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Abstract

The central theme of this thesis is the recommendation of TV programs or enhanc-
ing the Electronic Program Guide (EPG) using audio-derived profiles constructed
using text-independent speaker recognition techniques. For recommendation pur-
poses, the focus is primarily on utilizing age, gender, and emotion classification.
This way of implicitly deriving user parameters from audio speech is in contrast
to using ratings, usage patterns, or other explicitly provided user data, which are
common techniques for recommender systems. In addition to using classification to
enhance recommendation, the thesis also focuses on the core technology of speaker
recognition, and proposes a novel way to address source variation.

The first part of the PhD thesis focused on using state-of-the-art age and gender
detection of groups of viewers to recommend sequences of short advertisement
TV clips to them. A classifier using acoustic as well as prosodic features was
used to classify seven age and gender classes. The major finding here was that
advertisements presented using audio-derived demographics for a group of viewers
in front of the TV received higher ratings than randomly selected advertisements.

The second part of the thesis incorporated discrete user emotions in a frame-
work for recommending content using a browsing based approach. An i-vector
based system was used to detect twelve discrete emotion states, which, over time,
were condensed to a single mood state. The detected mood was mapped to the
closest matching item in the valence-arousal space. If the initially proposed item
did not match a user’s personal taste for a given mood, critiquing was used to
give users the opportunity to find an alternative item, if desired. Once the user
had located the final item, the offset (if any) from initial item to final item was
measured, and stored. This offset was termed affective offset and was used in
future recommendation rounds to suggest a more suitable recommendation for the
subject. The major finding here was that there was an increase in user satisfaction,
where the average ratings for items went up when recommending using the affec-
tive offset approach. Furthermore, when affective offset was applied, there was a
decrease in the number of iterations needed to find a more suitable item.

In the third part of this thesis, a novel framework was introduced that com-
bined the strength of machine-based and human emotion classification. Based on
a person’s measured emotion granularity, a personalized adapted audio emotion
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classifier was proposed. The system was evaluated from a similarity of emotions
perspective, which subjects rated themselves. The most important finding was that
for high-granularity subjects, granularity-adapted emotion classification was able to
beat a 12-class baseline classifier, by improving the potential similarity for these
subjects.

In the fourth and final phase of the thesis, the thesis looked at minimizing source
variation, from the perspective of speaker recognition, and in particular the focus
was on total variability modeling (i-vectors). The focus therefore shifted from
recommendation to proposing enhancements for the core technology of speaker
recognition. In a real-life scenario, there is likely to be a mismatch between the
test speech and the speech of the target model. In standard total variability mod-
eling, the prior for training the total variability matrix and extracting i-vectors is
non-informative, since test and target data are assumed to come from the same ho-
mogeneous source. For heterogeneous datasets, using an informative prior instead
is applicable, and it was shown here that this can lead to favorable results. The
results were evaluated using the NIST 2008 and NIST 2010 Speaker Recognition
Evaluation (SRE) dataset, and the proposed method using informative priors was
compared to four baselines. The findings showed that whether informative priors
are limited to extracting i-vectors, or used as well in training the total variabil-
ity matrix, the proposals beat the baselines in a substantial number of common
conditions, for both SRE’08 and SRE’10.



Resumé

Afhandlingens centrale tema omhandler anbefaling af TV-programmer og forbed-
ringer af den elektroniske program guide (EPG). Dette gøres ved hjælp af audio-
baserede profiler, som opbygges ved brug af tekst-uafhængige talergenkendelses-
metoder. Hvad angår selve anbefalingen af programmer, er det primære fokus
at anvende genkendelse af seerens alder, køn og følelser. Denne implicitte måde,
hvorpå man anvender parametre udledt fra talesignaler, er en ændring i forhold til
de konventionelle metoder anvendt af anbefalingssystemer, der er baseret på rat-
ings, brugsmønstre eller andre eksplicit opnåede brugerdata. Ud over at forbedre
kvaliteten af selve anbefalingerne omhandler afhandlingen også den grundlæggende
teknologi i talergenkendelse samt en nyskabende algoritme til at håndtere kilde-
variation.

Den første del af PhD-afhandlingen omhandler anvendelse af seneste udvikling
inden for genkendelse af alder og køn i grupper af seere for at anbefale sekvenser af
korte reklamefilm til dem. Både akustiske og prosodiske parametre bliver anvendt
til opdeling i syv klasser af alder og køn. Hovedresultatet var at reklamefilm udvalgt
på baggrund af en gruppe af seeres audio-udledte demografi, førte til højere ratings
end vilkårligt udvalgte reklamefilm.

Afhandlingens anden del beskriver integrering af brugeres diskrete emotionelle
reaktioner i et navigationsbaseret anbefalingsframework. Et i-vektorbaseret system
anvendes til at detektere tolv følelsesmæssige tilstande som over tid samles til en
enkelt humørtilstand. Det registrerede humør afbildes som det nærmeste punkt i
valens-ophidselsesrummet. Hvis det først foreslåede program ikke falder i brugerens
personlige smag for et givet humør, anvendes ’critiquing’-metoden til at finde et
alternativ. Når brugeren finder det endelige program, måles og gemmes afstanden
fra første til sidste program. Denne afstand kaldes for affektiv afstand og bruges
i fremtidige anbefalinger til at komme med bedre anbefalinger til brugeren. Hove-
dresultatet var en øget brugertilfredshed, hvor gennemsnitsratings for programmer
blev forøget når anbefalinger var baseret på affektiv-afstandsmetoden. Ydermere
medførte affektiv-afstandsmetoden et fald i det nødvendige antal af iterationer for
at finde et mere passende program.

I afhandlingens tredje del introduceres et nyskabende framework som kom-
binerer styrkerne ved maskinebaseret og menneskelig emotionel klassificering. Ba-
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seret på en persons målte følelsesselektivitet foreslås en adapteret audioemotionel
klassificering. Systemet blev evalueret ud fra lighed mellem følelser, som forsøgsper-
sonerne selv vurderede. Hovedresultatet var en forøget potentiel lighed, for forsøgs-
personer med høj følelsesselektivitet, når en selektivitetsadapteret følelsesklassifi-
cering blev sammenlignet med en tolv-niveaus reference klassificering.

I den fjerde og sidste fase af afhandlingen bliver der kigget på at minimere
kildevariationen i forhold til talergenkendelse, med særligt fokus på total-variations-
modellering (i-vektorer). Fokus ændres dermed til at foreslå forbedringer til den
grundlæggende teknologi i talergenkendelse. I et virkeligt scenarie vil der ofte være
forskel på den tale der undersøges, og den der sammenliges med. I almindelig total-
variationsmodellering vil prior-fordelingen, til at træne total-variationsmatricen og
udtrække i-vektorer, være ikke-informativ eftersom test-dataen antages at komme
fra den samme homogene kilde som den data der sammenlignes med. For et
heterogent dataset er det muligt at anvende en informativ prior-fordeling, og det
blev vist at dette giver en forbedring. Resultaterne blev evalueret ved anvendelse
af NIST 2008 og NIST 2010 Speaker Recognition Evaluation (SRE) datasættet,
hvor den foreslåede metode der anvender informativ prior-fordeling sammenlignes
med fire referencer. Resultaterne viste at hvad end den informative prior-fordeling
var begrænset til udtræk af i-vektorer eller også anvendes i træningen af total-
variationsmatricen, gav de foreslåede algoritmer væsentligt bedre resultater end
referencerne i forhold til en række fælles konditioner, for både SRE’08 og SRE’10.
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Preface

This thesis is submitted to the Doctoral School of Engineering and Science at
Aalborg University in partial fulfillment of the requirements for the degree of Doctor
of Philosophy. This thesis falls within the framework of an industrial PhD project,
which is a collaboration between Aalborg University and Bang and Olufsen A/S,
where the student was employed throughout the project’s duration. The work was
carried out in the period from June 1, 2012 to March 9, 2015, at Bang and Olufsen
as well as at the Department of Electronic Systems at Aalborg University.

The thesis is concerned with recommending TV programs or enhancing the
Electronic Program Guide (EPG) using profiles built from audio-derived param-
eters from speech. The profile attributes are obtained using classification based
on text-independent speaker recognition techniques. In addition to using classi-
fication to enhance recommendation, the thesis also focuses on aspects relating
to enhancements of the core technology of speaker recognition itself. In the first
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Audio-based
Recommendation of TV
Content

1 Introduction

1.1 Problem Statement
The volume of media content has increased dramatically in recent years, and there-
fore a large body of research has looked into ways of assisting users on what to
watch. In the context of broadcast TV, the Electronic Program Guide (EPG), now
an integral part of most of today’s set-top boxes and television sets, provides a
limited amount of assistance, but even with the short time span covered by the
EPG, there can still be an overwhelming number of programs to choose from. Rec-
ommender systems [1–3], which have been very successful for on-demand movie
items such as those found on Netflix, tend to be overlooked when it comes to the
broadcast domain.

In order to recommend something personal, a user profile is needed. A profile
is simply a generalization of information about the user, and captures the needs
and desires of the customer from the perspective of recommendation [4]. In collab-
orative filtering, this user profile information takes the form of explicitly provided
ratings. In content-based filtering, the user profile could contain keywords obtained
from content items that the user rated highly in the past, or as obtained by means
of a registration questionnaire [5]. In the context of the EPG framework, there
have been works that have proposed collaborative [6] as well as content-based
techniques [7]. One of the problems seen with explicit ratings is that users do not
always take the time to rate content, and there has therefore been longstanding
interest in how best to minimize this rating effort [8]. It is also possible to build
a user profile implicitly, such as through usage patterns [6]. When multiple users
share a single device such as a television, not only must individual interests be
catered for, but also the group as a whole [9].
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Instead of explicitly provided data, or implicitly provided usage patterns, this
work proposes using audio analysis techniques for recommendation. More specif-
ically, the focus in this interdisciplinary field is on how paralinguistic phenomena
extracted from a person’s speech signal can be used to enhance the recommenda-
tion of TV content. Paralinguistic phenomena refer to the non-linguistic (alongside
linguistics, hence para) cues of a person’s speech [10], from which a wealth of infor-
mation about the user can be extracted. This information can then form the basis
for recommendation. Our proposals for recommendation are within the framework
of broadcast TV, where classical techniques for recommendation might meet cer-
tain limitations. For example, other peoples’ ratings have limited use in the context
of broadcast TV for content that will only ever be shown once, and when showing
content to groups of viewers, it cannot always be assumed that those watching will
identify themselves upfront.

1.2 Main Hypotheses
This thesis concerns itself with two main hypotheses. Firstly we test the hypothe-
sis that speaker classification techniques using paralinguistic information from the
speech signal of TV viewers can be used to recommend content items to them.
This is a rather broad hypothesis and in Section 6 we shall break this more general
hypothesis down into a series of more specific sub-hypotheses, each connected di-
rectly with the specific proposal in mind. We ask the reader to bear with us until
then. Secondly, the very application of extracting audio parameters from TV view-
ers can result in mismatches between the speech used to train speaker recognition
target models and the speech from the test environment. Such a target model
could for example represent the identity of a speaker, or a speaker class, such as a
specified age group. We cannot assume that the type of speech used for training
these target models will be the same as that under actual use. This very fact calls
for a robust speaker recognition framework to be considered. When the speech for
the target and test models comes from multiple sources, this is known as source
variation. In this light we test the hypothesis that domain knowledge obtained
about the type of speech in question can be used to minimize this source variation.
This added robustness would most certainly be an advantage when carrying out
speaker classification.

1.3 Outline
The rest of this introductory chapter and extended summary for the thesis is struc-
tured as follows: Since the technology of speaker recognition is central to this
thesis, we begin in Section 2 by giving an introduction to the state-of-art in the
field, with particular emphasis on recent trends and research directions, with no
particular application in mind. The following section focuses on speaker classifica-
tion, where after introducing basic emotion theory, we present the state-of-the-art
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2. State-of-the-art in Robust Speaker Recognition

in identifying emotions, age and gender. Section 4 introduces recommender sys-
tems and we examine their usage in some interesting frameworks. By structuring
these sections in the manner we have done, we hope to fulfill our intention of
guiding the reader from the abstract to the applied, from the perspective of the
central ideas of this thesis. In Section 5, we present a framework for how audio-
based recommendation of TV content might be accomplished. As this research is
fairly controversial, a short sub-section on privacy and ethical issues is included.
The next section presents an overview of the major contributions, along with a
sub-hypothesis for each. The final section gives concluding remarks, as well as a
number of proposals for possible future work in the area.

2 State-of-the-art in Robust Speaker Recogni-
tion

Speaker Recognition is the process of recognizing people from their voice, where
the physical voice characteristics as well as each person’s manner of speaking plays
a role [11]. We give a brief overview of the major advances in speaker recognition
over the past 15 years with particular emphasis on total variability modeling, which
is the most recent development in the state of the art.

2.1 UBM-GMM Modeling
In the UBM-GMM approach a Gaussian Mixture Model (GMM) known as a Univer-
sal Background Model (UBM) is trained, usually using a large amount of neutral
speech [11, 12]. The Expectation-Maximization (EM) algorithm [13] is used to
determine the weights, means and covariances. For each iteration of the EM al-
gorithm, the likelihood of a lower bound function, parameterized by the model
parameters, increases. The algorithm continues until convergence. It is assumed
that this UBM is multivariate with F dimensions and C mixtures. For each target
speaker or class that is to be modeled, a separate adapted GMM is trained. Each
GMM can be obtained by adapting the weights, means and covariances of the UBM
and the class’s data using the maximum-a-posterior approach (MAP). However,
in text-independent speaker recognition, typically only the means are adapted. A
relevance factor controls the rate at which the data is shifted away from the UBM.
To evaluate whether a speech utterance belongs to a target speaker or not, or to
determine which class the utterance belongs to, one calculates a likelihood ratio
statistic which is the difference between the log likelihoods of the adapted GMM
and UBM.
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2.2 Modeling with Supervectors
It is possible to concatenate the means of an adapted GMM to form a high dimen-
sional C × F supervector. In other words, each utterance can now be represented
by a fixed-length, high-dimensional supervector. Once in the supervector space,
a linear discriminant classifier such as a support vector machine (SVM) can be
used [14, 15].

2.3 JFA Modeling
In Joint-Factor Analysis (JFA) [16, 17], factor-analysis techniques are used to rep-
resent the GMM-extracted supervector m of a speaker utterance in the following
additive way:

m = m0 + Vy + Ux + Dz (1)

where m0 is the speaker-independent supervector (this supervector is obtained
by stacking the F -dimensional mean vectors of the UBM [11]). The speaker su-
pervector component is Vy + Dz. Here V and D together define the speaker
sub-space. V is an eigenvoice matrix and its columns are the eigenvoices. D
is a diagonal matrix and models the residual speaker variability not modeled by
V. The channel supervector component is Ux, where the matrix U defines the
session-subspace. These matrices are also trained beforehand using a variant of
the Expectation Maximization algorithm [13] and the process is outlined in [18].
A common practice is to first train V, followed then by U and D. The speaker
factors y and x are hidden random variables each assumed to have a standard
normal distribution N (0, I), and which define the location of each utterance in the
respective subspace. The unwanted variability can then be removed when scoring
a test-utterance against a target model.

2.4 Total Variability Modeling
Total variability modeling has been the state of the art in speaker recognition
in the last few years. In total variability modeling [19], variable-length speech
utterances are mapped from the high-dimensional supervector space to fixed low-
dimensional i-vectors. This low-dimensionality and fixed length, along with the
fact that the actual i-vectors are generated via unsupervised learning [20], means
that tasks relating to classification, identification and verification of speakers are
greatly simplified.

Assuming an F -dimensional feature space, and a GMM with C components,
the total variability model assumes that a GMM-extracted supervector m for the
speech utterance can be represented as:

m = m0 + Tw (2)
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2. State-of-the-art in Robust Speaker Recognition

where m0 is the speaker-independent supervector (this supervector is obtained
by stacking the F -dimensional mean vectors of the Universal Background Model
(UBM) [11]), T is a matrix of low rank and w is a hidden random variable assumed
to have a standard normal distribution N (0, I). The supervector m is assumed to
be normally distributed with mean m0 and covariance TTT. The i-vector is then
just the MAP point estimate of this hidden variable. Similarly to JFA, the matrix
T is again trained using the EM algorithm approach for eigenvoice matrices [18],
except that utterances from the same speaker are now treated as if coming from
individual speakers. By doing this, the T matrix not only captures the speaker
variability, but also the channel variability.

Given a set of observations representing the feature sequence of an utterance
{O = o1,o2, ...oT }, the following zero-order Baum-Welch statistics are defined:

N(c) =
∑
t

γt(c) (3)

where t is the frame index and γt(c) is the occupancy of the tth frame to the cth
Gaussian. The first-order statistics, which have also been centered, are defined as:

F̃(c) =
∑
t

γt(c)(ot −m0(c)) (4)

Furthermore, let N represent the CF ×CF diagonal matrix with blocks given
by N(c)× I and let F̃ represent the CF × 1 supervector obtained by stacking the
F̃(c) for all C.

In the E-step, we compute the posterior distribution for the hidden variables
given the set of observations O, and a non-informative prior, i.e. a standard normal
prior w ∼ N (0, I):

p(w|O) = N (L−1 ·TTΣ−1F̃, L−1) (5)

with mean vector φ = L−1 ·TTΣ−1F̃ and precision matrix L = (I+TTΣ−1NT).
In the M-step, assuming I training utterances, the current value for T is up-

dated by solving a set of simultaneous equations:∑
i

NiT.[φiφiT + Li] =
∑
i

F̃iφi (6)

The process for extracting i-vectors is identical to the E-step above, where the
mean φ is taken to be the i-vector. Therefore extracting an i-vector can be seen as
a MAP adaptation of w in the total variability space. Once in the i-vector space, a
number of methods can be used for carrying out scoring, including cosine-distance
scoring and Probabilistic Linear Discriminant Analysis (PLDA).

The i-vectors representing speech utterances are characterized by both speaker
and channel variability. As we saw for JFA [16, 17], separate factors model the
speaker and channel variability, which is dealt with directly in the high-dimensional
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supervector space. In total variability modeling, however, the extracted i-vectors
represent the total variability (hence the name front-end factor analysis), and it is in
this i-vector space where the unwanted channel variability is to be removed. If this
channel variability is not dealt with it will negatively affect the performance of the
system. Linear Discriminant Analysis (LDA) [21], WCCN [22] and PLDA [23–26]
are all well-known techniques employed to reduce channel variability. PLDA has
been shown to exhibit superior performance for i-vectors and is now the standard
back-end for reducing variability and computing verification scores in the i-vector
space.

In the early days of speaker recognition, the speech samples used for evaluation
were predominantly telephone speech. However, in more recent years more and
more microphone speech as well as so-called interview speech has been recorded
and included in speaker recognition evaluation corpora [27, 28]. The resulting
heterogeneous datasets from these corpora will, in addition to speaker and channel
variability, be characterized by source variability. This is also exactly the type of
issue that would occur in a real-world scenario. If this source variability is not
addressed, it will impact the performance of the speaker recognition system.

One area where the issue of source variability is particularly noticeable is in the
application of LDA directly in the i-vector space. Applying such an LDA transform
has the unwanted effect of optimizing source variability as speaker variability. This
is particularly noticeable in the inter-speaker scatter matrix SB . Another issue
encountered with LDA is that a lack of utterances from all sources for each speaker
leads to poor estimation of the within-speaker scatter matrix SW . These issues
were addressed in [29, 30], by modifying the standard LDA algorithm with a source-
normalized and weighted approach (SNAW), that leads to better estimation of both
the SB and SW scatter matrices.

In addition to source mismatch, an issue often encountered is that the amount
of the telephone data available for training models is often substantially more than
data for other sources. Another method that has been proposed to deal with source
variability is to train a total variability matrix using only telephone speech, and then
a lower-dimensional supplementary matrix using only microphone speech [21]. In
the training of the supplementary matrix, the already-trained telephone matrix is
included as an additive factor in representing the speaker and channel dependent
supervector m. Before extracting i-vectors, these two matrices are concatenated
to form a cascade system. A problem with this approach is that the space spanned
by the i-vectors are different - i-vectors from telephone-acquired speech reside in a
smaller space than the i-vectors from microphone-acquired speech. This issue was
addressed by using PLDA to project the two spaces to a single space [31].

I-vectors have shown great improvements in performance over existing tech-
niques such as GMM-SVM and JFA. Very recently, it was discovered that additional
performance can be obtained by replacing the UBM with a deep neural network
(DNN) with no alteration to the i-vector modeling itself [32]. The use of DNNs
was inspired by their performance success for speech recognition as well as the
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3. Speaker Classification

fact that speech content is largely ignored for speaker recognition. Senones (tied
triphone states) obtained from a decision tree, are used as classes in a DNN trained
for Automatic Speech Recognition (ASR). By allowing these senones to replace the
Gaussian posterior probabilities from the UBM, the Baum-Welch statistics can then
be determined from these senone posteriors instead. This structure allows more
meaning to be attributed to the posterior probabilities as speakers are now able to
be compared over the same phonetic units. It also allows decoupling (and a more
optimum selection) of the features used to generate the probabilities, and those
used to extract the i-vectors. In [33] it was found that performance depends to a
large extent on what data is used to train the DNN. By extending the framework to
microphone speech, it was demonstrated that including telephone speech into the
training of the DNN led to significant performance improvements for microphone
test data over a series of baselines, indicating that the added telephone data adds
better generalization ability.

3 Speaker Classification
Speaker classification is defined as the process of assigning a single speech utter-
ance to a given class. From a hierarchical perspective, speaker recognition may
be defined as a sub-field of speaker classification [34]. In speaker classification,
the classes are described by paralinguistic phenomena, which concern all aspects
of speech that cannot be described using linguistic or phonetic cues [10]. Such
phenomena can be long-term traits, such as age and gender, or short term states,
such as a person’s affective state, and occur at both acoustic and linguistic levels.

The recent surge of interest in Human-Machine communication has resulted in
a strong motivation for extracting paralinguistic information since there are many
applications that can benefit from it [10]. These include age and gender detec-
tion to enhance speech recognition (by employing the appropriate model), emotion
detection for call centers (for example, passing an angry customer’s call to an ap-
propriate person), analyzing affective states to improve human-robot interaction,
conveying paralinguistic cues such as emotion to autistic children, detecting intox-
ication levels for law enforcement and so forth. Paralinguistics are also used in the
field of multimedia retrieval, to find highlights in sports games. Our interest is
primarily in the entertainment domain, where the major focus is on how peoples’
emotions, age and gender can be detected from speech. We begin by giving a short
overview of emotion modeling, within the more general context of its application
to digital systems as a whole, before moving on to the state-of-the-art in automatic
detection of emotions from speech.
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3.1 Emotion Modeling Applied to Human-Computer In-
teraction

There is no one unified model for handling emotions [35]. One way to model
emotions is to treat them as categories, and there is evidence to suggest that
most people possess six basic emotions [36]. These emotion categories are often
referred to in the literature as Ekman’s Big Six and are happiness, sadness, anger,
fear, surprise and disgust. Modeling of emotions as categories is especially popular
in the field of speech processing, where emotion states are given labels. This is
partially due to historical reasons and was motivated by the type of corpora that
initially became available [37].

In the Circumplex Model of Affect, discrete emotional states are expressed as
a circular model in two-dimensional space occupied by valence and arousal [38]. In
this model, emotions are ordered around the circumference of a circle, with similar
emotions adjacent to one another and bipolar emotions on opposite sides of the
circle. Empirical studies have shown that emotions can be characterized by their
location around the circle in degrees [38, 39].

In the dimensional approach for representing emotions, valence refers to the
pleasantness of the emotion experienced, whereas arousal, also called activation,
refers to the degree of arousal experienced (sometimes this is referred to as in-
tensity). It has been suggested that emotional feelings are primarily characterized
by valence and secondarily by activation [39]. There is also evidence to suggest
the presence of another dimension, namely dominance, also called potency [40].
Dominance refers to the degree of control of the emotion experienced, for example,
anger (more control) and fear (less control). However, since the control dimension
only plays a small role in characterizing emotional states [41], for simplicity, many
modeling approaches ignore the dominance dimension altogether.

According to the Circumplex Model of affect, each emotion can be characterized
by a certain degree of valence and arousal, and it is possible to portray these
differences in geometric space. In the ideal case, an individual will weight the
valence and arousal dimensions equally. In particular, this would mean that for
two emotions that have identical valence and differ only in arousal, the individual
would just as easily be able to tell apart two emotions that differ valence-wise,
with identical arousal values. However, this is rarely the case, and most people
differ to the extent in which they weight either the valence or arousal dimension.
A person who places a lot of emphasis on valence is said to have a high valence
focus, and when a person places emphasis on arousal, they are said to have a high
arousal focus [42]. The ability to distinguish emotions from one another is known
as emotion granularity [43]. By carrying out a series of experiments that record
people’s self-reports of emotion, it is possible to compute a person’s granularity.
The differing abilities of individuals with regard to their granularity makes sense
since it fits well with the inherent taxonomy of emotions: At the highest level are
main categories such as positive and negative, followed by more general discrete
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3. Speaker Classification

labels, such as Ekman’s Big 6 emotions at the next level, finally followed by sub-
categories at the lowest level [37].

When it comes to selecting content, mood management theory suggests that
people generally follow their hedonistic ideas, and will select content that keeps
them in a good mood [44]. However, not everyone agrees on what content is
applicable for a given mood setting [45, 46]. For example, for two people who are
in a bad mood, one might request drama to remain in that bad mood whereas the
other might request comedy to repair their bad mood state.

To make emotions useful in modern day digital systems [47], the emotions of
the user as well as those of the content need to be determined for a good match to
be made. Popular ways to detect emotions are by using physiological measures [48],
by multimodal audiovisual analysis [49], and through speech [10, 37], which is the
primary focus here.

Many works have looked at extracting emotions from media content, primarily
in connection with affective video content tagging, characterization and retrieval.
In [41] the authors propose to use audio and video cues to derive a representation
based on valence and arousal. In [50], the authors propose a dimensional approach
where speech from movies is mapped directly to valence and arousal. Human-
annotated coordinates for speech utterances along with the corresponding feature
vectors are used to train a regression model. Test utterances are then mapped
using this model directly to the valence around plane, and evaluated by comparing
the performance with human-annotated data.

3.2 Automatic Detection of Emotions from Speech
Automatic emotion processing, now a mainstream research topic, is concerned
with the problem of determining the correct emotional state of a person from their
speech [10]. This is possible since there are a number of attributes at different
levels of speech that have been found to vary with emotion, and which are more
or less constant across people.

Emotion databases can be created using either acted speech [51–53] or sponta-
neous speech, sometimes called non-prompted speech [54, 55]. Due to privacy con-
cerns associated with gathering spontaneous emotions, the majority of emotional
databases have been constructed using acted emotions. Although spontaneously
acquired data is more realistic, the data is often collected with a particular appli-
cation in mind [37], which might complicate its usage in other contexts. Acoustic
features have been found to be particularly beneficial for acted databases, whereas
linguistic features are more suited to spontaneous databases [37]. In general, speech
utterances are usually assigned to fixed emotion categories, e.g. anger and fear.
Since human annotators do not always agree on the emotions when labeling, a
rule-of-thumb suggestion is to use at least three annotators [10].

