer feasible.

Since we have already equipped the robot with a) a model of the world, de-
scribed in Papers B and C, and b) a set of skills, that loosely follow the STRIPS
formulation, we have the ingredients for applying online task-planning. In
order to specify the planning domain, we manually formulate the 4 skills in
PDDL, by specifying their valid input parameters, and preconditions and ef-

3Planning Domain Definition Language; the de facto language for defining planning domains
and problems
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Fig. 9.1.: Example logistic task of sorting boxes and tending to a feeder for a production line. Parts
are produced at the workstation and placed in boxes. Full boxes are green and empty
boxes are red. The robot can carry 1 box in the gripper, and 2 in a rack mounted on the
robot.

fects each expressed by a set of predicates, also formulated in PDDL. Only 9
predicates are necessary to model the (discretized) state of the world and the
internal state of the robot.

By utilizing three core components, we can now perform online task plan-
ning and execution. The first component is the world model parser, which trans-
lates the current, continuous world model and a manually defined desired
goal state into a PDDL problem specification. This problem is sent to a planner,
along with the planning domain, which is the set of skills mentioned above.
The planner outputs a sequence of skills and their exact parameters, which
transfers the current world state to the desired goal state – if a valid plan can
be found. The final component is responsible for making this happen on the
robot. This is the plan execution monitor, which handles the initialization of
each skill with the correct parameters, and in the right order. Furthermore,
the plan execution monitor will, in the case of errors, request a new plan from
the planner, and execute this instead. Finally, it verifies that the desired goal
state is satisfied after the last skill is executed.

We have tested the above approach by passing different goals to the robot,
always in the same initial state in a mock-up environment of a section of a
production line. The environment is shown in Figure 9.2. Furthermore, we
have introduced a number of disturbances during execution, such as remov-
ing an SLC from the gripper when the robot is driving between locations – in
all cases the disturbances can be handled by simple replanning, as the world
model is updated continuously by the skills.

The experiments reveal that planning using skills is possible based on the
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Fig. 9.2.: Environment used for planning experiments, with the feeder on the left, the robot in
front of the workstation, the two shelves and four boxes.

current world state. It is also obvious that this can be an effective way to in-
struct tasks to the robot, be it by a factory worker or from the MES4 at the
factory. Finally, both physical disturbances and discrepancies between the
world model and physical world can in most cases be overcome by simple
replanning.

10. Summary of results

The previous sections outline the approach of formalizing, implementing, and
using skills for task-level programming and planning. In Paper A we intro-
duce the reader to the skill concept, and the rationale behind this. We show
conceptual examples on the uses of skills for industrial robots, including skill
implementation and the use of skills for task programming. Furthermore, we
show several deployments of skill-equipped robot systems in running pro-
duction facilities.

The initial implementation of skills is presented in Paper B, where we also
demonstrate how the skills can be transferred between different robots. This
implementation concerns only two skills, and includes simple skill-centered
world knowledge, which is sufficient for the skills to function.

In Paper C we expand the skill library slightly, and demonstrate an intuitive
approach for direct task programming, using the skills as building blocks,
and a combination of a touchpad GUI and human gestures to specify their
sequence and parameters. This makes it possible for laymen to instruct even

4Manufacturing Execution System – central real-time system that relays information of the cur-
rent state of a production facility
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complex tasks to the robot system, simply by pointing at e.g. objects to ma-
nipulate.

Finally, in Paper D we argue that in some cases it is not desirable to com-
pletely specify the task, but rather specify the desired goal setting. We show
how the skills can be used for automatic task planning, execution and error
handling by replanning, by utilizing the skills’ STRIPS-like information, and
the associated skill-centered world model.

In Paper A, we argue that the skills effectuate a change in the world state,
either through sensing or action, or a combination of the two. It is thus nec-
essary for the robot to maintain a representation of the world state. In all the
work, we show that a skill-centered world model is sufficient. In fact, in Pa-
pers B, C and D, the same ad hoc, database like world model is used, with
only minor variations. A skill-centered world model contain only the infor-
mation that is directly necessary for the skills to function, and depends on the
environment where the robot is deployed. In a fully deployed robot system
in a factory, the skill-centered world model would thus contain information
about the objects which the robot can manipulate in the factory, as well as
information about the factory layout.
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We will now discuss the work presented in the previous chapter and the in-
cluded papers, as well as conclude on the contribution of the dissertation and
known limitations. We will describe the impact of the dissertation on the aca-
demic and industrial community, as well as outline the contribution. Finally,
we will give recommendations on the future work needed in this particular
field of research, as a motivator for both the academic community and for this
researcher.

11. Discussion

Referring to Section 1, we will now discuss how the presented challenges in
the industry today can be overcome, in the light of the research presented in
the included papers.

We have shown a skill model that is sufficiently general to be used on a
variety of robots, providing an effective abstraction layer between the capa-
bilities, or primitives, of the robot, and higher-level tasks. The initial skill im-
plementations are also somewhat general, in that they can handle a variety of
objects from a database. This generality, and specifically object-centeredness,
is exactly the foundation for introducing robots that are easy to reprogram for
unskilled workers. The main reason for this is that skills are object-centered.
If you tell almost any person: “Here is a robot – it has a skill called ‘pick up
object’, and you only have to tell it which object to pick up,” that person will
immediately have an idea of what the robot will do with that skill.

Since the skills are so intuitive, they can easily be used as building blocks to
construct complete robot programs, or tasks. This means that the robots can
be reprogrammed on the fly, by the shop floor workers. Industrial robots in
the future factories will no longer have to be programmed to do simple, blind
movements by an expert systems integrator – often stopping the entire section
of the production line where the robot is working. Robot experts can instead
focus on the robot skill level, by improving or adding to the available skills of
the entire robot fleet, and offload the task-level programming to the shop floor
workers.
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In some cases, it is not even necessary to program the task, but instead have
the robot plan the sequence of skills that accomplishes a desired goal setting.
As the goal setting is usually related to the surrounding factory environment,
the goal could even be specified by the central Manufacturing Execution Sys-
tem. This will greatly offload the factory workers to more meaningful tasks,
such as maintenance of the production equipment (including the robot fleet).
However, there will still be some cases where a task needs to be programmed
manually, when a desired skill sequence is essential, and where the planner is
not able to deal with this.

It is the firm belief of this researcher that industrial robotics need to go in a
direction towards what has been outline above, both in academia and in the
industry. Considering the high ratio of programming time vs. uptime for cur-
rent industrial robots, the methods proposed in this paper can help to reduce
this notably. In order for manufacturing companies to remain competitive in
Western countries, where it is not possible to compete on salary, robotics is
the definite way to go – and current industrial robot systems are plainly too
difficult to program for new tasks on a regular basis.

11.1. Known limitations

We realize of course that there are a number of limitations with the work pre-
sented in this dissertation. First and foremost, we are abstracting the general-
ity of skills away in both Papers C and D, by having a set of skills that can only
manipulate a single object type. This essentially boils down to the problems
of object recognition and grasp detection – both very active research areas in
the robotics community. However, due to the modular nature of the skills,
this can easily be added for the objects that are relevant for a particular robot,
while preserving the task programming and planning capabilities presented
in these papers. Even the more general skill implementation presented in Pa-
per B requires a database of objects with associated valid grasp poses. For a
robot deployed in a factory setting, the same approach might be valid, since
information of the product or parts to manipulate is readily available, in most
cases with a finite feature variation.

There is also the issue of scalability to different task domains. In this dis-
sertation we have focused the experiments on logistic tasks, such as trans-
portation and part feeding. However, what if the skills were to be applied
on domains requiring more complex object interactions, such as assembly?
We argue that, again due to the modular structure of the skills, this can be
achieved by incorporating more advanced primitives, from which the skills
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are composed. At the highest level of generality, this would result in e.g. as-
sembly skills like place in sub-assembly-hole-3, where the necessary primitives
are executed to place whatever is in the gripper in a hole in some subassem-
bly of a final product. However, this might not be feasible from an integration
viewpoint, as there is the risk that skills will become unnecessarily complex.
Instead, one could easily imagine skills on different layers, where e.g. insert
in hole or screw in are abstractions of the place skill.

12. Conclusion

Relating to the objectives presented in Section 4, we will now outline the con-
tribution of this dissertation.

We have presented an intuitive conceptual model of general, robust and
object-centered robot skills. This model is an abstraction of lower-level capa-
bilities of the robot. We show that by implementing skills according to this
model, composed of primitive sensing and action operations, it is indeed pos-
sible to apply the skills on objects, rather than e.g. 3D locations. This enables
the skills to function as a middle layer between e.g. traditional robot motion
commands and complete robot programs, or tasks.

Due to the intuitiveness of the skills, they can be used for task-level pro-
gramming, even by laymen. We have demonstrated this through the use of
simple methods for specifying the sequence of skills that make up a task,
and their parameters. Finally, since the skill model adheres to a STRIPS-like
notation, we have demonstrated that task planning can be performed using
the skills as the planning domain, contrary to traditional task planning using
primitive motions. This enables the automatic construction of more advanced
tasks, which would not be feasible to specify manually. We also demonstrate
that a simple world model, focused on the valid parameters for the available
skills, is sufficient for the approach to be realized.

Overall, this dissertation shows that the use of robot skills can be a valid
solution to applying flexible robots in factories of the future. Through the
use of general robot skills, the robot can handle a great variety of tasks in
the relatively limited scenarios in the industry. Since the skills are intuitive,
even for robotics novices, they can effectively be used for task programming,
even by factory workers, whenever reprogramming of the robot is necessary.
And since the skills contain the necessary information for task planning, i.e.
preconditions and predicted outcome, the task programming can even be au-
tomated, when it is desirable.

Hopefully, this dissertation will serve as an eye-opener for both the aca-
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demic and industrial communities, as to the direction research and devel-
opment in industrial robotics needs to go. The dissertation shows valuable
proofs-of-concept for improved human-robot interaction for industrial robots
– an aspect that has largely been overlooked for many years by industrial robot
developers.

13. Future work

The purpose of this final section is to act as a primer for future research within
the field of robot skills, both for the wider academic community and for this
researcher.

In the work presented in this dissertation, there is no formalized software
structure for the skill implementation, nor for the complete system. We believe
it is a natural next step to investigate how primitives, skills, and methods for
task programming and task planning can be integrated in a complete frame-
work, so that it can directly be used by system integrators on a wide variety of
robots. A natural part of this is to expand the capabilities of the skills, to verify
that the skills can be used in different task domains, including e.g. assembly
tasks.

We also believe it is necessary to look into improved task programming
capabilities. This could even be a combination of the proposed method for
task programming and task planning, focusing on the specification of the de-
sired goal state through intuitive methods such as pointing gestures or speech
recognition.

An interesting research topic from the task planning point of view is also
the link between robot skills and the planning domain. In Paper D, the do-
main was specified manually – which is sufficient for a low number of static
skills. It would be interesting instead to automatically extract the available
skill information on a given robot, and directly use this domain for planning.
In this way, task planning will become possible for any skill-equipped robot.

In future research in this area, it is imperative that the methods are tested
extensively in industrial settings, with real people, products and production
equipment. This will not only be great experiments from a pure research point
of view, but also help bridge the gap between academia and industry – a gap
that is currently wide, unfortunate, and seemingly continues to grow.
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1. Introduction

Abstract

Due to a general shift in manufacturing paradigm from mass production towards
mass customization, reconfigurable automation technologies, such as robots, are re-
quired. However, current industrial robot solutions are notoriously difficult to pro-
gram, leading to high changeover times when new products are introduced by man-
ufacturers. In order to compete on global markets, the factories of tomorrow need
complete production lines, including automation technologies that can effortlessly be
reconfigured or repurposed, when the need arises. In this paper we present the concept
of general, self-asserting robot skills for manufacturing. We show how a relatively
small set of skills are derived from current factory worker instructions, and how these
can be transferred to industrial mobile manipulators. General robot skills can not only
be implemented on these robots, but also be intuitively concatenated to program the
robots to perform a variety of tasks, through the use of simple task-level programming
methods. We demonstrate various approaches to this, extensively tested with several
people inexperienced in robotics. We validate our findings through several deploy-
ments of the complete robot system in running production facilities at an industrial
partner. It follows from these experiments that the use of robot skills, and associated
task-level programming framework, is a viable solution to introducing robots that can
intuitively and on the fly be programmed to perform new tasks by factory workers.

1. Introduction

In order to remain competitive in a globalized environment, manufacturing
companies need to constantly evolve their production systems and accommo-
date the changing demands of markets. Currently, production is experiencing
a paradigm shift from mass production to mass customization of products.
The impact of this trend on production systems is that they should adapt to
handle more product variation, smaller life cycles, and smaller batch sizes
– ideally batch size 1. Today, robot-based production is an essential part of
the industrial manufacturing backbone. However, the concept of an indus-
trial robot statically placed in a cell and continuously repeating a carefully
predefined sequence of actions has remained practically unchanged for many
decades. Not surprisingly, typical industrial robots are not flexible and thus
such a degree of transformable production [1–3] is beyond the capabilities of
current systems.

A simplified illustration of the situation is shown in Figure A.1. Traditional
manufacturing systems are automated to a large degree, but can only be re-
configured with great difficulty. On the other hand, traditional manual labor
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is very flexible, but not economically viable for large scale production, espe-
cially so in high-wage countries. In the future, mass customization will make
it necessary to combine high reconfigurability with a large degree of automa-
tion. This goal can be achieved in two distinct ways: Workers can either be
equipped with better automation tools, such as intuitive on-the-fly program-
ming of robots, thereby increasing their productivity, or the reconfigurability
of traditional automated production lines can be improved, e.g. through the
use of multipurpose robots.

Fig. A.1.: A clear requirement for the factories of tomorrow is that of a transformable production
system, showing a high degree of flexibility, while still applying a high degree of au-
tomation.

Robotics is expected to be one of the main enablers of this transition to the
transformable factory of tomorrow. To reach the demanded level of flexibil-
ity robots, or more generally mobile manipulators, need to be able to move
autonomously, cope with uncertainty in interactions with humans and par-
tially known environments, handle a variety of different tasks, and be able to
be reprogrammed fast by non robot experts when a new task in the factory
arises.

So, the question emerges: What should be the characteristics of a frame-
work that would allow robots to be flexible enough to handle uncertainty
and changing production tasks, while being intuitive enough to be used and
re-programmed by non-robot experts? We argue that the answer lies in the
tight integration of sensing and action within a small set of modular and
parametrizable “robot skills". Contrary to traditional robot macros, our skills
are characterized as being general, in that they can handle a variety of objects,

A4



1. Introduction

and self-asserting, in that they contain pre- and postcondition checks. Finally,
this set of skills for a given industry can be naturally extracted from a careful
analysis of industrial standard operating procedures (SOP).

In this work we present a conceptual model of the “skills" and how this
concept can be implemented and successfully applied in real-world industrial
scenarios. The conducted experiments show that a small set of skills can be
intuitively parametrized by either kinesthetic teaching, pointing gestures, or
automatic task planners to solve different industrial tasks, such as part feed-
ing, transportation, quality control, assembly, and machine tending.

The main contributions of this paper are that:

• We propose a conceptual model of robot skills and show how this differs
from traditional macros,

• we show how this approach can enable non-experts to utilize advanced
robotic systems by encapsulating expert knowledge in each individual
skill, and

• concrete applications of the approach are presented, in which advanced
robot systems have been applied in several real industrial scenarios.

The rest of this paper is organized as follows: in Section 2 we discuss how
the list of skills can be extracted for a given industry and how the concept
of skills can be formalized. In Section 3 we present a series of experiments
were robots powered by skill-based software architecture were deployed in
real industrial settings. We discuss the outcomes of our work and possible
future directions in Section 4 and finally we conclude with Section 5.

1.1. Related work

The goal of achieving easy and quick reprogramming of robots by non experts
has been consistently pursued using the task-level programming paradigm.
Task-level programming constitutes a higher abstraction level than traditional
robot programming. It specifies a given task as a sequence of actions, but
avoids describing each action in full detail. The sequence of actions leading
to the fulfillment of this task can either be planned or specified by an opera-
tor. Such an approach is similar to the symbolic representation of tasks of the
Shakey robot that used a STRIPS planner to reason about which actions may
lead to accomplishing a goal [4], or the concept of Object-Action Complexes
(OACs) [5] that allowed cognitive robots to identify possible actions based on
object affordances.
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Task-level programming is based on lower level entities, usually called robot
skills, that instantiate actions. Various representations of robot skills that would
be suitable for task-level programming have been pursued during the last
decades [6–14]. What most of the aforementioned attempts have in com-
mon, is that robot skills are, in turn, composed of primitive sets of robot mo-
tions, called action or motion primitives. These skill primitives are simple,
atomic robot movements that can be combined to form more complex behav-
iors [15–21]. A systematic survey of the rich relevant literature reveals how
fragmented the concept of skills is, lacking a widely acceptable, strict defini-
tion.

In contrast to the skills themselves, the skill primitives [10, 11, 13] are rather
well defined in the robotics community; although several different descrip-
tions exist, most of them loosely follow Mason’s work on compliant con-
trollers [22], which paved the ground for the Task Frame Formalism (TFF) in-
troduced by Bruyninckx and De Schutter [23, 24]. Recent work has expanded
upon this idea, for instance enabling the use of any sensor and controller in
the same task frame (e.g. visual servoing combined with force control), and
operating in a dynamic task frame [25–27].