Features for emotion can be extracted at the frame level, or at a larger level,
such as the syllable, word or even entire utterance level [10]. At the frame level,
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feature vectors are usually extracted at 100 frames per second, with a window size
of around 25 ms, from which a set of features or low-level descriptors (LLDs) can
be extracted. Popular acoustic LLDs used for emotion modeling include Mel Fre-
quency Cepstral Coefficients (MFCCs), including their first and second derivatives,
Perceptual Linear Prediction (PLP) coefficients, pitch (F0), formants, and shim-
mer and jitter. These features are well known, have shown good performance for
emotion modeling, and have been widely adopted. Popular linguistic LLDs include
linguistic units such as words (using in key-word spotting, Bag-of-words modeling
and part-of-speech (POS) tags) and N-grams, as well as other units such as pauses
in speech [37]. A number of these higher-level features have been inspired by their
past success for text classification [56].

At the syllable or utterance level, static feature modeling using functionals may
be used to approximate the LLDs over time, a process that has proven to be very
effective. Applying functionals such as mean, standard deviation, and higher-order
moments has two major advantages. Firstly, functionals are able to capture events
at the supra-segmental level. This is useful for prosodic features that include
pitch contours, energy and duration, which complement the acoustic features [57].
Secondly, they allow for the generation of fixed length feature vectors which make
modeling of the features a lot easier. Often such feature sets are obtained using
brute force methods and can be very large, necessitating the need for dimensionality
reduction. Here, a knowledge-based method such as feature selection is often
preferred to a "blind" method such as Principal Component Analysis (PCA) to
allow for extraction of more meaningful features [37].

A popular classification paradigm, especially when static features are used, is
to use a linear discriminant classifier (LDC) such as an SVM, which has good
generalization abilities. Non-linear classifiers such as back-propagation Artificial
Neural Networks (ANNs) and deep neural networks (DNNs) [58] can also be used
for static features. Dynamic classifiers such as variants of GMMs and i-vector
modeling [19, 59] can also be used to carry out emotion classification.

Performance results across the board show that arousal is easier to classify than
valence [58, 60], that performance is higher with acted emotions than spontaneous
emotions [59], and the more prototypical the emotion labels are, the better the
performance [37].

A number of works have looked at extracting emotions from speech. In [57] the
authors show that it is possible to use standard speaker and language identification
features and techniques based on GMMs to carry out emotion recognition. The
standard UBM-GMM adaptation model is extended in a novel approach, whereby
the UBM and adapted GMM supervectors are adapted during verification by mak-
ing use of a pre-computed latent subspace. This is used to minimize intersession
variability (ISV), for example as caused by different acoustic conditions. The fea-
tures used were standard MFCCs with double-delta coefficients in one ISV system
and shifted delta cepstral coefficients in another ISV system. By fusing the two
sub-systems, they managed to achieve an unweighted accuracy in the 2009 Emo-
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tion Challenge [61] of 41.7 % for five classes taken from the FAU Aibo Emotion
corpus [54].

In [59] the authors propose a separate GMM for each emotion class from which
to extract i-vectors. Each GMM is adapted from a single UBM (trained using neu-
tral data) using class-specific speech utterances, and by adapting only the mean.
For each utterance, an i-vector is extracted for each emotion class, using the emo-
tion class’s GMM and T matrix. These i-vectors are concatenated, meaning that
for each utterance, information is encoded for every emotion class. The resulting
feature vectors are modeled using an SVM classifier. Results showed superior per-
formance of 91.1 % for four emotion class on acted data and 71.3 % on spontaneous
data.

In [62] the focus was on which feature types contribute best to classification
performance. Brute-force and knowledge-based features are pooled from six dif-
ferent sites and combined into high-dimensional feature vectors for three different
feature types: 3713 acoustic LLDs, 431 linguistic LLDs and 3673 acoustically-
derived functionals. Separate results for each feature type, for both the full feature
set, as well as a reduced feature set, are tested on four emotion classes from the
FAU Aibo Emotion corpus [54], and range between 50 % and 60 %.

3.3 Automatic Detection of Age and Gender from Speech
Age and gender detection has also received a lot of research attention in recent
years. On its own, gender detection has many uses: Very commonly, it is used as a
front-end to gender-dependent sub-modules, such as modules trained using male-
only or female-only speech. Other uses include audio-visual search and retrieval
[63], and highlighting of subtitles for the hearing impaired [64].

In the beginning, gender detection focused primarily on male and female voices.
In recent years however, partially due to the increasing interest in differentiating
children’s voices from adults, partially due to an increase in the available training
data [65, 66], and partially due to the fact that there is no statistical difference be-
tween male and female voices for children under twelve years old [67], the class chil-
dren has come to be accepted as an additional gender class. Children’s voices are
characterized by amongst others: a higher fundamental frequency, higher formant
frequencies, greater spectral variability and higher speaking rate. After puberty,
the difference between male and female voices becomes a lot more significant.

Acoustic and prosodic features are the ones that have shown most promise
with age and gender detection. The acoustic features most commonly used for
age and gender detection are very similar to those used for emotion: MFCCs with
their first and second derivatives and prosodic ones such as pitch (F0), formants,
voice quality features such as shimmer and jitter, and speaking rate. Delta and
double-delta coefficients are particularly good at detecting age, since they help to
capture temporal aspects such as the different speaking rates of people, in partic-
ular children and older people [68]. These short-term low-level descriptor features
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are typically either extracted at the frame level, whereas more long term (supra
segmental) features are obtained by using functionals, as explained for the case of
emotion detection. Also, brute-forcing of features is also sometimes employed with
paralinguistics, where features that contribute best to performance are selected,
and where feature sets can be very large. It is also possible to extract linguistic
LLDs.

In practice, age and gender classification is carried out using a number of clas-
sification paradigms. For short-term features such as MFFCs, GMM approaches
such as adapted GMM models using MAP adaptation and SVM modeling using
GMM supervectors are often used [69]. For longer-term features such as prosodic
features or very large feature sets, SVMs are more common [15]. Other meth-
ods include multi-layer perceptions (MLPs), and methods adopted from the ASR
domain such as parallel phoneme recognizers [70].

The performance of age and gender detection is affected by a number of factors.
Firstly, gender detection is generally considered a more simple task, where typically
up to 30 % higher accuracy (unweighted accuracy) is reported for gender than
for age [67, 71]. This reason for this difference is believed to be primarily due to
pitch, which itself is highly indicative of one’s gender, an easy to obtain parameter
from speech [10]. The confusion often seen with age and gender classification
stems from the fact that certain classes have similar voices, e.g. children and
females [68]. Secondly, since the quantity of training data with labeled age and
gender classes is quite low compared to corpora with hundreds or thousands of
hours of training data, this naturally impacts the performance.

Many state-of-the-art systems fuse the results of individual subsystems together
[67, 71]. These individual subsystems are sometimes characterized in very different
ways by the training data used, the features chosen, such as acoustic or prosodic
features, and the classification paradigm employed. Carrying out fusion in this
manner generally improves the overall robustness and classification performance of
the combined system.

In 2010, the aGender corpus [65] was provided to participants in the Interspeech
Paralinguistic Challenge to enhance the development of new age and gender algo-
rithms and to improve comparability of results [72]. Since then, a lot of recent
work in the field of age and gender has focused on this corpus. The corpus contains
seven age and gender classes, notably children, with 46 hours of speech and 954
speakers. Other notable corpora that have been used in research on age and gen-
der detection include the German SpeechDat II database [73] and the VoiceClass
corpus.

In [68] the authors propose separate age and gender classification systems that
classify four age and three gender classes respectively. The age classifier was
constructed by fusing the results from four individual sub-systems. For the first sub-
system, 1582 features given to 2010 Interspeech participants [72] and taken from
the aGender corpus using the OpenSMILE toolkit [74] were classified using SVM.
For the second sub-system, the same aGender features were classified using an MLP
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approach. The third sub-system derived PLP coefficients, delta and pitch features
from aGender and two additional databases, and modeled these again using an
MLP approach. The final sub-system modeled temporal structure static modulation
spectrogram features [75] taken from aGender and two additional databases using
the standard GMM-UBM approach. The gender classifier was constructed by fusing
the results from six individual subsystems: The entire age subsystem, used for
gender by reduction of seven class probabilities down to three, was reused as the
first sub-system. The first three age sub-systems were replicated to form the
next three sub-systems. The fifth and sixth sub-systems were implemented by
replicating the third MLP-based and fourth GMM-UBM-based age sub-systems,
respectively, and then adding additional data. The authors managed to achieve
51.2 % unweighted accuracy for four age classes and 83.1 % unweighted accuracy
for four gender classes on the development set of the aGender dataset. In a related
study [67] the authors investigated additional age-and-gender front-ends.

In [71] the authors present a seven-class state-of-the-art age and gender clas-
sifier that combines seven acoustic and prosodic sub-systems using weighted sum-
mation based fusion of the results. Each sub-system is based on a different mod-
eling technique: standard UBM-GMM modeling, linear SVM modeling with GMM
means-adapted supervectors, linear SVM modeling with Maximum Likelihood Lin-
ear Regression (MLLR) matrix supervectors, Bhattacharyya (BPP) SVM modeling
with UBM Weight Posterior Probability (UWPP) supervectors, a novel sparse rep-
resentation method on UWPP supervectors (where the sparse non-zero distribution
of test utterances and a pre-computed over-complete dictionary are compared), a
reference SVM-SMILE baseline system that uses 450 features, and finally prosody
modeling using contours of pitch, formant, time-based energy and frequency do-
main harmonic structure energy for voiced speech segments. Results on the devel-
opment set of the aGender corpus show an unweighted accuracy of 52.8 % for the
age task, 81.7 % for the gender task and 50.3 % for the combined age and gender
task.

4 Recommender Systems
In this section, we give a brief overview of recommender system theory. Rec-
ommender systems provide personalized recommendations to users by predicting
previously unseen items that are interesting or useful to them. They now have
widespread application, most notably in online marketing and entertainment. We
also highlight a number of exemplary recommendation strategies that incorporate
either emotions or demographics in one way or another.
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4.1 Classical Recommender Systems
From a classical perspective, recommender systems are categorized into collabora-
tive filtering systems and content filtering systems [1–3]. Originally conceived in
the early 90s [76], collaborative filtering systems operate on user ratings. Users
supply ratings, usually according to a psychometric scale, such as the 1-5 Likert
scale [77]. By determining the correlation of users’ ratings for content items with
one another, it is possible for each user to find a neighborhood of other similar
users (by ranking the correlations). From this neighborhood, recommendations can
be computed for a user’s unrated items. Note that in the collaborative approach
the item content does not play a role in the prediction, meaning these types of sys-
tems do not rely on domain knowledge, thus making them popular for commercial
deployment. Collaborative filtering approaches are further subdivided into memory-
based algorithms, that rely on non-probabilistic real-time approaches to compute
ratings, and model-based approaches, that compute offline statistical models that
then predict the user ratings [78]. Three disadvantages with collaborative filtering
systems are that a large user community is needed before good-quality predictions
can be made, for users that have not yet rated any items, predictions cannot be
made, and for users whose tastes deviate too far from the norm and for whom
suitable neighbors cannot easily be found, recommendation quality might be poor.

Content-based recommenders on the other hand use similarity techniques such
as cosine similarity, k-nearest-neighbor or relevance feedback [7] to match attributes
from a user profile directly with attributes associated with the content [1–3]. It
is of course assumed that the user and content attributes are chosen to match
one another. The most common way to annotate the user profile is to extract the
meta-data from content items the user rated highly in the past, implying that a
history is also needed. This can be done using the item descriptors directly, for
example, in the case of movies, the genre. For text documents, a more effective
approach however is to use information retrieval techniques, such as variants of
the vector space model [79] to identify the most informative terms that distinguish
one content item (also called the document) from another, and then automatically
learn the user profile from these terms. The way modern search engines personalize
search results based on implicitly derived user profiles can be seen as content-based
recommendation. It is also possible to explicitly annotate the user profile (for
example, just by asking the user), implying that no history is needed, or build the
profile using implicit techniques. One of the big disadvantages with content-based
filtering, particularly in the case of media content, is that it is not trivial to mine
semantic information from the content. Therefore many content-based systems for
media rely exclusively on the meta-data that accompanies the content-item, such
as the title, cast, genre and synopsis.

Some works have looked at augmenting user ratings with other user parameters.
In [44] the authors present a mood-aware collaborative filtering approach. By
measuring self-reports of mood for each subject, the authors determined that user
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mood had an influence on movie ratings and that people select content based
on their mood. Adjusted movie ratings for 16 different mood states taken from
the positive and negative affect schedule PANAS-X [80] were incorporated into a
collaborative filtering recommender’s neighborhood calculation, which was found
to perform better than a classic collaborative filtering recommender.

Recommendz is a movie recommender where instead of rating entire films,
users select features from a limited set, and for each feature, rate the degree to
which the feature is present in the film, as well as how positively or negatively
they are perceived [81]. Collaborative recommendation is carried out by weighted
averaging of three separate similarity metrics on the extended ratings data.

The AIT MOvie Recommendation Engine (AMORE) is a production system
that employs an ensemble of collaborative and content-based recommenders to
suggest movies to customers [82]. For the collaborative component, both price as
well as the time a user takes to watch an item is taken into account, which are both
then used to determine the appeal of items. Separate user-based and item-based
recommendation threads work independently in parallel with one another to com-
pute neighborhood similarities. Content-based filtering is carried out by exploiting
the already available metadata of content items. The top-n recommendations for
a user are then computed by taking a linear weighted combination of all three
recommendation results (content-based, user-based collaborative and item-based
collaborative). The results showed that AMORE was able to outperform Apache
Mahout by more than 100 % in terms of recall for n=10 top items.

When it comes to recommending content at the affective level, it is a not
a trivial process to construct a user profile. In [46], the authors consider how
an emotion-based movie recommender system might be constructed taking into
a user’s movie ratings according to emotions. By detecting a person’s emotion,
other like-minded peoples’ ratings can be used to provide recommendations.

In [83] the authors present a framework for affective classification, search and
retrieval of movies where the focus is on the subjective emotional impact of movies
on users. Six different emotions are determined using physiological measures [84]
and assigned to movie scenes using a set of rules. Movies are also categorized
according the dominant emotion (based on the amount of time an emotion was
felt by a user). Each user also has access to the average emotions felt by all users
for a given movie. By means of a rich visualization interface which depicts sepa-
rate emotions as colors, users are able to browse movies based on their emotional
similarity to one another and view emotion timelines of movies.

4.2 Demographic Recommender Systems
Demographic-based filtering extends the profile of the user to include attributes
such as age, gender, ethnicity and physical location [85]. Demographics can also
be learned using feature extraction combined with machine learning techniques [8].
Often it is collaborative filtering recommenders that are extended with demographic
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parameters, since demographics fit well into the context of social recommenda-
tion. Recommendation to a user from a particular demographic group can then
be carried out by offering them items from other users in the same demographic
group. Lifestyle Finder is such a social demographic recommender, where in a pro-
cess known as demographic generalization, demographic information from users
are used as constraints to find one or more associated pre-computed demographic
clusters [4]. The information from the matching clusters are then used as a broad
demographic profile for each person, and the parameters that differentiate each
cluster from the others can be used to gather additional feedback from the user to
refine their profile.

4.3 Knowledge-based Recommender Systems
Knowledge-based systems, sometimes also referred to as conversational systems,
are intended for seldomly-purchased items for which ratings might be scarce, such
as automobiles, or simply unavailable, such as single-broadcast only television con-
tent. Instead of social ratings, knowledge-based systems harness users’ domain
knowledge to allow them to formulate special requirements [3]. Since a user his-
tory is not needed, they do not suffer from the same ramp-up problems experienced
with other recommender approaches [86]. The knowledge-based recommendation
strategy goes according to an interactive process whereby users are guided to the
item of interest [3]. The user, who might be slightly undecided in the beginning,
can learn their real preferences in the process as they gain more insight into the
domain of interest. For example, in the case of an automobile, the user may
wish to specify a requirement such as cheaper or diesel engine only. The other
recommendation strategies are not suitable for addressing such requirements.

Knowledge-based systems are typically implemented as either constraint-based
systems, or case-based systems. In constraint-based systems, the user specifies a
set of constraints from which the system must provide a recommendation [87].
The constraints are based on the user’s preferences, items’ features, as well as
limitations and links between the two, and items are recommended by satisfying
a set of constraints for the given product features and user requirements. If the
user is not satisfied with the recommendation, one or more of the constraints are
altered.

In case-based systems, users use a process known as critiquing, where they
browse an often multi-dimensional navigation item space to find suitable items
[86, 88, 89]. First, an initial item is proposed to the user using some form of
similarity metric. If a user is not satisfied with the initial recommendation, they
can use the browsing interface to select one or more attributes that need changing,
and steer the navigation in a given direction. For example, the customer might
select the attribute price, and move in the direction cheaper. Sometimes, the user
will have to compromise on some features in order to select other features. Hence,
unlike constraint-based systems, the manner in which preferences are articulated is
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more comparative. Each such browsing operation allows the system to provide a
new recommendation. This process of browsing is repeated until a suitable item is
found.

The back-end of case-based systems can be seen as a query interface, where
requirements are encoded as queries and are updated in real time. In fact, relevance
feedback using Rocchio’s method can be seen as a very early form of a case-
based system, where requirements are refined through iterative queries [90]. Each
browsing update leads to a reduction in the item space, since now any items that
no longer fulfill the new requirements are no longer taken into account. To avoid
displaying critique options that lead to no possible items, critiques can also be
generated dynamically by generating a set of rules that match the remaining items
[91]. The rate at which items are reduced depends on whether unit or compound
critiques are selected (compound critiques reduce the space more rapidly) as well
as the strength of dynamic critiques (directly related to the metric support) to
reduce the list of candidate items.

Although originally intended for once-off items such as automobiles and restau-
rants, case-based recommenders have shown promise for low-involvement product
domains [89]. In PickAFlick, one of the early FindMe systems, domain knowledge is
used to recommend candidate movies that are similar to an initially selected movie
on the basis of genre, cast or director [88]. By viewing the example candidates,
the user can select select additional recommendations.

In an application called Movie Tuner used to extend MovieLens, users critique
movies with respect to a selection of tags, to give operations such as more action
and less violence [92]. The movie tags are obtained from user-contributed content
and the relevance of each tag to each movie is computed upfront using a hierarchical
regression algorithm, allowing the system to compute similarities between items.

5 A Framework for Audio-based Recommenda-
tion of TV Content

In this section we present a proposed framework for audio-based recommendation
of TV content. The full outline is shown in Figure 1. We discuss the various parts
in more detail below, and also give motivations for some of the decisions taken
in our approach. When referring to a block from the figure in the text, this is
highlighted in bold font.

5.1 User Interaction
As shown in the figure, a user can interact with the system in four different ways:

1. Speech: The user can generate speech, from which their age and gender
class, as well as their current emotion, can automatically be extracted. Once
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Fig. 1: A framework for recommending TV content using audio-based parameters

the speech attributes have been extracted, they can be added to the user
profile.

2. Explicit Attributes: Before requesting a recommendation, the user can
provide specific attributes, that are not amenable to being detected through
speech. These parameters help to individualize the user, for example, the
user’s preferred genre or whether they are a high or low granularity (from an
emotion perspective) person.

3. Commands: The user can issue a command, such as to request a recom-
mendation for an item.

4. Feedback: The user can provide feedback during a recommendation session,
for example when shown an item, the user can accept the item, or steer the
browsing interface in the direction of their preference. Unlike specifying
attributes directly, this module is tied into the recommendation session.
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5.2 Feature Extraction
After carrying out preprocessing including voice activity detection on the raw audio
samples [93], feature extraction is carried out. The type of features extracted
depends very much on the type of attributes required. In the case of features
for age and gender, we include acoustic as well as prosodic features, where they
can complement one another. The setup is similar for emotion detection, where
we combine short-term and long-term features. However, even though linguistic
features have proven to be effective for emotion detection, we do not include them.
The acted nature of the emotions from the chosen corpus, as will be pointed out in
Section 5.7, results in identical linguistic content, and this reduces the effectiveness
of such features.

5.3 Channel and Source Compensation
Since the training and test data can come from different sources, this will give rise
to source variability (in addition to channel variability). Minimization of source
variability is therefore an important preprocessing stage to ensure a more robust
classification stage.

5.4 Speaker Classification Module
The Classifier determines to which class the incoming stream of features belongs.
The number of classes depends on the application at hand (Emotion or Age and
Gender), and we have selected that number to match the chosen databases.

We considered both performance and overall design when selecting a classifi-
cation paradigm. For example, in one of the proposals where we detect emotions
for affective offset, we selected to use just the i-vector system, although fusing
the results from an SVM system could have led to better results. This was due
to the requirement for fast relabeling of emotions for speech utterances, without
requiring retraining of the classifier. For an SVM classifier, if we modify one single
parameter of the system, the entire model needs to be retrained.

5.5 User Profile
Before recommending content, a Profile is created using the information extracted
from the Classifier. Each class is assigned a probability, with the most probable
class being assigned the highest probability. Given a set of user utterances and
C classes, a probabilistic profile showing the membership of each class for each
speaker can simply be stated as:
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xm =


pm,1
pm,2
...

pm,C

 (7)

where pm,j represents the actual predicted probability for class j, 1 ≤ j ≤ C.

Note that
C∑
j=1

pm,j = 1. After speaker classification, if age and gender are being

detected, the Group sub-module might combine the demographic data from N TV
users. If it is emotions being detected, the Mood sub-module aggregates emotion
parameters over a longer time period in order to more stably determine the user’s
mood. In separate works, we show using a probabilistic profile how such a group
profile [94, 95], or mood profile [96] can be created.

5.6 Recommendation of Items
The task of the Recommender is to take the user’s Profile, as well as the available
Content, and use that to provide personalized recommendation. Profile Adap-
tation might be required to align to the profile with the number of items to be
presented. Once the profile is in the right form, the recommender system will
Generate item(s) and then Display item(s) to the user. The user might be able
to Critique the proposed item(s) if it is not the desired item, in which case new
items are generated and displayed to the user. When the user is satisfied, they
can then Accept the item. At that point, the system will use the new feedback
to Adjust the user profile for future recommendation rounds. In certain cases, the
new Profile can be used to update the Classifier.

The involvement of the user varies depending on the task at hand. For example,
in a group setting, where advertisements are recommended based on the age and
gender composition of a group of users, no involvement apart from speaking is
required. The profile from the user (or group of users) can then be directly matched
to content using a content-based approach. When browsing a user interface to find
a more satisfactory item, more user involvement might be required. Also, in this
type of recommendation scheme, there are multiple recommendation strategies at
play: A content-based approach is used to find the initial item. After that it is left
up to the user to use their knowledge to find a more appropriate item.

5.7 Chosen Databases
For age and gender, the chosen corpus was the aGender corpus [65] made available
at the 2010 Interspeech Paralinguistics Challenge [72], and for emotion we chose
the GEMEP corpus [52] made available at the 2013 Interspeech Paralinguistics
Challenge [60]. The motivation for using the aGender corpus was the fact that it
is a recent database, the availability of performance results (for comparison) and
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the availability of seven age and gender classes, which provided a good match with
our experiments. These seven classes are child, young male, young female, adult
male, adult female, senior male and senior female.

The motivation for using an acted database for emotion was due to the large
number of emotions available, and once again the availability of benchmark results
for comparison [60, 97]. Here there are twelve emotion classes, which are amuse-
ment, joy, interest, cold anger, hot anger, fear, anxiety, despair, sadness, relief,
pride and pleasure.

To aid in reproducibility of our results, we have adopted the same training,
development and test splits in our work as outlined for the respective databases.

5.8 Privacy and Ethical Concerns
From an ethical standpoint, personalizing recommendations based on peoples’
speech could be a difficult problem to solve. Privacy concerns are also relevant for
the systems that we propose in this work. For example, demographic recommender
systems are a concern with consumers since people are gradually becoming more
reluctant to disclose personal information [46]. Some people feel that monitoring
their viewing habits is an invasion of their privacy. The media terms commonly
used to portray such products such as "George Orwell’s 1984", "Big Brother",
"spy TV" and "eavesdropping" are all testament to this. People are also rightfully
concerned about being identified, having their personal information divulged, and
being exposed to embarrassing situations, for example by displaying recommenda-
tions based on a person’s viewing habits to family or friends. In a sense, these
ethical concerns were a motivation for us to focus on recommendation based on
the non-linguistic speech phenomena.

In 2013, an IT consultant Jason Huntley was able to determine that his LG
smart TV was sending information about his viewing habits [98]. In early 2015,
Samsung sparked massive media controversy when they warned consumers to re-
frain from private and sensitive topics in front of their latest smart TVs, as speech
data could be sent to a third party (Nuance) [99]. Although the speech would only
be sent at the touch of a button, it was perceived by some that conversations were
being passively recorded in the background, and then re-transmitted [99].

Some law firms and consumer watchdogs agree that it might not be legal to
carry out such monitoring, even if the customer is notified [100], or the customer
agrees (possibly without their knowledge) to the terms and conditions. Currently,
many brands of television are circumventing the ethical dilemma of collecting con-
sumer data by simply having consumers agree to a set of terms and conditions.
However, not agreeing to these terms could lead to unavailability of services. These
facts have left consumers somewhere in the middle. Some consumers might be
more concerned about family and friends finding out their viewing habits than
some third-party, that, in a way, is unknown to them. It is clear that more cultural
understanding and acceptance may be needed from both sides for this technology
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to become a reality. It is encouraging however, to see such an increase in interest
from the side of industry in recent years.

6 Topics of the Thesis

6.1 Linkage of papers
The main part of this thesis is a collection of six papers. The first four papers
contribute to applying known speaker recognition techniques within a recommender
context. The final two papers focus on the core technology of source suppression for
speaker identification using i-vectors, which itself can be used to enhance speaker
classification. The papers and their linkage are shown in Figure 2 below.

Emotion
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Speaker
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from
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Age and
Gender

Recognition
from
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System
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Fig. 2: Overview of contributions and their linkage within the proposed framework.

6.2 Summary of Contributions and Sub-hypotheses
1. Paper A - Demographic Recommendation by means of Group Profile

Elicitation Using Speaker Age and Gender Recognition
In this work, we extend demographic recommendation to a group setting,
where the age and gender of a group of users is used to recommend a se-
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quence of advertisement clips to that group. Assuming a set of audio ut-
terances are available for each user, one of seven different age and gender
classes is determined for the user. Combining the age and gender profile
setting for all users in the group to a single profile allows a system to rec-
ommend more suitable items to the group. The sub-hypothesis is that given
a particular configuration for the age and gender representation of a group
of viewers, and a matching audio-based group profile for the group, that a
sequence of recommended content items will receive higher ratings than if
the sequence were randomly generated. This work was published in [94].

2. Paper B - Audio-based Age and Gender Identification to Enhance the
Recommendation of TV Content
In the aforementioned paper, the assumption was that the number of users in
the group will always be the same as the number of items to be recommended,
resulting in a simplified recommendation algorithm. In Paper B, we extend
the work of Paper A to consider the case where the number of users is
different to the number of items to be presented. An adaptation algorithm
is proposed to convert the user profile to a so-called content profile, where
the proportional demographic membership is retained. With this in mind,
a sub-hypothesis that we investigate is that for a group of viewers in front
of the TV, the demographic composition of the sequence of content items
that is proposed (including the case where the number of content items
does not equal the number of users) will be significantly proportional to the
true demographic composition of the group of users. Another general sub-
hypothesis that is investigated is that the age and gender category of each
item that is proposed is significantly correlated to the user’s true demographic
category. The proposed system is compared to an ideal system, where group
demographics are explicitly provided. This work was published in [95].