Our definition of skills integrates pre- and post-conditions checks in the ex-
ecution, which makes the interconnection of skills into tasks an intuitive and
controlled process. In that sense, our approach is comparable to the manipu-
lation primitive nets, described best in [26]. However, this approach requires
low-level parametrization of the manipulation primitives, making it accessi-
ble only to robot experts. Another concept, similar to our notion of skills, is
that of Action Recipes as defined in the RoboEarth project [28, 29]. Different to
our skills though, Action Recipes keep sensing and acting separate and mainly
focus on knowledge sharing between robots with similar capabilities. All of
the aforementioned approaches require a robot expert to program and use the
system. This is also one of the reasons reasons why these works, in contrast to
ours, were never deployed in a real industrial setting.

Easy programming of industrial robots requires, apart from the underlying
concepts, intuitive Human-Robot Interaction (HRI) mechanisms. HRI in in-
dustrial settings focuses on offline programming by using CAD models [30–
32] or online programming using augmented reality (AR) [33–35]. The appar-
ent limitation of such methods is that they assume the presence of an expert
for reprogramming, which makes them unsuitable for the envisioned trans-
formable factories. In contrast to the majority of publish works and similar
to our approach, the authors of [36] combined skill primitives and speech
recognition for programming grasping tasks by speech, with other work pre-
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sented in [37, 38]. This work incorporates task-level programming, however,
the programming is a combination of primitives, with no higher-level skills
between these and the task layer. In general, the literature of HRI in industrial
settings is rather limited. One possible reason is that industrial robotics ap-
plications traditionally focused on accuracy and speed without the need for
external sensors. However, lately this trend is giving way to more intuitive
and user-friendly interfaces that largely rely on sensing [39].

Apart from HRI that allows human instructions to define a task, another
possibility is to consider use of automated task-planers. Industrial robots have
been endowed with task-planning capabilities, starting with the STRIPS plan-
ner [4], and many other algorithms that followed, based on the same ideas, in
that they act on a set of actions that alters the current world state [40, 41].
This includes breaking down assembly tasks into some form of manipula-
tion primitives the robot can interpret [42]. Simple robotic scenarios, as in
GOLEX [43], have been succeeded recently by more advanced ones [44], re-
sembling to some of the capabilities of our work presented in the paper at
hand.

2. Finding and formalizing robot skills

2.1. Finding skills

As mentioned earlier, mobile manipulators can be one of the enablers in robotics
to accommodate the higher demand for flexibility in future industrial produc-
tion. We argue that the use of robot skills is the key to making this happen. We
will begin by showing how robot skills have been identified from the current
work procedures in the industry.

As a starting point, we have investigated applicable task domains for mo-
bile manipulator applications. A range of general industrial applications suit-
able for mobile manipulators have been identified through an extensive study
in real-world production environments [45]. The scope of the study included
the analysis of 566 industrial tasks, carried out by human workers, since the
tasks were either too complex or low volume to justify automation solutions
[45, 46]. We have grouped these tasks into three different task domains, with
distinct task categories in each domain, as shown in Figure A.2.

Within the logistic and assistive task domains, we have analyzed the set of
skills required to solve a majority of these tasks. This analysis is based on the
workflow of the factory workers, in order to detect reoccurring, fundamental
actions, or skills, which can be implemented on a robot, so that they are still
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Fig. A.2.: Nine general task categories in three domains, suitable for mobile manipulators.

intuitive to use by the factory workers for constructing higher-level tasks. We
base the analysis on a set of Standard Operating Procedures (SOPs), which
formally specify in writing the task descriptions for factory workers, accom-
panied by images. Each step of the SOPs is mapped to respective skills. For
example, a step in a machine tending task is described as “pick up the shaft,
insert it in the assembly machine, and press the start button on the machine,”
and leads to the conclusion that this particular step consists of the three skills
pick up object, place in machine and press button. This analysis leads to a total
of only 13 of these general skills across the two analyzed task domains [47].

One important aspect of the analysis is that it is based on the natural lan-
guage and communication between the people who work in the production,
and the language used in the SOPs. This has the effect that the skill concept,
and specifically the outcome of instructing a robot to execute a particular skill,
is immediately intuitive for the factory workers, who will use the skills di-
rectly.

Based on the findings from the analysis of the SOPs, we will now go on to
formalize what exactly robot skills are, and how they can be used for task-level
programming.

2.2. Skill formalization

In this section we will explain our conceptual approach to robot skills. The
section will thoroughly introduce the reader to the concept of robot skills, as
envisioned by these authors, as well as the three-layer architecture of skills,
tasks and primitives. We will finally summarize the advantages of using skills
for manufacturing.
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2.2.1. Conceptual model of a skill

In a nutshell, we see robot skills as the high-level building blocks from which
a complete robot program, or task, can be composed, and that allow the robot
to complete the task. In other words, skills are intuitive object-centered robot
abilities, which can easily be parameterized by a non-expert.

Our focus is especially on improved human-robot interaction, and on the
reusability of skills within the domain of tasks that are frequently required by
the manufacturing industry.

One core property and main justification for using skills in this context is
their object-centeredness, i.e. a skill incorporates both sensing and action per-
formed on the object. This means that skills are not applied on 3D locations
but rather on physical entities the shop floor worker can relate to, which is
exactly the objects that are present in the factory where the robot is deployed.

We define a task as a fully instantiated sequence of skills, with specified
parameters, and it is characterized as solving a specific goal in the environ-
ment where the robot is deployed, e.g. loading an assembly machine with the
necessary parts to create a certain product or subassembly.

In order for the skills to be useful for task-level programming, they must
both change the robots notion of the state of the world through sensing or ac-
tion, and be self-sustained, so they can be used in any task. Self-sustainability
implies that each skill should be

• parametric in its execution, so it will perform the same basic operation
regardless of input parameter,

• able to estimate if the skill can be executed based on the input parameter
and world state, and

• able to verify whether or not it was executed successfully.

Our conceptual model of a robot skill, which incorporates all of the above
points, is shown in Figure A.3.

A skill relies on a defined action and sensing sequence, but the motions
themselves are adapted to a specific task by a set of parameters, thus making
the skills generic within a certain scope. Each skill has one or more intuitive
parameters as input, which is all the factory worker has to relate to. These
parameters are the objects that are relevant for the skills, and the execution of
a skill is based on only this parameter.

During the execution phase, the robot performs the pre-programmed sens-
ing and action operations to accomplish the skill, based on the input param-
eter. These operations are specified by the skill integrator, and should ideally
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Fig. A.3.: Conceptual model of a robot skill. The preconditions and prediction (blue blocks) are
informative aspects of the skill. The checking procedures (yellow) verifies the informa-
tive aspects before, during and after execution (orange). Execution is based on the input
parameter and the world state (red), and the skill effectuates a change in the world state
(red).

be implemented in such a way that the skill can handle all parameters that
are relevant in the factory. The operator is never exposed to the individual
operations within the skill, but only has to relate to the complete skill and its
intuitive parameters.

Each skill has associated a set of preconditions and a prediction of the out-
come of its execution in the real world, which are used for the checking pro-
cedures before and after execution. These can either be verified from the as-
sociated world model or through ad-hoc sensing operations, depending on
the condition. Furthermore, the preconditions and prediction enables task
planning on the skill domain, as the skills conform to a STRIPS-like formula-
tion [4]. In this case, only the goal state is required for task specification, given
that the robot has an associated world model, from which the current state can
be extracted for the planning problem.

The prediction specifies formally what the expected effect of executing the
skill is. During ongoing execution, continuous evaluation of the performance
of the skill ensures is is executed as expected. When the execution has fin-
ished, a final postcondition check determines if the current world state is as
predicted.

Modeling the world state Since the skills need to access prior knowledge of
objects and locations in the factory, a notion of the state of the world need to
be modeled.
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Skills are effectuating a change in a set of state variables, describing the
knowledge the robot has of its surroundings. State variables can be either
measured with vanishing uncertainty by dedicated sensors, e.g, by those that
are built into the manufacturing systems, or by sensors on the robot, such as
vision, torque or tactile sensors.

For the skill approach to work, the world model must contain informa-
tion that is directly relevant to the skills. Therefore, at the very least, the
world model must contain information about all the aspects of the environ-
ment where the robot is deployed, that can be used as parameters for the skill
working on the robot. Since skills are object-centered, the world model there-
fore must contain prior knowledge, such as global 3D coordinates, about e.g.
objects, locations and production equipment that is relevant for the skills. In
fact, in most cases only an ad-hoc, skill-relevant world model is sufficient, con-
taining only information that is relevant parameters for the skills currently
implemented on the robot, and the scenario where the robot is deployed.

2.2.2. Architecture of tasks, skills and primitives

The approach of task-level programming using skills is divided into three lay-
ers, inspired by [15] and [11]; the primitive, skill and task layers. The architec-
ture is shown in Figure A.4, and we will explain how the layers work together
in the following. We will not give details here on the implementation of each
layer, nor describe a complete framework for skill-based programming, as this
is ongoing work.
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Fig. A.4.: The three layers of primitives, skills and tasks. The components in each layer is essen-
tially a combination of components from the lower layer. Skills are predefined by the
skill programmer, and tasks are programmed by the operators in the factory, or planned
online.
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At the lowest level, which is the most hardware-specific, we have the prim-
itive layer. This layer contains the real-time control loops of the robot, as well
as the necessary sensing operations that are necessary for the skills to work.
This layer is similar to the level of programming that typically is carried out
on industrial robots, but with the addition that movements can be interrupted
and altered in real-time, based on feedback from sensors. The primitives are
characterized as performing a single operation related to the robot system.
Examples of primitives include opening the gripper, planning a motion of the
robot arm to a certain configuration, and calibrating the position of the robot
with respect to a specific production machine.

The skill layer is the layer that is exposed to the end user, i.e. the opera-
tor, when programming new tasks on the robot. Currently much robot pro-
gramming is carried out by engineers or robotic system integrators, and even
though many applications for stationary industrial robots have similarities,
tasks are usually programmed from scratch. For flexible robots, it is necessary
to minimize that effort, and adding functionality in the building blocks is a
way to do that. However, subprograms, as skills can be considered, can only
be reused if they are both generic and robust for the possible set of applica-
tions.

Skills are combinations of primitives, where the exact choice of which prim-
itives to execute is determined online. Skills are implemented by utilizing
the motion primitives for creating advanced, yet versatile, program building
blocks, and establishing the prediction and the pre- and postcondition checks.
For example, the place object skill is a combination of the primitives that move
the arm, open the gripper and detects surfaces, which can be specified by the
skill programmer, but the exact motions that are carried out are determined at
the skill runtime.

The tasks are directly related to solving specific goals in the factory, and
must interface with end users, programming and initiating tasks, and systems
controlling the production line, e.g. manufacturing execution systems (MES).
A task is a predefined sequence of skills, with previously specified parameters,
that can be executed whenever necessary. The skill sequence and parameters,
that make up a task, can be programmed explicitly by an operator, or planned
ad hoc based on the current modeled world state and a desired goal setting of
the state variables.

The world model associated to the complete system can only be accessed
from the skill and task layers. As previously stated, this world model is skill-
centered, containing only the parameters that are necessary for the skills to
function. This also means that it is the skill that alter the world state – a tasks
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can only access the state variables, but changes them through the skills. For
instance, consider the task of removing all objects from a table. The task needs
to know the initial amount of objects on the table, but it is the skills that update
the world model when an object is removed.

2.3. Advantages of using skills

The main justification for using skills in this research is that of easily trans-
formed production systems, specifically robot systems. The skills approach to
this topic yields a number of advantages that we will outline in the following.

First and foremost, since skills ideally are general within the scenario where
they are deployed, the robot system can deal with product variety in the
factory. It should be effortless to enable a robot to deal with new products,
when it is introduced in the factory, which is exactly the point of having skill-
centered world knowledge. This results in a more effective and streamlined
production, since a skill-equipped robot can react to changing products and
production volumes – the key point of implementing transformable solutions
in robotics.

Furthermore, the skills are so intuitive that it is possible for non-experts, i.e.
the shop floor workers, to program new tasks on the robot, whenever the need
arises. This stems partly from the fact that the skill are grounded in the SOPs,
as explained in 2.1. This makes it easy for robotics novices to understand both
what the robot will do, and the outcome of each skill, which is exactly what is
needed to intuitively program a task as a sequence of skills.

As we have already mentioned briefly, we can even automate the task pro-
gramming. Since the skills conform to the STRIPS formulation, in that they
contain information about their input parameters, preconditions and predicted
effects, planning on the domain of skills is possible. In this case, a task speci-
fication merely becomes a description of the desired goal state of the relevant
state variables, and the task will never have to be programmed explicitly. The
goal state can be specified by a factory worker, or even from the Manufactur-
ing Execution System (MES), offloading the factory workers for other assign-
ments in the factory.

From an integration viewpoint, an added benefit of using the three-layer
architecture outline in 2.2.2 is hardware abstraction. A well-defined interface
between primitives and skills facilitates substituting the primitives. By substi-
tuting primitives, it is not only possible to add e.g. improved motion planning
primitives to the robot. Since a skill performs its sensing and action operations
based on the primitives, it is even possible to have the exact same skills run-
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ning on two seemingly very different robots, as long as the primitives perform
similar, and maintain their interfaces to the skills.

Finally, when the skills approach is mature enough, it will help technology
push from academia to industry. The reason for this is simple: If there is only
a small number of skills, the focus of system integrators and developers will
change towards development and improvement of primitives and skills, and
this will eventually have to be grounded in state of the art research.

We will now go on to demonstrate a number of these advantages through a
range of experiments, in both lab and industrial settings.

3. Experiments

In this section we show experiments in skill implementation and task pro-
gramming, and conclude with showing a skill-equipped robot system inte-
grated in a running production line, and showing a summary of the results
in the end of the section. For all of these experiments, we use an in-house
developed industrial mobile manipulator, called Little Helper.

The focus of the Little Helper concept is industrial applications, and for
addressing the needs for flexible automation technologies. Although several
iterations of the Little Helper exist, all are built from standard industrial com-
ponents, and current versions (one of which is shown in Figure A.5) consists
mainly of three hardware components. For manipulation we use a 7 DOF
KUKA Light-Weight Robot (LWR) arm. The robot arm is mounted on a chas-
sis which also contains the robot controller and a computer controlling the en-
tire system. The chassis is mounted on a Neobotix MP-655 differential drive
mobile platform. Unless otherwise stated in the following sections, we use a
Schunk WSG-50 parallel gripper for grasping. The robots are equipped with
different configurations of RGB-D cameras from Microsoft, ASUS or Prime-
sense. All versions of the Little Helper are running ROS.

3.1. Skill implementation

This section will showcase our experiments into implementing skills on the
Little Helper robot. These experiments form the backbone of the skill-based
task programming paradigm, since they verify that skills can in fact be imple-
mented according to the conceptual model shown in Figure A.3.
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Fig. A.5.: One of two current versions of the Little Helper robot.

3.1.1. Basic manipulation skills

In our initial findings on skill implementation, we have implemented the ba-
sic manipulation skills pick object and place on table. Both of these skills are
essential for mobile manipulation, and will be an integral part of a task-level
robot programming paradigm, as they will both be used in almost any mobile
manipulation task.

Referring to the skill model, the skills must contain the necessary sensing
and motion operations that accomplish the goal of e.g. picking up an object.
In [48], the pick object skill is presented, which allows the robot to identify and
pick up objects on a flat surface. The experimental setup for this skill is shown
in Figure A.6.

The skill was developed particularly for near-rotational symmetrical ob-
jects, and was tested on the objects shown in Figure A.7. All objects could
be picked. Only the most deform cylinder in A.7c showed a high variability
of the final pose in the gripper, and was subsequently placed (through blind
motion, i.e. not with a placing skill) in a slightly different location than ex-
pected. This was caused by limits in the vision system and the gripper, and
could thus be avoided by choosing different, more appropriate hardware.

We extend the pick object skill and include the place on table skill in [49]. In
this work we leverage sensing primitives readily available from the commu-
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Fig. A.6.: The robot system consists of a robot arm, gripper, depth sensor, tabletop, and an object
to pick.

(a) Cylindrical and
deform objects

(b) Pump parts from an
industrial production
line

(c) Segmented pointcloud

Fig. A.7.: Objects that could successfully be grasped by the same skill. All objects could after-
wards be placed using the same place skill. In A.7c, a deform cylinder has been detected
and segmented and a cylindrical, containing model has been fitted.

nity, that can detect common household objects1, and show a skill-focused,
ad-hoc world model, containing previous observations of these objects.

The focus of the latter work is on hardware transferability, and we demon-
strate how two skills implemented on one robot, a PR2, can be transferred
with relative ease to a very different robot, the Little Helper. By implementing
the same skill primitives on both robots, the skills are directly transferable.
However, we have found that this is not always possible, as different robots
have different capabilities, as was the case in these experiments. Instead, we
have maintained the interfaces to the skill primitives. For instance, for control-
ling robot arm movements, we simply pass the desired pose of the gripper to

1Specifically, the tabletop_object_detector package in ROS Fuerte

A16



3. Experiments

the corresponding move arm primitive, and the robot performs the arm move-
ment through either collision-free motion planning (for the PR2) or a blind,
joint interpolated motion (for the Little Helper).

Since the purpose of these experiments was to show skill implementation
and hardware abstraction, the highest layer of the architecture approached
was the skill layer. However, since these skill implementations include world
knowledge, pre- and postcondition checks, as well as the execution, they can
easily be concatenated to complete tasks, as we will present later.

3.1.2. Calibration skills

For mobile robots, calibration relative to the environment is necessary when-
ever the robot arrives at a workstation. This enables the robot to know the
locations of e.g. buttons and knobs of the workstation without detecting these
explicitly, within the tolerances of the calibration routine. A calibration rou-
tine does not change the physical world, but rather updates the robot system’s
internal world model. Therefore, it can be classified as a skill.

Four different calibration skills have been developed in our skill framework:

1. Haptic calibration [50]: The robot uses moves along the robot’s x, y, and
z axes until physical contact with robust points in the workstation itself.

2. Visual high-precision [51]: Multiple images of a calibration plate are cap-
tured with a camera on the end-effector. The calibration plate is fixed
relative to the workstation.

3. Visual high-speed [51]: One image of the same calibration plate is cap-
tured. Additionally, three distance measurements are made with a laser
sensor, also mounted on the end-effector.

4. QR calibration [52]: An RGB-D camera on the robot platform captures
one image and one depth image of a QR code, which is fixed relative to
the workstation. This calibration skill is shown in Figure A.8.

Each of the methods have different advantages. Their execution time and
precision is compared in Table A.1. It is clear that for very precise calibration,
the high precision approach should be used. If less precision is necessary, QR
calibration can be used instead, saving a significant amount of time. Addi-
tionally, if there is no room for a large marker close to the workstation, haptic
calibration can be applied instead.

In the following section we will show our experiments conducted within
task programming.
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Fig. A.8.: Fast QR calibration using RGB-D camera. The camera detects the position and orien-
tation of the fixed QR code, and subsequent movements with the robot are corrected
accordingly.

Method Duration Precision
Haptic 30− 45s ±1.0mm
High speed 10s ±1.0mm
High precision 60s ±0.1mm
QR calibration < 1s ±4.0mm

Table A.1.: Comparison of calibration methods.

3.2. Task specification

The key motivation for skills is to improve Human-Robot Interaction (HRI)
capabilities of industrial robots, as described in section 2.2.1. Specifically, we
focus on making task programming available to non-experts by establishing
an intuitive task programming framework, compared to traditional robot pro-
gramming methods. The skills forms the basis for creating a higher level of
abstraction of robot programming, which better relates to the human opera-
tions in a given task. As a result, programming becomes more related to the
operations in the SOPs.

3.2.1. Explicit task programming

In our initial work on task programming, we focus on the explicit program-
ming of robot tasks, constructed from a sequence of skills. Task programming
using skills can be divided into the two distinct steps of sequencing and a teach-
ing. In the sequencing phase, the task programmer constructs the sequence of
skills in the task, where each skill is subsequently parameterized in the teach-
ing phase.
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The sequencing phase is performed in a touchpad-based GUI on a tablet,
in which the operator selects skills from the skill library to create a sequence
matching the operations in the task. For the teaching phase, we have investi-
gated the uses of both kinesthetic teaching and gesture-based input.

Kinesthetic teaching In one set of experiments, the operator uses kinesthetic
teaching to directly interact with the manipulator [53]. The robot arm is pi-
loted to target locations and input is given by pushing the end-effector in
certain directions. The operator is guided during teaching via audiovisual
instructions on the associated tablet. The kinesthetic teaching is illustrated in
Figure A.9a.

(a) Kinesthetic teaching (b) Gesture recognition

Fig. A.9.: Teaching of parameters through direct interaction with the manipulator using kines-
thetic teaching [53], and through the recognition of pointing gestures [54].

The approach was verified through experiments with a total of 18 people,
many of which were inexperienced in robotics2. In these experiments partic-
ipants programmed two pick and place tasks of varying complexity. Besides
specifying coordinates through kinesthetic teaching, participants had to re-
late to specific parameters, such as robot speed, force-profiles, compliance,
etc. The total programming time ranged from 2.6 to 12.5min, across all partic-
ipants.

Gesture-based teaching In our experiments with gesture-based teaching [54],
we have implemented a set of simpler manipulation skills, that only accept
a single parameter as input. For instance, the pick object skill only requires
the object to pick up as a parameter, where everything else is handled within

2Although only 9 are mentioned in [53], additional tests with 9 different participants were re-
cently conducted within the EC-FP7 TAPAS research project (www.tapas-project.eu)
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the skill. We add gesture recognition capabilities to the Little Helper, which
has the effect that an operator can accomplish the teaching phase simply by
pointing at the parameters for each skill in the sequence. Beside the pointing
gesture, the operator has access to additional gestures, such as instructing the
robot to follow him/her around the factory.

We have investigated the approach by having users program a simple task
of exchanging two objects at two locations – a mock-up of a machine tending
task, where a box is filled with parts and needs to be exchanged with an empty
one. All users were given a single 10-minute introduction on how to use the
system.

Experiments with 24 people3, more than half of which were completely in-
experienced with robots, showed that this is a feasible and intuitive method
for task programming. The teaching of the parameters, including navigating
the robot to the different locations, by having it follow the participant, was
equally intuitive. The teaching phase only took between 2 and 7min across
participants, the mean time being a little less than 3min. Furthermore, there
were no major difference in programming time between male/female partici-
pants or participants experienced/inexperienced in robotics.

In both the experiments with kinesthetic and gesture-based teaching, the se-
quencing step was immediately intuitive for all participants, proving that the
skills themselves are intuitive. Users generally also expressed that the teach-
ing phase was intuitive, although more so for the gesture-based program-
ming, due to the skills being simpler and only requiring a single parameter
as input. Based on the two experiments, and several minor experiments in
the lab and at industrial manufacturing environments, the conclusion is, that
the skill-based programming approach does in fact enable non-experts to in-
tuitively and quickly program industrial relevant tasks.

3.2.2. Task-level planning

Although it is in many cases desirable to have complete control over the se-
quence of skills, in some cases, explicit task programming does not work. This
is especially true for human-populated environments, like factories, that are
prone to disturbances. We have investigated how robot skills instead can be
used for planning, instead of traditional task planning on the motion primi-
tive domain. By planning on the human-specified skills, the planning domain
becomes much smaller, since there are fewer skills than motion primitives.
Furthermore, a planner would not have to plan the reoccurring motion prim-

3Again, with additional experiments with 7 people conducted recently.
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itives that e.g. pick up an object, since this is instead modeled within a single
skill.

We have investigated how task planning on the robot skill domain can be
used for multiple part feeding scenarios. The specific use case for these exper-
iments is a production line as an industrial partner. In this production line,
three feeders need to be regularly filled with parts for an assembly line. Parts
are located at a warehouse in bulk in small containers, which the robot can
manipulate. Empty containers need to be placed at a different warehouse.

Since the skills already conform to the STRIPS notation [4], in that they con-
tain a notion of the preconditions and predicted outcome, they can be im-
mediately specified in PDDL [55]. In these conceptual experiments, we have
modeled the skills drive to location, pick up object, place at location and unload
in feeder in PDDL. We model the robot Little Helper to be able to carry two out
of the three necessary containers to fill all feeders. For the goal specification,
we specify that all three feeders should be filled, and all empty containers
should be at the appropriate warehouse.

Our experiments show that the skills can be immediately used for planning,
a plan satisfying the goal can be found in the order of 0.1s, and the output
plan contains the sequence of skills, and the required parameters to run them.
In contrast to a user-specified task, which would be a hardwired sequence of
skills and parameters, the planned task can also be found based on the current
world state. This has the advantage that the goal can simply be specified by
the manufacturing system, and not by an operator – and since this is all that
is required besides the world model on the robot, ad hoc task planning on the
skill domain is indeed feasible.

3.3. Industrial use cases

Besides the conceptual experiments described in the previous sections, the
skills have also been evaluated in real world industrial settings, through sev-
eral experiments. The conceptual experiments presented above has demon-
strated the feasibility of the skill concept and the possibility to program in-
dustrial tasks. However, real world industrial tasks often constitute other
challenges; thus the motivation for the real world experiments has been to
evaluate the applicability of the skill concept in an industrial setting.

3.3.1. Multiple Part Feeding

Some of our first industrial experiments were with multiple part feeding. In
these experiments, a mobile robot took care of part feeding to a series of fully
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(a) Multiple part feeding (b) Machine tending (c) Part feeding

Fig. A.10.: Photos from real world industrial integration experiments where the skills were used
for task programming and execution.

automated manufacturing cells. The task was to pick up a box from a ware-
house, bring it to a feeding machine at the manufacturing cell, and empty the
content into the feeding bowl. Afterwards, the empty box was brought back
to the warehouse. The scenario was instructed using a total of 8 unique skills,
and the task was subsequently executed continuously over a period of more
than 1.5 hours. Figure A.10a shows the robot emptying the box into the feed-
ing machine. A thorough description of this experiment is presented in [56].

3.3.2. Machine tending

As part of a larger industrial integration experiment, a complex machine tend-
ing task was instructed and afterwards executed using the task programming
method described in Section 3.2.1. After task programming, the experiment
reproduced a full 8-hour shift. This experiment was conducted using the real
world manufacturing machinery and components on the shop floor at an in-
dustrial partner. In this task the operator would assemble 11 components in
a fixture inside a hydraulic press, activate the press to join the components,
and finally remove the finished sub-assembly. This task was automated using
in total 11 unique skills combined into a sequence of 118 skills. This task in-
cluded the use of compliant motions, force feedback, and communication with
external equipment. Figure A.10b shows the robot performing the assembly
task inside the press.

3.3.3. Logistic tasks

A logistic part feeding task was instructed as part of and executed in the same
8-hour long industrial integration experiment as the machine tending task. In
this task the mobile robot arrived at a conveyor belt, where components ex-
ited a machining cell. These components ordinarily dropped into a bin. The
mobile robot calibrated itself to the workstation using the methods described
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in Section 3.1.2, and using a tool mounted 2D vision camera it located a num-
ber of components. The components where then picked from the conveyor
and placed in a fixture on the robot itself for transportation. This task was in-
structed using a total of 4 unique skills combined into a sequence of 26 steps.
Figure A.10c shows the robot picking objects from the conveyor. A description
of both the assembly task described above and the part feeding task is found
in [57].

3.4. Summary of results

The results from the experiments show, that even for novices in robot pro-
gramming, the concept of skills affords an applicable task programming frame-
work. Instructing the task using robot skills results in drastically decreased
programming time, compared to traditional robot programming methods.

All of the results mentioned in the above sections are summarized in Ta-
ble A.2. It is clear that the same skills can be used in a variety of task domains.
However, there is still some fragmentation of the skill library in the presented
work, visible by the number of different skill abstractions (i.e. 4 different ver-
sions of the pick object skill). It is also clear that even with a low dimension
of the skill library, it is possible to program even advanced tasks, such as the
machine tending task described in Section 3.3.2.

Logistic tasks Assistive tasks
Transp. MPF SPF Mach.Tend.

Skills
Pick (4) X X X X
Place (4) X X X X
Calibrate (3) X X X X
Activate (1) X X

Programming
Kinesthetic (4→26) (11→118)
Gestures (3→8)
Planning (3→13) (4→16)
Coding (8→23)

Table A.2.: Comparison of results, showing skill implementation and programming paradigms
for different task domains (referring to Figure A.2). MPF/SPF is Multiple/Single Part
Feeding tasks. The number of abstractions of skills of certain types are indicated in
parenthesis. x → y denotes that x distinct skills were used to program a complete
task, consisting of a total of y skills.
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4. Discussion and Future Work

Robot skills have been defined on a conceptual model level, in this work.
However, the transition from a conceptual model to its implementation on
robotic systems and testing under real industrial conditions is not always
straightforward. To the best of our knowledge, approaches similar to ours
have never been successfully deployed in real industrial or other scenarios.
Thus, we see the main value of our skill concept in its ability, as witnessed by
our experiments, to operate robustly and solve real industrial problems.

The conducted experiments show how the same concept can be instantiated
to implement seemingly very different types of skills, such as self-calibration
or pick and place. Tasks can intuitively be taught by non expert users, as
proven in our tests, or automatically generated by regular task-planners. The
apparent advantage of our approach is that both users and task-planners do
not need to consider the low level motion primitive domain, but rather con-
sider only the limited set of available higher-level skills.

On the other hand, even if our tests have shown that teaching a task using
skills can be performed very quickly by regular shop floor workers, the ex-
ecution of the task by the robot is still very slow. A human performing the
same task or a robot explicitly programmed to solve this single task is cur-
rently far more efficient. However, we are working in further developing and
optimizing the underlaying perception algorithms, which is expected to boost
the speed of execution.

Furthermore, we have experienced how tempting it is to over-specialize
skills given a certain task; as an example, we ended up having 4 variations of
the pick skill. This is exactly due to the fact that these 4 variations are not gen-
eral. This should obviously be avoided, in order to achieve a robot program-
ming framework that is not fragmented with task-specific skill instances. We
clearly see that a strict list of general enough skills has to be defined according
with the task domain, rather than according with specific tasks. Our presented
analysis of SOPs and the extraction of a limited number of basic required skills
out of them, show that this goal should be considered a requirement in order
to avoid fragmentation and overlaps.

Finally, the embedded pre- and post-condition checks of skills allow for
timely error handling in complex task, and trigger for replanning or human
assistance. This potential has not yet fully explored, but we consider it as very
promising research direction that can make skill execution even more robust
and reliable.
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5. Conclusion

This work has been focused on the developing robotic systems suitable for the
envisioned transformable factories of tomorrow. We have presented a concep-
tual model for object-centered robot skills, that are similar to the abstraction
level used when instructing tasks to human workers. We have shown how
task-level programming can be combined with our notion of robot skills. This
combination effectively acts as a higher abstraction layer, freeing the user from
having to specify details such as cartesian coordinates, reference frames, or
action specific parameters. The fact that skills are applied on objects, coupled
with condition checks in our skills, makes it possible to use very intuitive HRI
interfaces, such as kinesthetic teaching and gesture-based teaching for the def-
inition of tasks. As a result, the notion of skills, the way we described and
tested it in this work, allows non robot experts to intuitively interact with and
program a complex robotic system, such as an industrial mobile manipulator,
with only minor training. Finally, as any other system intended for industrial
use, robots equipped with our skills have been deployed and tested in real in-
dustrial scenarios, showing their robustness and effectiveness. We believe that
our robot skills constitute a significant step towards achieving transformable
robots, and that such an approach can ultimately increase competitiveness of
manufacturing companies.
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1. Introduction

Abstract

In this paper, we present a method for programming robust, reusable and hardware-
abstracted robot skills. The goal of this work is to supply mobile robot manipulators
with a library of skills that incorporate both sensing and action, which permit robot
novices to easily reprogram the robots to perform new tasks. Critical to the success of
this approach is the notion of hardware abstraction, that separates the skill level from
the primitive level on specific systems. Leveraging a previously proposed architecture,
we construct two complex skills by instantiating the necessary skill primitives on
two very different mobile manipulators. The skills are parameterized by task level
variables, such as object labels and environment locations, making re-tasking the skills
by operators feasible.

1. Introduction

Manufacturing companies are currently experiencing a paradigm shift from
mass production to mass customization; therefore, current production equip-
ment and entire production lines need to be adjusted to follow this develop-
ment, including industrial robots and automation equipment. For highly cus-
tomized products, or product portfolios with large variations, a lot of manual
labor is usually present. Human labor is the pinnacle of versatility when it
comes to manufacturing, as a skilled worker can be shown new tasks and in
most cases immediately reproduce them. In other words, if a human has a
basic set of skills, then the repertoire of tasks the he/she can perform is impres-
sively large. It is for this reason that we propose a similar structure for the
mobile industrial manipulators of the future, as it is necessary to have meth-
ods for effortless reprogramming of robots at the task level, rather than the robot
level. In task level programming, a robot program is a sequence of robot skills
that specify a production-related goal.

To establish a fitting representation of robot skills for task-level program-
ming has been the focus of research around the world [1–7]. The various con-
cepts of skills is quite different, but most of them are composed of primitive,
formal descriptions of sets of robot motions, called action or motion primitives.
These primitives are simple, atomic robot movements that can be combined
to form more complex behavior [8–13], which is often called a robot skill. As
such, no single, unified definition of a skill in terms of robotics exists. In this
paper, we present our model of a robot skill, that has been previously dis-
cussed in [14], and show how these skills can be implemented and used, using
a few skills as examples.
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In contrast to the skills themselves, the skill primitives [5–7] are rather well
defined in the robotics community; although several different descriptions ex-
ist, most of them loosely follow Mason’s work on compliant controllers [15],
which paved the ground for the Task Frame Formalism (TFF) introduced by
Bruyninckx and De Schutter [16, 17]. Recent work has expanded upon this
idea, for instance enabling the use of any sensor and controller in the same
task frame (e.g. visual servoing combined with force control), and operating
in a dynamic task frame [18–20].

The concept of skills presented in this paper is comparable to the manipula-
tion primitive nets, described best in [19]. These nets are sequences of manip-
ulation primitives, with simple decisions based on the outcome of each single
manipulation primitive in the net. In these nets, however, each manipulation
primitive needs its own explicitly specified parameters, e.g. a specific force
or velocity in a specific direction. This makes this particular implementation
unsuitable for robotics novices in a factory hall. Instead, we propose a method
for specifying parameters on a higher level, the skill level, and instead letting
the system infer the parameters for the lower level primitives.

In this paper we will show our skill paradigm applied for two of the most
important robot skills for manipulation - the pick up and place skills. These
are very complex skills, in that they require a high degree of both sensing and
motion to be sufficiently general. Being sufficiently general, they can also be
used in almost any task, be it machine tending, part feeding, etc. In order
to further show the capabilities of our approach, we show that the skills can
easily be ported to a totally different robot, and can be sequenced to program
a robot task. As our experimental platforms we use a commercially available
PR2 robot and a custom industrial mobile manipulator, the Little Helper.