3. Paper C - Using Audio-derived Affective Offset to Enhance TV Rec-
ommendation
This work is motivated by the fact that two users in the same mood will
not necessarily agree on what content is applicable for a given mood setting.
Given a set of utterances over a short time period, one of twelve emotion
classes is determined for each time interval, and the emotion classes are
condensed to form a mood profile. The mood profile is then subsequently
used to propose an initial content item to the user. If the user does not
find the item appealing, they are given the opportunity to continue browsing
for a more suitable item. The browsing is carried out in the valence-arousal
space, where the relevant user dimensions are pleasantness and intensity,
respectively. Once the final item has been chosen, the affective offset between
the initial and final item is recorded, stored, and used in future rounds to
propose more suitable items. The sub-hypothesis is that when affective offset
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is applied, the initially presented items will receive higher ratings, and for
the cases where a more appealing item is desired, that a lower number of
iterations, and consequently less browsing, will be needed. This work was
published in [96].

4. Paper D - Audio-based Granularity-adapted Emotion Classification
Evidence from the psychology domain shows that people do not possess the
same discriminating abilities when it comes to detecting emotions, and there-
fore vary in their emotional granularity. Inspired by this fact, along with the
fact that automatic detection of emotions from speech can result in certain
emotions being incorrectly predicted, we propose a framework that combines
machine-based and human-based emotion recognition within a recommen-
dation context. By classifying a lower number of adapted emotion classes
for high-granularity people, in principle, a larger number of content items
can be presented to them, allowing them to use their strengths to make a
more informed selection. The sub-hypothesis is that the adapted classes for
high-granularity people will include more similar emotions, when compared
to a test utterance, than single emotion classes. This paper was submitted
for publication in [101].

5. Paper E - Source-specific Informative Prior for i-Vector Extraction
In Papers C and D we used an i-vector system to carry out the twelve-class
emotion classification - either as a standalone system or in conjunction with
another system. When relying on an audio-based speech interface, there is
likely to be a mismatch between the test utterance, and the target utterance
of the user or class. In this work, we turn our attention to enhancing speaker
recognition, in the speaker verification context, where we attempt to reduce
this mismatch, known as source variation. By encoding the characteristics
of each source into an informative prior, this informative prior can be used
in posterior computations, on which i-vector modeling is based. In this way,
source variation can be carried out directly at the i-vector extraction stage.
The sub-hypothesis is that using informative priors where heterogeneous data
is concerned (i.e. for multiple sources), will lead to source suppression and
performance improvements. This paper was accepted for publication in [102].

6. Paper F - Total Variability Modeling Using Source-specific Priors
In Paper F, we extend the work of Paper E to using informative priors not
only in the i-vector extraction stage, but also in the modeling of the total
variability matrix. The sub-hypothesis is that informative priors incorporated
into the E-step of the EM training algorithm can lead to a better initial
alignment of the total variability matrix, and can further suppress source
variation. Furthermore we investigate using factor analysis to model priors
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where the data might be sparse. This paper was submitted for publication
in [103].

For papers E and F, the approach to using informative priors operates directly
in the supervector space. To further motivate the benefit of this approach, in
appendix A, we add an additional baseline that employs source-normalized and
weighted LDA directly in the i-vector space, and compare the major results to this
baseline1.

7 Conclusion and Future Direction
In this thesis, we used age, gender and emotion paralinguistics from speech to
enhance the way content items are recommended to TV viewers. The thesis also
dealt with source variability in the context of total variability modeling, which is a
core speaker recognition technology.

The first contribution (Papers A and B) described a system that utilized the age
and gender of a group of viewers to present a sequence of suitable advertisements
to them, and that took into account the proportional demographics of the group.
The effectiveness of the system was evaluated by comparing the ratings given for a
sequence of recommended adverts using age and gender, as opposed to a sequence
of random adverts. It was found that the sequence of recommended items received
higher ratings.

The second contribution (Paper C) was the design of a system that determined
a user’s mood from past emotions, and mapped this mood to a suitable content
item. If the user was not happy with the item that was presented, they were given
the chance to critique the item and propose an alternative. The affective offset was
determined and recorded, and used for future recommendation rounds. The effec-
tiveness of the system was determined in two ways. Firstly, ratings were compared
for the items presented to users before and after applying affective offset, where
it was found that after applying affective offset, that the initially recommended
items received higher ratings. Secondly, the number of iterations (critiquing cy-
cles) needed to find a liked item was compared before and after applying affective
offset. Here it was found that a lower number of cycles was needed to find a desired
item once affective offset had been applied.

The third contribution (Paper D) applied the emotional granularity of individ-
uals to enhance classification of emotions, with the ultimate goal of increasing
the potential similarity between the emotion of the user’s speech and a content
item. This was done by mapping each person’s valence focus and arousal focus to
a set of adapted classes, and using these instead for emotion classification. The
system was evaluated by comparing each subject’s proposed granularity-adapted

1As Paper F is still undergoing peer review, the additional baseline will be incorporated
into Paper F in the next revision.
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emotion classifier to a standard baseline classifier. Here it was found that for high-
granularity subjects, that there was potential for including emotions (and hence
mapped items) that were closer similarity-wise to the ground-truth of the spoken
emotion.

The final contribution (Papers E and F) introduced the notion of using infor-
mative priors to reduce source variability in a speaker verification scenario. An
informative prior, one for each source, was estimated and used instead of the usual
informative prior when computing the posterior distribution. This posterior dis-
tribution is central to the computation of the total variability matrix as well as
determining i-vectors for speech utterances. The system was evaluated using the
NIST 2008 and NIST 2010 speaker recognition evaluation (SRE) dataset. Here it
was found that informative priors led to performance improvements in the majority
of cases for both evaluations.

There are many avenues for future work, and the proposals we state here are
just the tip of the iceberg. Future work might investigate the use of keyword spot-
ting techniques, where the actual content of speech can be used to provide content
or knowledge-based recommendation. Tags obtained from keyword spotting could
also be used to extend collaborative filtering techniques. A possible use-case might
be to determine which tags of a given predefined set are detected, and then to use
these tags (or the frequency of usage of each tag) to provide implicit ratings for
content. Future work might even look at additional paralinguistic phenomena, and
how these could be used to provide recommendation. For example, the automatic
detection of a person’s intoxication level, which has been a hot research topic in
recent years, but mostly of interest to the police force, might be applied in the
entertainment domain to suggest more appropriate content (perhaps calmer con-
tent) to such viewers. Other interesting phenomena include recommending calm
programs to stressed viewers and suggesting more regional content to hotel room
guests by detecting their dialect. From a performance perspective, it would be
interesting to see to what extent the accuracy of a speaker or speech recognition
algorithm could affect the accuracy of recommendations. In more concrete terms,
one might envision a system where ratings are communicated through a speech
interface, and where the identity of a given rating is provided by a speaker recog-
nition algorithm. It would be interesting here to investigate what the effects are of
mistaking a giver user for another user, how this would affect the mean absolute
error (MAE) of a collaborative filtering algorithm, and how one might address this.
From the perspective of user acceptance, additional work might look at how to gain
user trust within the audio-based recommendation framework. From the perspec-
tive of ethics and privacy, one might look at how recommendation based on spoken
content can be achieved in an affective way, while maintaining the anonymity of
consumers.
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1. Introduction

Abstract
In this paper we show a new method of using automatic age and gender recog-
nition to recommend a sequence of multimedia items to a home TV audience
comprising multiple viewers. Instead of relying on explicitly provided demo-
graphic data for each user, we define an audio-based demographic group profile
that captures the age and gender for all members of the audience. A 7-class
age and gender classifier employing a fusion of acoustic and prosodic features
determines the probability of each speaker belonging to each class. The infor-
mation for all speakers is then combined to form the group profile, which itself
is the input to a recommender system. The recommender system finds the
content items whose demographics best match the group profile. We tested the
effectiveness of the system for several typical home audience configurations. In
a survey, users were given a configuration and asked to rate a set of advertise-
ments on how well each advertisement matched the configuration. Unbeknown
to the subjects, half of the adverts were recommended using the derived audio
demographics and the other half were randomly chosen. The recommended ad-
verts received a significantly higher median rating of 7.75, as opposed to 4.25
for the randomly selected adverts.

1 Introduction
This paper shows how a state-of-the-art age and gender classifier can be leveraged
to power a recommender system for selecting TV content. Instead of basing the
age and gender profile needed for recommendation on manually provided data or
usage patterns, we propose using audio analysis methods instead.

The detection of age and gender is a complicated task and has received a
lot of research interest recently. Typically, the age and gender of speakers are
identified by means of Gaussian mixture models, multilayer perceptrons, hidden
Markov models and/or support vector machines [1], [2]. In particular, modern age
and gender classification results are making it more and more feasible to use on-the-
fly demographic classification for recommendation purposes. The state-of-the-art
accuracy of gender-only classifiers is roughly 30 % higher than that of age detection
[3]. The same work shows that a system using automatic speaker recognition
using a fusion of acoustic and prosodic features was able to achieve an accuracy
of 85.0 % for the gender classification task, 52.0 % for the age classification task
and an accuracy of 50.3 % for the combined age and gender classification task [3].

What is interesting to note is that the largest confusion occurs between speakers
of the same sex (e.g. young males, adult males and senior males) and between
children and young females. While there is still room for future improvement,
we believe that there is a strong basis for recommendation, since the effect of
overlapping confusion classes could well be ameliorated by soft preference and
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market boundaries. For example, with respect to short advertisement clips, there
are many products that would appeal to both young males and adult males, or
to both children and young females, thus canceling out some of the effects of the
confusion overlap between these classes.

Collaborative recommender systems are the most widespread recommender sys-
tems in use today and rely on a large user base of ratings to make recommendations.
Essentially, these systems work by correlating the feedback rating of a user for a
specific item with that of other users for the same item, to make recommendations
for a new item that is unknown to the user (but that the others rated) [4]. How-
ever, with home set-top boxes there is no easy way to exchange the user ratings,
with the result that for these types of systems, a content-based approach is more
applicable [5].

Content-based recommenders can determine similarities directly between con-
tent items and a given user profile, provided the user profile can be extracted,
and there exists suitable meta-data for content items1. However, the need for a
user profile implies that the profile must either be explicitly provided, for example
by means of a questionnaire when registering a set top box [6], or implicitly, by
building the profile by monitoring usage patterns [5]. A bigger problem, however,
is when multiple consumers share a single device, such as a home television, but
each has their own user profile and tastes [7]. This occurs often with home game
playing and movie watching, where typically only one username or profile is utilized.

Our contribution in this paper is a novel method of using audio analysis tech-
niques to extract the parameters needed for constructing a group profile for recom-
mendation. This is in contrast to traditional methods of using user questionnaires,
usage data or ratings to collect the viewers’ data. We focus primarily on age and
gender in this study, and utilize an age and gender classifier to provide a group
demographic profile for communal TV viewing. We test the hypothesis that given
a particular home viewer configuration, and given a group profile derived using an
audio analysis of each member of the configuration (audience), that the recom-
mended items (advertisements) will receive higher ratings from users, than if the
content items were randomly selected, thus indicating a closer match to the viewer
configuration2.

The remainder of the paper is as follows: Section 2 introduces the notion of
a demographics-based audio group profile. We then discuss adapting the group
profile to make it usable for recommendation. Section 4 presents the home viewer
configuration used in this study, and the audio classifier that transforms a viewer
configuration to a group profile. We then discuss experimental work and the surveys
that were conducted. Finally we present our results and draw conclusions.

1Collaborative systems and content systems are often deployed in a hybrid configuration
to take advantage of their strengths.

2We do not evaluate the system using prediction error, since there is no ground truth (all
ads rated for every group viewer configuration).
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2 Extracting the Audio Group Profile
Solving the "Who is sitting in front of the TV?" problem is challenging and has
yet to be researched fully. A typical system could be realized as follows: The audio
from several microphone pickups in a room could be applied to an independent
component analysis algorithm that separates the background TV audio (if any)
from the users’ speech [8]. Speaker diarization is used on the speech part to
separate speaker utterances of different people from one another, and to determine
the number of speakers present [9], [10]. The speaker utterances from each speaker
can then be classified according to age and gender, which in turn can be used to
construct a group profile. Due to the limited accuracy of current state-of-the-art
age and gender systems, it is important to note that each speaker, regardless of
their age and gender class, will to some extent be a member of all defined age and
gender classes. In this study, motivated by the corpus that was used for training
our classifier [11] and by recent works [3], [1], we base our study on seven such
classes.

The user profile for each speaker m, generated over a set of utterances for that
speaker, can be modeled by:

xm =


pm,1
pm,2
...

pm,C

 (A.1)

where pm,j simply represents the actual predicted probability for class j, 1 ≤ j ≤ C.
The more utterances that can be collected, the better the classification accuracy.

For a set of M users, we then define a group profile as:

XG =


p1,1 p1,2 · · · p1,C
p2,1 p2,2 · · · p2,C
...

...
. . .

...
pM,1 pM,2 · · · pM,C

 (A.2)

3 Matching and Recommendation
The matching problem can be stated as optimizing the match between the group
profile XG, obtained by classifying a set of utterances for each speaker, and the
sequence of content items (ads) that the viewers will see. When the number of
users M is equal to the number of items N we allocate one item per viewer, thus
allowing each viewer to see a content item of their liking.

WhenM 6= N (N might be fixed, due to e.g. the length of an ad break) there is
no longer a 1-1 mapping between users and items. In this case we perform what we
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refer to as group profile adaptation. This entails converting the group profile XG,
which represents M users, to a new profile YG, which represents N pseudo-users,
and where N is now equal to the number of items to present. This means that for
each class in the original group profile, we determine the proportional membership
of each user to that class. For example, assume a 2-user group profile that must be
extended to 3-pseudo users. For the first class (Child), we find that the first user
has a 80 % membership of the class (leaving only 20 % to all other classes), while
the second user has a 40 % membership of the class (leaving 60 % to all other
classes). For 3 pseudo-users, we split the pseudo-user space up into 3 equally-sized
portions. The first pseudo-user overlaps completely with the 1st user - hence it
receives an 80 % membership. The 2nd pseudo-user overlaps 50− 33.3 = 16.7 %
with the 1st user and 66.6− 50 = 16.7 % with the 2nd user. The membership
for this pseudo-user is then proportionally calculated as 80∗16.7+40∗16.7

16.7+16.7 % = 60 %.
Finally since the third pseudo-user overlaps completely with the 2nd user, we just
assign the same membership of user 2 to the third pseudo-user, i.e. 40 %. Note
that when M = N then YG = XG.

Now for a given content item

cn =


pn,1
pn,2
...

pn,C

 (A.3)

which has a predefined age and gender profile, the strength of the match for each
user-item pair is then simply computed as:

Matchn,n = YG(n, ∗) ∗ cn (A.4)

To perform the actual matching we use a modified form of genetic algorithm,
proposed previously for providing itinerary-based recommendations [12]. Genetic
Algorithms are established computational methods that conduct their searches
based on natural selection and genetics, and use the concepts of chromosomes,
populations, selection, crossover and mutation [13].

Upon initialization, the algorithm selects k chromosomes, each containing N
randomly-chosen ads. The strength of each chromosome (how well it matches
the adapted group profile) is then computed by taking the sum of content-item
matches, with each match computed as shown in Equation A.4 above. With each
iteration of the algorithm, the chromosome with the poorest match to the adapted
group profile is discarded, and replaced with a new genetically-spawned sequence.

For our experiments, the ad selection process was as follows: We first initialized
our genetic algorithm with k = 50 chromosomes of 5 ads each. The ads were taken
from a central pool of 200 ads and it was not possible for an ad to appear twice
within a given chromosome. We then ran 500 iterations of genetic selection, and
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selected the sequence with the strongest match likelihood as the sequence of ads
to be recommended.

4 Age and Gender Audio Classification

4.1 Viewer Configuration Profile
To emulate a group containing several viewers of varying demographics, we define
a viewer configuration profile. To select which viewer configurations to use, we
turned to Statistics Denmark [14], which records comprehensive statistics on the
composition of Danish households. Here we could see that 23.8 % of the population
live alone, 38.7 % live with one other person, 14.3 % belong to a family of three,
14.6 % belong to a family of four and 5.5 % belong to a family of five. From
these figures, we based our viewer configurations on families of two, three and four
persons, where the bulk of the distribution lies.

Now just for the two-person households, children and youngsters don’t feature
much, and only comprise 2.8 % and 2.1 % of households, respectively. In contrast,
37.6 % of households contain adults and 57.5 % have seniors, giving configurations
1 and 2 in Table A.1 below.

Looking at children and youth from just the three- and four-person households,
we note that for children, 30.1 % are part of three-person families, but that 69.4 %
(more than double) are part of four-person families. For the youth category, 40.1 %
of youths belong to three-person families whereas 59.9 % of youths belong to four-
person families. Thus it is evident that children and youths should feature fairly
strongly in our chosen configurations. From this, we construct configurations 3, 4,
5, 6, 7, 8 and 9 shown in Table A.1 below3.

Finally we examined statistics on the number of seniors (≥ 55) with children
and/or youngsters living at home. We found that there were twice as many seniors
with two children living at home (15657 people) than seniors with only one child
living at home (7302), giving the last two configurations.

Profile No 1 2 3 4
Profile AM+AF SM+SF C+C C+YM

Profile No 5 6 7 8
Profile C+YF C+AM C+AF C+C+AM

Profile No 9 10 11
Profile C+C+AF C+SM C+SF

Table A.1: TV viewer configuration. C=Child, YM=Young Male, YF=Young Female,
AM=Adult Male, AF=Adult Female, SM=Senior Male, SF=Senior Female

3 In this study we focus on 2 and 3 people at a time in front of the TV.
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This gives a total of 11 configurations. For each configurations that was pre-
sented (explained below), we broke it up into its constituent parts, i.e. individual
speakers, and for each speaker, connected them to real speaker utterances.

4.2 Dataset
The speaker utterances used for classification were taken from the aGender corpus,
which was supplied to participants in the InterSpeech 2010 Paralinguistic Challenge
to enhance the development of age and gender algorithms [11]. The training part
of the dataset contains 32527 utterances from 472 speakers, the development part
contains 20549 utterances from 300 speakers and the testing part contains 17332
utterances. It comprises 4 age classes: children (7-14 years), young people (15-
24 years), adults (25-54 years) and seniors (≥ 55 years), and 3 gender classes:
children4, males and females. In more recent work, the age boundaries are slightly
different, i.e. children (≤ 13 years), young people (14-19 years), adults (20-54
years) and seniors (≥ 55 years) [3]. We chose to use the latter age boundaries
from the recent work.5

4.3 Speaker Classification
For each speaker from the viewer configuration profile we randomly selected a
speaker with the matching class in the evaluation portion of the aGender dataset.
To represent this speaker we pooled together the selected speaker’s utterances
to form a contiguous segment. Each speech segment was then submitted for
classification, to determine its class. The speaker results were then combined to
form the group profile X̄G from above.

For classification we employed a hybrid system, where each age and gender
class is modeled separately. Both acoustic and prosodic features are modeled, with
fusion of acoustic and prosodic features occurring at the utterance level.

The GMM baseline was constructed using the well-known UBM-GMM approach
[15]. After voice activity detection [16], feature extraction was performed using 13-
dimensional MFCCs (including C0, 1st and 2nd derivative), to give 39 coefficients
per 25 ms frame (15 ms overlap). We then trained a 512-component GMM UBM
using all the training data from the aGender corpus. Following this, 7 speaker
models were adapted from the UBM using the training data from each class. For
the adaptation process, we used a relevance ratio of 12. The accuracy for the
acoustic sub-system for all classes was 49.9 %.

To model the prosody features we used the prosody baseline referred to as
System 7 in a previous work [3], and which models prosody features at the syllable

4Children are classed as their own gender since males are indistinguishable from females
at that age.

5The original aGender age boundaries were chosen solely on the basis of marketing aspects,
and not on any physiological aspects.
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level instead of the frame level. The syllable boundaries are determined as follows:
For each utterance, all frames are marked as voiced or unvoiced (unvoiced where
the pitch is undefined) and all unvoiced frames are discarded. For the remaining
frames, the normalized energy contour is used as a key to determining the syllable
boundaries, where valleys in the contour indicate the start of a new syllable.

The prosody features modeled for each syllable are contours of pitch, energy,
formants, syllable duration and spectral harmonic energy (obtained from the power
spectrum at harmonics of F0). We used the Praat package [17] to extract pitch and
energy features from each utterance and Matlab to compute the spectral harmonic
energy. After applying time scale normalization for the interval -1 to 1, the contours
were then modeled as sixth-order Legendre polynomials, meaning that instead of
an entire contour, only six coefficients need to be stored [18]. We then trained 7
512-component GMM models with the prosody features, one for each class. The
accuracy for the prosodic sub-system for all classes was 42.0 %.

We then combined the two acoustic and prosodic sub-systems together in a
hybrid system using weighted summation-based fusion [3] of the sub-system results.
We tested our hybrid classifier model on the entire development data set, where
we achieved an accuracy on the combined system of 50.0 %. As a comparison,
another work using seven individual sub-systems was able to attain an accuracy of
50.3 % [3]. A more detailed breakdown of the 2 classifiers is shown in Table A.2
below.

C YM YF AM AF SM SF

C 69.6 3.4 16.2 1.7 4.4 1.3 3.5
61.0 7.5 16.9 2.0 4.9 1.0 6.7

YM 1.6 44.8 1.3 27.4 0.3 19.7 4.9
0.3 49.4 0.8 21.9 1.0 23.5 3.2

YF 18.7 2.2 49.9 1.3 21.6 0.5 5.7
16.4 0.8 57.1 0.3 15.8 0.6 9.0

AM 2.3 20.7 0.3 47.8 1.3 25.1 2.5
0.1 29.2 0.0 27.1 1.1 40.5 2.2

AF 10.4 3.5 21.1 1.9 40.2 1.0 21.9
5.5 1.8 26.6 0.4 33.8 0.6 31.3

SM 2.5 14.5 0.2 23.6 0.5 55.9 2.8
0.2 11.5 0.1 16.2 0.2 69.7 2.0

SF 10.5 4.7 11.6 2.1 24.9 4.3 41.9
7.1 1.5 11.4 0.9 22.9 2.2 53.9

Table A.2: Confusion matrix for seven-class Age and Gender Classifier. Shaded entries are
the results for our classifier (two sub-systems; overall accuracy 50.01). Non-shaded entries
are the results of a recent work (seven sub-systems; overall accuracy 50.3). Bold typeface
shows the better score of the two systems.
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5 Experimental Work
The advertisement corpus used in this paper has 24 categories of ads and was
provided to us courtesy of TV2, a Danish public-service television broadcaster.
To be able to match advertisements with the group profile discussed above, we
conducted a pre-survey to annotate each ad with an age and gender profile. We
took a random subset of ads from each category, giving a total of 200 commercials,
which we then split into four separate groups. For each group of 50 ads, three
subjects were asked to rate all 50 commercials, on the basis of how well they
thought each ad matched all seven age and gender classes. The scale used was the
standard 1-5 Likert scale (1 not-relevant and 5 most relevant). For each ad rated
by three separate people, we took the median rating for each class as the official
rating for the advertisement. Table A.3 shows a sample selection of ads, with their
corresponding median ratings.

Short Description of Ad C YM YF AM AF SM SF
Women’s sandals 1 1 5 2 5 1 4
Cleaning Agent 1 1 4 3 5 1 5

Lift Chair 1 1 1 1 1 5 5
Chewing Gum 1 5 4 4 4 4 4
Dating Site 1 1 1 5 5 2 2
Hair Product 1 3 5 1 5 1 5

Chocolate Easter Egg 5 1 1 3 3 1 2
Building Blocks 5 1 1 2 5 2 3

Table A.3: Selected ads with accompanying ratings.

To test the effectiveness of using the acquired audio group profile in our rec-
ommender, we conducted another survey where subjects were shown a set of home
viewer configurations, and for each configuration, asked to rate a set of 10 adver-
tisements. A different set of advertisements was used for each round. For each set
shown, five of the ads were obtained by using the genetic algorithm approach and
the other five were randomly selected (without replacement) from an initial pool
of 200. The set was then shuffled before being presented for recommendation.
Subjects were not told that five of the ads for the given slot had been randomly
selected, thus giving them no way of knowing which of the ads had been recom-
mended. They were then asked to rate each ad on a scale of 1-10 (1 completely
irrelevant and 10 most relevant), on the basis of the ad appealing to any of the
members of the home viewer configuration. For example, if the subject thought
the ad appealed highly to children, and the Child category was part of the config-
uration, then the ad would receive a higher rating. A 10-point scale was used to
ensure that subjects took a non-neutral stance when rating.

We used 12 subjects for our evaluation. Since it was not possible time-wise for
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each subject to rate all 11 proposed viewer configurations, we split the configura-
tions into 3 groups. The first four subjects were therefore asked to evaluate the
first four group viewer configurations, the second four subjects were asked to rate
advertisements for the second four configurations, and the last four subjects were
asked to rate advertisements for the last three configurations.

6 Results
We now look at the results that were obtained. Table A.4 shows two median
ratings for each user of the survey. The first rating was taken as the median of all
ratings performed for the user on the randomly selected ads, whereas the second
rating was taken as the median of all ratings for the recommended ads.

Test Subject Random Recommended
1 7 9.5
2 2.5 7
3 10 8
4 7 9
5 4.5 10
6 3 5
7 4 5
8 4.5 7.5
9 4 8
10 4 10
11 2 7
12 8 7

Table A.4: Average ratings for the 12 users, taken for the random case and recommended case.
Average for each user taken using the median.

From the averages in Table A.4 we see that the recommended ads obtained
consistently higher ratings than the random ads. Only 2 of the users (users 3
and 12) returned an average rating for the random ads that was higher than the
recommended ads.

To test the statistical significance of the recommended ads receiving higher
ratings, we let x represent all samples corresponding to the median ratings of all
users for the random ads and y represent samples corresponding to the median
ratings of all users for recommended ads, and test the null hypotheses that y − x
comes from a distribution of zero median. Treating the rating scales as ordinal,
we use the 2-sided Wilcoxen Signed Rank test to test for significance. We find
with a z-score z = −2.628 and p < .01 that there is a significant increase in the
median rating for each test group, thus disproving the null hypothesis. Indeed,
from the table above, the user ratings for the recommended group have a median
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of 7.75, which was significantly higher than the ratings for the random group, with
a median of 4.25. We also compute the effect size using Pearson’s correlation
coefficient r = Z√

N
, where Z is the z-score from above and N = 24 is the number

of observations, and find it to be r = −0.535. Since the absolute value is above
Cohen’s benchmark of 0.5, we can conclude that using the age-and-gender analysis
approach has a large effect on the user ratings.