In section 2, we introduce the reader to the concept of skills used in this
work, along with a brief explanation of the skill primitives. In section 3, we
will present the outline of two skills, as well as the necessary skill primitives
for these. After this, we present the implementation of these skills on two
very different robots in section 4. We will briefly present the roadmap for
future work and conclude this paper in sections 5 and 6.

2. Conceptual overview of skills and tasks

We will now introduce the definitions of skills and tasks used in this work.
We present a layered structure, where tasks are the highest abstraction layer,
and also the layer that is easiest to understand for robotics novices. Each task
is composed of a sequence of skills, each of which is composed of a number
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of skill primitives, where the primitive layer is the most robot-oriented layer.
See also Fig. B.1. We will start by explaining the concept of a task.

Fig. B.1.: The three layers of the skill model. The skills can access and alter information in the
world model, and the tasks can only access the information, and alters it through the
skills. The only hardware-specific parts are the skill primitives, so the hardware abstrac-
tion layer (HAL) is between the primitives and the skills.

We define tasks as sequences of robot skills, and the sequences can either be
pre-programmed by an operator or generated by a task-level planner, either
offline or ad hoc. Tasks are characterized by a relation to a production-related
goal in the factory; for instance a machine tending task could be insert part P in
machine M, start the machine, remove part, place on workpiece tray. The basis for a
given task is a set of known state variables, such as locations of known objects,
current state of production equipment, etc. The task uses skills to change these
state variables to a desired goal setting.

We define a robot skill as a fundamental software building block, that in-
corporates both sensing and action. In order for the skills to be useful for
task-level programming, they must both change the world state through sens-
ing or action [7], and be self-sustained, so they can be used in any task. Self-
sustainability implies that each skill should be

• parametric in its execution, so it will perform the same basic operation
regardless of input parameter,

• able to estimate if the skill can be executed based on the input parameter
and world state, and

• able to verify whether or not it was executed successfully.

A graphical representation of a skill, implementing all of these aspects, is
shown in Fig. B.2.

The skill uses the current world state as input, along with a parameter,
which is provided at task programming time. As an example, for the pick
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graphical representation of skills, where the skill tem-
plate serves as a communication tool between the skill 
developer and the application programmer. However, 
these pre- and postconditions need to be connected to 
the real robot, i.e. to be testable before they actually jus-
tify their existence. 

B. Contribution 

In this study different application scenarios are ana-
lyzed to provide a terminology that can assist in all lev-
els of task-level robot programming, from the developer 
of the basic capabilities of the robot to the shop floor 
worker who will program new tasks. Using this termi-
nology, 

 

• a concept of robot skills is utilized to analyze pro-
duction processes, and identify what skills are 
needed for certain task domains, and 

• the skills and tasks abstraction is proposed to en-
capsulate, convey, and reuse expert knowledge to 
create robust robot programs. 

II. DEFINITION OF TASKS AND SKILLS 

In this section we will introduce our definitions of 
the key terms of this paper. Similar to papers that model 
human action using an abstraction hierarchy of action 
primitives, actions and activities [6,15], or that model 
language out of phonemes, words and sentences [17], 
we will denote the same type of hierarchy by using the 
terms motion primitives, skills and tasks. Motion primi-
tives perform basic motion commands of the robot, and 
skills are basic functionalities the robot has. 

A. Tasks 

Tasks are in this context, quite intuitively, character-
ized by attaining a certain production-related goal in the 
factory hall, e.g. fill feeder A or load part B into machine 
C. We say that a task can be decomposed into a se-
quence of skills from the set S of skills if there exists a 
robot that is able to complete a task by using the skills 
from S. Tasks are defined based on measurable state 
variables, and the robot uses its skills to change these 
state variables. State variables can be either measured 
with vanishing uncertainty by dedicated sensors, e.g. by 
those that are built into the manufacturing systems, or 
by sensors on the robot, such as vision, torque or tactile 
sensors.  

B. Skills 

Skills are the foundation of task-level programming, 
and provide the building blocks for the robot to com-
plete the task. Which skills are available to a robot de-
pends on its hardware and its sensors. In Sec. IV-A we 
discuss a method for defining skills that are somewhat 
independent of the hardware they run on, without loss of 
generality.  

How to automatically select the right set of skills to 
accomplish a task, however, is an open question.[16] In 
the present paper we suggest finding the skills by ana-
lyzing real-world implementations and Standard Oper-
ating Procedures (SOP) from an industrial partner. This 

way, the identification of the set of skills is consistent 
with human intuition.  

One core property and main justification for using 
skills is their object-centeredness. Classic robot pro-
grams are usually based on 3D coordinates, e.g. a pick 
up function requires the object to be at an a-priori de-
fined 3D location. Skills, on the other hand, are not ap-
plied on 3D locations but on objects, i.e. pick up 
<object>. In order to instantiate e.g. the pick up 
skill on object, the robot will use a sensing device 
such as a video camera or a range scanner to first detect 
and then localize the object. Once the 3D location is 
available, the robot is in principle able to execute the 
classic function for picking up the object. 

A second core property of a skill is that each one 
needs pre- and postconditions to ensure and verify a 
correct functioning: Before the robot can execute a skill, 
all preconditions need to be fulfilled, e.g. reachability of 
the object is a precondition of the pick up <ob-
ject> skill. If the object is not reachable, the skill 
cannot be executed. A check of the postconditions will 
verify if the expected outcome of the skill was satisfac-
torily met, i.e. that the executed skill was successful. 
Thus, the pre- and postconditions are effectively a query 
on the world state, that evaluates to true or false. 

 

 
Fig. 1. Skill model 

 
Robot skills have two very distinct features; execu-

tion and inspection, each requiring a different form of 
object interaction. Thus, a robot skill is expected to 
modify the state of the real world and concurrently up-
date the systems state variables. A model of a robot skill 
is shown in Fig. 1. Queries on the state variables and 
input parameters (which are provided at task-level pro-
gramming time) serves as a means of testing if the pre-
conditions of the skill execution are met, either by prior 
knowledge or ad hoc inspection. If the preconditions are 
met, the skill is executed, based on the parameters and 
the state variables. Parameters are thus stored in the task 
description and are for instance objects or locations, e.g. 
<red box> for the locate or pick up skill or 
<warehouse> for the move to skill. 

The postconditions are two-part in relation to the 
skill; prediction and evaluation. The prediction specifies 
formally what the expected effect of executing the skill 
is, and can thus be used to select an appropriate skill for 
achieving a desired goal state. The evaluation checks 
that the state variables after execution is within an ex-
pected range and updates the state variables to reflect 
the actual state after the skill execution. 

Since skills are goal-oriented, the prediction of a skill 
must devise a change in the state variables. This change 

Fig. B.2.: Model of a robot skill

object skill the parameter is the specific object that needs to be picked up. The
skill initially checks that all preconditions for executing the skill are satisfied,
based on the inputs. If true, the skill executes the sequence of skill primitives
that changes the world state to the desired goal setting. After execution, it
is verified that the current, measured state variables are satisfactory. This is
done by comparing them to the prediction of the outcome (see Fig. B.2), which
is established from the parameter input and initial state setting.

Pre- and postconditions are required for both robustness and planning. There
is no reason to attempt to execute a skill if the preconditions are not satisfied,
and the skill is only correctly executed if the postconditions are satisfied. Fur-
thermore, if there exists a task-level planner that is able to create tasks as se-
quences of skills, the same planner would be able to deal with precondition
failures, by planning a sequence of skills that satisfies the preconditions. In
the case of postcondition failures, however, the case is not as trivial, since a
planner would still utilize the same library of skills, resulting in a similar task
as the one currently being executed. In this case it might be feasible to simply
retry the skill a few times, call an operator, or render the skill invalid for the
next planning attempt.

Using these definitions of tasks and skills, and based on our findings in the
FP7 project TAPAS and numerous experiments on the shop floor, a total of 566
manual tasks in a production facility have been analyzed [21], and we have
shown that it is possible to break down most of these tasks into a set of only
13 distinct robot skills, and even less in simpler domains [14].

2.1. Skill primitives

In order for the robot skills to be robust, hardware-abstracted and easy to
implement for robot skill developers, they must themselves be composed of
lower-level skill primitives. We will not attempt to provide a strict definition
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of what a skill primitive is and what it is not. Instead, we see skill primi-
tives as traditional macros, that perform a basic function directly which may
be readily provided by the robot system. Comparing to skill primitives in
humans, they are intuitively the motions and sensing we perform without
thinking further about it. As such, a robot skill primitive could be as rudi-
mentary as closing the gripper on the robot, or as advanced as planning and
performing collision-free motion of a robot arm.

Being the only interface to the hardware in this model, these components
are also effectively the hardware abstraction layer. Ideally, this means that
any single skill primitive can be changed, as long as the same interfaces are
maintained.

It is important to note that, for the sake of generality, we do not distin-
guish between skill primitives that purely perform motions and primitives
that purely perform sensing. For example, both an object detector and a point-
to-point robot arm motion are skill primitives.

We will now go on to present the implementation of the pick and place
skills.

3. Implementation overview

This section will present the challenges in implementing the pick and place
skills, which is the initial implementation of skills following the concepts men-
tioned above. As such, we divide this section into two subsections. First, we
will briefly present the outline and contents of both skills, following the model
introduced in 2. After this, we present a general overview of both skills, along
with aspects of the implementation that is necessary for both. In this section
we will also introduce the implementation of the skill primitives that are the
same for both robots.

3.1. Skill descriptions

The pick skill aims to fulfill the goal of picking up a known object in the world
model. The skill is designed to assume that the object is within reach of the
robot, without the need of driving to the object location. Knowing that the
object is within reach, the robot will re-detect the object, to get an accurate and
up to date object pose. After this, it will pick up the object, and lift it away
from the table. This ends the execution phase of the skill. It will then need to
be verified that the execution was successful, which is done by a) checking if
an object is in the gripper, and b) no object is at the previous location. The steps
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involved are shown in Table B.1, and the skill primitives used are marked with
the abbreviation SP.

Parameter Previously detected object
Preconditions Object known in world model

Object within reach
Gripper empty

Execution SP: Redetect and update pose of object
SP: Open gripper

Calculate pregrasp and grasp pose
SP: Planned, collision-free arm motion to

pregrasp pose
SP: Motion into grasp pose
SP: Close gripper
SP: Motion away from table

Postconditions Object in gripper
Object not at previous location

Table B.1.: Pick skill

Similarly to the pick skill, the place skill assumes the position to place the
object is within reach of the robot arm. The goal of the place skill in this im-
plementation is to put down the object in the gripper at a specific location on
a known surface. A robust and general place skill, that can handle advanced
contact definitions, e.g. assembly tasks, is out of scope of this particular work.
The robot will have to move the gripper to a position above the desired final
position of the object, after which it will move down, normal to the table, until
contact. After this, it will open the gripper and move it away from the object,
which concludes the execution phase. Finally, it is verified that the gripper is
empty, and the object is placed at the desired position. The steps involved in
the place skill are shown in Table B.2.

3.2. General implementation

Certain prerequisites in the form of skill primitives need to be satisfied in or-
der to implement the skills on the robots. Besides simple motion commands,
such as gripper motions, the relatively advanced skill primitives necessary for
this implementation are:

• Collision-free arm navigation

• Object detection, recognition and grasp planning
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Parameter (x, y) location on previously detected surface
Preconditions Surface known in world model

Place location within reach
Object in gripper
Place location empty

Execution Calculate pre-place and place poses
SP: Planned, collision-free arm motion to

pregrasp pose
SP: Motion down to contact with surface
SP: Open gripper
SP: Motion away from object

Postconditions Gripper empty
Object at correct location
Gripper is away from object

Table B.2.: Place skill

• Cartesian motions with force feedback

Furthermore, it is necessary to have a suitable representation of the world
state, which we have implemented as well. The world model in this initial
implementation contains information about previously detected objects and
surfaces, in global coordinates. This implementation also enables advanced
querying (e.g. return objects currently located on table 1) and updating poses of
surfaces and objects ad hoc. When starting up the robot, we perform an initial
scan of the scene, and save information regarding objects and surfaces, or load
a previously saved world state.

The current implementation relies heavily on available ROS packages for
the primitives. However, due to the layered architecture, the primitive layer
could in principle be any other robot middleware, with a package-like struc-
ture.

For the object and surface detection skill primitive, we use the ROS pack-
age tabletop_object_detector, which performs tabletop segmentation,
object detection and object recognition based on measured point clouds of the
environment, captured with a Kinect camera. This package is furthermore uti-
lizing a database of known objects, with a set of simulated grasp poses for the
PR2 parallel gripper for each object. For the purpose of example, this package
is adequate, and can easily be exchanged with a more suitable primitive when
needed.
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In order for the robot to safely manipulate objects in semi-structured envi-
ronments, such as production facilities, a skill primitive that performs collision-
free arm motions is also required. In order to do this, we use the ROS stack
arm_navigation, that is fully integrated to work with the PR2.

It is not always feasible to plan every motion of a robot arm, especially not
during manipulation of parts for which we do not have a model we can input
in the collision map. Therefore, a skill primitive that enables motions accord-
ing to the Task Frame Formalism has been implemented. This primitive is
a layer on top of a low level controller, that controls the joints of the robot
arm directly. Therefore, the TFF primitive is not performing real-time control
of the joints of the robot arm directly, and is therefore strictly not a TFF con-
troller. However, this primitive does enable us to specify the desired position,
velocity or applied force in any direction and in any known frame, until a cer-
tain stop criterion is met, e.g. a traveled distance, a velocity, or an external
force in a particular direction.

We will give a more detailed description of the implementation in the next
sections.

4. Implementation on two robots

We begin by presenting the implementation on the PR2 robot, which has es-
sentially served as an initial prototyping platform for the skill concept intro-
duced in 2. In this description, we will present how each skill primitive was
implemented, and how it fits into the skill itself. Finally, we describe the neces-
sary steps in order to transfer this implementation from the research platform,
that the PR2 is, to an entirely different robot, the industrial mobile robot Little
Helper.

The skills have all been implemented as classes in Python, that inherit from
a base skill class. This base class contains methods for adding pre- or postcon-
ditions, as well as evaluating all conditions. It also contains an empty method
for interfacing to the ROS topics and actions, that are used in the specific skill
implementation, and an empty method for execution. When implementing a
skill, the programmer must overwrite these two functions with skill-specific
ones, as well as add pre- and postconditions to the skill. In this way, it is
ensured that all skills maintain the same vocabulary for calling the functions
within the skill.
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4.1. Implementation on the PR2

The following two sections provide a detailed description of the implementa-
tion of the skills, according to the outline in Table B.1 and B.2, respectively.

4.1.1. Pick skill

As a unique ID identifies each object in the world model, this ID is used as the
parameter for the pick skill. The world model is queried for the information
regarding this particular object, e.g. the type of object, pose, and surface it is
resting upon. The preconditions object within reach and object known in world
model can be determined based on this query. The precondition check for the
gripper being empty is tested on the internal joint state of the robot. If any of
the preconditions fail, the skill terminates and outputs which precondition(s)
failed.

In the execution phase, it is first necessary to redetect the scene by calling
the object detector primitive, to accurately update the object pose in the robot
coordinate system. This is due to the fact that the world model for a mobile
robot will be populated with object poses in world coordinates, and current
navigation and localization are not sufficiently precise for manipulation.

The grasp pose is selected based on a series of presimulated grasps, avail-
able for the specific object type in the database of objects. The chosen grasp is
a selected as a tradeoff between the pose difference between the current grip-
per pose and the available grasp poses, and the success probability from grasp
simulations. The pre-grasp pose is similar to the grasp pose, with an offset in
the gripper frame, to ensure a collision-free approach to the object.

The end-effector is moved to the pre-grasp pose, by using the arm naviga-
tion primitive. The planner used is the SBL planner [22] from the Open Motion
Planning Library [23].

In order to approach the object, the robot makes use of the TFF skill primi-
tive, and performs a TFF motion into the grasp pose. This motion is specified
as a velocity in the end-effector frame, towards the grasp pose, and the stop
criterion is either the approach distance used to calculate the pre-grasp pose,
or when sensing a contact with the object. The TFF primitive outputs desired
positions to a cartesian position controller with force and velocity feedback,
the JTTaskController in the pr2_manipulation_controllers pack-
age. A separate PI control of velocity and force has been implemented, where
a desired pose is sent to the cartesian controller, based on the velocity or force
feedback directly from the controller, respectively. After the motion reaches
the stop criterion, the gripper is closed to grasp the object. The pose of the
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object in the world model is then updated to the current pose in the gripper
frame, and a flag is set to indicate that this object is currently in the gripper.
The collision model of the object is also attached to the arm, to enable future
planned motions with the object in the gripper.

The TFF motion performing the lift is also a velocity command, with the
stop criterion being a pre-programmed lifting height. This motion is carried
out in a direction normal to the surface, to ensure there is no collision with the
surface.

If any of the previous steps fails, the skill terminates and outputs at exactly
which step it failed, and for what reason.

After the execution the postconditions are verified. Checking if the object is
in the gripper is tested on the current gripper joint configuration, and compar-
ing this to the known joint configuration for the chosen grasp. The detection
primitive is called again, in order to ensure no objects are present at the loca-
tion the object was picked from. If both postconditions are satisfied, the skill
is concluded, and the robot returns to a waiting state.