7 Conclusion
This paper showed how an age and gender classifier using mixed acoustic and
prosodic features can be used to elicit a demographic group profile from a given
audience, and how this can be used to provide recommendations. The classifier
we built delivered comparable results to the state-of-the-art and showed that there
is a basis for recommendation, even with large gaps of confusion between classes.
We showed that ratings for adverts recommended using the age and gender data
were significantly higher than ratings for randomly selected adverts.
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1. Introduction

Abstract
Recommending TV content to groups of viewers is best carried out when in-
formation such as the demographics of the group is made available. However,
it can be difficult and time consuming to extract information for every user in
the group. This paper shows how an audio analysis of the age and gender of
a group of users watching the TV can be used for recommending a sequence of
N short TV content items for the group. First, a state of the art audio-based
classifier determines the age and gender of each user in an M -user group and
creates a group profile. A genetic recommender algorithm then selects for each
user in the profile, a single personalized multimedia item for viewing. When
the number of items to be presented is different to the number of viewers in the
group, i.e. M 6= N , a novel adaptation algorithm is proposed that first con-
verts the M -user group profile to an N -slot content profile, thus ensuring that
items are proportionally allocated to users, with respect to their demographic
categorization. The proposed system is compared to an ideal system where the
group demographics are provided explicitly. Results using real speaker utter-
ances show that, in spite of the inaccuracies of state-of-the-art age-and-gender
detection systems, the system has a significant ability to predict an item with a
matching age and gender category. User studies were conducted where subjects
were asked to rate a sequence of advertisements, where half of the advertise-
ments were randomly selected, and the other half were selected using the audio
derived-demographics. The recommended advertisements received a significant
higher median rating of 7.75, as opposed to 4.25 for the randomly selected ad-
vertisements.

1 Introduction
With the merge of DVB-C, DVB-T and DVB-S technologies in recent TV platforms,
consumers have become overwhelmed by the sheer amount of content available. A
large body of research has therefore looked at various ways of personalizing TV to
match the needs of users as far as possible. The Electronic Program Guide (EPG),
now an integrated component of most modern television sets, has helped to a
small extent to narrow the selection of upcoming programs, and there have been
various attempts to personalize the EPG to make it even more effective. However,
personalization is not only relevant for the EPG, which is geared towards displaying
items that can be selected or scheduled, but also for more dynamic content, such
as advertising, trailers and short news clips, which are the glue between program
segments on broadcast TV.

In order to be able to recommend content, a user profile is needed. User
profiles for recommendation can be extracted explicitly, e.g. through registration
questionnaires [1] or by asking users to provide ratings. Data can also be col-
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lected implicitly through usage patterns [2], [3], and subsequently fed to a central
information server, which can then make recommendations.

Traditional recommender systems then use these profiles, together with meta-
data and ratings from other users in the network, to provide personalization. One of
the issues however, in the context of broadcast TV, is the lack of an uplink channel,
through which information such as ratings can be exchanged with the remaining
users. It is therefore highly desirable that feedback from users be collected locally,
in the set-top box or smart TV if possible, and as unobtrusively as possible, e.g.
such as through unobtrusive relevance feedback [3].

By means of local recommendation and implicit user feedback, these systems
can work quite effectively, but it is important to consider the preferences of a group
of users as well as a single user. This is a particular issue when multiple consumers
share a single device, such as a home television, but each has their own user profile
and tastes [4]. In the Socially Aware TV Program Recommender for example [5],
groups of users who want simultaneous access to the TV are taken into account,
where individual profiles that have a common interest are combined.

What is more challenging however, is when multiple viewers share the same TV,
but typically only use one person’s login, even when a multiple login feature exists,
making specification of demographics, extraction of ratings or monitoring for each
user difficult to realize in practice. Groups of viewers are further characterized by
the fact that users continually come and go, meaning that the TV must quickly
adapt itself to the current configuration.

Taking these multiple requirements into account, i.e. local recommendations,
implicit gathering of user information and being able to support groups of viewers,
one area that has somewhat been overlooked in the context of personalization of
multimedia content, is the home audio environment, from which a wealth of user
information can be extracted. State-of-the-art feature extraction and modeling
techniques, which are in many ways similar to speaker identification systems, make
it possible to extract a number of useful attributes from home viewers, from which
recommendation profiles can be constructed. In particular, both the age and gender
of TV viewers can be extracted.

Determining both the age and gender of speakers is a complicated task and has
received considerable attention in recent years. The results achieved are encourag-
ing and are beginning to make it feasible to use this technology as a viable alter-
native to existing methods of providing user demographics. Age and gender clas-
sification systems are generally implemented as a fusion of several subsystems [6],
with each subsystem operating using a form of Gaussian mixture model, multilayer
perceptrons, hidden Markov models and/or support vector machines [7], [8].

Recent work shows that 3-class gender detection can be done with substantially
higher accuracy as high as 75 %, which is roughly 30 % higher than results achieved
for 4-class age detection [6]. Here, results for a 7-class classification system also
show that separate classes defined as children, young males, young females, adult
males, adult females, senior males and senior females can be detected with 61.0
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%, 49.4 %, 57.1 %, 27.1 %, 33.8 %, 69.7 % and 53.9 % accuracy, respectively.
The largest confusion occurs between young males and adult males, between young
females and adult females, between adult females and senior females and finally
between children and young females. Even though a lot of room remains for
future research to improve these results, there ought to be a substantial basis for
recommendation, since the effect of overlapping confusion classes could well be
ameliorated by soft market boundaries. For example, in an advertising context,
there are many products that would be recommended to both young females and
adult females, thus helping to cancel out the confusion overlap seen in these results.

The contribution of this paper is a novel method using on-the-fly detection of
the age and gender of the audience present to quickly provide recommendations of
TV content to home viewer groups. This is in contrast to other methods that make
use of usage data, registration data or questionnaires to obtain the demographics.
The focus is on groups of users who are about to be presented with a series of
short media items, e.g. between programs. In particular, this work will focus
on recommending sequences of advertisements to viewers. The proposed system
operates by determining the age and gender class of each user in the group, and
then uses this information to find a sequence of content items that best matches
the group profile. Ideally, each user should be matched with a content item that
belongs to the same age and gender category as that of the user themself. Since
the number of advertisements is often predetermined in advance and may not be
equal to the number of viewers present, the proposed system ensures that the
age and gender demographics will be reflected proportionally in the sequence of
advertisements that are about to be presented.

The rest of this paper is organized as follows: The next section introduces
the notion of a group TV profile in the context of age and gender demographics,
and how existing audio analysis techniques could be combined to construct a group
profile. Section 3 introduces a genetic-based recommender, extended to computing
of 7-dimensional age and gender ratings, and section 4 demonstrates how an M -
user group profile can be adapted to anN -slot advertisement profile, and shows how
this is used to drive a genetic algorithm-based recommendation engine. Following
this the experimental setting is discussed. The system is then evaluated from a
number of perspectives. Finally, conclusions are drawn.

2 Group Profile Derivation
Solving the "Who is sitting in front of the TV?" problem is a challenging task and
has yet to be researched fully. When only one person watches TV, attempting to
derive additional profile attributes by means of speech or an acoustical analysis does
not make much sense, and instead one must rely on other sources of information,
such as an explicitly provided user profile, or through image recognition (many
households today already have movement detection cameras as a standard games
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console accessory).
A typical system could be realized as follows: When multiple users are present,

the audio from several microphone pickups in the room is applied to an independent
component analysis algorithm that can separate the background TV audio (if any)
from the users’ speech [9]. Speaker diarization is used on the speech part to
separate speaker utterances of different people from one another, and to determine
the number of speakers present at any given time [10], [11].

In the ideal case, where the exact age and gender class for each user in the
audience is known, a Group Viewer Configuration (GVC) is formed, which can be
expressed as follows:

GV C =


cuser1

cuser2
...

cuserM

 (B.1)

where cuserm
corresponds to the age and gender class of the m-th user, 1 ≤

c ≤ C, C is the total number of age and gender classes, 1 ≤ m ≤ M and M is
the total number of users.

In practice, the speaker utterances from each speaker in the audience are clas-
sified according to age and gender to determine their class. However, due to the
probabilistic nature in which speaker classification systems work, along with their
limited accuracy, it is important to note that each speaker, regardless of their
age/gender class, will to some extent be a member of all other classes. In this way,
the user profile for a single user m whose real class is cuserm , can be modeled by:

xm =


pm,1
pm,2
...

pm,C

 (B.2)

where pm,j , 0 ≤ pm,j ≤ 1, simply represents the actual predicted probability for

class j, 1 ≤ j ≤ C, and
C∑
j=1

pm,j = 1. The more utterances that can be collected,

the better the classification accuracy.
For all M users, a group profile is then constructed from the individual user

profiles as follows:

XG =


xT1
xT2
...
xTM

 =


p1,1 p1,2 · · · p1,C
p2,1 p2,2 · · · p2,C
...

...
. . .

...
pM,1 pM,2 · · · pM,C

 (B.3)
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3 Demographic Recommendation
The matching problem can be stated as optimizing the match between the group
profile and the sequence of content items (advertisements) that are about to be pre-
sented to the users. The basic genetic algorithm approach proposed for extending
MacauAp [12] is taken as the starting point for the recommendation system, and
performs the relevant matching. Based on user-feedback of categories for tourist
destinations, called "spots", the genetic algorithm in MacauAp searches amongst a
large number of tourist destinations and finds a sequence with an optimum match
between the categories to which the spots belong and the user-liked categories.
In the same vein, the purpose of the genetic algorithm for the proposed system is
to find the sequence of content items, whose combined demographic profile best
matches the audio-derived group profile.

Genetic Algorithms are established computational methods that conduct their
searches based on natural selection and genetics, and use the concepts of chromo-
somes, populations, selection, crossover and mutation [13]. A search is typically
initiated by creating a population comprised of units called chromosomes, where
each chromosome is effectively a sample of the search space. Each iteration of
the algorithm entails selecting two parents from the population (selection) using
a tournament or proportionate selection approach. A fitness evaluation is con-
ducted to determine which of the chromosomes ought to be considered as parents.
From these parent chromosomes a child chromosome (crossover) is then spawned
that comprises attributes from both parents. The child then replaces the weakest
chromosome in the population. This process continues until termination, which
is usually defined as the point where the population becomes stable. The chro-
mosome with the highest fitness value is then selected as the winner, and is the
output of the algorithm. In this approach a chromosome is defined as a sequence
of content items (advertisements) that are to be broadcast in the next upcoming
break. Each chromosome has N slots, where a slot is defined as a placeholder for
a single content item.

Before parents can be selected for crossover, the fitness of each chromosome
needs to be computed. As was proposed for the MacauAp scenario, the base fitness
for such a chromosome is given as

Fitnessbase =
N∑
i=1

ri ∗ Pref i (B.4)

where

N = Number of slots in the chromosome
ri = Official rating for slot i

Prefi = User preference for slot i
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The scalar rating ri from equation B.4 is extended in this work by converting
it to a vectorized form where all age and gender classes are represented:

ri =


r1
r2
...
rC

 (B.5)

The predefined age and gender ratings for the N content items (equal to the
number of slots) is then given as:

R =


rT1
rT2
...
rTN

 =


r1,1 r1,2 · · · r1,C
r2,1 r2,2 · · · r2,C
...

...
. . .

...
rN,1 rN,2 · · · rN,C

 (B.6)

For now each user is assumed to be assigned to a single slot, making M = N ,
meaning that each user in the GVC gets to see at least one content item to his/her
liking (shortly this will be extended to the case M 6= N). Treating Prefi = xm,
where user m is assigned to slot i, now allows us to express the Fitness more
compactly as:

Fitness = Tr(R ∗XG
T ) (B.7)

where Tr(A) is the trace of A, i.e. the sum of the main diagonal of A.

4 Group Profile Adaptation
(B.7) above requires that for each slot, there is a separate set of preferences values.
Since however it cannot be assumed that M = N (for example, there might be 4
users present, but 5 advertisements are to be presented), a new set of preferences
with the same dimension as N is needed. The intention is to ensure that the
each user’s demographic membership for all age and gender classes is carried over
proportionally to the new preference set. This adaptation process is best explained
using the double circle diagram shown in figure B.1, which shows the adaptation
process for a single age/gender class1. The circle is divided into a fixed number
of bins, which run at equally spaced intervals over its entire revolution. On the
outer circle one allocates an equal portion of the bins to each user, so for example,
for 4 users, there will be 4 separate partitions. The same applies to the inner
circle, but instead of allocating bins to users, they are allocated according to slots.
For 5 slots one therefore ends up with 5 equally-sized slot partitions. It therefore
follows intuitively that for the bins comprising a single slot, rating contributions

1The adaptation for each age and gender class is computed independently of the others.

60



4. Group Profile Adaptation

can come from multiple users. The amount that each user contributes to a given
slot is directly proportional to the size of the overlap between the user bins and
slot bins. Summing over all bins belonging to a single slot partition and dividing
by the number of bins per slot, allows one to compute a rating for that slot.

Slot 1

S
lot

2

Slot3Slot4

S
lo

t
5

User 1

U
ser

2

User3

U
se

r
4

START

Fig. B.1: Proportional bin selection for a single age-gender class, for 4 users, 5
slots and 20 bins. The rating for a given slot can come from multiple users.

More formally, assuming the number of bins is B, a new rating matrix ΣC,N

is defined, where each element Σi,j is given as:

Σi,j = 1
µ

µ∑
k=1

XGi,φ(j,k) (B.8)

where
B = LCM(M,N), i.e. the least common multiple (B.9)

µ = B

N
, i.e. slot partition size in bins, (B.10)

ν = B

M
, i.e. user partition size in bins (B.11)

and where
φ(j, k) = b(((j − 1) ∗ µ+ k − 1)/ν) + 1c (B.12)

represents the user partition to which bin k that is currently being processed,
belongs to.

Now armed with separate ratings for each slot, the fitness can now finally be
calculated as:

Fitness =
E∑
i=1

Ri,j ∗Σi,j (B.13)
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where

N = Number of content items (slots) to present
C = Total Number of age/gender classes

Ri = Normalized rating of age/gender class j for ad/slot i
Σi,j = Normalized group membership for age/gender class

j for slot i

5 Experimental Setup

5.1 Group Viewer Configurations
To emulate the home group viewers, 50 separate GVCs are defined, which are
shown in Table B.1. The viewer configurations that were chosen were based on
information provided by Statistics Denmark, which records comprehensive statistics
on the composition of Danish households. Here it can be seen that 23.8 % of the
population live alone, 38.7 % live with one other person, 14.3 % belong to a family
of three, 14.6 % belong to a family of four and 5.5 % belong to a family of five.
From these figures, and based on the fact that single-person profiles are excluded,
the viewer configurations selected are based on families of two, three and four
persons, where the bulk of the distribution lies.

Now just for the two-person households, children and youngsters do not feature
much, and only comprise 2.8 % and 2.1 % of households, respectively. In contrast,
37.6 % of households contain adults and 57.5 % have seniors, giving the first ten
configurations in Table B.1 below.

Looking at children and youth from just the three- and four-person households,
it can be noted that for children, 30.1 % are part of three-person families, but
that 69.4 % (more than double) are part of four-person families. For the youth
category, 40.1 % of youths belong to three-person families whereas 59.9 % of
youths belong to four-person families. Thus it is evident that children and youths
should feature fairly strongly in the chosen configurations. The data also shows
that there were twice as many seniors with two children living at home (15657
people) than seniors with only one child living at home (7302). Finally, a number
of four-person configurations spanning all generations are included. From all this,
the two-person configurations 11-17, the three-person configurations 18-30 and the
four-person configurations 31-50 in Table B.1 below2 are constructed.

2Note that one differentiates between the number of people in the household, and the
number of viewers in front of the TV, e.g. there will be multiple 2-person and 3-person
configurations for a 4-person household.
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Profile No 1 2 3 4 5
Profile AM+AM AM+AF AF+AF SM+SM SM+SF

Profile No 6 7 8 9 10
Profile SF+SF AM+SM AM+SF AF+SM SF+SF

Profile No 11 12 13 14 15
Profile C+C C+YM C+YF C+AM C+AF

Profile No 16 17 18 19 20
Profile C+SM C+SF C+C+SM C+C+SF C+SM+SF

Profile No 21 22 23 24 25
Profile C+C+YM C+C+YF C+C+AM C+C+AF C+YM+YM

Profile No 26 27 28 29 30
Profile C+YF+YF C+YM+YF C+AM+AM C+AM+AF C+AF+AF

Profile No 31 32 33 34 35
Profile C+C+C+YM C+C+C+YF C+C+C+AM C+C+C+AF C+C+C+SM

Profile No 36 37 38 39 40
Profile C+C+C+SF C+C+C+C C+C+YM+YM C+C+YM+YF C+C+YM+AM

Profile No 41 42 43 44 45
Profile C+C+YF+AF C+C+AM+AF YM+YM+AM+AF C+YM+AM+AF C+AM+AF+SM

Profile No 46 47 48 49 50
Profile C+AM+AF+SF C+C+SM+SF YM+YM+SM+SF YM+YF+SM+SF AM+AF+SM+SF

Table B.1: Selected TV viewer configuration. C=Child, YM=Young Male, YF=Young
Female, AM=Adult Male, AF=Adult Female, SM=Senior Male, SF=Senior Female

5.2 Audio Classification of Age and Gender
For each speaker from the viewer configuration profile, a set of real speaker ut-
terances are classified to determine their class. The utterances are selected by
randomly picking out a speaker with a matching class from the evaluation portion
of the aGender corpus [14]. The aGender corpus was supplied to participants in the
InterSpeech 2010 Paralinguistic Challenge to enhance the development of age and
gender algorithms. The training part of the dataset contains 32527 utterances from
472 speakers, the development part contains 20549 utterances from 300 speakers
and the testing part contains 17332 utterances. It comprises 4 age classes: children
(7-14 years), young people (15-24 years), adults (25-54 years) and seniors (≥ 55
years), and 3 gender classes: children, males and females. Children are classed as
their own gender since males are indistinguishable from females at that age. In
more recent work, the age boundaries are slightly different, i.e. children (≤ 13
years), young people (14-19 years), adults (20-54 years) and seniors (≥ 55 years)
[6]. The latter age boundaries, corresponding to the recent work, were chosen3.

For the speaker that was selected, the speaker utterances for the speaker were
pooled to form a contiguous segment. Each speech segment was then submitted
for classification, to determine its class. The speaker results were then combined
to form the group profile XG from above.

The audio classification system is constructed as a hybrid system comprising
two subsystems. The first subsystem models acoustic speaker features and the
second subsystem models the prosodic features. Modeling several feature types

3The original aGender age boundaries were chosen solely on the basis of marketing aspects,
and not on any physiological aspects.
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increases the classification accuracy of the system.
The acoustic subsystem is modeled using the well-known Gaussian Mixture

Model Universal Background Model (GMM-UBM) approach [15]. After voice ac-
tivity detection was applied to each utterance [16], feature extraction was per-
formed using 13-dimensional Mel Frequency Cepstral Coefficients (including C0),
with 1st and 2nd derivative, to give 39 coefficients per 25 ms frame (15 ms overlap).
Mel Frequency Cepstral Coefficients (MFCCs) are simply a compact representation
of the spectral envelope of a speech signal. A 512- component GMM-UBM was
trained using all the training data from the aGender corpus. Seven speaker models,
one for each class, were then adapted from the single UBM using the training data
from each class. For the adaptation process, a relevance ratio of 12 was used. The
accuracy for the acoustic subsystem for all classes was 49.9 %.

To model the prosody features the prosody baseline referred to as System 7 in
a previous work was used [6], which models prosody features at the syllable level
instead of at the frame level. The syllable boundaries are determined as follows:
For each utterance, all frames are marked as voiced or unvoiced (unvoiced where
the pitch is undefined) and all unvoiced frames are discarded. For the remaining
frames, the normalized energy contour is used as a key to determining the syllable
boundaries, where valleys in the contour indicate the start of a new syllable.

The prosody features modeled for each syllable are contours of pitch, energy,
formants, syllable duration and spectral harmonic energy (obtained from the power
spectrum at harmonics of F0). The Praat package was utilized to extract pitch and
energy features from each utterance and Matlab was used to compute the spectral
harmonic energy. After applying time scale normalization for the interval -1 to 1,
the contours were then modeled as sixth-order Legendre polynomials, meaning that
instead of an entire contour, only six coefficients need to be stored [17]. Seven
512-component GMM models were then trained with the prosody features, one for
each class. The prosodic subsystem’s accuracy for all classes was 42.0 %.

For the hybrid system, the acoustic and prosodic subsystems were combined
using weighted summation-based fusion [6] of the subsystem results. The hybrid
classifier model was tested on the entire development data set, an accuracy was
achieved on the combined system of 50.0 %. As a comparison, another work using
seven individual subsystems was able to attain an accuracy of 50.3 % [6]4.

5.3 Initial Rating of Ads
The advertisement corpus used in this paper was provided courtesy of TV2, a
nationwide television broadcaster in Denmark. The commercials are subdivided
into 24 categories. Examples of categories are Food, Beverages, House and Home

4Whereas the hybrid system appears to only offer a marginal increase in accuracy over
the acoustic-only system, it should be borne in mind that they represent the average for all
7 age and gender classes for each system, and that the response for individual classes for the
two systems are in some cases quite different.
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and Media.
A random subset of advertisements was taken from each category to give a

total of 200 commercials. These were then split into four separate groups. For
each group of 50 advertisements, three subjects were asked to rate 50 of them,
on the basis of how well they matched the seven age and gender categories listed
above. The scale used was the standard 1-5 likert scale, with 1 being not-relevant
and 5 most relevant. The ratings were then averaged for each advertisement across
the participants for each group, by taking the median.

Table B.2 shows a sample selection of the rated ads. Commercial details of
advertisements have been withheld.

Advertisement C YM YF AM AF SM SF
Washing Machine 1 3 3 5 2 4 1
Computer Game 4 5 3 4 1 2 1
Alcoholic Drink 1 3 5 1 4 3 2

Lift Chair for Elderly 1 1 1 1 1 4 5
Children’s Building Bricks 4 4 2 3 2 1 1

Ferry Company 2 2 1 5 5 5 4
Retail Bank 1 2 3 5 4 1 1

Table B.2: Selected commercials along with their ratings. C=Child, YM=Young Male,
YF=Young Female, AM=Adult Male, AF=Adult Female, SM=Senior Male, SF=Senior Fe-
male

5.4 Recommendation of Ads
The matching of advertisements was carried out as follows: The advertisements
were combined from the four rating groups to give a total of 200 advertisements.
The genetic algorithm was initialized with 50 chromosomes, with each chromo-
some comprising N randomly chosen advertisements. It was not possible for the
same advertisement to appear twice within a given chromosome. After this, 500
iterations of genetic selection were run, where the fitness in each round was re-
computed according to the predefined advertisement’s age and gender ratings and
the extracted group profile. At the end of the entire run, the chromosome with
the highest fitness was selected as the winner and used as the sequence of recom-
mended advertisements.

6 Evaluation and Results

6.1 Evaluation of User Categories
In the first part of the evaluation, a system using an audio-derived group profile
(the proposed system) is compared to an ideal system, where the group profile
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matching a given GVC is provided explicitly, for example through an online user
form or registration questionnaire.

In the proposed system an audio classifier determines the M -user group profile
by connecting real speaker utterances to each user in the GVC and computing a
probabilistic membership for each class. In the ideal system, there is no audio
classification, and instead each user profile xm is constructed by setting a value of
1 for the class matching the user category, and a 0 for the remaining classes. The
users are combined in the same way to form the group profile.

The objective for either system is for a given GVC, to recommend a sequence
of content item where for each user, a single matching advertisement is suggested
that has the same age and gender category. Since in this case each user maps
to a single ad, M = N and no group profile adaptation is carried out in this
particular evaluation. The ultimate category for an advertisement is simply defined
as the advertisement’s age and gender class that received the highest rating. Some
of the advertisements, however, had two or more classes that had received the
same, highest rating. In these cases the advertisements were assigned to multiple
categories.

The overall effectiveness of the system in predicting the correct category was
measured as follows: for each advertisement that was recommended, an input-
output pair was formed containing the true user category, e.g. Child, and the
category of the advertisement that was recommended, e.g. Young female. To take
account of the advertisements that had multiple categories, additional input-output
pairs were created as necessary. For each advertisement to user recommendation,
there is therefore at least one mapping from input class to output category. For
each GVC, 50 evaluations were carried out, with different speaker utterances being
used in each evaluation (with possible replacement).

Once all 50 GVCs had been tested, the input-output pairs were collated and
entered into a 7x7 contingency table. To measure the level of association between
the input categories (the rows, R) and the output categories (the columns, C),
Pearson’s chi-squared test was carried out. The strength of association using
Cramer’s Phi (or V) for categorical variables can be computed for each system as:

φc =

√
X2

T (k − 1) (B.14)

where

X2 = Pearson’s chi-squared statistic
T = Total number of input-output pairs
k = min(R,C)

In the experiments, T is computed as:

T = Simcount ∗GV Ccount ∗Ngvc ∗ Catcount (B.15)

66



6. Evaluation and Results

where

Simcount = Number of separate group simulations
GV Ccount = Number of GVCs

Ngvc = Number of content items recommended
Catcount = Number of highest rated categories for each item

Furthermore the value of k is fixed at 6, since R = C = 7. The obtained values
for each system are shown in Tables B.3 and B.4 below.

C YM YF AM AF SM SF 4595.0
C 3175.0 747.0 626.0 19.0 25.0 1.0 2.0 4595.0
YM 288.0 761.0 553.0 231.0 152.0 32.0 34.0 2051.0
YF 61.0 236.0 446.0 96.0 255.0 19.0 57.0 1170.0
AM 1.0 69.0 59.0 899.0 480.0 395.0 185.0 2088.0
AF 0.0 39.0 135.0 399.0 850.0 146.0 315.0 1884.0
SM 0.0 20.0 20.0 519.0 239.0 698.0 388.0 1884.0
SF 0.0 16.0 55.0 280.0 550.0 406.0 749.0 2056.0

Totals 3525.0 1888.0 1894.0 2443.0 2551.0 1697.0 1730.0 15728.0

Table B.3: Contingency Table for Case 1: Upper Bound System - Explicitly Provided age
and Gender Profile. X2 = 18293. φc = 0.4403. T = 15728.

C YM YF AM AF SM SF 4595.0
C 2585.0 1452.0 1698.0 367.0 559.0 115.0 183.0 6959.0
YM 98.0 537.0 440.0 587.0 442.0 284.0 246.0 2634.0
YF 186.0 234.0 381.0 118.0 247.0 45.0 96.0 1307.0
AM 28.0 344.0 291.0 841.0 558.0 585.0 374.0 3021.0
AF 87.0 210.0 422.0 396.0 755.0 276.0 495.0 2641.0
SM 16.0 171.0 157.0 661.0 439.0 614.0 400.0 2458.0
SF 60.0 152.0 261.0 443.0 667.0 407.0 583.0 2573.0

Totals 3060.0 3100.0 3650.0 3413.0 3667.0 2326.0 2377.0 21593.0

Table B.4: Contingency Table for Scheme 2: Proposed System - Audio-derived Age and
Gender Group Profile. X2 = 9295. φc = 0.2678. T = 21593.

The results show that the effect size φc = 0.2678 of the audio-based system
is lower than that of the theoretical maximum given by the ideal system of φc =
0.4403, which can be accounted by the error introduced by the audio classifier.
Depending on what speaker utterance was classified, there will always be varying
degrees to which a given class is a member of the other classes (never 0 or 100
%). This can also clearly be seen in the diagonals of each table, which represent
the number of hits correctly classified for each user category. In the ideal system,
there are (as expected) a larger number of correctly classified advertisements.

What is interesting to note for the proposed system, however, is that there is a
significant correlation between the input categories and output categories. This is
in spite of the accuracy only being half that of the theoretical maximum. To test for
significance, the null hypothesis may be stated that the age and gender categories
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of the ads for each user are chosen with equal probability. With a goodness of fit of
X2 = 9295 and df = 36, it was found that with a p < 0.1 that the null hypothesis
is disproved. Furthermore, the value of φc = 0.2678 for the proposed system is over
2.5, which according to the threshold values for Cramer’s V, corresponds to a very
strong association between the true categories and the recommended categories.