4.1.2. Place skill

Similar to the objects, detected surfaces are identified in the world model with
a unique ID. The parameter to the place skill is therefore the ID of the surface,
and the (x, y) location to place the object on that surface. In this implemen-
tation, the coordinate is explicitly specified when calling the skill, but initial
experiments with simple gesture recognition for parameter input show that
this is a feasible approach [24]. The first precondition checks are whether or
not the surface is known in the world model, and if the desired location is
within the workspace of the robot, similar as the checks in the pick skill. The
world model is also queried to obtain knowledge of the object in the gripper,
based on the flag set after picking up the object. Calling the object detection
primitive reveals whether or not there already is an object at the specified lo-
cation, in which case that particular precondition fails.

The execution phase initially calculates the place pose from the (x, y) loca-
tion in the table frame, specified in the parameter. This is the desired final
pose of the object, and since the object pose in the gripper is known from the
world model, the final pose of the gripper is easily deduced. The pre-place
pose is an offset of the place pose in the direction normal to the surface.

We again use the arm navigation primitive to conduct a planned motion to
the pre-place pose. In this way we can still avoid collision with both the arm
and the object in the gripper, since the object was added to the collision model
of the arm. Upon reaching the pre-place pose, the TFF primitive is used to
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move the grasped object toward the surface, in the direction of the surface
normal. This motion is terminated once a contact is sensed with the table, and
the gripper is opened. The collision model of the object is now detached from
the arm, as it is no longer needed.

In order to avoid colliding with the object when moving away from it, this is
also carried out as a TFF motion in the gripper frame, similar to the approach
motion in the pick skill. The stop condition is a distance greater than the
length of the gripper fingers, to ensure the gripper is clear from the object.

After the gripper is moved away, the pose of the object is updated to be the
desired place pose. This is then verified as a post-condition by re-detecting the
scene, and if the object is within an acceptable placing tolerance, the pose of
the object is updated to be the actual, detected pose. The checks if the gripper
is empty (fully open) and away from the object are measured based on the
internal robot state.

4.2. Implementation on the Little Helper

The Little Helper (see Fig. B.3) relies on a KUKA Light Weight Robot (LWR)
arm for manipulation, which is not fully compatible with ROS. Furthermore,
the system consists of a Schunk WSG-50 parallel gripper for manipulation,
and a Neobotix MP-L655 mobile differential drive platform for mobility. Both
of these latter components are fully integrated with ROS.

The primary tasks in porting the skills to the Little Helper are to implement
missing primitives, modifying the interfaces with the primitives, and to make
adjustments in the various geometric calculations within the skill. This is pri-
marily calculating gripper poses, but also mapping the joint configurations of
a grasp with the PR2 gripper to that of the gripper on the Little Helper. Con-
sidering nearly no attention to hardware abstraction was taken when initially
developing the skills on the PR2, the skills were working on the Little Helper
within a very short time and with low effort. If the skills had initially been
developed in a generic manner, it would have taken even less time and work.

On the Little Helper, we are using a skill primitive that sends cartesian or
joint poses directly to the KUKA controller, which then handles inverse kine-
matics, path planning and joint interpolation. This has the drawback that it
is not possible to perform collision-free arm navigation and TFF-like motions.
It is, however, very important to again stress the fact that the interfaces to the
different primitives are the same. So when the arm navigation and TFF skill
primitives are working on the Little Helper, they can directly be used by the
skills. This shows how easily skill primitives can be exchanged, as long as
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(a) (b)

Fig. B.3.: The two robots used for experiments: (a) the PR2 robot and (b) the Little Helper robot at
a production facility

their interfaces are the same.
In the initial experiments with the PR2, we have used the robot in a station-

ary position. On the Little Helper, however, we have implemented one more
skill, which is the simple drive to station skill. This skill uses the ROS navi-
gation system to navigate the mobile base in a known map to a workstation
that is previously saved in the world model. This skill only has the precondi-
tion check of whether or not the station is known in the model. The skill will
then call the navigation primitive, in order to bring the mobile robot from the
current position to the saved workstation, and check that the robot is at the
goal.

Using these three skills, we can easily create small scripts, that is essentially
task descriptions. In the following is shown a simple function that calls the
skills to get a box of rotor caps, for rotors used in a domestic water pump, and
transport them to a rotor press, where the final rotor is assembled:

def get_box_of_rotor_caps ( ) :
# Drive t o r o t o r cap p r e s s
d r i v e _ t o _ s t a t i o n ( ’ warehouse ’ )
# Get ID o f a box o f r o t o r s near t h e r o b o t
box_id = g e t _ o b j e c t _ i d ( ’ f u l l _ r o t o r _ b o x ’ , near= ’ warehouse ’ )
# P i c k up a box o f r o t o r s
pick_up ( box_id )
# P l a c e on r o b o t p l a t f o r m a t a s p e c i f i c p o s i t i o n
place ( ’ platform ’ , 0 . 3 0 , 0 . 5 5 )
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# Drive t o t h e r o t o r a s s e m b l y s t a t i o n
d r i v e _ t o _ s t a t i o n ( ’ r o t o r _ p r e s s _ s t a t i o n ’ )
# P i c k up t h e box from t h e p l a t f o r m
pick_up ( box_id )
# P l a c e t h e box on t h e t a b l e nex t t o t h e p r e s s
place ( ’ r o t o r _ p r e s s _ t a b l e ’ , 1 . 4 0 , 0 . 2 5 )
return

This is only the very basic way of using skills to program tasks, and being
able to specify robot tasks as simple as the example above opens up the door
to a lot of different possibilities in Human-Robot Interaction, that can output
scripts like this.

5. Future work

It is our intention to further develop the library of skills, with the 10 (less ad-
vanced) skills that are missing for the logistic domain described in [14]. We
will do this only on the Little Helper. When we have a sufficient library of
skills, we will use them for improved human-robot interaction, so an operator
can select the sequence of skills, and their parameters, in a GUI or through
direct interaction with the robot. It is imperative that this will be extensively
tested in a real production facility. Furthermore, we will experiment with us-
ing simple planners to create sequences of skills, and more advanced ones to
deal with skill failures, both as pre- and postcondition failures, and during
execution.

6. Conclusion

In this paper we have presented a model for programming robust, hardware-
abstracted robot skills, for use in task-level programming, following a struc-
ture similar to how we humans use basic skills to form more complex tasks.
One can argue that the implementation has a number of shortcomings, such
as requiring a database of known objects with corresponding grasps. How-
ever, we would like to argue that the modular concept of the skills allows to
very easily change such components to accommodate the needs of the differ-
ent scenarios. Our skill model can easily accommodate future extensions, both
in skill primitives and world state knowledge. In principle, this concept looks
very promising, because the skills are self-sustained, in that they know when
they fail and why, and are parametric in their execution. But also because the
skills are highly modular, since they are composed of lower level skill prim-
itives. Getting a skill, explicitly designed for one robot, to work on another
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robot proved to be effortless, given the right skill primitives. However, hav-
ing the right skill primitives readily available can be the limiting factor in a
skill implementation, if the skill is to be implemented in the exact same man-
ner on all robots.

For demonstrations of the described implementations, see the attached video.
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1. Introduction

Abstract

In order for manufacturing companies to remain competitive while also offering a
high degree of customization for the customers, flexible robots that can be rapidly re-
programmed to new tasks need to be applied in the factories. In this paper we propose
a method for the intuitive programming of an industrial mobile robot by combining
robot skills, a graphical user interface and human gesture recognition. We give a brief
introduction to robot skills as we envision them for intuitive programming, and how
they are used in the robot system. We then describe the tracking and gesture recogni-
tion, and how the instructor uses the method for programming. We have verified our
approach through experiments on several subjects, showing that the system is gen-
erally easy to use even for inexperienced users. Furthermore, the programming time
required to program a new task is very short, especially keeping traditional industrial
robot programming methods in mind.

1. Introduction

Manufacturing companies have experienced the challenges of mass customiza-
tion for a long period of time. As customers demand more customization op-
tions for products, traditional mass production becomes problematic. While
mass production focuses on producing large volumes of identical items with
high efficiency, mass customization needs to maintain the production volume,
but also offer products with a highly varied feature set. In order to do this,
flexible robotic solutions appear more promising than stationary robot cells.

A key issue of flexible robots is to be able to reprogram them on the fly
when a new task is needed in the factory. Currently, industrial robots are
programmed by experts to do specific motions and follow specific paths in
a highly structured environment. In order for the robots to be truly flexible,
they need to be able to handle a variety of different tasks, and they must be
reprogrammed fast when a new task in the factory arises.

In this paper, we propose a method for intuitive and fast programming of
a mobile industrial robot using robot skills in conjunction with a graphical
user interface and human gestures. Using the skills as fundamental building
blocks, it is easy for a shop floor worker to form complex tasks. The skills
need to be supplied with parameters, stating on which objects they should
be executed, e.g. the Pick up <object> skill needs to know which object
to pick up. The sequencing of skills is done on a touchpad device, and the
teaching of the parameters for the individual skills are done by performing
specific gestures, such as pointing at objects to pick up.
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The underlying principles of the skills are very general, and can be applied
to any robotic system. We have previously shown that a set of skills devel-
oped explicitly for one robot can with very little effort be implemented on a
completely different robot system [1]. It is our firm belief that this is the direc-
tion industrial robotics need to go in order for manufacturing companies to
remain competitive in the future.

1.1. Scenario description

For validating our approach, we have chosen real industrial tasks, that are
currently performed by human workers in the factory of Grundfos, a Danish
manufacturer of domestic water circulation pumps. The use cases we want to
be able to program fast and intuitively are handling (or logistic) tasks, such
as tending a workstation assembling rotors for water pumps. In this case, the
finished rotors are placed in a small kanban box next to the workstation. When
the box is full of finished parts, it needs to be replaced with an empty box. It is
the transporting of this box to a warehouse and the fetching of an empty one
that is the considered use case for this paper.

Programming this task using current programming methods is neither ef-
fortless, nor intuitive. In our case, we select the appropriate skills that solve
the task on a touchpad, and specific objects to pick up or locations to place
on are indicated by pointing at them. Fig. C.1 shows a user with a touchpad,
pointing at a location to place a box. Using this method, the programming
can be done in as little as two minutes, and the program is working under the
usual location uncertainties that are present in a human environment.

Fig. C.1.: A user with a touchpad pointing at a location to place a box in front of the robot.
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The contribution of this paper is the following:

1. Demonstration of a novel skill-level programming approach, using a
combination of a graphical user interface and gesture recognition.

2. A thorough evaluation of the intuitiveness and robustness of the ap-
proach using several volunteers. Programming of typical industrial lo-
gistic use cases can be done in as little as 2 minutes by individuals that
have only been provided with a 10 minute introduction to the system.

1.2. Related work

The idea of robot skills is not a new one [2–4], but the use of robot skills for
intuitive programming is not gaining much attention from the research com-
munity. When it comes to programming of industrial robots in general, focus
seems to be on offline programming by using CAD models and augmented
reality. Another focus is task planning, often using motion primitives as the
planning domain.

Most recent work on motion primitives seem to utilize a variation of the
Dynamic Movement Primitives (DMPs) described in [5–7]. The DMPs specify
a single movement, and represents the desired kinematic state of a robot limb
(or alternatively in the task space) as a mixture of non-linear differential equa-
tions. The DMPs have mainly been used for mapping human to robot motion
in research in Teaching by Demonstration.

Another detailed work regarding motion primitives and their use is the Ma-
nipulation Primitives (MPs) described in [8, 9]. This work expands on the Task
Frame Formalism [10], by enabling the use of any sensor and controller in the
same task frame (e.g. visual servoing combined with force control), as well
as operating in a dynamic task frame. These MPs have also been combined
in Manipulation Primitive Nets [11], with simple sensor-level decisions based
on the outcome of each single manipulation primitive in the net.

A layered structure of skills and tasks similar to ours is also proposed in
[12]. However, the focus is still planning on the task level, but by utiliz-
ing somewhat general skills and skill primitives. The implementation of said
skills is however at its current state rather simplistic.

The notion of skills described in this paper mostly resemble the Action
Recipes of RoboEarth [13, 14]. However, in RoboEarth, the skills (or Action
Recipes) keep sensing and action separate. With its focus on knowledge shar-
ing between robots, the Recipes (robot programs) in RoboEarth rather require
some capabilities of the robot, such as object recognition and environment
models, and the Recipes are only action based.
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Common for all the previous work, however, is that they have all, in one
way or another, been insufficient to deploy in a real industrial setting, and
require expert knowledge of the robot system to use and implement. In this
paper we will show that our method is easy to use by the factory worker, and
follows a rather straightforward implementation method.

We will give a brief introduction to our notion of skills in 2. We will then go
on to describe the human tracking and gestures in 3 and the GUI in 4. We will
finally describe the experiments and results in 5 and conclude the paper in 6.

2. Skills and architecture

We see robot skills as fundamental software building blocks, used for robot
task programming, that incorporate sensing and action [1, 15]. The core idea
of the skills is to unify sensing and action in one unit. This means the shop
floor workers programming the task will only have to relate to and use skills
such as Drive to <Location> or Pick up <Object>, and not robot mo-
tion or sensing operations. This unification makes the skills themselves more
complex internally, as they have to marginalize out the parameters which are
not provided by the user. We will explain the aspects of this in the following.
Our model of a robot skill is shown in Fig. C.2.
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graphical representation of skills, where the skill tem-
plate serves as a communication tool between the skill 
developer and the application programmer. However, 
these pre- and postconditions need to be connected to 
the real robot, i.e. to be testable before they actually jus-
tify their existence. 

B. Contribution 

In this study different application scenarios are ana-
lyzed to provide a terminology that can assist in all lev-
els of task-level robot programming, from the developer 
of the basic capabilities of the robot to the shop floor 
worker who will program new tasks. Using this termi-
nology, 

 

• a concept of robot skills is utilized to analyze pro-
duction processes, and identify what skills are 
needed for certain task domains, and 

• the skills and tasks abstraction is proposed to en-
capsulate, convey, and reuse expert knowledge to 
create robust robot programs. 

II. DEFINITION OF TASKS AND SKILLS 

In this section we will introduce our definitions of 
the key terms of this paper. Similar to papers that model 
human action using an abstraction hierarchy of action 
primitives, actions and activities [6,15], or that model 
language out of phonemes, words and sentences [17], 
we will denote the same type of hierarchy by using the 
terms motion primitives, skills and tasks. Motion primi-
tives perform basic motion commands of the robot, and 
skills are basic functionalities the robot has. 

A. Tasks 

Tasks are in this context, quite intuitively, character-
ized by attaining a certain production-related goal in the 
factory hall, e.g. fill feeder A or load part B into machine 
C. We say that a task can be decomposed into a se-
quence of skills from the set S of skills if there exists a 
robot that is able to complete a task by using the skills 
from S. Tasks are defined based on measurable state 
variables, and the robot uses its skills to change these 
state variables. State variables can be either measured 
with vanishing uncertainty by dedicated sensors, e.g. by 
those that are built into the manufacturing systems, or 
by sensors on the robot, such as vision, torque or tactile 
sensors.  

B. Skills 

Skills are the foundation of task-level programming, 
and provide the building blocks for the robot to com-
plete the task. Which skills are available to a robot de-
pends on its hardware and its sensors. In Sec. IV-A we 
discuss a method for defining skills that are somewhat 
independent of the hardware they run on, without loss of 
generality.  

How to automatically select the right set of skills to 
accomplish a task, however, is an open question.[16] In 
the present paper we suggest finding the skills by ana-
lyzing real-world implementations and Standard Oper-
ating Procedures (SOP) from an industrial partner. This 

way, the identification of the set of skills is consistent 
with human intuition.  

One core property and main justification for using 
skills is their object-centeredness. Classic robot pro-
grams are usually based on 3D coordinates, e.g. a pick 
up function requires the object to be at an a-priori de-
fined 3D location. Skills, on the other hand, are not ap-
plied on 3D locations but on objects, i.e. pick up 
<object>. In order to instantiate e.g. the pick up 
skill on object, the robot will use a sensing device 
such as a video camera or a range scanner to first detect 
and then localize the object. Once the 3D location is 
available, the robot is in principle able to execute the 
classic function for picking up the object. 

A second core property of a skill is that each one 
needs pre- and postconditions to ensure and verify a 
correct functioning: Before the robot can execute a skill, 
all preconditions need to be fulfilled, e.g. reachability of 
the object is a precondition of the pick up <ob-
ject> skill. If the object is not reachable, the skill 
cannot be executed. A check of the postconditions will 
verify if the expected outcome of the skill was satisfac-
torily met, i.e. that the executed skill was successful. 
Thus, the pre- and postconditions are effectively a query 
on the world state, that evaluates to true or false. 

 

 
Fig. 1. Skill model 

 
Robot skills have two very distinct features; execu-

tion and inspection, each requiring a different form of 
object interaction. Thus, a robot skill is expected to 
modify the state of the real world and concurrently up-
date the systems state variables. A model of a robot skill 
is shown in Fig. 1. Queries on the state variables and 
input parameters (which are provided at task-level pro-
gramming time) serves as a means of testing if the pre-
conditions of the skill execution are met, either by prior 
knowledge or ad hoc inspection. If the preconditions are 
met, the skill is executed, based on the parameters and 
the state variables. Parameters are thus stored in the task 
description and are for instance objects or locations, e.g. 
<red box> for the locate or pick up skill or 
<warehouse> for the move to skill. 