What is also interesting to note in the proposed system is the value of T , which
happens to be 27 % higher than in the ideal system, meaning more multi-category
advertisements were selected in the proposed system. The reason for this is believed
to be the classifier-induced increased membership of each class of every other class,
which leads to selecting advertisements with multiple highly-rated classes.

6.2 Testing the Effectiveness of the Group Adaptation
Approach

When group-to-slot adaptation is performed, M 6= N and the number of adver-
tisements to be recommended is different to the numbers of users sitting in front
of the TV. Since the number of advertisements for a given ad break are prede-
termined, a system that does not employ the adaptation technique would have to
resort to other method to fill up the additional slots. In this part of the evaluation
two systems are compared: a system where the remaining N −M slots are filled
with random advertisements, and a system where the full group profile adaptation
technique is applied.

To formally evaluate to what extent each user’s age and gender class is rep-
resented in the sequence of recommended items, and to determine whether group
profile adaptation gives a better proportional representation than the alternative
system, an adapted version of the group profile XG is correlated with the age and
gender ratings of the recommended advertisements. The idea behind this is that
the more accurately the individual user’s classes are reflected in the sequence of
items that are presented, the stronger the correlation will be. For example, if the
initial GVC was [C,C,C, SF ], meaning that three quarters of the audience are
children, then it is expected that three quarters of the advertisements will also be
targeted to children.

To allow for this comparison, each GVC is converted to a 7-dimensional age-
and gender representation xgvc, where a 1 is given for each age-and-gender class in
the GVC, and a 0 is given otherwise. In doing so, the class that has the strongest
representation in the GVC will end up having the largest weighting. Likewise a
similar 7-dimensional age and gender representation xitems is constructed for the
N advertisements that are represented. To determine the weighting for each class,
each advertisement’s ratings for all classes are summed across each individual class.
In this way, the class that has the strongest representation across all N items will
end up having the largest weighting.

To compute the correlation between between xgvc and xitems, Kendall’s Rank

68



6. Evaluation and Results

Correlation Coefficient is used5, which is a non-parametric hypothesis test that
measures the degree of concordance between the values being compared. The
test ensures that before the strength of the correlation is computed, the data on
both sides is ranked, and where tie ranks are observed, the rank value simply
becomes the average of the individual ranks. For each τB value that is computed,
the corresponding z-score is also computed, which is characterized by a normal
distribution when the variables are statistically independent.

The results show that there is a stronger overall effect, and hence preservation
of the original age and gender classes, when group profile adaptation is applied
(τB = 0.2316, ZB = 34.29) than when random advertisements are used to fill
the remaining slots (τB = 0.08, ZB = 11.91). The values for τB and ZB were
also calculated for each of the 50 GVCs for both schemes. When the direction
of correlation is taken into account (zero correlation is considered better than a
negative correlation), it was noted that in 47 out of 50 cases that a stronger rank
correlation coefficient (and accompanying z-score) was obtained for the case where
group profile adaptation was employed. Therefore, from a statistical standpoint,
there is a stronger overall effect introduced when applying adaptation. Table B.5
shows the values for the first 10 individual τB and ZB values.

Profile τB(1) τB(2) ZB(1) ZB(2) Profile τB(1) τB(2) ZB(1) ZB(2)
1 0.4436 0.4684 8.948*** 9.447*** 2 0.5194 0.5509 10.49*** 11.12***
3 0.4489 0.4418 9.061*** 8.935*** 4 0.1069 0.3847 2.157 7.756***
5 0.133 0.2334 2.684 4.708*** 6 0.116 0.3087 2.339 6.238***
7 0.4067 0.5548 8.213*** 11.2*** 8 0.2525 0.3182 5.095*** 6.417***
9 0.2914 0.314 5.88*** 6.34*** 10 0.1117 0.2727 2.254 5.509***
11 -0.1118 0.2866 -2.247 5.797*** 12 -0.2833 0.2034 -5.7 4.095***
13 -0.1052 0.4062 -2.119 8.21*** 14 -0.03915 0.1746 -0.7879 3.508**
15 0.04066 0.2132 0.8205 4.297*** 16 -0.3315 -0.2701 -6.674 -5.421
17 -0.2746 -0.1601 -5.529 -3.221 18 -0.3157 -0.1439 -6.555 -2.99
19 -0.2225 -0.0544 -4.626 -1.13 20 -0.3726 -0.4201 -7.498 -8.431
21 -0.1419 0.2989 -2.952 6.227*** 22 0.1309 0.4681 2.721* 9.78***
23 0.01513 0.1486 0.3143 3.096*** 24 0.1175 0.2837 2.443 5.913***
25 -0.1934 0.0474 -4.025 0.9879 26 0.1512 0.4061 3.145** 8.481***
27 -0.02529 0.3764 -0.5089 7.585*** 28 0.02998 0.09813 0.6237 2.04
29 0.2582 0.2149 5.195*** 4.317*** 30 0.148 0.175 3.084* 3.647**
31 0.1604 0.3741 3.33*** 7.807*** 32 0.3073 0.5142 6.399*** 10.74***
33 0.1227 0.2244 2.547 4.676*** 34 0.3138 0.3641 6.52*** 7.593***
35 -0.2107 -0.01892 -4.378 -0.3941 36 -0.121 0.01859 -2.512 0.3868
37 0.2442 0.4158 4.924*** 8.406*** 38 -0.07189 0.2175 -1.445 4.383***
39 0.1548 0.3932 3.255** 8.265*** 40 0.123 0.1834 2.576* 3.846***
41 0.3394 0.445 7.127*** 9.36*** 42 0.1567 0.2059 3.286** 4.323***
43 0.4174 0.4247 8.772*** 8.93*** 44 0.1968 0.291 3.958*** 5.859***
45 0.1803 0.1432 3.634** 2.887** 46 0.1206 0.1621 2.427 3.265**
47 -0.4925 -0.3729 -10.31 -7.803 48 -0.08412 -0.04439 -1.768 -0.9326
49 -0.1903 -0.168 -3.835 -3.381 50 0.566 0.6167 11.42*** 12.43***

Table B.5: Values of τB and Z obtained for both schemes, shown for all 50 group viewer config-
urations. One-tailed p-value indications are *: p < 0.005; **: p < 0.001; ***: p < 0.0001

5Kendall’s τB is considered a better statistic for smaller amounts of data than Spearman’s
Rank Coefficient, and where the ranks that are to be compared have ties.
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6.3 User Study Evaluation
In another evaluation relating to this study [18], a user study was conducted where
subjects were given the chance to evaluate the proposed system. Due to time con-
straints, it was not possible to evaluate all 50 group configurations, and therefore
a subset of 11 configurations was selected for the study. A total of 12 subjects
were asked to participate in the study.

Subjects were shown several different GVCs, and for each GVC, a sequence of
10 advertisements. Five of the advertisements were recommended using a system
where the hybrid audio classifier, group profile adaptation algorithm and genetic
selection algorithm were present in the system. The other five advertisements were
randomly selected, without replacement. Subjects were however, not informed
which advertisements were recommended and which were randomly selected. They
were then asked to rate on a scale of 1-10 (1 completely irrelevant and 10 most
relevant) on whether they thought a given advertisement was suitable for any of
the the members of the GVC. A 10-point scale was used to ensure that subjects
took a non-neutral stance when rating. For example if the subject thought the
advertisement appealed highly to children, and the child category was part of the
GVC, then naturally the advertisement would receive a higher rating.

The results show that on average the recommended ads received a higher me-
dian rating of 7.75 than the randomly selected ones, which received a rating of
4.25. To test the statistical significance of the items receiving higher ratings, let
x represent all samples corresponding to the median ratings of all users for the
randomly-selected items and let y represent samples corresponding to the median
ratings of all users for recommended items, and test the null hypotheses that y−x
comes from a distribution of zero median. Treating the rating scales as ordinal,
the 2-sided Wilcoxen Signed Rank test is used to test for significance. With a
z-score z = −2.628 and p < .01 there is a significant increase in the median rating
for each test group, thus disproving the null hypothesis. Finally, the effect size
using Pearson’s correlation coefficient r = Z√

N
is also computed, where Z is the

z-score from above and N = 24 is the number of observations, and is found to be
r = −0.535. Since the absolute value is above Cohen’s benchmark of 0.5, it can
be concluded that using the age-and-gender analysis approach has a large effect
on the user ratings.

7 Conclusion and Future Work
This paper showed how an audio classifier can be used to elicit a demographic
group profile from a given audience, and how this can be used to provide recom-
mendations. Even at the level of state-of-the-art age and gender detection, which
is about 50 %, there is good potential in using audio analysis for recommenda-
tion. For the proposed system, it was found that there was a strong relationship
between the true user categories and the recommended advertisement categories.
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In the majority of cases, group profile adaptation leads to a stronger reflection of
the users’ age and gender classes than simply adding random advertisements to
the remaining slots. User studies confirm that the strength of the recommendation
can be perceived and that the recommended advertisements were more suitable
than randomly selected advertisements.

Finally, it is proposed that the system be used as a baseline for future work. This
includes an investigation into further novel ways in which the accuracy of detecting
the age and gender of viewers can be enhanced, with the intention to see to what
extent it is possible to approach the upper bound results for the explicitly-provided
group profile system.
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1. Introduction

Abstract
This paper introduces the concept of affective offset, which is the difference
between a user’s perceived affective state and the affective annotation of the
content they wish to see. We show how this affective offset can be used within
a framework for providing recommendations for TV programs. First a user’s
mood profile is determined using 12-class audio-based emotion classification.
An initial TV content item is then displayed to the user based on the extracted
mood profile. The user has the option to either accept the recommendation,
or to critique the item once or several times, by navigating the emotion space
to request an alternative match. The final match is then compared to the ini-
tial match, in terms of the difference in the items’ affective parameterization.
This offset is then utilized in future recommendation sessions. The system was
evaluated by eliciting three different moods in 22 separate users and examining
the influence of applying affective offset to the users’ sessions. Results show
in the case when affective offset was applied, that better user satisfaction was
achieved, where the average ratings went from 7.80 up to 8.65, with an aver-
age decrease in the number of critiquing cycles which went from 29.53 down to
14.39.

1 Introduction
Even with the steady increase of on-demand services such as Netflix and HBO1,
broadcast TV is still firmly entrenched in the home. It is typically the place where
the local news and programming is to be found, where many consumers would
be reluctant to part with. It is easy to use - turn on the TV, find a channel and
watch. Since the consumer does not take part in the selection of the program lineup,
recommendations can be serendipitous, something that customers value. From the
provider-side there have been substantial investments in satellite, terrestrial and
cable networks, and they want to see the best return on investment. Thus it is
anticipated that broadcast TV will not be going away any time soon.

The Electronic Program Guide (EPG) is today an integrated part of most home
television sets and set top boxes, and is still the predominant method when it
comes to navigating both currently-showing and up-and-coming TV programs in
the broadcast realm. It is typically presented in a grid-like fashion, with channels
down and programs across the grid. However, while the EPG does provide the
consumer some assistance, there can still be an overwhelming amount of content
to choose from. Not only is the currently-airing program of interest, but also
future programs that the consumer may wish to record or be reminded about. To

1Both Netflix and HBO offer broadband delivery over IP networks (HBO is traditionally a
cable and satellite TV provider, but also offers broadband delivery through their on Demand
service).
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illustrate: over a three-hour period with 30 available channels, with a program
length of 30 minutes (typical during prime-time viewing), there are 180 programs
to choose from, making an informed decision difficult.

In order to recommend something personal, a user profile is needed. The user
profile data can be collected explicitly, e.g. by requesting users to supply data, or
implicitly, through usage patterns. Matching of the user profile to the potentially
recommendable content of interest can take place at two levels. At the cognitive
level, semantic information such as content descriptors, e.g. genre or user ratings
are utilized. The affective level on the other hand deals with the emotional context
of the user, and how this relates to the content. The notion of cognitive and
affective levels is not a new idea, and has been proposed before in the context of
video content retrieval [1].

One area that has received little attention, in the context of recommending
content within the EPG framework, is using the user’s direct audio environment
to extract profile information that can be used to make recommendations. State-
of-the-art speaker recognition methods have made it substantially more feasible to
extract information about the users, such as their age and gender [2] or emotions
[3], using models built upon a text-independent speaker recognition framework.

In this paper we propose a novel framework that takes into account users’ audio
derived moods to provide the most relevant TV channel recommendation to them.
A state-of-the-art audio classifier classifies users’ speech into individual emotions,
which contribute ultimately to their mood. Since, for a given mood, two separate
users might have different ideas of what would be applicable to watch, we do not
expect them to find the initially recommended item immediately appealing [4].
Users are therefore given the possibility to critique the item by navigating the
emotion space of all candidate items to find a more suitable item, should they wish
to do so. To quantify the difference between the initial item and finally selected
item, we model what we call the affective offset between the items. The novelty
lies in leveraging this affective offset to provide system adjustments in such a way
that future recommendations are more tailored to the individual person.

This paper is organized as follows: Section 2 starts with a discussion on psycho-
logical emotion theory, and how this relates to the proposed framework. Section
3 gives an overview of emotion detection in speech. The following section then
introduces critique-based recommender systems. Section 5 presents the recom-
mendation framework, discussing aspects relating to mood detection, critiquing
and affective offset. Section 6 presents our experimental work and the following
section discusses the findings. The final section concludes the paper, and provides
some recommendations for future work.
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2 Moods and Emotions
Since moods cannot be measured in the same way as emotions, there is still a lot
that is not yet understood about moods. We know however, that emotions, which
are more transient in nature, give rise to moods and that certain emotions, such as
anger, can cause one to be in a bad mood for a longer period. If certain emotions
are experienced strongly and often enough over a given time period, they might
eventually give rise to moods, e.g. a continuous sequence of events that cause
irritation might lead one to be in a bad mood. A person with a propensity for
being in bad moods, might more easily be triggered into becoming angry. While
there is no agreement in the literature on how long a mood lasts, it is generally
understood that moods last longer than emotions [5].

There is a difference between the mood a person is in and the pervasive mood
of the content item they might want to see [4]. Mood management theory suggests
that people will generally follow their hedonistic desires [6], meaning for example,
that somebody in a bad mood might want to watch good mood content to repair
their negative affective state.

Since we cannot measure mood directly, we concern ourselves with the actual
emotions, and how they might be used to determine an entry mood for the system.
A person’s emotional state can be acquired either explicitly or implicitly. Due
to problems seen with explicit acquisition of emotions [4], it has been suggested
that they be collected implicitly. Of all the induction methodologies available
for obtaining the emotional state, speech is the cheapest and most non-intrusive
method.

While the modeling of emotions themselves has always been a very contro-
versial topic [7], the most prominent model used is the dimensional approach,
which is based on separate valence, arousal and dominance dimensions, where any
emotional state can be represented as a linear combination of these three basic
dimensions. Recent studies show that the valence and arousal axes account for
most of the variance [1] and that these are typically the two prominent dimensions
used in digital systems. We follow in the same vein. In the VA space, valence is
more commonly referred to as the pleasantness of the emotion, whereas arousal
refers to the actual intensity.

The well-known dimensional model known as the Circumplex Model of Affect [8]
which is also based on valence and arousal shows how emotional states exhibit a
very particular ordering around the periphery of a circle. Emotions that are close
in nature are adjacent to one another, whereas bipolar emotions are situated on
opposites sides of the circle. Furthermore the emotional states are not distributed
evenly around the circle, and some states lie closer to each other on the circumplex
than others. The location of these affective states has been determined using
empirical data from psychological studies. Each location is expressed in degrees
going counterclockwise around the circle, starting at 0◦ from the positive valence
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axis. While there is general agreement on the location of the emotional states,
several studies have concluded different exact locations, and recent updates to
these models have been made using more stringent statistical models [9].

Not only are there different interpretations of the locations of these states, but
very interestingly, the very orientation of the valence-arousal axes has been debated
[10]. Some studies have proposed shifting the axes, for example, by orienting them
at a 45◦ angle, or by placing the axes where the emotions are most densely clustered.

While the valence-arousal model is well suited to Human Computer Interaction
(HCI) applications, distinct emotion categories, as used in most emotion speech
databases today, are not. It can therefore be difficult to relate these fixed categories
to the valence arousal VA space. Furthermore, labeling of elicited emotions with
universal labels has come under scrutiny [7], where it has been postulated that
the actual felt emotions, for example, as shown in physiological readings, such as
increased heart rate, might not be the same as the emotion labels themselves.
This has especially been demonstrated with studies from non-western cultures. A
previous work has for example looked at mapping from the VA space to distinct
emotion categories, using clustering with density estimation [11]. However not only
is this more in the context of affective video labeling, but it relies on an intuitive
interpretation of what emotion each cluster is assigned to. This can be particular
tricky for emotions very close to one other, and where the ordering of the clusters
might change, such as in the case for the emotions fear and anger.

This study uses the Circumplex Model of Affect to model the fixed emotions
and the VA space to model the content items. The Circumplex Model of Affect
has the advantage of treating emotion categories as single points around a circle
while at the same time giving sense of location, and ordering, for the emotions.
Furthermore, since emotions points are relative to the valence arousal axes, the
model gives an easy interpretation of what happens when the valence arousal axes
are shifted, or tilted. All this will help us to relate the emotion categories to the
VA space shortly.

3 Detecting Emotions in Speech
Emotion classification in speech is a challenging task and has received a lot of
attention in the past ten years. While there is recent interest in continual modeling
of emotions [12], speech utterances are generally assigned to fixed labels, such as
Ekman’s "big six" emotions (anger, disgust, fear, happiness, sadness and surprise),
and emotion speech datasets (corpora) typically contain either acted speech [13]
[14] or spontaneous speech [15] assigned to fixed emotion labels.

After any necessary speech-signal pre-processing, low-level feature descriptors
are extracted, from which an appropriate model can be constructed. Many pa-
rameters are used to detect emotion, including mel-frequency cepstral coefficients
(MFCCs), which have been the most investigated features for emotion recognition.
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MFCCs are simply a compact representation of the spectral envelope of a speech
signal. In addition to MFCCs, pitch, intensity, formants and even zero-crossing rate
are used. Furthermore the modeling can either be based on fixed length features
or variable length features.

Emotions are modeled using a wide variety of techniques including Gaussian
mixture models (GMMs), support vector machines and back propagation artificial
neural networks. Two recent methods for modeling emotions include class-specific
multiple classifiers, based on standard modeling techniques [16], and modeling of
emotions using front-end factor analysis (i-vectors) [3] [17].

In the i-vector model, each utterance is expressed as a low-dimensional i-vector
(usually between 10 and 300 dimensions). One of the advantages of modeling in the
i-vector space is that the i-vectors themselves are generated as unsupervised data
[18], without any knowledge of classes. What this essentially means is that when
emotion classes are enrolled, a more traditional classifier, such as a Support Vector
Machine (SVM) can be used, allowing for quick enrollment of the users’ emotional
data. This can be an advantage when lots of background data is needed to increase
the classification performance. In the i-vector-based system, the background data
can be incorporated in the training of the GMM and total variability model, which
are used to extract the i-vectors themselves, and which then need not be retrained.
Potentially this can reduce modeling of the emotion classifier from hours to seconds.
In this work, we have elected to use the i-vector model for emotion classification.

4 Critique-based Recommender Systems
Since typically the content from only one channel can be consumed at any given
point, there is a strong basis for providing recommendation for EPG items by
quickly being able to select the most relevant channel.

There have for example been works that have looked at recommending content
within the EPG framework, that rely both on collaborative [19] as well as content-
based [20] techniques. In particular, collaborative recommender systems rely on
using other people’s ratings for content to generate a list of recommendations for
a user. However, we do not believe these fit in well within the EPG framework.
Firstly, there is an out-of-band (with the broadcast stream) exchange of ratings
between users that needs to take place. While this may seem trivial with today’s
permanently connected TVs, it is an overdimensioned solution. Secondly, and most
importantly, the very nature of broadcast TV is that much of the content that is
broadcast may be short-lived and it is possible that it will never be rebroadcast.
Once the program has aired, there would be little interest in other users ratings for
the program, had these been collected in the first place.

Knowledge-based recommender systems came into existence to deal with the
problem of how to recommend knowledge intensive items such as customizable
digital cameras, for which ratings might not be easy to acquire, or where they might
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not be entirely applicable for the given application [21]. An inherent assumption
with knowledge-based systems is that a user may be somewhat undecided on what
to search for, and it is therefore the task of the system to guide the user to the
item of interest. In a typical case-based recommender, a form of knowledge-based
system, a process known as critiquing is used in the following manner:

1. The consumer’s preference is extracted, either explicitly, or implicitly.

2. Using some sort of similarity metric, the system provides an initial recom-
mendation.

3. The consumer either accepts the recommendation, which ends the entire
process, or critiques it, by selecting one of the critique options available.

4. For each critique made, the item space is narrowed down by filtering out the
unwanted items, and a new recommendation is made.

5. The process continues until the customer finally selects an item.

A lot of past research has looked at critiquing in the context of high-risk,
once off-items, such as digital cameras and automobiles. Since these items are
highly customized and often one-off purchases, they require more effort on the
part of the user to make a sound decision, since there is a larger penalty to pay if
recommendation leads to a poor decision. However, research in a limited capacity
has also begun to look at so-called low-involvement product domains [22]. Low-
involvement product domains typically entail low-risk items, such as music and TV
content. One particular work that is noteworthy in this regard is the MovieTuner
feature incorporated into MovieLens, that allows movie qualities, such as more
action to be adjusted through critiquing [23].

We propose to make use of critiquing to allow navigation of items in the VA
space, and to gather feedback needed for computing affective offset. By allowing
the user themself to take part in the recommendation process gives us feedback on
how the user’s perceived affective state differs from their desired state, and what
they really would like to watch.

5 Recommendation Framework

5.1 General Overview
A typical system operation can be realized as follows: Once the user’s mood
has been detected, from audio-based parameters, the closest matching item that
matches the user’s mood profile is displayed to the user. The user can either ac-
cept the item, or request the recommendation of a new item. To be able to make
a new recommendation, the user provides information on how the system should
constrain its search. The process continues until the user finally accepts the item.
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After the recommendation process has completed, the system calculates the
affective offset between the initially recommended item and the finally selected
item (if any), and takes this into account when processing the output labels from
the classification stage, in such a way as to reflect the new mood offset. Figure
C.1 shows an overview of the proposed system. We shall now present theory for
the individual components.

Fig. C.1: Complete system overview

5.2 Mood Detection
Since it is emotions themselves that are detectable and give rise to moods, we
start by discussing emotion detection. Let E be the total number of emotion
classes. Emotions can then be detected by analyzing the speech utterances from
each user and assigning an emotion class e ∈ E to each. The more classes that
need to be classified, the lower the classification accuracy. What this entails is,
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that for a set of utterances over a time interval for which the actual emotion was
ea, and the predicted emotion is ep, there will almost always exist a subset of
these utterances where ea 6= ep, i.e. utterances for which the actual class was not
predicted correctly. What is important here is not so much that each emotions is
categorized 100 % correctly, but that the areas of the emotion space, and hence
adjacent emotions, that were detected, are reflected in the profile. With this in
mind, the emotion profile for a single user u can be modeled by:

eu =


p1
p2
...
pE

 (C.1)

where pj , 0 ≤ pj ≤ 1, simply represents the actual predicted probability for emotion

class j, 1 ≤ j ≤ E, and
E∑
j=1

pj = 1.

Over a sequence of time intervals, e.g. over the last 12 hours, the system
collects the individual emotion profiles, and condenses them to a mood profile.

mu = 1
T

T∑
i=1

eui ∗ wi (C.2)

where

eui = The eu corresponding to the ith time interval
T = Total number of discrete time intervals, and
wi = Weighting of eu for the ith time interval

To compute the weighting, a modified form of the depreciation factor, originally
used in computing the depreciation citation count [24] is used to compute wi2. This
will ensure that emotions recorded over earlier time intervals, regardless of the size
of the time interval, will always contribute less to a given overall mood profile mu.

The weighting wi is thus given by the following:

wi =
1 + tanh( iT )

2
(C.3)

2The original depreciation factor is based on years and ours is based on discrete time
intervals.
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5.3 Determination of Entry Item in Valence Arousal (VA)
Space

For a given fixed set of emotions, each emotion can be characterized by associating
it with an affective location (offset in degrees) around a circle3. There is thus a
mapping from each emotion category to its corresponding angle. More formally,
this set of emotions can be expressed in the following way:

Θ =


θ1
θ2
...
θE

 (C.4)

To map the mood profile mu that was introduced in the previous section, to a
point in the VA space, we introduce the concept of a directional mood vector.

Each component of both Θ and mu is associated with a separate emotion.
Therefore for each emotion j, 1 ≤ j ≤ E, we create a new vector MoodVAj with
magnitude muj and angle θj , with the angle measured in degrees from the positive
valence axis in the VA space:

MoodVAj =
[
muj ∗ cos θj muj ∗ sin θj

]
(C.5)

This results in E separate emotion vectors, where the angle for each serves as
an identification for an emotion and the magnitude indicates the confidence of that
emotion, as detected by the audio classifier. Finally, all E components are summed
to obtain the final directional mood vector. More formally, this is depicted as:

MoodVA =
E∑
j=1

MoodVAj (C.6)

In order to find an appropriate entry item, which forms the first stage of the
recommendation process, we associate the directional mood vector with a suitable
point in VA space. To locate the best item, we iterate through all items, where Γ
is the total number of items. For each item γ, γ ∈ {1, 2, ...,Γ} a score based on
cosine similarity is computed as follows:

Scoreγ = MoodVA · kγ
‖MoodVA‖‖kγ‖

(C.7)

where kγ is the location of item γ in VA space.
The first item to be recommended, or entry item is then the item γ which

generates the highest score:
3The location of each emotion is determined by past empirical studies [9], as discussed

earlier
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γ = argmax
γ

(Scoreγ),∀γ, γ ∈ {1, 2, ...,Γ} (C.8)

5.4 Critiquing Stage
At this stage the user has the opportunity to examine the entry item4. If he/she
decides not to accept the item, a critique is specified for the new item. The possible
critiques are more pleasant, less pleasant, more intense and less intense. These
correspond to the affective operations more valence, less valence, more arousal
and less arousal, respectively. The algorithm determines beforehand whether there
is an availability of items to satisfy the potential constraint. If this condition is
not satisfied, the constraint is simply not presented. Although it is possible to
implement compound constraints, due to the low dimensionality of the number of
free parameters available (only four), we opted for simple constraints only in this
work5.

Once the user has selected a constraint, the best matching item is determined
and displayed in the following way: for a given iteration r, let S be the set of
items subject to the new constraint Cr. The next item to be recommended is then
the item with the shortest distance between the currently displayed item itemc,
i.e. the last recommended item, and all other items subject to the constraint, and
given as:

Match = min
∀s∈S,s 6=c

d(itemc, items) (C.9)

where the distance d(itemc, items) is a weighted form of the standard Eu-
clidean distance in VA space:

d(itemc, itemi) =√
wV ∗ (itemcv − itemiv)2 + wA ∗ (itemca − itemia)2 (C.10)

One of the problems with using the standard Euclidean distance is that it is
based on pure distance and no consideration is given to the direction in which the
user really wishes to traverse the space. Figures C.2 and C.3 show the case for
a user starting out in the negative valence, positive arousal quadrant (top left),
who then executes 14 critique cycles. In every case, the user selects the constraint
more pleasant, i.e. more valence. For the unweighted case, we note that the user
(unintentionally) gradually wanders over to the positive valence / negative arousal
quadrant (bottom right), where, ideally, the optimum quadrant would have been
the positive valence / positive arousal quadrant (top right). The weights wV and

4The entry item is the very first item that is recommended to the user.
5Compound critiques would be suitable if the affective parameters were to be combined

with other parameters, such as genre, time of day and age ratings.
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wA are therefore introduced and chosen empirically to ensure that more preference
is given to either the valence or arousal dimension, depending on what constraint
was chosen. This allows for a larger distance in the desired direction to be taken
into consideration than would be otherwise, and results in a more direct path. The
effect of using these weights is shown in Figure C.3.