The postconditions are two-part in relation to the 
skill; prediction and evaluation. The prediction specifies 
formally what the expected effect of executing the skill 
is, and can thus be used to select an appropriate skill for 
achieving a desired goal state. The evaluation checks 
that the state variables after execution is within an ex-
pected range and updates the state variables to reflect 
the actual state after the skill execution. 

Since skills are goal-oriented, the prediction of a skill 
must devise a change in the state variables. This change 

Fig. C.2.: Model of a robot skill

In order to find the right set of skills for solving most industrial tasks, we
have analyzed the current tasks of human workers. At Grundfos, the workers
are given written instructions on how to perform various tasks, accompanied
by images of the relevant workstations or parts. We have previously analyzed
more than 500 of these instructions, which revealed only 13 distinct reoccur-
ring general commands such as “insert part A into fixture B", which transfers
to skills [15].

As skills are centered around objects, only a certain object as a parameter is
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needed. Everything else is handled within the skill. For instance, the Pick
up <object> skill is shown which object to pick up by the user pointing at
the object. The object is detected using computer vision. Upon skill execution,
the necessary calculations are made in order to move the arm and gripper so
that the object is lifted from the surface and is in the gripper when the skill is
finished.

There are three different types of parameters determining how the skill is
executed. If we return to the Pick up <object> skill, the single external
parameter, specified by the worker, is which object to pick up. The other two
types of parameters are internal to the skill, and the general end user should
not be bothered with these, as the robot could compute them on its own. One
is related to slight variations in the skill execution, e.g. selecting an overhead
grasp instead of a horizontal grasp. The second type of internal parameter is
hardware-specific and specified by the skill programmer, and includes robot
speeds, contact forces, etc.

In order to facilitate programming and robustness of tasks, the skills contain
a notion of their effect, as well as an estimation of whether or not the skill can
be executed. When a skill is started, it is first verified based on a set of pre-
conditions that the skill actually can be executed. The skills include a prediction
layer, that estimates the outcome of the skill based on the supplied parame-
ters and assumed correct execution. After skill execution, it is verified based
on a set of postconditions that the skill executed as predicted (this is labeled
Evaluation in Fig. C.2).

Since the skills need to access prior knowledge of objects and locations in the
factory, we provide a simple world model containing only previously detected
objects and locations, in a database-like structure.

2.1. System architecture

For this experiment we have implemented methods for a) specifying a se-
quence of skills to form a task, b) specifying parameters for each skill through
gesture recognition, and c) executing the saved task. Since our experimental
platform is running ROS, in most cases the communication between programs
is done through either topics, services or actions provided in ROS.

The skills are implemented as classes, and each skill inherits from a parent
skill class, in order to conform to the same layout. The parent class contains
placeholder methods for parameter-based execution, establishing communi-
cation with the robot, as well as evaluating all pre and postconditions in the
skill. The methods for execution and communication are overridden when a
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skill is implemented.
One central program handles communication with the graphical interface

and task specification. Essentially it receives a list of unparameterized skills
from the GUI, which it can then supply to a separate teaching program in
order to add parameters to the sequence. The teaching program in turn com-
municates with the gesture recognition software, in which the user input is
determined. A more detailed description of the GUI will be provided in 4,
and more details on the teaching program will follow in 5.2.

The world model can be accessed from all of the above components, but it
is only the skills that can change the state of the world. This conforms to the
notion that it is the skills themselves that afford a change in the world state.

3. Tracker and gesture recognition

This section will introduce the reader to the tracking of human users, the im-
plementation of the gesture recognition and the considered gestures for pro-
gramming the robot.

3.1. Implementation of tracker

As the fundamental engine for 3D body tracking we have used NiTE 2.2 cou-
pled with the OpenNI 2.2 SDK for accessing 3D sensor hardware. In our ex-
periments we use an Asus Xtion PRO Live RGB-D sensor. We have added a
visualization, see Fig. C.3, which shows the tracked person and the status of
the gesture recognition process.

The NiTE tracker is capable of tracking multiple persons. However, we are
only interested in the gestures of one person, namely the instructor currently
teaching the task to the robot. Therefore, we use and recognize a certain at-
tention gesture which identifies the instructor, so any tracked person becomes
the instructor by performing this gesture. The green color, see Fig. C.3, indi-
cates the instructor; ignored users are marked in blue. Only the location of the
instructor and his/her gestures are published to other programs for further
processing on a ROS topic.

3.2. Gesture recognition

We consider the recognition of the following gestures: attention, stop, abort,
follow, and pointing. The meaning of each gesture when teaching is described
in 5.2. The recognition is based on thresholding different features of the in-
structor’s body pose. The pointing gesture differs slightly, since the instructor
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Fig. C.3.: Tracker GUI, with the attention gesture being performed by the instructor (in green). The
untracked user is marked in blue. The bars in the bottom left of the image show gesture
recognition progress.

is supposed to keep the pointing steady. In addition, it is not a simple event
and includes a pointing direction encoded as a ROS 3D pose. The considered
gestures are shown in Fig. C.4.

(a) (b) (c) (d) (e)

Fig. C.4.: The gestures available during teaching: (a) attention, (b) stop, (c) abort, (d) follow and (e)
pointing.

Let us first consider the thresholding. From the tracker we receive from
each joint of the instructor an orientation, its location, and a confidence value
between 0.0 and 1.0. In general, we assume that the joints which take part in
the thresholding process for one gesture must have a confidence of at least 0.5,
otherwise we consider a gesture as invalid. We name the locations provided
by the tracker of the right shoulder pr

1, elbow pr
2, and hand pr

3. pl
1, pl

2, and
pl

3 are the corresponding locations of the left arm. In most cases, the gestures
are only valid for the right arm. For the instructor we calculate a normalized
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vertical upwards vector u and a forwards vector v from the orientation of the
torso, i.e. directions in the frame of the instructor. In addition we calculate the
location between the shoulders, s = 1

2 (pr
1 + pl

1), and a location s′ = s+ 0.12 · v,
which is an estimation of the position of the sternum.

Now, we consider the thresholds of the available gestures. In all of the
thresholds we have determined the limits empirically (stated in meters in the
following), based on experiments with a small number of people.

• Attention: Right hand is held up, slightly above the shoulders:

0.00 ≤ (pr
3 − s) · u < 0.15

• Stop: Right hand is held up high above the shoulders:

(pr
3 − s) · u ≥ 0.15

• Abort: Both hands are held up above the shoulders (this gesture cancels
both gestures above):

(pr
3 − s) · u ≥ 0.00 ∧ (pl

3 − s) · u ≥ 0.00

• Follow: Right hand close to the sternum s′:

|pr
3 − s′| ≤ 0.10

• Pointing: Right arm is not simply pointing straight down, i.e. there is
some angle between the downwards vector −u and the direction d =
(pr

3−pr
2)/|pr

3−pr
2| of the right forearm. The pointing should also be steady

(gesture only valid when right elbow and hand do not move more than
10cm/s):

cos−1(−u · d) ≥ 35◦

∧ (pr
3 − pr

3,t−1) ≤ 0.10∆t

∧ (pr
2 − pr

2,t−1) ≤ 0.10∆t

where pr
3,t−1 and pr

2,t−1 are the corresponding hand and elbow posi-
tions in the previous frame, and ∆t is the duration passed between two
frames. Any of the previous gestures cancels the pointing gesture.

We do not consider a gesture recognized until it is held for at least one sec-
ond. Therefore, we use a counter ci ∈ [0, 1] for each gesture which is incre-
mented by ∆t when the gesture i is valid. If a gesture is invalid, the counter is
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decremented by 2∆t. Once a counter ci becomes 1, the gesture is recognized,
all counters are reset to 0, and we ignore further gestures for some time (1.5 s).
The counters ci for each gesture are represented by the bars in Fig. C.3, bottom
left.

For the pointing gesture, we publish not only its occurrence but also the
right hand location pr

3 and the pointing direction d (the orientation of the fore-
arm) as a 3D pose: The hand location defines the origin and the coordinates
for the pointing vector are (d, v′, d × v′), where v′ = v − (d · v)d is a vec-
tor orthogonal to d. The location of the instructor’s torso and the coordinate
frame (u, v, u× v) are also published every frame, when the instructor can be
tracked. This location is used for following the instructor.

4. User interface

The main interaction with the robot is done through a GUI on an iPad, see Fig.
C.5. The GUI is implemented in Python using PyQt, and features a tab-based
layout where the two most important tabs are for sequencing and teaching.

Fig. C.5.: The user interface for task teaching. In the image the sequencing tab is shown.

In the sequencing tab, the user constructs a task sequence by adding any
of the available skills on the robot to the current task: The user can choose
to drag and drop the skills (left side of the GUI in Fig. C.5) to the current
sequence (right side in the GUI), and also rearrange the skills in the task if
necessary. When the user is done with the sequencing step, the sequence is
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given a unique filename and saved.
After the sequencing step, the user needs to specify the parameters for each

skill in the sequence. This is done in the teaching tab. When the teaching
is started, the user is provided feedback on the current state of the teaching
operation on the display, e.g. what skill is currently being parameterized,
and what gestures the system expects the user to perform. Upon teaching
of all parameters for the task, the task is saved with parameters, and can be
executed at any time.

Beside the GUI on the touchpad, the user can get visual feedback on the
tracking and the world state on a monitor fixed on the robot. For visualization
of the world state we use Rviz, with custom markers that show the locations
and objects presently known in the world model. For visualization of the
tracker status we use the visualization shown in Fig. C.3. This visual feedback
is not meant to be necessary for the end user when using the system, but
proves useful in getting acquainted with the various gestures and checking
for errors in the world state.

5. Experimental results

We begin this section by introducing the reader to the robot system used for
experiments, the Little Helper robot shown in Fig. C.1. We then go on to a de-
tailed description of the scenario, and how a user programs the example task
of replacing kanban boxes. We finally show experimental results of various
people programming the robot in different environments.

5.1. System introduction

Unlike service robots for domestic applications, which are developed at many
universities, the focus of the Little Helper is industrial applications, and for
addressing the needs for flexible automation. The Little Helper is built from
standard industrial components, and consists mainly of three hardware com-
ponents. For manipulation we use a 7 DOF KUKA Light-Weight Robot (LWR)
arm. The robot arm is mounted on a chassis which also contains the robot con-
troller and a computer controlling the entire system. The chassis is mounted
on a Neobotix MP-655 differential drive mobile platform. The entire system is
running ROS.

For object detection we have used a Microsoft Kinect RGB-D camera. Using
QR codes for marking e.g. locations, objects and tools is common in industrial
environments. To abstract away object recognition, which is not the focus in
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this paper, we adopted this methodology in our experiments as well. For this
we have implemented a QR code detector, that reads the data contained in the
QR code, which specifies which object or location it represents. Furthermore,
it calculates the 3D pose of its QR code based on 3D coordinates of the four
corners (joined from the RGB image and the depth point cloud). This allows
us to easily work with new objects and locations, as it is a matter of printing a
novel QR code, and fixing it to the object or location.

For these experiments we have implemented the world model as a database-
like program, only containing locations of detected QR codes. This enables us
to uniquely identify a specific box or location, as well as an easy method for
adding new detections, removing old entries or updating information of a
specific entry, e.g. when moving a box. Presently, the world model is limited
to objects and locations relevant for the task at hand. Referring to 1.1, this
means that the world state is populated with locations of the workstation and
the warehouse, as well as locations of all previously detected boxes. Objects
and locations are saved as 3D poses in global coordinates.

5.2. Experiment introduction

In order to program this task, the user can construct the sequence from the
following skills:

Pick up <object> Aims to pick up a specific object which is visible to
the robot, so that the object is located in the gripper
and lifted from the supporting surface.

Pick from

<location>

Picks up an object located at a specific location.
The skill first determines which object, if any, is at
the location, and then picks up the object like the
previous skill.

Place at

<location>

Puts down an object, currently in the gripper, at
a specific location, and moves the gripper away
from the object.

Drive to

<object/location>

Uses the navigation software to drive the robot to
a location in front of a previously detected object
or location.

Since this paper deals with the usefulness of skills for HRI purposes, we

C13



Paper C.

will not provide a detailed description of the implementation of the skills in
this paper, but instead point the reader towards the previous work on skill in-
tegration [1]. One important point, though, is that this method not only works
for these four skills, but enables task programming of any sequence of general
skills, that require simple parameters as input. As previously mentioned, this
means that although the skill integration is relatively complex, and requires
expert knowledge, the skills themselves are highly useful for task program-
ming.

As previously described, there are two steps in programming the robot; se-
quencing and teaching. As the sequencing is already previously described, we
will now focus on the teaching. Upon teaching the parameters, the user is
given feedback on what to do at any given step on the touchpad. For instance,
when teaching the Pick up <object> skill, the user is told to either instruct
the robot to follow him, or to point at an object the robot should pick up. This
information is provided from a finite state machine, which also handles the
teaching of parameters. Based on the current state of the teaching phase and
the supplied gesture, the system determines what to do. The finite state ma-
chine for teaching is shown in Fig. C.6.

WaitingWaiting

Following

Watching

Process 
pointing
Process 
pointing

DoneDone

abort

follow

stop

attention

Follow the 
instructor

pointing

Identified 
object or 
location

stop

stop

Fig. C.6.: Finite state machine for teaching. Gesture signals are marked in red, and separate pro-
cesses in blue. Note that the stop gesture only transitions from the Waiting to Watching
state immediately after a pointing gesture is recognized.

If the user performs the follow gesture, he can instruct the robot to follow
him to a new location. This functionality has been implemented as a PD con-
troller, which outputs translational and rotational velocity commands to the
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mobile platform, based on the location of the instructor in the frame of the
tracking camera.

The parameter for a skill is computed as soon as the robot recognizes a
pointing gesture. When a pointing gesture is recognized, the current scene
is scanned for QR codes, and the distance to the pointing vector is calculated
for all detections. The distance D between a QR code’s 3D position q and the
normalized pointing vector d is given by

D = |(pr
3 − q)− ((pr

3 − q) · d) · d| (C.1)

where pr
3 is the location of the hand (see Sec. 3.2). The exact chosen parameter

is given by the QR code closest to the pointing vector. Should the user wish to
cancel a chosen parameter, and redo the pointing for one skill, he/she can use
the stop gesture to cancel the input and redo the pointing.

Upon teaching the last skill in the sequence, the teaching phase is termi-
nated by the abort gesture, and the interface returns to the teaching tab, where
the programmed parameters for each skill are shown in the task specification.
The user can now perform a test run of the skill, either by executing the whole
task or one skill at a time.

For the experiments described in the next section, we have asked partici-
pants to program tasks such as the replacing of kanban boxes previously de-
scribed. Here, the user needs to instruct the robot to pick up a box of full parts
from a table next to the assembly station. He/she will then tell the robot to
place it at the warehouse, pick up an empty box, and place the empty box
back at the table next to the workstation. After the task is done, the robot
should return automatically to a waiting area. An example of the full skill
sequence with parameters is shown below.

1. Drive to <WorkstationTable2>

2. Pick from <WorkstationTable2>

3. Drive to <Warehouse3>

4. Place on <Shelf1>

5. Pick up <EmptyBox4>

6. Drive to <WorkstationTable2>

7. Place on <WorkstationTable2>
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5.3. Experimental results

We have conducted the experiments with several people in different scenar-
ios. We have initially performed experiments in the running production fa-
cility at Grundfos, with only minor modifications to the environment [1, 16],
mainly related to the navigation (i.e. adding low barriers around production
equipment with overhang, so the robot does not collide with these). For a
systematic evaluation, and in order to not disturb the production further, we
have moved to other environments, that can be controlled. One is a small,
cluttered environment, and the other is a large open environment, with exter-
nal disturbances in the form of daylight and people passing by. Upon moving
to a new scenario, the only requirement has been to attach QR codes to static
locations, such as shelves and tables, and to build a map for navigation. After
this, the programming can be carried out immediately, as the world model is
populated with detected objects and locations during teaching.

We have conducted the tests with a total of 17 different participants. The
participants were roughly evenly distributed with respect to age, height, gen-
der, and whether they had any previous experience with robots. The tests
were conducted by having the participants program the use case of replacing
kanban boxes. Experiments were carried out in three steps: All participant
were 1) given the same 10 minute introduction to the system, 2) programmed
the sequence of skills in the GUI once, and 3) used the gestures to teach the
parameters for the entire task 3 times. The participants are shown in Table
C.1. The rightmost column shows the mean teaching time for the 3 attempts.
Minimum average time is 134s, maximum is 377s. These experiments show a
general picture of how intuitive this approach is.

Participants generally found the sequencing step quite intuitive, and pro-
grammed the sequence fast. The times used for sequencing are shown in Fig.
C.7a, and also reveal that sequencing the skills was quite intuitive. However,
the exact choice of skills to use was quite different. Even though the outcome
of the two distinct skills that pick up an object is quite different (Pick up

<object> vs Pick from <Location>), there was no general tendency to
use one skill instead of the other. When asked directly to program a different
scenario of picking specific boxes from a shelf and placing them at various lo-
cations, there was still an even distribution in the choice of skills. From this it
is clear that there is some confusion regarding the choice of which skill to use
when.