The recommendation process continues until the user selects an item as ac-
ceptable, in which case it is terminated.

Fig. C.2: Navigating the VA space before the modified weighted Euclidean distance measure
is introduced

5.5 Affective Offset Determination
Once the recommendation process has completed, the user will be located at an-
other point in VA space. How far this point is located from the initial recommen-
dation depends on both the number of cycles taken as well as the overall affective
bearing the user took. In order to know how far off the user is from the initial
recommendation, we now compute the affective offset. This offset will then be
taken into account in future recommendation sessions to offset the user’s mood
profile (the perceived mood) with the recommended content (which relates to the
desired mood).

Let A be the vector passing through the origin and the initial point where the
user set out from, and let B be the vector passing through the origin and the point
representing the finally selected item. The angle of this offset is given as:

OffsetAngle = arccos
(

A ·B
‖A‖‖B‖

)
(C.11)
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Fig. C.3: Navigating the VA space after the modified weighted Euclidean distance measure
is introduced

where
A ·B
‖A‖‖B‖

= the cosine distance between A and B, and

arccos(x) = θ gives θ in degrees and not radians.

However, not only is the angle important here, but also the direction (on the
emotion circumplex) of B relative to A. If we in future recommendation rounds
offset the emotions in the wrong direction, instead of compensating for the mis-
match between detected mood and recommended item, we would effectively be
contributing to the error instead of reducing it.

We therefore determine whether this direction is clockwise, or counter-clockwise.
To do this, we first compute the absolute angle of both A and B. The abso-
lute angle for a vector through the origin (positive valence axis) to a given point
P, P = A,P = B, is computed in the following way:

AngleP absolute = mod(− arctan(Py, Px)− 90), 360) (C.12)
where

arctan(y, x) = θ gives θ in degrees (−180 ≤ θ ≤ 180)
mod (θ, 360) = θ gives θ in degrees (0 ≤ θ ≤ 360)

Depending on the location of A and B, two possible angles can be computed:

Diffc = mod(AngleA −AngleB , 360) (C.13)
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Diffcc = mod(AngleB −AngleA, 360) (C.14)
where

Diffc = B is located clockwise relative to A
Diffcc = B is located counterclockwise relative to A

If Diffc = OffsetAngle, then this indicates that the offset occurs in the
clockwise direction and Offsetsign = −1. Likewise if Diffcc = OffsetAngle,
then Offsetsign = 1. The sign is combined with the previously computed offset
angle, to give the directional offset:

Offset = OffsetAngle ∗OffsetSign (C.15)

5.6 Relabeling Stage
For the 12-class emotion classifier, labels indicate the emotion that each utterance
is associated with. There is no concept of distance or overlap between labels - they
are simply emotion categories. However, these concepts hold for the emotional
spaces themselves, and where they move, so will the labels.

Fig. C.4: Tilting of emotion labels. By tilting the valence, arousal axis by Θ, we impose a
new ordering of the labels.

Figure C.4 shows a possible configuration for a set of emotions and their location
around the circumplex. For a given configuration, starting from 0◦, there exists an
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Amusement Anxiety Irritation Desperation Joy Anger Interest Fear Pleasure Pride Relief Sadness
Amusement 90.00 0.00 0.00 3.33 0.00 0.00 0.00 6.67 0.00 0.00 0.00 0.00
Anxiety 13.33 23.33 3.33 6.67 3.33 6.67 3.33 10.00 6.67 10.00 0.00 13.33
Irritation 3.12 6.25 18.75 6.25 0.00 0.00 9.38 6.25 0.00 15.62 15.62 18.75

Desperation 33.33 10.00 3.33 23.33 0.00 3.33 0.00 16.67 0.00 3.33 0.00 6.67
Joy 20.00 0.00 3.33 6.67 23.33 13.33 0.00 20.00 0.00 3.33 0.00 10.00

Anger 6.67 6.67 3.33 3.33 3.33 56.67 6.67 6.67 0.00 3.33 0.00 3.33
Interest 0.00 3.33 0.00 0.00 0.00 0.00 16.67 3.33 20.00 0.00 10.00 46.67
Fear 3.33 6.67 0.00 10.00 6.67 13.33 0.00 46.67 0.00 6.67 6.67 0.00

Pleasure 3.33 3.33 3.33 3.33 0.00 0.00 13.33 0.00 43.33 0.00 6.67 23.33
Pride 16.67 0.00 6.67 6.67 0.00 13.33 0.00 0.00 3.33 40.00 3.33 10.00
Relief 0.00 10.00 0.00 6.67 0.00 3.33 10.00 0.00 23.33 3.33 43.33 0.00
Sadness 3.45 6.90 3.45 3.45 0.00 0.00 0.00 0.00 3.45 6.90 3.45 68.97

Table C.1: Confusion matrix for 12-class emotion classifier. Shaded entries correspond to
actual class = predicted class.

explicit fixed ordering of the emotion labels. By tilting the valence and arousal axes
by Θ, which happens to be the affective offset calculated in the previous stage, we
effectively change the ordering of the labels. An important design consideration
was whether to rotate the directional mood vector, as computed in equation C.6,
or to rotate the labels themselves. The rationale for rotating the speech labels
themselves allows for the possibility of incorporating future enrollment data, for
example, as might be retrieved through multi-modal emotional systems, and leads
to a better accuracy over time. Simply rotating the directional mood vector would
make the system unadaptable.

Now more formally, let L = {l1, l2, ..., lE} be the set of labels. Then X ≡
(l1, l2, . . . , lE) represents the sequence of labels from L before applying the affective
offset. The labels in the list are arranged in order of their respective locations
starting from Θ = θ1. Likewise Y ≡ (l1, l2, . . . , lE) represents the sequence of
labels from L after applying affective offset, but where the list now starts from
Θ = θ2 instead. The mapping from old label l to new label is then simply carried
out by the mapping function f : L → L, l 7→ Y [IndexX(l)], where IndexX(l) is
the index of label l in X.

6 Experimental Work

6.1 Annotation of Content Items
In an initial user survey, 16 subjects rated 4 sets of 60 TV programs, with 3 subjects
being assigned to each set. The TV programs were extracted from the EPG in the
interval from 15:00 Friday 13 December 2013 to 10:00 on Saturday 14 December
2013. Each program shown to the evaluator was accompanied by a title, the
name of the channel on which it was aired, a two-level category into which the
program was placed, for example "Level1: Movie; Level2: Comedy", and finally a
short synopsis. All data presented to the evaluators was taken directly from the
EPG metadata and was not manipulated by us in any way. The task given for
each program was to read the information and thereafter rate the pervasive mood
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of each program in the VA space. The method used was the well-known Self
Assessment Manikin (SAM) [25], which is a psychological tool used to quantify
perceived emotions. It is easy to administer, does not rely on verbs and is suitable
for subjects whose native language is not English, which was the case in this
study. Subjects were shown a diagram of a 9-point SAM scale, where only valence
and arousal ratings were collected. It was possible for subjects to select a point
anywhere on the scale, thus allowing collection of continuous valence and arousal
values. Subjects were also informed that they would be rating the programs on a
continuous scale. Since 3 subjects rated each TV program, a total of three ratings
were collected for each. These ratings were averaged, as is customarily done [25],
to give a mean SAM ratings for each program. The scales that were used can be
seen in Figure C.5.

Once the rating process was complete, the first two sets were combined and
the last two sets were combined, yielding two larger sets, A and B of programs
containing 120 content items each. The sets were combined in this manner to
create a realistically-sized number of items to browse, but taking into account the
length of time required to annotate the items.

Fig. C.5: Scales used to collect the pervasive mood for each TV program. The top scale
measures valence and the bottom scale measures arousal. Scales are courtesy of PXLab [26]

6.2 Mood Determination and Audio Classification of Emo-
tions

The audio data used to represent the home user’s emotional state was taken from
the Geneva Multimodal Emotion Portrayals (GEMEP) [14], which was also chosen
as the dataset for the emotion sub-challenge part of the Interspeech 2013 Com-
putational Paralinguistics Challenge [27]. The dataset contains 1260 short voice
utterances, divided into 18 emotional classes. The data is split across 10 actors,
of which half are male and other half female. Due to the fact that 6 out of 18
of the emotions occur very sparsely in the dataset, the classification was restricted
to 12 separate emotions. These were amusement, pride, joy and interest (positive
valence, positive arousal), anger, fear, irritation and anxiety (negative valence, pos-
itive arousal), despair and sadness (negative valence, negative arousal) and finally
pleasure and relief (positive valence, negative arousal). One of the primary reasons
for selecting the GEMEP corpus was its wide spectrum of available emotions.
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For each case, we connected the mood configuration to real speech utterances
from the dataset by assigning each mood to the most appropriate emotions. The
good mood was associated with the emotions amusement, joy and interest, the
bad mood was associated with cold anger (irritation), hot anger, fear, despair,
anxiety and sadness, and the neutral mood was associated with the emotions
relief, pride and pleasure. For each test trial, a speaker was randomly identified
from the GEMEP dataset and a mood configuration was selected. The relevant
emotion features, taken from the test set, were then concatenated and used for
mood profile determination.

12-way classification of the data was carried out using front-end factor analysis
(i-vectors), using the ALIZE 3.0 framework [28]. The process was as follows: 13
MFCCs (including log energy), first and second derivatives were extracted to give
a fixed 39-feature frame for each 25 ms voice frame, with a 10 ms overlap for
each frame. A 128-component Gaussian mixture model (GMM) was trained with
the entire training set. At this point, the six unused classes were not utilized
further in the system. Using the data from the GMM, a total variability matrix
was trained. Subsequent to this, for each utterance, a 90-dimensional i-vector was
extracted from the total variability matrix. Once in the i-vector space, classification
of the utterances was then carried out using probabilistic linear discriminant analysis
(PLDA) after performing normalization on the i-vectors. PLDA is known to exhibit
good performance when used for the classification of i-vectors. The accuracy for
the acoustic sub-system for all 12 classes on the development set was 42.72 %, and
on the test set (used in the end-to-end system) was 41.20 %, which is in line with
the state-of-the-art [27] [29]. More detailed results for the individual categories
can be seen in Table C.1.

Emotion Range Mean Value
Amusement (delight) 6-12 7

Joy 5-10 7.5
Interest (activation) 20-36 28

Cold anger (irritation) 88 88
Hot anger 83-171 127

Fear 141-161 151
Anxiety (worry) 149-163 156

Despair (discouragement) 163-173 168
Sadness 144-311 227

Relief (relaxation) 249-338 293
Pride 309-3 336

Pleasure (Contentment) 347-359 353

Table C.2: Affective state locations [9]

6.3 Other System Parameters
The affective state locations used for computing the directional mood vector were
adopted from past studies [9]. The range of values and calculated mean for each
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Good (M) Good (SD) Bad (M) Bad (SD) Neutral (M) Neutral (SD) Overall (M) Overall (SD)
Avg iterations before
(full path) 19.55 15.70 34.55 43.49 21.18 20.48 25.09 29.53
Avg iterations after
(full path) 9.36 8.58 14.68 13.21 18.41 18.70 14.15 14.39
Avg iterations before
(direct path) 9.64 5.49 10.36 8.44 8.82 10.29 9.61 8.21
Avg iterations after
(direct path) 5.68 4.03 6.14 4.23 8.09 7.81 6.64 5.64
Ratio (direct path /
full path) before 0.49 0.35 0.30 0.19 0.42 0.50 0.38 0.28
Ratio (direct path /
full path) after 0.61 0.47 0.42 0.32 0.44 0.42 0.47 0.39
Affective offset
(ignoring direction ) 68.96 57.33 49.71 41.65 42.09 47.05 53.59 49.67

Table C.3: Summary of results for both evaluations (before and after applying affective
offset) and for all three mood cases. M=Mean, SD=Standard Deviation

emotion is shown in Table C.2. For the operations more pleasant and less pleasant
the weights were set to wv = 0.45 and wa = 1 and for the operations more
intensity and less intensity the weights were set to wv = 1 and wa = 0.45. The
user interface used for presenting the items to users and used for critiquing was
implemented in PHP6.

6.4 User Evaluation
26 subjects agreed to take part in a series of six evaluations, with each evaluation
carried out on a separate day. Half of the subjects were assigned the items from
group A and the other half were assigned the items from group B7. Each per-
son was given access to a web portal through which they could interact with the
critique-based recommender.

Each evaluation considered a single mood case. On the first day, each sub-
ject was told to picture themselves being in a neutral and relaxed mood, and
to strengthen their mood, they were presented with a set of 10 neutrally rated
pictures, taken from the International Affective Picture System (IAPS) [30]. The
IAPS is a database of colour photographs, each annotated with valence, arousal and
dominance ratings, and which is often used to elicit emotions in affective-related
research studies. The subject was asked to not spend more than 15 seconds viewing
each picture.

Once all pictures had been viewed, the information for a TV program was then
presented to the user. The subject was asked to rate the program, on a scale of 1
to 10, on how suitable they thought the program was for the given mood.

After the program had been rated, it could either be accepted, in which case the
recommendation session for that program was over, or the user could select a better
recommendation case (critique the current item). If they chose to critique the item,

6PHP stands for "PHP: Hypertext Processor". It is a server-side scripting language suit-
able for the implementation of interactive web deployments.

7Two of the subjects had participated in the annotation phase as well - these were pre-
sented with items from the alternative group, to exclude any possibility of prior knowledge.

91



Paper C.

they were then presented with a list of choices for selecting a more pleasant, less
pleasant, more intense or less intense item. For each option the number of items
available for that selection were also displayed, giving the evaluator an updated
indication of the potential items in each direction. In the case where no items
were available, the option to navigate in that direction was not presented to the
user. Furthermore, users were not prevented from navigating back over the same
items they had seen before. Each new item that was presented constituted a new
critiquing iteration. The number of iterations it took the user to finally select an
item (by marking "accept") was counted and stored. Finally, for the final item, the
user was asked once again to rate the item on a scale of 1-10, on how suitable they
thought the item was.

After the subject had completed the first part of the evaluation (the neutral
mood case), they were allowed to move onto the next part. Days 2 and 3 were
identical to Day 1, except that different mood settings were used. For Day 2, the
subject was told to instead imagine being in a good mood, where correspondingly
good mood pictures were shown. In a similar fashion, Day 3 followed where the
subject was now told to imagine being in a bad mood, with correspondingly bad
mood pictures being shown8. Furthermore subjects were not allowed to complete
two parts on the same day. If a subject skipped a day, a follow-up mail was sent to
them. After two follow-up mails had been sent, with no response, the subject was
considered to have abandoned the survey. Four of the subjects ended up dropping
out of the survey, and hence we only present data for 22 out of the initial 26.

For days 4, 5 and 6, subjects were asked to repeat the evaluation for the neutral,
good and bad mood cases, respectively. However, on these days, the users were
not informed that their affective offset from the previous round (matching that
particular mood), had been recorded and used to offset the system. Users were
shown a new set of frame slides for the second round of each mood case, since
seeing the same slides again would have a reduced effect.

7 Results and Discussion

7.1 Effect on the Number of Iterations
In Table C.3, we show a summary of results for both evaluations (before and after
applying affective offset) and for all three mood cases. When browsing in the VA
space to find more suitable items, users can revisit older items as many times as

8The following IAPS pictures were used in the evaluations: Days 1, 2 and 3, Neutral
Mood: 1121, 1616, 2102, 2221, 2377, 2575, 2579, 2745.1, 7497, 7503; Good Mood: 2216,
2598, 4614, 5210, 5814, 7405, 7508, 8034, 8503, 8531; Bad Mood: 2205, 2456, 2745.2, 2751,
6313, 9185, 9252, 9635.1, 9904, 9940 - Days 4, 5 and 6, Neutral Mood: 2026, 2036, 2377,
2382, 2383, 2410, 2594, 2840, 7003, 7640; Good Mood: 1722, 1811, 2158, 7492, 8090, 8163,
8300, 8350, 8420, 8510; Bad Mood: 2399, 2682, 2683, 2703, 2800, 2900, 6021, 9420, 6570.1,
9908.
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Good (M) Good (SD) Bad (M) Bad (SD) Neutral (M) Neutral (SD) Overall (M) Overall (SD)
Avg rating, Initial
item, 1st evaluation 4.95 2.30 4.73 2.39 5.55 2.65 5.07 2.44
Avg rating, Final
item, 1st evaluation 7.91 1.51 7.32 1.81 8.18 1.84 7.80 1.74
Avg rating, Initial
item, 2nd evaluation 5.23 3.18 5.64 2.63 6.91 2.51 5.92 2.84
Avg rating, Final
item, 2nd evaluation 8.91 0.92 8.32 1.17 8.73 1.12 8.65 1.09

Table C.4: Summary of ratings for both evaluations and for all three mood cases. M=Mean,
SD=Standard Deviation.

they wish (in case they change their mind). Occasionally, this leads to the path
from initial item to final item containing one or several loops, e.g. if while browsing,
a user visits items {A,B,C,D,E,C}, the loop {C,D,E,C} can be replaced with
{C} giving the shorter path {A,B,C}. For the sake of brevity, we refer to paths
including loops as full paths and paths with the loops removed as direct paths. We
are interested in these direct paths since going around in a loop essentially means
the user ended up at the same spot they were at previously, and hence the same
region. Direct paths are therefore a better summary of a user’s ultimate migration.
We therefore show results for both types of path, where the first two rows in Table
C.3 show the number of iterations for full paths, and the next two rows show results
for the number of iterations for direct paths. The following two rows then show
the ratio between direct path and full path - the closer to 1 the ratio is, the fewer
the number of loops, and the more direct the full path is. The final row shows the
average affective offset for each case (ignoring the direction of the offset).

Looking at the number of iterations on average that were taken to find a
suitable item, in all cases, as shown in Table C.3, we can see that a lower number
of iterations was needed in the case where the user’s affective offset was applied. An
overall improvement was obtained of 43.60 % and for the good mood, bad mood
and neutral mood cases, improvements were obtained of 52.12 %, 57.51 % and
13.08 % respectively. The average number of iterations when applying affective
offset was significantly lower than when it was not applied9 (z = −3.39, p <

0.01, r = −0.51). The reduction in iterations was also significant for the both
the good mood case (z = −2.90, p < 0.01, r = −0.44), and the bad mood case
(z = −2.40, p < 0.05, r = −0.36). However, for the neutral mood case, it was not
significant (z = −0.80, p = 0.42, r = −0.12).

We believe the initial rather large standard deviation is due to the fact that
browsing is rather personal. Some people generally tend to browse more than
others. If browsing is indeed personal, then a Pearson correlation between the
before and after iterations for each mood and all users should reveal a medium

9Treating the null hypothesis that the difference between the number of iterations before
and after comes from a distribution of zero median, we use the sign rank test to test for
significance. The effect size is computed as r = Z√

N
(Z is the Z-score and N is the observation

count (22 users gives 44 observations) ). The interpretation of r goes according to Cohen’s
benchmark (where a potential minus sign is ignored): r > 0.1 is a small effect-size, r > 0.3
is a medium effect size and r > 0.5 is a large effect size.
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to large effect size. Conducting such a correlation gives values of r = 0.28 for
the overall case, r = 0.44 for the good mood case, r = 0.38 for the bad mood
case and r = 0.18 for the neutral mood case. The fairly strong relationship for
the good and bad mood cases indicates that users are definitely more consistent
in their behavior in these mood cases than in the neutral case (and more so in the
good mood case).

For the direct paths, we find an overall improvement of 30.91 %, and im-
provements of 41.08 %, 40.73 % and 8.28 %, for the good, bad and neutral
mood cases, respectively. Once again, the overall reduction was significant (z =
−2.61, p < 0.01, r = −0.39). It was also significant for the good mood case
(z = −2.43, p < 0.05, r = −0.37), the bad case (z = −2.13, p < 0.5, r = −0.32),
but not significant for the neutral mood case (z = −0.09, p = 0.93, r = −0.01).
These results indicate that even in the absence of loops, there is still a significant
reduction in the path length. The higher direct path / full path ratios, for all
mood cases, after applying affective offset, indicates fewer loops and more direct
browsing paths.

Looking at the affective offset that arose in each case, we see the exact same
trend as was seen for both full paths, direct paths, and user consistency, in terms of
their statistical power. The largest affective offset was 69.96 degrees for the good
mood case, followed by 49.71 degrees for the bad mood case, and finally 42.09
degrees for the neutral mood case.

These results are interesting when seen in light of the free-style user feedback
comments that some of the participants provided. Four people wrote that they
found it difficult to place themselves in a neutral mood setting and that the good
mood setting was far easier to relate to. This might explain why in the neutral
mood case there was no significant reduction in iterations - the confusing neutral
mood setting resulted in participants being less consistent than in the other mood
cases. The bad mood case was also considered easier to relate to, but people
had more to say in general on what they thought was appropriate content for this
mood. Three participants said they would only consider content that would repair
their bad mood state, two wrote that comedies would be ideal, one person wrote
that more intense content would be a good choice, and another two reported that
if they were in a bad mood, they would not watch TV at all. It seems that the bad
mood case is possibly less natural than the good mood cause and causes people to
think more about what they want to watch. In the good mood case, people seem
to be more open as what they want to see, and suggesting a good region allows
them to more quickly find an item. In the bad mood case however, people are
fussier about what they want to see - even when the region is right, more browsing
is needed to find a good item.
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7.2 Effect on User Ratings
In both evaluations, and for all mood cases, users were asked to rate both the
initially recommended item as well as the finally selected item on a scale of 1 to
10, on how good a match they though the items were. A summary of the results
for these ratings is shown in Table C.4. The first two rows cover the first evaluation
before affective offset and the second two rows cover the second evaluation after
affective offset.

Firstly, as expected, the final items for each evaluation were rated higher than
the initial items, and in all cases these were significant: For the first evaluation,
the overall increase went from 5.07 to 7.80 (z = −5.86, p < 0.1, r = −0.88), for
the good mood case 4.95 to 7.91 (z = −3.48, p < 0.01, r = −0.52), for the bad
mood case from 4.73 to 7.32 (z = −3.24, p < 0.01, r = −0.49) and for the neutral
mood case 5.55 to 8.18 (z = −3.48, p < 0.01, r = −0.53. Likewise for the second
evaluation, the overall increase went from 5.92 to 8.65 (z = −5.82, p < 0.01, r =
−0.88), for the good mood case, from 5.23 to to 8.91 (z = −3.44, p < 0.01, r =
−0.52), for the bad mood case from 5.64 to 8.32 (z = −3.46, p < 0.1, r = −0.52)
and for the neutral mood case 6.91 to 8.73 (z = −3.30, p < 0.01, r = −0.50).
This indicates that browsing was effective enough to find more suitable items.

We also looked at the ratings for only the initial item for both evaluation rounds,
and found that in all mood cases, that the initial item in the second evaluation
round received a higher rating that in the first evaluation round. However, in none
of the mood cases was this actually significant.

More interesting though are the final ratings for both evaluation rounds. Here
we found that the final ratings, after browsing had taken place, increased overall
from 7.80 to 8.65 (z = −3.54, p < 0.01, r = −0.53), for the good mood case from
7.91 to 8.91 (z = −2.34, p < 0.5, r = −0.35), for the bad mood case from 7.32 to
8.82 (z = −2.41, p < 0.5, r = −0.36), and for the neutral mood case from 8.18 to
8.73 (z = −1.40, p = 0.14, r = −0.21), which were not significant. The good and
bad ratings being strongly significant, and the neutral ratings not being significant
suggests a link between ratings and reduction of iterations - in the neutral case
users took longer to find an item they really liked (or they simply gave up), which
in turn explains the low iteration reduction. The lower standard deviation for all
mood cases, as noted by comparing the final ratings for both evaluations, suggests
more user consensus in the higher ratings for the second evaluation than in the first.
The combination of affective offset and browsing might have a stabilizing effect on
users’ rating behavior. We emphasize furthermore that users were not shown their
previous ratings at all, and since the evaluations were carried out on separate days,
would have been unlikely to recall their previous ratings. Nevertheless, in all cases
we note that the final average ratings for the second evaluation were higher than
any of the other three ratings, indicating the point of ultimate satisfaction.

The less significant initial ratings imply that applying affective offset does not
necessarily help to improve the initially recommended item, but given the added
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browsing functionality, allows a good final item to be located. This is an interesting
finding because it indicates that single-shot recommendation of items based on
users’ audio features is not quite adequate. For example, a user in a good mood
might be recommended an emotionally appropriate item, such as a sports game.
However, if they are not interested in sports, regardless of the accuracy of the
match, the item is likely to receive a low rating. It therefore makes sense to rather
recommend a region from which the search is to be commenced, and then to harness
the particular user’s feedback to provide a better (more personal) recommendation
the next time round.

7.3 Effect of Audio Classification
To show qualitatively how our system is affected by the inaccuracies of the audio
classification component, we briefly turn our attention to six examples that show
how the directional mood vector MoodVA (Equation C.6), changes with label
rotations, all of which can be seen in Table C.5. To recap, a change in the
configuration of emotion labels leads to a different placement of the directional
mood vector, and hence determines the initially recommended item. A value of 0
indicates no rotations and corresponds to the label sequence ’amu-joi-int-irr-col-
peu-inq-des-tri-sou-fie-pla’. This corresponds to observing a very low affective offset
or when the finally selected item remained in the same emotion region. A value of
1 indicates one displacement and the sequence ’pla-amu-joi-int-irr-col-peu-inq-des-
tri-sou-fie’, a value of 2 the sequence ’fie-pla-amu-joi-int-irr-col-peu-inq-des-tri-sou’
and so on. If the offset is in the other direction, the label shifting is reversed. From
the figures three things are apparent:

1. Shifting of labels does not necessarily lead to an even displacement of the
directional the mood vectors around the circle. This is particularly evident
for the bad mood case for the female speaker.

2. Occasionally the ordering of labels is not preserved. This can be seen in the
bad mood case for the female speaker and in the neutral mood case for the
male speaker.

3. In some cases certain areas of the emotion space appear to be underrepre-
sented. This can be seen in the bad mood case for the female speaker, where
a large potential area for content items might be excluded.

The primary cause for these effects is due to the limited performance of the
audio classifier. Since each test trial contains multiple speaker utterances, the
limited accuracy of the emotion classifier causes utterances to fall into different
emotion categories, which then contribute to unwanted shifting of the directional
mood vector. Furthermore the emotion coordinates given in Table C.2 are not
evenly spaced apart, which further contributes to the above-mentioned effects.
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7. Results and Discussion

Male Speaker Female Speaker

Good Mood

Bad Mood

Neutral Mood

Table C.5: Examples of the directional mood vector for 12 different label displacements for
the three mood cases.

7.4 Limitations of the Model and Our Study
Finally, we observed five issues with the proposed model and experiments that we
think are worthy of discussion:

1. The model does not handle items situated close to the VA origin very well.
Take for example the case where the currently selected item is located in
the positive valence, positive arousal quadrant, and where just a few browse
operations leads the user to the negative valence, negative arousal quadrant.
Although the distance between these items may be quite short, the resulting
affective offset might be quite large. Another problem with this model is
that rotation of labels will only occur when a user has moved far enough to
wander into a new emotion region. For the proposed emotion offsets given
in Table C.2, some areas are larger than others, meaning that more browsing
will be needed to trigger a rotation.

2. As also seen in both Table C.1 and Table C.5, the effectiveness of the model
is affected by the accuracy with which individual emotions can be recognized.

3. The three mood profiles for each user are assumed to be fixed. However, it
is possible that some users’ mood profiles might vary over time.

4. One of the problems faced with the user evaluation itself is that three of the
subjects wrote that they found it difficult to browse programs in the neutral
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mood setting, and that it was far easier to imagine a good or bad mood
case. As evidenced by the results, this difficulty in relating to the neutral
mood setting almost certainly led to the rather poor results across the board
for the neutral mood setting. It appears that users perform better in a more
activated mood state.

5. Two people complained that they did not necessarily always agree with the
valence and intensity of programs that the initial subjects had rated, indicat-
ing just how personal each user’s taste is, and also raises the question of the
effectiveness of using third party annotations.

8 Conclusion
In this paper we developed a framework for recommending TV content based on
moods derived from user’s emotions. By allowing the user to take part in the
recommendation process, we were able to compute each user’s affective offset, to
be used for future recommendation sessions. We used each user’s affective offset
to locate an initial region for recommendation, from which a recommendation was
determined. The use of affective offset led to better user satisfaction overall, where
ratings went from 7.80 up to 8.65. Furthermore, there was a marked decrease in
the number of cycles that was needed to find a good item, compared to the case
when no affective offset was applied, which went from 29.53 down to 14.39. Future
work could include better modeling of items situated close to the VA origin, more
predictive modeling of the directional mood vector and a framework that takes in
account mood profiles that vary over time.
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1. Introduction

Abstract
In this paper we introduce a novel framework for combining the strengths of
machine-based and human-based emotion classification. The human ability to
tell similar emotions apart is known as emotional granularity, which can be high
or low, and can be measured. A problem with machine emotion classification,
especially in the context of linking audio emotions to content items for affec-
tive search and recommendation, is that emotions may be incorrectly predicted
as dissimilar emotions. For high granularity people, we propose granularity-
adapted classification. Instead of identifying a single emotion class, it predicts
an adapted class, allowing a larger selection of more similar items to be in-
cluded. To measure the effectiveness of granularity-adaptation, we measured
the emotional granularity of subjects, and for each subject, applied speech data
for 12 separate emotions to two audio classifiers - one a 12-class classifier
(baseline) and the other the proposed personalized granularity-adapted classi-
fier. Using pairwise similarity judgments of emotion from each person, we
could compare the most similar match for the two systems. Results show that
granularity-adapted classification can improve the potential similarity by up to
28.57 %.

1 Introduction
As the quantity of available media content has exploded in recent years, a large
research effort has resulted in a number of successful search and recommendation
strategies that are available today and that not only locate known items, but sug-
gest new, interesting and likable items to users. In the beginning, the focus was
largely on using cognitive, data-centric approaches, such as search queries, other
users’ ratings to suggest movies, or meta-data based on a user’s history to suggest
interesting items [1]. There has also been a lot of interest in enabling machines to
respond with more emotional intelligence [2]. One area that is especially interesting
is that of video content retrieval. Video, being the rich content type that it is, en-
gages the user both cognitively and emotionally, and the power of cinematographic
techniques to induce emotions in viewers has long been known and exploited by
directors [3]. Since emotions play such a central role in our lives, the progression
to a framework for accessing video content based on emotions is no surprise, and
in the field of affective computing, there have been large strides that are making
emotion-related search and recommendation a reality [4].

Leveraging the power of emotions and using them in a sensible way is a chal-
lenging task and requires the seamless interplay of several key technologies. Firstly,
the pervasive, or dominant emotion of the content needs to be determined. This
process is usually carried out automatically using features derived from video (light-
ing, shots and color) or audio (energy) [5]. Secondly, the felt emotions of the user
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need to be ascertained, for example using physiological measures [6] or through
speech [2]. Last, but not least is the important research question of how to link
users’ emotions to interesting items, and how best to visualize these items in the
emotional space. The IFelt system is a notable recent example of a system that
allows for classification, search and retrieval of movies based on emotions, and that
uses novel visualization techniques to impart emotional similarity to users [7]. Being
able to accentuate to users the similarity of items from an emotional perspective,
such as through a well-thought out visualization interface, can assist users to find
the right items. It is precisely the interplay of these latter mentioned issues we are
interested in, i.e., not only the felt emotion of the user, but how they might relate
to the content to be ultimately presented. All this shall become apparent shortly.

While less accurate than other known methods, speech is probably the most
practical and non-intrusive method for implicitly determining felt emotions of peo-
ple. State-of-the art methods for detecting emotions from speech include tradi-
tional mechanisms such as Support Vector Machines [8], as well as modeling using
i-vectors [9]. The accuracy at which individual emotions can be detected depends
on several things, but is primarily determined by the system employed, the num-
ber of emotions to detect as well as whether the emotions themselves are acted
out [10] [11] or spontaneous [12].

Not only does machine emotion recognition vary in accuracy, but research from
the psychology domain shows that humans do not possess equal discriminating
abilities when it comes to discerning emotions. The degree to which individual
emotions can be distinguished is termed emotional granularity [13]. A person
with a high emotional granularity can more easily tell emotion states apart from
one another. For example, such a person would more easily discern between the
emotions irritation and anxiety, which are situated fairly closely to one another
in the two-dimensional valence-arousal space. A person with a low emotional
granularity on the other hand tends to describe emotions in more global terms, and
might tend to lump these two emotions together, as "somewhere in the negative
region". High granularity users are also more consistent in their self-reports of
experienced emotion over time [13].

A problem with detecting emotion classes from speech, is that certain emotions
might be detected as other non-related emotions. For example, in some cases, the
emotion anger might be mistakenly detected as the unrelated emotion happiness, as
evidenced by the results of typical papers using audio emotion recognition [14] [15].
This is especially the case when a large number of emotion classes have to be
detected. For example, results for the given dataset using two emotion classes
instead of twelve, yields, as expected, a significantly higher unweighted average
recall [11]. Similarity from an audio feature perspective does not necessarily imply
similarity in the emotion domain. As far as recommendation is concerned, this could
be a problem if content items to be recommended to a user fall within a region in the
valence-arousal space that has been mapped to the incorrectly-predicted emotion.
Even if the region is correctly selected, a further problem is that the region’s limited
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size limits the number of potential items that can be recommended. Due to the
fuzzy nature of both emotion classes and content items rated from an emotion
perspective, having a larger region would increase the likelihood of including more
similar, and likable items to the user.

One possible workaround to these problems is to lower the number of emotion
classes to be detected. This can be done by defining a smaller number of adapted
classes, where an adapted class is no longer limited to a single emotion category, but
may contain multiple, similar emotion categories. Having a lower number of such
adapted classes allows more training data per adapted class, is an easier task for
an audio classifier to handle and reduces the risk of incorrect predictions. Once an
appropriate adapted class has been identified, it can be mapped to a larger region,
from which more interesting content items can be drawn. For high granularity
people, we postulate that this would be beneficial to them, since as they can more
easily distinguish the subtle emotions in the region from one another, selection
of the final item (the most liked item given their current emotion) can be left
up to them. It is in this way that we propose to combine human and machine
emotion recognition - the users that are more adept at distinguishing emotions can
be assigned larger selections of items.

The main contribution of this paper is a novel method that utilizes the id-
iosyncratic emotional granularity of tested subjects to ultimately allow for a bet-
ter match between emotions extracted from speech and emotion-labeled items,
such as movies. Since high granularity users are assumed to have less difficultly
in telling similar emotion states apart anyway, it is possible these users do not
need high-resolution emotion classification. We propose therefore to utilize the
knowledge of granularity to alter an emotion classifier in an attempt to bring to-
gether limits in machine detection with strengths in human detection. We call
this granularity-adapted emotion classification, and propose it as an audio front-
end to more advanced search or recommender systems. The main hypothesis is
that granularity-based emotion classification can be used to predict adapted classes
that include more similar emotions, when compared to a test utterance, than sin-
gle classes. An additional contribution of this paper is a state-of-the art emotion
classifier that is built from the fusion of an i-vector system and an SVM system.

The remainder of this paper is structured as follows: Section 2 discusses emo-
tion theory, particularly that of emotion granularity in people. Section 3 then
presents an overview of automatic detection of emotions in speech. The following
section introduces the framework for determining the suggested granularity-adapted
classes, and is the main contribution of this paper. Section 5 discusses experimen-
tal work and here we also present a state-of-the-art fusion system incorporating
two sub-systems. The following section presents our results and findings, and the
final section concludes the paper.
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2 Emotional Granularity
Probably the most well-known way for modeling emotions is to represent discrete
emotional states as regions in the two-dimension space spanned by valence and
arousal, which we will henceforth refer to as the VA space. Valence refers to the
hedonic quality or pleasantness of the emotion experienced, whereas arousal refers
to the perception of arousal (also called activation or intensity) of the emotion.
Russel’s Circumplex Model of Affect [16] [17], extensively studied in psychology
research, depicts emotional states as occupying the periphery of a circular structure.

The amount of emphasis a user places on either valence or arousal can be
portrayed in geometric space [13]. In the ideal, prototypical case, a user will
weight the valence and arousal dimensions equally, and the circumplex will form a
circular structure. This would be the case for a high granularity person. However,
as is more commonly the case, a user will place more weight on either the valence
or arousal dimension (typically valence more than arousal), resulting in a more
squashed or elliptical circumplex structure. Valence focus refers to the extent to
which a user is able to tell emotions apart on the valence scale. Arousal focus
instead refers to the extent to which a user weights the arousal dimension.

In this work, we define valence focus as φvf and arousal focus as φaf , both of
which can be computed for any individual. In Section 5 we give an overview of
how φvf and φaf can be computed.

There have been other approaches in the literature to express emotion granu-
larity. In terms of the taxonomy of emotions, granularity can be expressed in terms
of the hierarchy of emotions, and can be expressed at different levels [2]. At the
highest level the categorization may simply be positive and negative. For example,
negative and non-negative emotions have been detected before from speech data
obtained from a call center application [18]. At the next level follows individual
emotion categories, such as pleasure, anger, and fear. At the lowest level are
sub-categories, such as hot anger and cold anger.

One particular study discusses granularity, but in the context of annotation,
where multiple emotion granularities can be represented [19]. The authors present
a framework for hierarchical annotation called Multi-level Emotion and Context
Annotation Scheme (MECAS), where two emotion labels per segment of speech
can be specified: a major, dominant emotion and a minor, background emotion.

Yet another work on granularity looks at improving recognition of prosodic
events by augmenting audio features with Parts of Speech (POS) feature flags [20].
15 POS features for each current, previous and following word and define the
smallest context size. To reduce computation complexity in training the Multi-layer
Peceptron (MLP), a different granularity is employed where the 15 POS classes are
reduced to 6 cover classes.
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3 Automatic Emotion Recognition from Speech
Emotion classification in speech is a challenging task and has received a lot of
attention in the past ten years. While there is recent interest in continual modeling
of emotions [21], speech utterances are generally assigned to fixed labels, such as
Ekman’s "big six" emotions (anger, disgust, fear, happiness, sadness and surprise)
[22], and emotion speech datasets (corpora) typically contain either acted speech
[23] [10] or spontaneous speech [12] assigned to fixed emotion labels. The two
major feature types are acoustic and linguistic features. Linguistic features are of
more value when the speech is spontaneous and not based on any pre-defined script,
and acoustic features are more applicable for acted databases [2]. When acoustic
features are used, automatic emotion classifiers have been observed to perform
better with respect to classifying arousal than valence [11]. Although the majority
of earlier papers focused on emotion recognition derived from acoustic information,
combining this acoustic information with other sources of information, primarily at
the language level, has shown improvement in performance [18].

After any necessary speech-signal pre-processing, low-level feature descriptors
are extracted, from which an appropriate model can be constructed. Many pa-
rameters are used to detect emotion, including mel-frequency cepstral coefficients
(MFCCs), which have been the most investigated features for emotion recognition.
In addition to spectral features such as MFCCs and formats, prosodic features such
as pitch, intensity, duration and to a less extent, voice quality features, are also
used [2]. Furthermore, to take advantage of some of the longer term phenom-
ena of emotions that can occur over many frames, the modeling can be enhanced
by mapping of variable length features to fixed length vectors, using functionals
(so-called static feature modeling).

Emotions are modeled using a wide variety of techniques including genera-
tive models such as Gaussian mixture models (GMMs), as well as discriminative
models such as support vector machines [8], which provide good generalization
performance, and back propagation artificial neural networks (ANNs). A recent
method for modeling emotions include anchor models based on Euclidean and co-
sine distance metrics, which are used as a feature extractor to enhance emotion
recognition [24]. Here, test utterances are compared to emotion classes in the
anchor space. Another method models emotions using front-end factor analy-
sis (i-vectors) [9], [25], which are currently considered state-of-the-art in speaker
recognition.

4 A framework for Determining Granularity-
adapted Classes
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4.1 Localization of Emotions in VA Space
In this work, we shall represent emotions as coordinates in the two dimensional
valence and arousal Euclidean space. As seen in the previous section, Euclidean
metrics to measure the similarity of emotions has been applied before, albeit in
another context [24]. Let E be the maximum number of emotion classes available.
Based on a given person’s similarity ratings for all pairs of the E emotion terms, it is
possible by using non-metric multidimensional scaling (MDS) to render these terms
as coordinates in an N-dimensional geometric (Euclidean) space. When mapped to
a two-dimensional space, the Euclidean distance between any two emotion terms is
inversely proportional to the similarity rating for that same pair. This means that
for two emotions that are very similar to one another, they will be situated close
to each other. Furthermore, a visual inspection of the new coordinates in this 2-
dimensional space meaningfully reveals the underlying dimensions as being valence
and arousal. It is also possible to compute emotion coordinates for an entire group
of users using individual differences multidimensional scaling. We define the list of
E emotion coordinates for such a group by the sequence M = {µ1, µ2, ..., µE}.

4.2 Determining each User’s Valence and Arousal Focus
For each user we can determine a valence focus φvf and arousal focus φaf . For
a given similarity rating of two emotions, we wish to determine how much these
ratings account for the correlation between ratings of the experience of these same
two emotions [13]. Each focus value can be computed by correlating a distance
matrix, obtained for a group of user’s pairwise similarity ratings, to correlations
obtained from individual self-report ratings of experienced emotion. For example,
if two emotion terms are similar in valence, but different in arousal, and this fact
is not seen in correlations obtained from self-report ratings for these two terms,
this will result in a low valence focus. A more detailed account of how these were
computed in this work is given in Section 5.

4.3 Granularity-based Class Adaptation
When performing audio classification, for a given user u and a sequence of speech
utterances, the user’s emotion profile can be expressed as:

eu =


p1
p2
...
pE

 (D.1)

where pj , 0 ≤ pj ≤ 1, represents the actual predicted probability for emotion class

j, 1 ≤ j ≤ E, and
E∑
j=1

pj = 1.
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The emotion class e ∈ E that is assigned is usually that class with the highest
likelihood. The more classes that need to be classified the lower we expect the
accuracy to be. Let us assume that each class corresponds to a single emotion
category (this is usually the case in emotion classification). For low granularity
subjects, who are presumed to have difficulty in telling similar emotion states apart,
the best we can do is to predict the correct emotion from the audio utterance, and
assign one or more content items from a potentially small region in the valence
arousal space that is indicative of that emotion. For example, if the emotion has
been detected to be pleasure, then the region that more or less corresponds to that
particular class would be selected, and all content items found to match this region
could then be included in the list of items to be recommended.

High granularity subjects, however, can more subtly tell emotions apart and we
propose to use this fact to our advantage. Here the proposal is that instead of
trying to classify a large number of discrete emotion classes, each tied to a single
emotion, we focus on a smaller number of adapted classes, where the assumption
is that each adapted class is allowed to contain multiple (similar) emotions instead
of just one emotion. Having a lower number of such adapted classes to select from
ought to increase the accuracy with which each can be detected. By once again
mapping each adapted class to a region in the valence arousal space, the adapted
classes containing more emotions will ultimately lead to larger regions, meaning
that a larger number of content items (more than for the discrete emotion case)
can be recommended.

By presenting high granularity users with this larger list of content items, that
all fall within the selected emotion region, allows for the selection of more suitable
items. In this work, we are not overly concerned with exactly what the definition
of suitable should be; instead here we focus on improving the audio classifier
that would allow for the extraction of a larger number of more similar items for
the subject’s perusal. Whether the items that are presented exactly match the
emotion detected or are tailored to what individual subjects prefer for a given
emotion (e.g. showing good mood items for people in a bad mood), should be
treated as contextual information, and be left up to the recommender’s content
filtering algorithm to decide [4]. From a presentation and visualization standpoint,
items belonging to the same adapted class could be presented in a two-dimensional
plane, possibly using different colors to mark individual adapted classes, as has
been attempted before [7]. This manner of displaying items, as opposed to using
a simpler structure such as a list, would also allow users to more easily discover
unknown items, since items that are emotionally similar to one another would lie
in close proximity to one another.

Using the distance between the set of E emotions, we can capture the particular
arrangement in a dendrogram. A dendrogram is a well-known structure used to
depict the arrangement of clusters and eloquently captures the hierarchy of the
clustering. In this work we shall simply equate a cluster to a set of utterances
having the same emotion label (class). In Figures D.1 and D.2 below, we show a
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set of 12 emotion classes and the corresponding dendrogram, based on the MDS
Euclidean distance between them.
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Fig. D.1: An example of individual stimulus coordinates extracted from an MDS analysis.
The arrangement of the emotions meaningfully reveals the dimension along the X-axis to be
valence and that along the Y-axis to be arousal.
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Fig. D.2: A MATLAB-generated dendrogram constructed from the emotion coordinates.
Heights of linkages normalized to 1.

In a dendrogram, nodes are connected together as linkages, and each link
results in two clusters being joined together. The height of each node (emotion
class) is proportional to the distance, or dissimilarity between its children, and
this is what gives the dendrogram its hierarchical levels. For low heights, there
are a large number of clusters that have not yet been merged and as the height
increases, more and more clusters are merged, starting with more similar clusters
being merged first. Therefore each height value is a cut-off point that corresponds
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to a unique clustering arrangement. Our proposal is to use individuals’ granularity
as a key to indexing the height in a dendrogram, and in so doing, obtaining a
clustering arrangement that is proportional to granularity: The larger the overall
granularity of the user, the more emotion classes per cluster and the fewer the
number of clusters overall. In other words, applying the granularity (valence and
arousal focus) information can be seen as a pruning operation of a tree structure
- all objects below each cut constitute a single cluster. Shortly, we shall use this
information to derive the number and contents of the granularity adapted emotion
classes.

Since each individual’s granularity is characterized by both valence focus and
arousal focus, we construct a separate dendrogram for each, where instead of
using Euclidean distance as the dissimilarity metric, we use the respective valence
and arousal one-dimensional distance values. This results in a valence dendrogram,
derived from the valence-based clustering arrangement, and an arousal dendrogram,
derived from the arousal-based clustering arrangement.

Given a set of one-dimensional stimulus coordinates (valence or arousal only),
Algorithm D.1 is used to return the dendrogram D that links the height values to
a given clustering arrangement:

Algorithm D.1: ConstructLinkages
input : stimCoords

output: Dendrogram structure D
// Get pairwise distances between pairs of the stimulus

coordinates
P = pdist(stimCoords)
// Compute linkage heights
D = linkage(P )

We normalize the height values, corresponding to the points at where clusters
are linked to one another, to a value between 0 and 1:

linkagesNorm = linkages

max(linkages) (D.2)

Likewise, focusing just on valence for the time being, for each user’s valence
focus, we normalize it to a value between 0 and 1:

φvfNorm
= φvf −min(φvf)

max(φvf)
(D.3)

The index into the height of the dendrogram can then be computed using
Algorithm D.2. Using this height as the cut-off value, we obtain a valence-based
clustering, which gives a suggestion for the formation of the adapted classes, but
with reference to valence only.
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Algorithm D.2: ComputeAdaptedClass
input :
output: Adapted Class C
D = dendrogram of linkages, from Algorithm D.1
vfNorm = normalized valence focus, from (D.3)
LNorm = list of normalized linkage distances, from (D.2)
for i = 1 to LNorm do

if vfNorm >= i then
vfHeight = i break

end
end
// Get all objects below cut off height
C = cluster(D, vfHeight)

We now proceed to derive the adapted classes. Let Nv represent the number of
unique valence clusters, as read off from the valence dendrogram, let the sequence
CV = (cv1, cv2, ..., cvNv

), represent the sorted (at the cluster level) list of these
valence clusters (their ids), and let V = (V1, V2, ..., VNv

) be the same list, but with
elements in each cluster replaced by their valence values (as defined in VA space).
By sorting, we imply that for any two elements cvk,x and cvk+1,y between two
adjacent clusters k and k+1, that max(Vk) < min(Vk+1). This gives an ordering at
the cluster level, while disregarding the order of elements within a particular cluster,
and can be seen as a bucket sort, without sorting within the buckets themselves.
Note that each cluster cvk will contain one or more elements (emotion classes),
and that an element cannot reappear throughout the sequence CV . Furthermore,
there is no constraint imposed that clusters have to hold the same number of
elements (although all individual emotion classes must be accounted for across all
clusters).

This process is repeated using the arousal focus of each individual and arousal
dendrogram, to determine Na, the number of unique arousal clusters, CA and A,
the sorted list of arousal cluster ids and their arousal values, respectively.

Armed with these valence and arousal clusters, of which some will contain
multiple elements, we partition the valence axis into Nv bands. (Apart from the
lower bound for the first band and the upper bound from the last band, which are
-1 and 1 respectively, the imaginary boundary for two adjacent bands, k and k+ 1
could be defined as min(Vk+1)−max(Vk)

2 ). Likewise we divide the arousal axis into
Na bands. For elements that are common to the area where two bands cross, we
combine them to form the granularity adapted classes. The theoretical maximum
number of possible granularity adapted classes is given by T = Nv ∗Na. However,
the actual number of adapted classes will in fact usually be much lower, since
many of the regions where the valence and arousal bands cross will not contain
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any elements, and will thus be empty. For each region, where two bands cross,
the corresponding adapted class is denoted by Ψi,j , which contains elements from
valence band i and arousal band j and is computed by:

Ψi,j = CV i ∩ CAj ,∀i, i ∈ {1, 2, ..., Nv},
∀j, j ∈ {1, 2, ..., Na}

(D.4)

4.4 Assigning of Enrollment Labels
Each adapted class Ψi,j corresponds to a separate region in VA space. Within this
adapted class, there is a one-to-one mapping between each element (indivisible
class) and its audio classification label. The mapping in this set from each element
p, ∀p, to its physical label ek is carried out by the mapping function f : M → E,
µk 7→ E[Index(p)], where Index(p) returns the index k of the element µk from
M that matches p.

4.5 Linking Adapted Classes to Regions in VA Space
The location of content items in the valence arousal space, such as movie items,
is customarily obtained by means of manual annotation by multiple evaluators [26]
[27], often using a non-verbal rating method such as the Self Assessment Manikin
(SAM) [28]. This process can also be carried out automatically, as outlined in the
beginning of this paper [5].

Once a granularity adapted class containing one or more adjacent emotion
categories has been identified, it needs to somehow be related to the continuously
labeled content items. One possible way to achieve this is by fuzzy-clustering of the
two-dimensional content items into discrete clusters, and then using a membership
function to relate each content item to one or more physical emotion categories.
Such a scheme has been proposed before in the context of automatic video indexing
[29]. Another method is to compute a score based on the cosine similarity between
a vector representing the mean location of the adapted class and content items [30].
The resulting emotion categories are then just the adapted classes (sets of labels).
Furthermore, soft counts could be used to determine the most applicable set of
content items for a given adapted class (for example, all items whose proportional
membership to a set of classes falls within a certain window). If on the other hand,
movies have been tagged directly using discrete emotion categories, the process of
linking adapted classes to sets of content items is more straightforward. Finally,
the user who is presented with content items from a region matching the proposed
adapted class can then make the final selection.

5 Experimental Work
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Amusement Joy Pride Desperation Hot Anger Fear Anxiety Cold Anger Sadness Interest Pleasure Relief
Amusement 50.00 6.67 3.33 10.00 3.33 0.00 0.00 6.67 6.67 10.00 3.33 0.00

Joy 10.00 30.00 0.00 6.67 0.00 3.33 0.00 6.67 0.00 23.33 3.33 16.67
Pride 0.00 3.33 30.00 16.67 0.00 6.67 6.67 10.00 0.00 6.67 10.00 10.00

Desperation 6.67 3.33 0.00 56.67 3.33 0.00 0.00 0.00 13.33 6.67 10.00 0.00
Hot Anger 6.67 3.33 3.33 0.00 36.67 6.67 13.33 20.00 10.00 0.00 0.00 0.00

Fear 3.33 3.33 3.33 0.00 20.00 40.00 3.33 3.33 13.33 0.00 10.00 0.00
Anxiety 6.25 3.12 9.38 0.00 3.12 3.12 28.12 12.50 21.88 12.50 0.00 0.00

Cold Anger 10.34 3.45 3.45 0.00 6.90 0.00 0.00 68.97 3.45 3.45 0.00 0.00
Sadness 20.00 3.33 0.00 0.00 10.00 3.33 3.33 20.00 36.67 0.00 3.33 0.00
Interest 6.67 10.00 0.00 10.00 0.00 0.00 3.33 0.00 3.33 56.67 6.67 3.33
Pleasure 0.00 20.00 3.33 16.67 3.33 0.00 6.67 6.67 0.00 20.00 6.67 16.67
Relief 10.00 3.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.67 3.33 76.67

Table D.1: Confusion matrix for 12-class emotion classifier. Shaded entries represent the
results where actual class = predicted class.

5.1 Audio Classification of Emotions
The audio data used to represent the user’s emotional state was taken from the
Geneva Multimodal Emotion Portrayals (GEMEP) [10], which was also chosen
as the dataset for the emotion sub-challenge part of the Interspeech 2013 Com-
putational Paralinguistics Challenge [11]. The dataset contains 1260 short voice
utterances, and we used the same partitioning in our system as was specified for
participants for the challenge. Out of the total of 1260 utterances in the entire
set, 482 were allocated for training, 236 were allocated for system validation, and
362 were used for testing purposes. The data is divided into 18 emotional classes,
and split across 10 actors, of which half are male and other half female. Due
to the acted nature of the database, we consider acoustic features only. Since 6
out of the 18 emotions occur very sparsely in the dataset, the classification was
restricted to 12 separate emotions. These were amusement, pride, joy and interest
(positive valence, positive arousal), anger, fear, irritation and anxiety (negative va-
lence, positive arousal), despair and sadness (negative valence, negative arousal)
and pleasure and relief (positive valence, negative arousal). One of the primary
reasons for selecting the GEMEP corpus was its wide spectrum of available emo-
tions.

In order to classify the emotion data an i-vector-based system (state-of-the-art
in speaker recognition) as well as a standard SVM classifier (a popular choice for
emotion recognition) were used. Due to the large number of emotions that need
to be classified and the low degree of emotional prototypicality of the dataset,
the overall accuracy for each system is fairly low, and therefore classification was
carried out by fusing the results from each system.