For the teaching experiment, we first investigate the correlation between
the mean teaching time for each participant (the time to specify a full set of
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ID Gender Age Height [m] Loc. Exp. µt [s]
1 M 28 1.80 A Yes 143
2 M 26 1.91 A Yes 377
3 M 33 1.77 A Yes 252
4 M 30 1.85 A Yes 170
5 M 24 1.85 B No 142
6 M 25 1.90 B No 172
7 M 24 1.80 B No 194
8 F 41 1.75 B No 248
9 F 48 1.56 B No 229
10 F 44 1.60 B No 145
11 M 26 1.90 B Yes 228
12 M 25 1.82 B Yes 134
13 M 31 1.78 B No 146
14 F 28 1.65 A No 194
15 M 30 1.90 A No 337
16 F 27 1.73 A No 159
17 F 26 1.77 A No 146

Table C.1.: Participants in the experiments. Loc. specifies the location and Exp. specifies previous
experience with robots. µt is the mean teaching time of 3 attempts.

parameters for the sequence) and the continuous variables age and height.
Mean teaching times with respect to age and height are shown in Fig. C.8.
A low correlation of 0.11 between age and teaching time suggests that age is
not a factor that needs to be investigated further. However, the correlation
between height and teaching time was slightly higher at 0.29. This was also
apparent during the experiments; because the tracking camera was mounted
pointing slightly downward, the head was not fully visible for some of the
taller participants. This resulted in bad or lost tracking of the user, which in
turn leads to longer teaching time. This is however merely a hardware issue,
as the camera could be adjusted and its position with respect to the robot
recalibrated, but this was not done for the experiments. The adjustment would
only need to be performed once, as it was apparent from the experiments that
an orientation that would be able to track the taller users would still be able
to track shorter ones.

In order to investigate the learning curve for using the gesture approach,
the teaching times for all participants are shown in Fig. C.7b. We observe
a general improvement in teaching time, both with respect to the mean time
and the variance. This suggests that the approach is in fact quite intuitive, as
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Fig. C.7.: Box charts showing sequencing time (a) and teaching times (b) for all participants. The
black curve in (b) shows the mean teaching time.

participants generally learned how to use the gestures effectively within the
3 attempts, and even on the first attempt taught the task parameters within
minutes.

We have also investigated the learning curve based on gender, location, and
previous experience with robots. Gender and experience are closely related to
the intuitiveness of the system, where location is related to the robustness of
the system in the case of outside disturbances.

Generally, female participants performed better on all attempts, see Fig.
C.9a. The female group was generally shorter than the male group, which
could have an influence, but otherwise almost evenly distributed. Even though
the mean time for the first attempt is similar to the one for male participants,
the variance is lower, and for attempts 2 and 3 the mean time is significantly
reduced. The female group is in fact the group with the lowest mean and 2nd

lowest variance on the 3rd and final attempt.
There is some difference among participants experienced and inexperienced

in robotics, shown in Fig. C.9b. The experienced group was all male, but
other variables were distributed almost evenly. What is surprising is the high
variance of the teaching time for the first attempt for the experienced group,
which could be due to these participants having a notion on how the sys-
tem works. The experienced group improved rapidly, however, resulting in
very low mean and variance of teaching time on the third attempt. The final
mean time of the inexperienced group was only slightly higher. However, the
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Fig. C.8.: Mean teaching time for participants with respect to participant age (left) and height
(right)

variance was much greater, suggesting the experienced group would perform
better and more consistent on subsequent attempts.

When we consider the two different locations used for experiments, it is
clear from Fig. C.9c that results were faster and more consistent at the large,
open environment (B). We believe that this is due to the tracker not perform-
ing well in the small and cluttered environment (A), increasing the teaching
time. In some cases background objects were considered part of the instructor,
especially when standing close to these objects. This difference is hardware-
related, and will most likely not be an issue in a real production facility, which
mostly resembles the open environment.

6. Conclusion

In this paper we have demonstrated how a combination of robot skills, a
graphical interface and gesture recognition can help to make programming of
flexible industrial robots intuitive. We have implemented a set of skills, which
are general and parametrizable, so that the factory workers can concatenate
these skills to form a task.

We have tested our approach on several people, systematically evaluated in
two different scenarios. The experiments show that the approach described in
this paper is in fact intuitive, as all participants programmed the task within
minutes, even on the first attempt, and even without any previous experience
with robots. Furthermore, both the variance and mean of the teaching time is
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Fig. C.9.: Box charts comparing teaching time for each attempt, when considering discrete vari-
ables in the experiments. The black curve indicates mean teaching time.
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significantly reduced after 3 attempts of programming the robot. There were
some issues related to the tracking of the instructor, due to the orientation of
the camera and noisy tracking in a small environment.

Compared to traditional robot programming, this approach seems both faster
and more general. Even if all objects and locations were known with abso-
lute certainty, programming the task using traditional programming methods
would still be significantly slower, and require expert knowledge.

Overall, the approach of skills was intuitive for all users, as the outcome
of the skill is easily understandable. General feedback from the participants
was also positive, especially with regard to the approach. However, feedback
on the performance of the tracker, and when to use certain gestures was not
so positive. The gestures were generally easy to use, but some attention will
have to be paid to making the use of gestures more intuitive, and especially
the tracking more robust.

It should obviously be noted that if the system is deployed in a real indus-
trial setting, the training of factory workers to use the system would be much
more elaborate than just a 10 minute introduction. As experiments already
show significant improvement for just 3 attempts at programming the robot,
given this short introduction, the workers would in a short time be very pro-
ficient at programming the robot.

The reader may argue that the programming is so intuitive because the tasks
considered here are simple in general and that, for instance, programming
constructs like loops are missing (e.g. the task of taking all objects from a cer-
tain location and putting them on a tray). However, there are many handling
tasks in the industry, similar to the tasks discussed in this paper, which are not
automized. The reason is exactly that state of the art programming techniques
do not allow to program these tasks on the fly. Regarding loops, which is a
next step in our work, it should be noted that previously programmed tasks
could be executed by the Manufacturing Execution System (MES). In this case,
loops, if-else clauses, etc. are handled by the MES.

7. Future work

For these authors, the immediate continuation of this work is to expand the
scenario and skills. This includes, but is not limited to, picking and placing
multiple objects in a cluttered environment. This will also require a full imple-
mentation of intrinsic parameters, as well as determining the exact parameter
to use based on later skills in the task. A complete, general skill implementa-
tion so to say.
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1. Introduction

Abstract

Automated task planning for robots is usually implemented on a motion primitive do-
main, where the focus is on constructing meaningful, general motion primitives. In
this work we propose planning on the higher abstraction level of robot skills. Skills are
general, functional blocks that contain both sensing and action, have a well-defined ex-
pected outcome and set of preconditions, and are thus immediately useful for planning.
By adding a simple world model, we show that this is in fact the case, by planning and
executing the sequence of skills and their parameters based on the desired goal state
and the current state from the world model. Experiments show that the approach is
immediately applicable, given a skill-equipped robot, and that inconsistencies between
the world model and actual world state are overcome simply by replanning.

1. Introduction

Despite a high degree of automation in the industry, a lot of tasks are not fea-
sible to automate using traditional methods. This is mainly because program-
ming industrial robots is expensive, both in terms of manpower and down-
time, and the fact that industrial robots traditionally are considered mass-
production equipment, that repeatedly performs specific motions in a highly
structured environment. With the introduction of mobile manipulators, this is
changing. One area that we have found especially suitable for mobile manip-
ulators is logistic tasks, e.g. transportation of parts between workstations or
part feeding [1].

Even though mobile manipulators are able to solve these tasks, the problem
remains how to program them on the fly. In our previous work, we have used
a set of robot skills, that are easily understandable by the factory worker, to
explicitly program tasks on the robot [2]. Users programmed a task by select-
ing the desired sequence of skills, and specified the parameters by pointing at
objects to manipulate. Generally, even robotics novices felt that programming
the robot in this way was intuitive.

However, this approach has severe limitations in terms of the flexibility of
the programmed tasks, since the sequence of skills in the task is fixed, and
thus e.g. the number of objects to manipulate is likewise fixed. In this work
we instead implement planning based on the skills and the world state, that is
concurrently updated during skill execution, so the programming a task sim-
ply becomes a matter of specifying the desired goal state, e.g. that all objects
should be at a certain location.

We consider a STRIPS-like approach [3], where the skills are the software
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building blocks that make up a task. Our skills already conform to the STRIPS
paradigm, in that they have the sensing built in to verify the relevant parame-
ters and conditions, and contain the corresponding code for actions. It is then
possible to limit the planning domain for logistic tasks to skills such as pick up
"object", drive to "location", etc., as well as monitor the execution of tasks, and
perform simple replanning in case of errors.

The contribution of this paper is the following:

• Ad-hoc task planning of logistic tasks on a robot equipped with skills,
using the

• current world state extracted from a continuous world model as the ini-
tial (discrete) world state for the planning problem.

• Execution and monitoring of the planned task on a real robot, and re-
planning in the case of errors, ensuring the goal is satisfied.

1.1. Related work

Establishing fitting representations of skills to use for task-level programming
is the focus of much research around the world [4–7]. However, skills are usu-
ally primitive formal descriptions of compliant robot motions, called primi-
tives, which are defined as simple, atomic movements, that can be combined
to form a task [8–10]. The so-called “manipulation primitive nets,” described
best in [11], are comparable to our notion of skills, in that they are sequences of
manipulation primitives, with primitive logics based on the outcome of each
single primitive in the net. They are however still quite complex structures,
with complex parameters, not easily understandable by robotics novices. In
this work we instead propose skills on a higher level, so the skills become a
middle layer between the classic motion primitives and robot tasks.

Much research has been done on task planning, the best known being the
STRIPS planner [3]. Many other algorithms have followed, based on the same
ideas, in that they act on a set of actions that alters the current world state
[12, 13]. This includes breaking down assembly tasks into some form of mo-
tion primitives the robot can interpret [14]. The problem with modeling the
world state, and maintaining this model, persists in these implementations.
Furthermore, using primitive motion or sensing actions as the planning do-
main, it naturally becomes more difficult to create a plan that solves even the
relatively simple examples of logistic tasks mentioned above. In this work we
limit the world model to model the specific scenario and available set of skills,
and plan on the higher-level skill domain.

D4



2. Skills for planning

One approach has been to use logic programming to describe available
robot actions and their results, using the situation calculus [15, 16]. In the
situation calculus, the world state is only dependent on an initial state and
the actions performed by the robot. This approach did however lack the in-
terfacing to the actual robot, something GOLEX [17] overcame, although for a
very simple scenario. Recent work suggests that the overall idea of using logic
programming could be an option for implementing our notion of skills [18].

2. Skills for planning

In a nutshell, we see robot skills as the high-level building blocks that can be
used to construct full robot programs, or tasks. A task is a fully instantiated
sequence of skills, with specified parameters, and is characterized as solving
a specific goal in the environment where the robot is deployed, e.g. fill the
feeder with parts or empty the workstation. The skill sequence and parameters
can either be specified manually by an operator, or – like in this work – by
planning into a desired goal state.

Our model of a robot skill is shown in Fig. D.1. Each skill has one or more
intuitive parameters as input, and contains all functions that are necessary,
based on the input, to check before executing that the skill can be applied; to
execute the high-level action; and to check after execution, if the skill indeed
had the predicted effect on the world. For instance, consider the place at skill.
This requires the surface to place the object on as a parameter. Before exe-
cuting the necessary sensing and action operations to place the object, it is
verified that an object is in the gripper, there is free space at the surface, the
surface is reachable, etc. Likewise, after execution it is verified that the object
is present at the predicted location, the gripper is removed from the object, etc.

Each skill has associated a set of preconditions and a prediction of the out-
come of its execution in the real world, which are used for the checking proce-
dures before and after execution. These can either be verified from the world
model or through sensing operations, depending on the condition. For in-
stance, to determine if a surface to place an object on is within reach might be
quickly assessed from the world model, but whether or not there is actually
free space on the surface needs to be verified through sensing.

During the execution of the skill, the robot performs the pre-programmed
sensing and action operations to accomplish the skill, based on the input pa-
rameter. These are specified by the skill programmer, and should ideally be
implemented in such a way that the skill can handle all parameters that are
relevant in the factory. The operator is never exposed to the individual op-
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Fig. D.1.: Conceptual model of a robot skill. The preconditions and prediction (red blocks) are
informative aspects of the skill. The functional blocks (in orange and yellow) asserts
that the skill can be executed, executes the sensing and action operations, and verifies
correct execution, all based on the informative blocks and the supplied parameter. The
world state is updated throughout the functional blocks, depending on the outcome of
sensing or action operations.

erations within the skill, but only has to relate to the complete skill and its
intuitive parameters.

It should have become apparent by now that these skills are almost imme-
diately useful for planning, since they only require high-level parameters, and
contain a description of their preconditions and expected outcome. Since this
information is already present, the skills can immediately be formulated in a
planning language like PDDL (Planning Domain Definition Language) [19].
This formulation could in principle also be automated. What is lacking, both
for planning and pre- and postconditions checks, is a world model.

Defining a general world model is an open problem, and we will not at-
tempt to solve it in this paper. The world model should contain only the skill-
relevant information about the environment where the robot is deployed. By
this we not only mean ad-hoc modeled information about e.g. previously de-
tected objects or surfaces the skills can act on, although this is a major part
of the necessary world model, but also implicit information, e.g. the factory
map used for navigation or the current internal state of the robot. Since the
robot is operating in a human-populated environment, the world model is
prone to disturbances. When this happens, a manually specified task fails,
and the only fallback would be to call an operator to fix the problem. With the
planning approach, however, the system can create a new plan based on the
updated world state.

Given a skill-centric world model, maintained by the skills themselves, it is
possible to create a plan based on the current state of the world. This implies
that it should be possible to decompose the world model into a language like
PDDL, that requires the initial state of the world specified as a set of binary
state variables, or predicates. Since the current state is extracted from the world
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model, and always used as the initial state for the planner, it is only the speci-
fication of a desired goal state that is needed to plan a complete robot task.

In a deployed robot system, it should be intuitive for an operator to specify
the desired goal state, e.g. through a GUI, voice commands or gesture recogni-
tion. This interaction is however not part of this work, as we are investigating
how skills can be used for planning.

3. Implementation and considered scenarios

The example logistic task that forms the basis for this work deals with the
transportation of small kanban boxes in a factory, and multiple part feeding.
The scenario is illustrated in Fig. D.2. In this scenario, parts for an assembly
line are manufactured and placed in kanban boxes at the workstation. The
number of full boxes at the workstation is dynamic, and the robot has no
knowledge of when boxes appear at the workstation. The boxes should pe-
riodically be emptied into a feeder, that provides parts directly to an assembly
line. Furthermore, there are two shelves where boxes can be placed – one for
storage of parts in full boxes and one for empty boxes, that can be removed at
any point in time. The robot can grasp one box at a time, and carry 2 additional
boxes in a rack mounted on the robot platform.

FEEDER

ROBOT

BOX
RACK

WORKSTATION

BOX

SHELF-1

BOX

SHELF-2

BOX BOX

B
O
X

Fig. D.2.: Example logistic task of sorting boxes and tending to a feeder for a production line.
Parts are produced at the workstation and placed in boxes. Full boxes are green and
empty boxes are red. The robot can carry 1 box in the gripper, and 2 in a rack mounted
on the robot.

We restrict the skills to manipulate boxes in order to abstract away object
recognition and grasp detection, which is a key requirement for truly general
skills, but not the issue in this work. All boxes and locations are marked by
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QR codes, from which we can easily detect the pose and the box or location
information, encoded in the QR code. Furthermore, the robot is equipped with
a passive gripper, that only gives one available grasp for the boxes. Since the
QR codes marks the skill-relevant objects and locations, the world model for
this scenario consists of previously detected QR codes. This will be elaborated
in 3.2.

To manipulate the boxes, we have implemented 4 skills on the robot, with
the intuitive effects; pick up <box>, place on <location>, drive to

<location> and unload in <feeder>. We will not describe the imple-
mentation of the skills in this paper, but instead refer to our previous work, as
the skill used for this work are similar [2]. It should be noted that the pick and
place skills are able to utilize the rack on the robot as well, depending on the
supplied parameter.

Although the skills are only able to manipulate boxes, an important aspect
of the skills is that they only require abstract parameters, and not e.g. contact
forces or specific 3D coordinates. As such, the approach presented in this work
is also valid for much more complicated skills, even skills that require several
parameters, and still using only an ad-hoc world model. We summarize the
preconditions and prediction of each skill in the following, since these are
relevant for planning.

3.1. PDDL domain definition

Now we will describe the PDDL encoding of the planning domain. A PDDL
planning domain is a description of the predicates, or state variables, that are
valid for the specific domain, and the available actions that change these pred-
icates. Predicates always evaluate to true or false, but in this work we will also
make use of the extension to numeric fluents, which can assume numeric val-
ues. We also make use of typing, which enables parameters of certain types,
so we can distinguish between boxes, locations and the feeder. Actions are
formulated in the STRIPS notation by the set of input parameters, and their
preconditions and effects expressed by predicates. We will later describe how
we construct the PDDL problem from the current world state. A PDDL prob-
lem is the specific scenario to plan a solution for, using the actions available in
the domain, and is expressed by a) the set of objects in the scenario and their
types, b) the initial state, and c) a desired goal setting, the latter two expressed
by predicates or numeric fluents.

Since the skills have high-level parameters as input, and contain precondi-
tions and prediction of the outcome, they map easily to PDDL actions. We use
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a total of 9 predicates for describing the states and actions, most of which have
the intuitive meaning. For reference, the complete PDDL domain description
is shown in the appendix.

Box and robot locations are specified by the predicates box-at and rob-at.
For boxes, this is the location where the box is currently placed on, and for the
robot it marks the location in front of which it is currently parked, so that all
boxes at the location are reachable. In the initial state of the PDDL problem,
we always set the rob-at predicate for the robot rack, since the boxes in the
rack are always reachable, and we specify in the DRIVE_TO action that the
robot can not drive from the robot rack. This ensures that, from a planning
point of view, the robot can always reach the boxes in the rack.

For the feeder and boxes we use the predicate empty. The gripper state
is specified by the two predicates holding and empty-handed, where the
first specifies which box is currently in the gripper, and the second states if the
gripper is empty. The use of the empty-handed predicate is to avoid negated
predicates, specifically as a precondition for the PICK_UP action, since the
robot should not be carrying a box when executing this skill.

For specifying the desired locations of full or empty boxes, we introduce
the predicates full-loc and empty-loc, which are set when specifying the
planning problem. These could be set as constants in the domain file, since
the scenario is limited, but by setting them as predicates we can change these
locations at programming time, while keeping the domain file static. For de-
termining if the boxes are at the right locations, depending on the previous
predicates, we introduce the predicates at-empty-loc and at-full-loc.
Initially, at-empty-loc gets set for all non-empty boxes, since we are only
interested in the empty boxes. Similarly, the at-full-loc gets set for all
empty boxes. When placing a box, we set either of these two predicates,
depending on the full-loc and empty-loc predicates for the place loca-
tion. Consider the example of placing box-1 at location shelf-2. If e.g.
(full-loc shelf-2) is satisfied, then (at-full-loc box-1) is set as
the effect. Furthermore, when a box is unloaded in the feeder, the empty

predicate is set, and additionally the at-empty-loc predicate for that box
is negated, since the box was previously non-empty (a precondition of the
unload action).

Besides the predicates, we introduce three numeric fluents, where two are
related to the capacity of placing locations, and one is related to cost mini-
mization. Since we know the width of both the boxes and the valid place loca-
tions (which is encoded in the QR codes), we can estimate the total number of
boxes that can be placed at a certain location. This is the loadlimit fluent,
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which is set in the initial state in the problem definition. Furthermore, we set
the number of boxes currently at a certain location using the currentload
fluent. The pick action decreases this value by 1 for the location where the
box was picked from, and the place action increments it. It is a precondition
of the place action that there is a free spot on the place location, i.e. that
currentload < loadlimit.

The third fluent, related to cost minimization, is the relatively standard
total-cost fluent. In the effect of each action (see the appendix) the cost
is increased. We initially related the cost to the actual execution time of each
skill. This did however result in similar costs for the manipulation skills and
the driving skill, though with a much higher variance on the driving skill.
Instead, we now specify the costs manually. Since the robot is working in a
human-populated environment, it is desirable to limit the use of the driving
skill, and we thus introduce a cost of 10 on the DRIVE_TO action. Further-
more, the robot should utilize the rack when relevant, by carrying several
boxes when driving. For this reason we introduce a cost of 1 on the PICK_UP
and PLACE_ON actions, when the box is picked from or placed on the rack. For
other locations, as well as for the UNLOAD action, the cost is 2. This results in a
combined lower cost of picking a box from e.g. the workstation and placing it
in the rack, than picking the box and placing it at e.g. a shelf.

3.2. World model

As previously mentioned, we have implemented an ad-hoc world model for
this scenario. Since locations and boxes are marked by QR codes, the world
model is a database of previously detected QR codes. Each entry contains the
type of object and a unique value for that object, where the type is e.g. BOX or
SHELF. Both the type and value are contained in the string encoded in the QR
code. Additionally, we encode the width of locations, again to abstract away
surface detection, which is not the focus of this work. Besides these parame-
ters, which are extracted directly from the QR code, we calculate the 3D pose
of each detection from an RGB-D image, and save it in a fixed frame. Finally,
the two boolean parameters empty and in-gripper are set for each detection,
both with the intuitive meaning, where both apply to boxes, and the empty
parameter also applies to feeders.

For extracting the current state from the world model as a PDDL problem,
we have implemented a parser for the world model. This outputs the con-
tents of the PDDL problem containers :objects, which is a list of all objects,
and their types, in the planning scene, and :init, which is the initial state
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expressed by predicates. The final part of a PDDL problem, the :goal con-
tainer, is specified manually. The :objects definition is trivial to extract,
since we only have to map each entry in the world model to the PDDL types
box, feeder or location, specified in the domain file. Most of the :init con-
tainer, which will contain the current state from the world model, is similarly
trivial to encode into predicates, as the information is directly accessible from
the world model – i.e. the predicates empty-handed, holding and empty.
The rob-at predicate is determined based on the transformation between
the current robot position and each location that can hold boxes. If this trans-
formation, for any one location, is equal to the destination coordinate (with
some tolerance) for the DRIVE_TO skill (that is a specific pose relative to the
location), the predicate is set for this location. If no location qualifies, the
predicate is set for the constant unknown-loc (which is not a valid location
to place boxes). As previously mentioned, the function loadlimit can be de-
termined from the width of the locations, and the (fixed) width of the boxes.
Finally, box-at and currentload are based on the box locations. We de-
termine at which discrete location each box is located, based on the location
poses and widths, and the box poses.

3.3. Planner and plan monitoring

Since this work does not deal with planning algorithms, but instead focuses
on creating and executing plans expressed as a sequence of skills, we will use
a readily available planner. As our PDDL domain specification uses numeric
fluents, this restricts us to use a planner that can deal with PDDL version
2.1 level 2 [19], and can do cost minimization. For this reason we use the
metric-ff planner [20]. After we construct the PDDL problem file from
the world model and the manual goal specification, we call the planner as a
subprocess, and parse the output, which contains the plan as a sequence of
skills with their parameters - including the single skill-relevant parameter.

The plan monitoring is depicted in Fig. D.3. In the case of skill errors, be
it unsatisfied pre- or postconditions or execution errors, replanning is per-
formed. Similarly, when the plan is completed, the planner is called again, to
verify that the goal state has been satisfied.

4. Experimental evaluation

We evaluate our approach by two different goal specifications – filling the
feeder and sorting full and empty boxes on the correct shelves. Furthermore,
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Manually 
specified 
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World 
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and output PDDL
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Planner 
(metric-ff)

Execute each skill 
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Skill error, 
or finished last skill

Done

Goal 
satisfied?

Yes

No

Fig. D.3.: Approach to planning and execution of tasks. The desired goal state is the only input,
and replanning is performed in the case of skill errors.

we introduce disturbances to both scenarios during execution. The plans are
executed on a real robot, in an environment like previously described, with 4
boxes present. The environment is shown in Fig. D.4.

Fig. D.4.: Environment used for experiments, with the feeder on the left, the robot in front of the
workstation, the two shelves and four boxes.

Unless otherwise specified, we use the following as the initial state, where
some predicates are intentionally left out for readability:
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(:init ...

(box-at BOX-1 SHELF-2)

(box-at BOX-2 WORKSTATION)

(box-at BOX-3 WORKSTATION)

(box-at BOX-4 SHELF-1)

(empty BOX-1)

(empty FEEDER)

(full-loc SHELF-2)

(empty-loc SHELF-1)

... )

The reader should notice that the planner is operating under the closed
world assumption, where all non-specified predicates are by default negated,
i.e. evaluate to false – in the above, this implies that e.g. boxes 2, 3 and 4 are
non-empty.

A common goal for all scenarios, is the condition that the robot should not
be carrying any boxes, neither in the gripper (using the empty-handed pred-
icate) nor the rack (setting the currentload function to 0 for the rack).

4.1. Undisturbed experiments

As a first experiment, we consider the scenario where the robot has to add
parts to the feeder. We simply specify the goal as the negated predicate (not
(empty FEEDER)), as well as the two previously mentioned conditions that
the robot should not carry any boxes. Since no condition is set for where
empty or non-empty boxes should be placed, the robot drives to and picks up
any non-empty box, drives to the feeder, unloads the box, and finally drives to
and places the box at any free location. Parsing the world model and planning
takes a little less than 0.1s, and the plan consists of 6 skills. The total plan
execution time is 3.5min.

The second experiment concerns sorting the boxes, so the empty boxes ar-
rive at SHELF-1 and non-empty boxes arrive at SHELF-2, as specified in the
initial state. In order to do this, we use the previously mentioned at-full-loc
and at-empty-loc predicates. The parser for the world model sets the fol-
lowing in the initial state, based on the box empty state, and their locations,
since none of the boxes are at the right locations (also see 3.1 for clarification
on the use of these predicates):

(:init ...

(at-full-loc BOX-1)

(at-empty-loc BOX-2)

(at-empty-loc BOX-3)

(at-empty-loc BOX-4)

... )
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Since we set the desired location of empty and non-empty boxes in the ini-
tial state, and set e.g. the at-full-loc predicate for all empty boxes, the
goal specification simply becomes:

(:goal ...

(forall (?b - box) (at-empty-loc ?b))

(forall (?b - box) (at-full-loc ?b))

... )

We observe that the found plan makes use of the rack as expected, since
the robot drives to the workstation and picks up both boxes (2 and 3). It then
continues to SHELF-2 (where full boxes should be placed), places both boxes,
and finally swap boxes 1 and 4 between the two shelves. Again, the parsing
and planning takes less than 0.1s, although slightly shorter than for the feeder
filling scenario, most likely since there are no negated predicates in the goal
specification for this scenario. Since there are now 14 steps involved in the
found plan, the execution time is 7.5min.

4.2. Experiments with introduced disturbances

We now introduce disturbances to both scenarios. For the feeder-filling task,
the goal and initial state is the same as before. When the robot has picked
up a box, and is driving towards the feeder, we physically remove the box
from the gripper. Since a precondition for the unload action is that a box is
in the gripper, this skill fails, as expected. The robot then replans based on
the current state, and finds and executes a similar plan as before, but with a
different box. The execution time is then 4.3min, after executing a total of 9
skills.

For the sorting of boxes, we introduce the three different disturbances that
can occur in a human-populated environment: a) a box in the world model
is not present in the real world, b) a box is removed from the rack during
task execution, and c) a box is at a different location than expected. For all
these experiments, we have removed BOX-4 entirely, since we can test the
disturbances with the remaining 3 boxes. For all 3 cases, the robot initially
plans the same task, which is driving to the workstation, picking up boxes 2
and 3, and driving to and placing the boxes at SHELF-1.

In the case of disturbance a, we physically remove BOX-2 from the worksta-
tion. When the PICK_UP BOX-2 skill is called, the precondition that the box
is present fails, and the world model is updated accordingly. The robot then
replans, and either picks up BOX-3 or drives directly to SHELF-1, if BOX-3
was already picked up. This single box is then placed on the shelf.
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Since the found plan includes placing either BOX-2 or BOX-3 in the rack, for
testing disturbance b we physically remove the box that the robot has placed in
the rack. After driving to SHELF-1, the robot places the box in the gripper, and
calls the PICK_UP skill for the box in the rack. Since the precondition for this
skill fails, as the box is not present, the box is cleared from the world model,
and the robot replans. However, in this case the goal is already satisfied, and
no further action is required.

For the final disturbance, c, we completely remove BOX-2 from the scene, so
the initial plan is simply to move BOX-3 to SHELF-1. The disturbance is that
BOX-4 is moved to the workstation, although it is still at SHELF-1 according
to the world model. In this case, the robot only executes the initial plan. How-
ever, since the poses of entries in the world model are updated whenever the
corresponding sensing is performed, the final check determines that the goal
is not satisfied after the initial plan is executed (since BOX-4 is non-empty,
and not at SHELF-1). Therefore, the robot executes the plan found in the final
check, which moves BOX-4 to the shelf.

As a final experiment, we demonstrate that our approach scales well. With-
out executing in a real environment, we create a PDDL problem, containing
100 boxes, 15 shelves, 3 workstations and 3 feeders, where all predicates are
randomized. The goal is the combination of filling the 3 feeders and sorting
the boxes. Planning is still successful, but now takes between 35 and 40s on a
standard laptop. Considering that this is about the same time it takes for the
robot to navigate between two locations, the planning is still relatively cheap
from a temporal point of view – and having the operator manually specify
tasks of this size would be next to impossible.

5. Discussion

Concerning replanning in the case of skill failures, this is not always the best
approach. Specifically, simple replanning in the case of postcondition failures
would not always yield good results, as this suggests the skill does not work as
intended. With replanning, like we do in this work, the new plan will include
the skill that previously failed. This would most likely be a good solution in
most cases, but with the possibility that the robot will continue to try executing
this skill. Another possibility is to temporarily render the skill inapplicable,
in which case it is possible that a plan can not be found, if no other skills can
produce a similar effect.

Since we are using STRIPS-like actions in this work, only one skill can be
executed at a time. However, it would be possible for the robot to pick or
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place boxes in the rack while driving. This would require implementing du-
rative actions, with the constraint that they can only be executed when the
rack is involved. An alternative would be to specify separate, durative actions
for picking and placing in the rack. This would also, however, also require
multithreaded skill execution, which has not been implemented for this work.

6. Conclusion and future work

In this work we have shown that by implementing a set of robot skills, the
task planning problem can be simplified to these skills, which is especially
useful for logistic tasks, such as transportation or part feeding. We show that
by utilizing an ad-hoc world model in conjunction with the skills, we can cre-
ate robot programs that solve logistic tasks simply by specifying the desired
goal setting – and inconsistencies between the modeled and real world, can be
overcome simply by replanning.

The truly flexible robot in a future factory needs to solve a variety of dy-
namic tasks, with minimal intervention, and to be adapted to new tasks on
the fly. We show that if the robot is equipped with skills, and supplied with a
simple model of the factory, and the objects that are relevant for the robot, this
is indeed possible. And even without human intervention, as the goals could
be sent to the robot directly from the Manufacturing Execution System (MES).

Still, the implementation of general robot skills is an open problem. A skill
such as pick up <object>, that can deal with any relevant object in the factory,
would include advanced methods for object detection and pose estimation, as
well as grasp detection. Our future work includes exactly the implementation
of general skills, as well as a more generalized world model. We will inves-
tigate the use of these skills with task planning and other methods for task
programming in the future.
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6. Conclusion and future work

APPENDIX

6.1. Logistic tasks PDDL domain

(define (domain box_logistics)

(:requirements :adl :typing)

(:types box robot location - object

loc feeder - location)

(:constants unknown_loc robot_rack - loc)

(:predicates

(rob-at ?r - robot ?l - location)

(box-at ?b - box ?l - loc)

(holding ?b - box ?r - robot)

(empty-handed ?r)

(empty ?o - object)

(empty-loc ?l - loc)

(full-loc ?l - loc))

(at-empty-loc ?b - box)

(at-full-loc ?b - box)

(:functions (loadlimit ?l - loc) (currentload ?l - loc) (total-cost))

(:action DRIVE_TO

:parameters (?to - location ?from - location ?r - robot)

:precondition (and (rob-at ?r ?from) (not (= ?from robot_rack)))

:effect (and (not (rob-at ?r ?from)) (rob-at ?r ?to)

(increase (total-cost) 10)))

(:action PICK_UP

:parameters (?b - box ?l - loc ?r - robot)

:precondition (and (rob-at ?r ?l) (box-at ?b ?l) (empty-handed ?r))

:effect (and (not (box-at ?b ?l)) (holding ?b ?r) (not (empty-handed ?r))

(decrease (currentload ?l) 1)

(when (= ?l robot_rack) (increase (total-cost) 1))

(when (not (= ?l robot_rack)) (increase (total-cost) 2)) ) )

(:action PLACE_AT

:parameters (?l - loc ?b - box ?r - robot)

:precondition (and (rob-at ?r ?l) (holding ?b ?r)

(<= (+ (currentload ?l) 1) (loadlimit ?l)) )

:effect (and (box-at ?b ?l) (not (holding ?b ?r)) (empty-handed ?r)

(increase (currentload ?l) 1)

(when (empty-loc ?l) (at-empty-loc ?b))

(when (full-loc ?l) (at-full-loc ?b))

(when (= ?l robot_rack) (increase (total-cost) 1))

(when (not (= ?l robot_rack)) (increase (total-cost) 2)) ) )

(:action UNLOAD

:parameters (?f - feeder ?b - box ?r - robot)

:precondition (and (rob-at ?r ?f) (holding ?b ?r) (not (empty ?b)) )

:effect (and (empty ?b) (not (empty ?f)) (not (at-empty-loc ?b))

(increase (total-cost) 2)) )

)
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Efficient, transformable production systems need robots that are flexible 
and effortlessly repurposed or reconfigured. The present dissertation argues 
that this can be achieved through the implementation and use of general, 
object-centered robot skills. 
 
In this dissertation, we focus on the design, implementation and uses of a ro-
bot programming paradigm, focused on robot skills, that facilitates intuitive 
and explicit task-level programming by laymen, such as factory workers, as 
well as ad-hoc task planning in the skill domain. 

We show how these robot skills can be modeled and implemented, even on 
different robot systems. Furthermore, we show how laymen can intuitively 
program tasks on an advanced mobile manipulator, using the skills as the 
fundamental building blocks. Finally, we demonstrate how the same skills 
can be used for ad-hoc task planning, where the robot system instead con-
structs the task autonomously, exactly when it is needed.

It is the firm belief of this researcher that industrial robotics need to go in a 
direction towards what is outlined in this dissertation, both in academia and 
in the industry. In order for manufacturing companies to remain competitive, 
robotics is the definite way to go – and current industrial robot systems are 
plainly too difficult to program for new tasks on a regular basis.
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