In both systems the number of classification classes was set to 12 for the base-
line case, and in the adapted case, uniquely determined from each user’s valence
and arousal focus. The adapted classes and their labels for the adapted classifier
for each individual was determined as follows: Using the group-wise stimulus coor-
dinates (a single set), and each individual’s valence focus, we used Algorithm D.1,
(D.2), (D.3) and Algorithm D.2 to determine the relevant cut-off value and from
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that obtained an appropriate valence clustering1. The same was done to deter-
mine an arousal clustering. Finally, the valence and arousal clusters were combined
to form granularity adapted classes according to (D.4). In the adapted case, all
emotion labels corresponding to the same granularity adapted class were given the
same supervised label before retraining the classifier.

The i-vector system was constructed as follows: 13 Mel Frequency Cepstral
Coefficients (MFCCs) (including log energy), first and second derivatives were
extracted to give a fixed 39-feature frame for each 25 ms voice frame, with a
10 ms overlap for each frame. MFCCs are simply a compact representation of
the spectral envelope of a speech signal. A 256-component Gaussian mixture
model (GMM) was trained with the entire training set. After this, the six unused
classes were not utilized further. Using the data from the GMM, a total variability
matrix was trained. After this, for each utterance, a 150-dimensional i-vector was
extracted from the total variability matrix. Once in the i-vector space, classification
of the utterances was then carried out using probabilistic linear discriminant analysis
(PLDA) after performing normalization on the i-vectors. The accuracy for the i-
vector sub-system for all 12 classes on the test set was 40.31 %.

The Multi-class SVM system was constructed using the 2013 ComParE feature
set, which contains 6373 features. The configuration for extracting these features is
publicly available in the OpenSmile toolkit [31]. The LibSVM toolkit [32] was used
to train the multi-class classifier. We trained the SVM using probability estimates
(to allow for easy fusion with the i-vector system), a cost C of 0.07 and a gamma
value g of 0.1. The accuracy for the SVM system was 38.40 %.

Scores from both systems were combined using weighted summation based
fusion, which resulted in a higher overall system accuracy for the baseline case of
43.03 %, which is in line with the state-of-the-art [11] [33]. Table D.1 shows the
12-class baseline results for the combined system.

5.2 Computing of Individual Valence and Arousal Focus
Computing a subject’s granularity required them to take part in two surveys. The
first evaluation involved determining the semantic similarity of 12 emotion cate-
gories, taken from the GEMEP database, that are more or less evenly spaced around
the affective circumplex. This resulted in 12!

(12−2)!(2)! = 66 possible pairs (without
repetition) that had to be rated. For each pair, presented in random order, subjects
were asked to give a rating of 1 to 7 on how similar the emotions in the pair were,
with 1 being extremely dissimilar, 4 unrelated, and 7 extremely similar.

1This was carried out in MATLAB using the Statistics Toolbox. The functions pdist,
linkage and cluster are all standard commands in this toolbox.
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In the second evaluation, subjects were shown 24 slides2 from the International
Standard Picture Database (IAPS) [34]. The IAPS is a database of colour pho-
tographs, each annotated with valence, arousal and dominance ratings, and which
is often used to elicit emotions in affective-related research studies. For each slide,
they were presented with all 12 emotion categories (in random order) and asked to
rate the slide for each category. The question posed was: "To what extent does
this slide invoke <emotion> in you?". The rating scale given to subjects was 1
(not at all), 3 (moderate amount), and 7 (a great deal).

To determine each subject’s valence focus and arousal focus, we adopted meth-
ods used from previous studies in psychology [35] [13]. First, the semantic similarity
ratings obtained from the first evaluation were subjected to a weighted individual
differences scaling MDS procedure (INDSCAL) in SSPS [36]3, from which a set
of 12 emotion stimulus coordinates was obtained in two dimensional space4. The
distance along the valence dimension between each emotion pair (of which there
were 66) was entered into a single valence distance matrix. The same was done in
the arousal dimension to create an arousal distance matrix.

From the picture data a 12 by 12 correlation matrix was constructed for each
person, once again representing 66 correlations, e.g sadness-pride. This matrix
captures the relatedness in each individuals emotional reports of experience of
the IAPS slides. After carrying out Fisher’s R-Z transformation on the data, the
individual pairs were correlated with the valence distance matrix to yield an index for
valence focus φvf . By carrying out such a correlation, it is possible to determine
just how much of the granularity in the experience of two emotions is due to
emphasis on valence and arousal. Similarly the correlation matrix for each person
was correlated against the arousal distance matrix to give the arousal focus φaf .
Since the distance matrix is inversely proportional to the correlations from the
picture data, the values are inverted.

5.3 Evaluation of Granularity Adapted Classification
Using each subject’s valence and arousal focus, we derived the adapted classes
needed to implement the granularity adapted classifier. The first two columns of
Table D.2 shows each user’s valence and arousal focus, and the following three
columns give values for the number of valence and arousal clusters, and combined

2The following IAPS pictures were used: 1710 Puppies, 2050 Baby, 3110 Burn Victim,
3185 Stitches, 4700 Couple, 5000 Flower, 5301 Galaxy, 5621 Sky divers, 5760 Outdoors, 5920
Volcano, 6230 Aimed gun, 6415 Dead Tiger, 6825 Military, 6832 Police, 7001 Button, 7080
Fork, 7010 Basket, 7023 Garbage, 7234 Ironing board, 8160 Man on cliff, 8190 Skiers, 8461
Happy teens, 8470 Gymnast, 9001 Cemetery.

3SSPS requires the data to be entered as dissimilar ratings.
4SSPS produces a stress vs dimension plot, where an elbow on the plot at a stress value

of 0.18 indicates that two dimensions are the best fit. A high squared correlation R2 = 0.87
indicates that a large proportion of the variance in the MDS solution is accounted for by the
similarities between the rated emotion words.

118



5. Experimental Work

Subject
Id

Valence
Focus
φvf

Arousal
Focus
φaf

Valence
Clusters

Arousal
Clusters

Adapted
Classes

Accuracy
adapted %

Similarity
Baseline

Upper bound
similarity:
Adapted

Lower bound
similarity:
Adapted

Mean
similarity:
Adapted

1 1.02 0.07 11 4 11 43.51 1.04 1.02 1.09 1.05
2 1.78 -0.07 1 11 11 42.00 1.06 1.08 1.20 1.14
3 1.31 -0.05 1 11 11 43.94 1.03 1.04 1.15 1.10
4 1.79 -0.01 1 7 7 43.57 1.06 0.87 1.77 1.34
5 1.49 0.03 1 6 6 42.04 1.03 0.85 1.99 1.49
6 1.40 0.01 1 6 6 42.04 1.08 0.80 1.99 1.45
7 1.89 0.05 1 5 5 50.43 1.02 0.77 1.68 1.24
8 1.56 0.05 1 5 5 50.43 1.01 0.74 1.80 1.31
9 1.57 0.06 1 4 4 53.01 1.00 0.46 2.57 1.56
10 1.41 0.06 1 4 4 42.00 1.05 0.66 2.43 1.54
11 1.12 0.21 4 1 4 45.66 1.08 0.84 1.97 1.39
12 1.37 0.09 1 3 3 58.50 1.06 0.46 2.63 1.60
13 1.41 0.10 1 3 3 58.50 1.11 0.27 2.70 1.63
14 1.14 0.28 3 1 3 51.42 1.05 0.70 1.94 1.36
15 1.18 0.18 2 1 2 63.69 1.07 0.61 2.46 1.58

Mean 1.43 0.07 - - - 53.87 1.05 0.75 1.96 1.38
SD 0.26 0.09 - - - 14.41 0.03 0.23 0.53 0.19

Table D.2: Main results: Valence Focus(Z-score), arousal Focus(Z-score), number of valence
clusters, number of arousal clusters, number of granularity adapted classes, adapted classifier
accuracy, best attainable similarity, worst attainable similarity, mean similarity. Shown for
all users including the mean and standard deviation (where applicable).

granularity regions.
In terms of the feasibility of using such an audio classifier in the proposed

framework, there is the advantage that an individuals valence and arousal focus
need only be computed once. This implies that determining the adapted-classes
for a given individual and training the classifiers is a once-off process. Furthermore,
for individuals in emotional granularity that lies below a predefined threshold, it
might be decided to just utilize the baseline classifier instead.

For each test trial from the GEMEP dataset, two classifications for each user
were carried out: The first classification was a standard 12-way classification of the
selected emotion data, and was implemented using the baseline classifier described
in the previous section. The division of classes was therefore not linked to the
subject’s granularity in any way. Thus for each emotion utterance in the test set,
a resulting single emotion class was predicted. This resulted in 362 <actual class,
predicted class> pairs. The second classification was the adapted classification.
For each utterance in the test set, a single adapted class, containing 1 or more
emotions, was predicted, which resulted in another 362 <actual class, predicted
adapted class> pairs. The same test data was reused for each of the 15 subjects.

To analyze the effectiveness of granularity-based adaptation, we used the already-
provided similarity data from each user to compare each user’s perceived similarity
of emotions between the baseline and adapted classifier. Similar to the group MDS
scaling procedure, we extracted similarity stimulus coordinates for each individual
based on their ratings, and used these as the ground truth for evaluating the sim-
ilarity of emotions for each individual. From this data, it is possible to tell just
how far apart two emotions are by examining their distance in the Euclidean space.
We define the best attainable similarity as an upper bound for the most similar
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items that can be included. By computing the best attainable similarity between
the actual and predicted classes for each test utterance, we develop a notion for
how similar, from a similarity of emotions perspective, subjects might regard the
classification.

In the baseline case, we compare the similarity between the labeled emotion of
the incoming utterance and the resulting single prediction (i.e., a single emotion
class). In the adapted classifier case, where subjects have the ability to pick out
the most applicable item in a region, we compare the similarity between the in-
coming emotion label (utterance) and both the adapted class’s most similar and
least similar emotion. The most similar emotion gives an upper bound on the
maximum theoretical similarity that can be attained and the least similar gives
the corresponding lower bound. We also give the similarity between the uttered
emotion and the mean of the emotions contained in the granularity adapted class,
by computing the mean of the adapted class’s emotions in Euclidean space, and
then computing the distance between the single utterance and this mean. Finally,
the average for all similarity computations is taken, for each of the experimental
cases. These averages give a single score for the baseline case, upper bound (most
similar), lower bound (least similar) and mean case, and are presented in columns
six, seven, eight and nine, respectively.

6 Discussion and Results
To assist the reader, we have sorted the subject data in order of most number
of adapted classes to least number. One of the first things that can be noticed
is that there is a strong inverse correlation (r = −0.72) between the number
of adapted classes extracted for each subject and the accuracy of the adapted
classifier (as expected). The lower the number of adapted classes, the easier it
is to differentiate between them. However, this is not a strict rule - a case in
point is the first two users, who’s adapted classifiers contain the same number of
adapted classes, but different classification accuracies. In both cases, the total
number of adapted classes is 11, where 10 classes are assigned a single emotion,
and the 11th class is assigned two emotions. In the classifier with the highest
accuracy, we noticed that in adapted class with two emotions, that these emotions
were joy and amusement, whereas in the lower accuracy classifier, the emotions
were instead joy and pleasure. While both configurations make perfect sense,
in terms of locality of emotions, one configuration outperforms the other - the
accuracy is dependent on what emotions are clustered together. We notice in
general, for all users where the number of adapted classes is less than six, that the
classification accuracy hovers around 43 %. In general however, high-granularity
subjects ended up with fewer of these classes, while for low-granularity subjects,
the number of classes was not substantially reduced compared to the baseline.
For these low granularity users, we saw that there is very little to be gained by
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employing granularity adaptation, and that in fact for one of the subjects (2)
the maximum attainable similarity could not be improved. From a similarity-of-
emotions perspective, we see that adapted classification has the ability to include
more similar items for presentation to subjects. This can be seen in the last row
of the table, where a best attainable similarity mean of 0.75 was obtained, as
opposed to 1.05 for the baseline (lower is better). This is a potential improvement
of 28.57 %. Treating the null hypothesis that the difference between the baseline
and adapted case comes from a distribution of zero median, a sign rank test rejects
the null hypothesis at the z = −3.18, p < 0.01 level. We also compute the effect
size r = Z√

N
= −0.58 which corresponds to a large effect size. This confirms

our hypothesis, that applying granularity adapted classification can result in more
similar emotions being included than for the baseline case.

Looking at the lower bound, we find it to be 1.96 and the mean to be 1.38.
In none of the subject cases did either the lower bound or mean improve on the
baseline. This reason for this is simply that, as the size of the granularity adapted
class, and corresponding region grows, not only will more similar items be avail-
able5, but also more dissimilar items. Even if the adapted class is a good estimate,
if it contains more than one emotion, it cannot perform similarity-wise better than
a correctly-predicted emotion from the baseline. To show this, in another exper-
iment, we compared results for the adapted classifier and baselines classifiers for
just the utterances incorrectly predicted in the baseline case. For just the incor-
rectly predicted utterances, we found a main baseline similarity of 1.84, and a mean
region similarity of 1.68. This indicates that adapted classes containing dissimilar
items still perform better than the baseline case for incorrectly predicted items (the
main weakness of the traditional classifier).

This large number of dissimilar items poses an interesting problem when con-
sidering such a system for recommendation purposes, since while users are indeed
given more similar items, they are also given more dissimilar items. This is also
why simply reducing the number of classes, without regard for the granularity of
users, is not a very good idea. While we expect a large number of dissimilar items
to only be present for high-granularity users, this creates noise and would typically
mean having to select amongst a large list of items. If items are uniformly spaced,
the list would be proportional to the region size. Limiting the number of dissimilar
items will both decrease the size of the list and help in the selection process. We
propose a simple approach, that while having the undesirable effect of marginally
increasing the upper bound, provides a dramatic improvement in both the lower
bound case and mean case. Without any further information, we can use to our
advantage the fact that each user has two classifiers to their disposal. In the
adapted classifier case, when an adapted class for a certain utterance is proposed,
there is a certain likelihood that one of the emotions in that class will match the

5The extreme case would be a single region occupying all of VA space containing all 12
emotions with a mean best attainable similarity of 0.00 %.
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Subject
Id

Replace if match
Upper bound
similarity:
Adapted

Replace if match
Lower bound
similarity:
Adapted

Replace if match
Mean
similarity
Adapted

Replace if match
Proportional
Upper bound
similarity:
Adapted

Replace if match
Proportional
Lower bound
similarity:
Adapted

Replace if match
Proportional
Mean
similarity
Adapted

1 1.03 1.04 1.04 1.02 1.08 1.05
2 1.09 1.10 1.10 1.08 1.18 1.13
3 1.05 1.07 1.06 1.04 1.13 1.09
4 0.98 1.33 1.16 0.90 1.55 1.24
5 0.95 1.43 1.23 0.89 1.69 1.33
6 0.95 1.43 1.21 0.87 1.70 1.32
7 0.88 1.23 1.06 0.83 1.45 1.15
8 0.87 1.26 1.08 0.82 1.54 1.20
9 0.76 1.56 1.19 0.60 2.15 1.40
10 0.91 1.51 1.21 0.75 2.00 1.36
11 1.08 1.30 1.20 0.95 1.70 1.33
12 0.96 1.39 1.18 0.65 2.11 1.41
13 0.92 1.46 1.21 0.51 2.25 1.48
14 0.96 1.25 1.12 0.80 1.68 1.27
15 0.98 1.51 1.26 0.74 2.07 1.44

Mean 0.96 1.33 1.15 0.83 1.69 1.28
SD 0.08 0.16 0.07 0.16 0.36 0.13

Table D.3: Results obtained from replacing regions with single emotions from the baseline.
Replace if match: best attainable similarity, worst attainable similarity, mean similarity,
Proportional Replacement if match: best attainable similarity, worst attainable similarity,
mean similarity. Shown for all users including the mean and standard deviation.

single-class baseline prediction for that same utterance (of course we don’t know
whether this baseline prediction is right or wrong). When we find this to be the
case, we replace the larger adapted class with the single emotion class common
to both the baseline class and adapted class. In some cases, the baseline emotion
is an incorrectly predicted emotion, and will result in a higher dissimilarity overall
(undesirable). When the baseline emotion is correctly predicted, the elimination of
the remaining emotions from the adapted class that contribute to dissimilarity will
result in a lower overall dissimilarity (desired).

The first two columns of Table D.3 show the results of applying this scheme.
While the worst attainable similarity decreases from 1.96 down to 1.31 (33.06 %)
and the mean similarity decreases from 1.38 down to 1.15 (17.09 %), the highest
attainable similarity increases from 0.75 to 0.97 (29.33 %, z = −2.90, p < 0.01,
r = −0.53).

Emotion Probability Emotion Probability
Amusement 25.00 Joy 35.00

Pride 25.00 Desperation 70.00
Hot Anger 40.00 Fear 40.00
Anxiety 25.00 Cold Anger 63.16
Sadness 35.00 Interest 60.00
Pleasure 5.00 Relief 95.00

Table D.4: Accuracy of the 12 baseline emotions taken from the validation set.

While we certainly can improve on the lower bound and mean similarity, we do
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this at the expense of reducing the number of similar items. If we allow knowledge
of the certainty of detecting the different emotions, such as probability estimates
taken from a validation set, as shown in Table D.4, which, as expected, is highly
correlated with the test results (r = 0.91), we can use this knowledge to adjust
our approach to consider the replacement of an adapted class with a baseline class,
just as in the previous case. However, for the given emotion class, we only do
this for the percentage of utterances that equals the probability for that emotion.
In other words, the higher the probability of detecting an emotion, the higher the
confidence that we can replace the entire adapted class with the single, common
emotion. Using such validation set probabilities, and by limiting the replacement
of adapted classes to only probably correct baseline emotion classes, we end up
with an acceptable compromise - as shown in the last two columns of Table D.3,
we end up with an adapted class containing a good number of similar emotions
(best similarity 0.83, z = −3.12, p < 0.01, r = −0.57), with still a fair reduction
in the number of dissimilar emotions (worst similarity of 1.69 and mean similarity
of 1.28).
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1. Introduction

Abstract
An i-vector is a low-dimensional fixed-length representation of a variable-length
speech utterance, and is defined as the posterior mean of a latent variable con-
ditioned on the observed feature sequence of an utterance. The assumption is
that the prior for the latent variable is non-informative, since for homogeneous
datasets there is no gain in generality in using an informative prior. This work
shows that extracting i-vectors for a heterogeneous dataset, containing speech
samples recorded from multiple sources, using informative priors instead is ap-
plicable, and leads to favorable results. Tests carried out on the NIST 2008
and 2010 Speaker Recognition Evaluation (SRE) dataset show that our pro-
posed method beats three baselines: For the short2-short3 core-task in SRE’08,
for the female and male cases, five and six respectively, out of eight common
conditions were beaten, and for the core-core task in SRE’10, for both genders,
five out of nine common conditions were beaten.

1 Introduction
In the i-vector approach, variable-length speech utterances are mapped into fixed-
length low dimensional vectors that reside in the so-called total variability space [1].
The i-vectors capture the total variability, which is usually understood to include
both speaker and channel variability. The ease of dealing with i-vectors has resulted
in a myriad of techniques being proposed to maximize speaker discrimination and
reduce channel effects, which include amongst others within-class covariance nor-
malization (WCCN) [2], linear discriminant analysis (LDA) [3], and probabilistic
LDA (PLDA) [4].

When i-vectors are extracted from a heterogeneous dataset, as encountered in
the recent NIST SREs [5, 6], not only will they capture both speaker and channel
variability, but also source variation. If this source variation is not dealt with, it will
adversely affect speaker recognition performance [3, 7]. The notion of source vari-
ation was introduced in the recent SREs and it is related to the speech acquisition
method (e.g., telephone versus microphone channel types) and recording scenario
(e.g., telephone conversation versus interview styles). The various combinations of
styles and channel types (e.g., interview speech recorded over microphone channel)
form relatively homogeneous subsets of the dataset. In this work, the dataset con-
sists of telephone, microphone (telephone conversation recorded over microphone
channel), and interview subsets, or sources.

Several proposals consider the issue of source variation within the context of
total variability modeling. In [8], the authors address the issue of estimating the
inter-speaker scatter matrix given a heterogeneous dataset where most speakers
appear only once in any one of the sources. The source variation will be strongly
represented and seen as part of the inter-speaker variability and will therefore be
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optimized in the resulting LDA transform. Another proposal involves training of a
supplementary matrix for the microphone subset on top of an already trained total
variability matrices on telephone data [3]. I-vectors are then extracted from a total
variability matrix formed by concatenating the two matrices. PLDA has also been
used to further project microphone and telephone factors to a common space [9].
Compensation using heavy-tailed PLDA has also been successful [10]. Finally, a
total variability matrix can be trained from a pooled set of the training data. All
these schemes require either training of a supplementary matrix or retraining of the
total variability matrix.

This work proposes to deal with the source variability by using an informative
prior at the i-vector extraction stage. The objective is to use the same total
variability matrix to describe the speaker and channel variability across sources of
data from a heterogeneous dataset, with the source variation modeled at the priors.
Re-training of the total variability matrix is not required, neither in whole or in part.
Instead we assume a matrix already trained using abundantly available data. We
show how a source-specific prior can be used in the i-vector extraction phase to
compensate for unwanted source variability. The extracted i-vectors, which now
only capture speaker and channel variability, can be processed at the LDA or PLDA
stages without needing to carry out any source variation suppression.

This paper is structured as follows: Section 2 reviews the i-vector paradigm and
the use of the non-informative prior. Section 3 gives the motivation for using an
informative prior when a heterogeneous dataset is concerned. Section 4 presents
theory for estimating the source-specific priors and using them effectively in ex-
tracting i-vectors. The following two section present the experiments that were
carried out and our results, and the final section concludes the paper.

2 The I-vector Paradigm
The total variability model assumes that a speaker- and channel-dependent GMM
supervector m of an utterance [11] is modeled as

m = m0 + Tw (E.1)

where m0 is the speaker-independent supervector obtained by concatenating the
mean vectors from the UBM. The hidden variable w weights the columns of the
matrix T to explain the observed deviation from m0. The matrix T is defined to
have low rank so as to model the subspace where both the speaker and channel
variability (hence the name total variability matrix) correlate the most. The train-
ing of the total variability matrix follows the same process as that of training an
eigenvoice matrix [12, 13]. The major difference is that utterances from the same
speakers are treated individually as unrelated sessions [1].

Let {o1,o2, ...oT } represent the feature sequence of a given utterance O. The
feature vectors are assumed to be drawn from a GMM with its mean supervector as
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in (E.1). For each mixture component c of the GMM, the following Baum-Welch
statistics are defined:

N(c) =
∑
t

γt(c) (E.2)

where t extends over all frames of an utterance and γt(c) is the occupancy of frame
ot to the c-th Gaussian. We further denote the centered first-order statistics as

F̃(c) =
∑
t

γt(c)(ot −m0(c)) (E.3)

Also, let N represent the diagonal matrix whose diagonal blocks are N(c) × I
and let F̃ represent the supervector obtained by concatenating the F̃(c), where c
extends over all mixtures in both cases. In order to extract an i-vector, given an
already trained T, we compute the posterior distribution over the latent variable w
conditioned on the observations. Assuming a standard normal prior w ∼ N (0, I),
the posterior distribution is also Gaussian [12], as follows

p(w|O) = N (L−1 ·TTΣ−1F̃, L−1) (E.4)

with mean vector

φ = L−1 ·TTΣ−1F̃ (E.5)

and precision L = (I+TTΣ−1NT). The i-vector is then given by the mean vector
φ of the posterior distribution [1]. Similar to that of N, the matrix Σ in (E.4) is
constructed by having its diagonal blocks made up by the covariance matrices of
the UBM.

The prior over the hidden variable w is usually taken to be a standard normal
distribution. While it is indeed possible to define an informative prior, this prior
can always be absorbed to the global mean vector m0 and the loading matrix
T [13, 14]. This step causes the resulting prior to become non-informative, thereby
requiring no alteration to (E.4). As such, there is no compelling reason to use an
informative prior at least for the case when the dataset is homogeneous. In the
following, we show how informative priors of the form w ∼ N (µp,Σp), where
µp 6= 0 and Σp 6= I, could be modeled and used for i-vector extraction, and
the benefit of doing so when a heterogeneous dataset is concerned. In the NIST
series of speaker recognition evaluations (SREs), for instance, the dataset contains
“telephone”, “interview” or “microphone” speech sources [5, 6].

3 Introducing Informative Priors
An informative prior encodes domain knowledge (i.e., the source variation) by
capturing underlying dependencies between the parameters [15]. In this section,
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we propose using minimum divergence criterion for estimating source-specific priors
from a heterogeneous dataset. We then show how to incorporate the informative
prior in the i-vector extraction formula.

3.1 Minimum Divergence Estimation
Consider the case where individual speech sources (e.g., telephone, microphone, or
interview in NIST SRE) forms a relatively homogeneous subset and each speech
source has I number of utterances. For each utterance we compute the posterior
distribution according to (E.4) using the already trained T matrix. Given the set
of posterior distributions, we seek for a Gaussian distribution N (µp,Σp) that best
describes the I posterior distributions. This could be achieved by minimizing the
Kullback-Leibler (KL) divergence of the desired distribution N (µp,Σp) from all
the I posteriors N (φi,L−1

i ). As shown in [16], the closed form solution consists
of the mean vector

µp = 1
I

I∑
i=1

φi (E.6)

and the covariance matrix

Σp = 1
I

I∑
i=1

(φi − µp)(φi − µp)T + 1
I

I∑
i=1

L−1
i (E.7)

Notice that the number of utterances I is generally different for each speech source.
The central idea here is to use a single T matrix for all sources of data, where the
variability due to the different sources is modeled at the prior. Together, the
combination of T and the source-specific priors better models the variation across
sources from the heterogeneous dataset.

Notice that the mean µp of the informative prior is given by the average of
all the i-vectors belonging to a target set (recall that an i-vector is given by the
mean of the posterior distribution). The deviation of the i-vectors from µp forms
the empirical term in the covariance Σp, while the second term accounts form
posterior covariances of the i-vectors.

3.2 Posterior Inference with Informative Prior
We formulate the expression for the posterior distribution for the general case when
the informative prior as estimated above is used in place of a non-informative one.

Proposition 1: Consider an informative prior p(w) ∼ N (µp,Σp) with mean
µp and the covariance matrix Σp. The posterior distribution p(w|O) is Gaussian
with mean

φ = L−1(TTΣ−1F̃ + Σp
−1µp) (E.8)
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and precision

L = TTNΣ−1T + Σp
−1 (E.9)

Note that by setting µp = 0 and Σp = I, the posterior mean φ (i.e., the i-
vector) and precision L reduce to the standard form of i-vector extraction with a
non-informative prior as in (E.4).

Proof. Assume that we have the parameter set (T,Σ), the hidden variable w
and the observation O. From Lemma 1 in [12] we know that the log likelihood
of O given w and the parameters (T,Σ) can be expressed as the sum of two
terms:

logpT,Σ(O|w) = GT +HT,Σ (E.10)

where GT is defined by (3) in [12], and HT,Σ is defined as

HT,Σ = wTTTΣ−1F̃− 1
2wTTTNΣ−1Tw (E.11)

Since GT does not depend on w, this term is not considered further. Given
the mean µp and covariance Σp

−1, we express the prior as:

p(w) ∝ exp(−1
2(w− µp)TΣp

−1(w− µp)) (E.12)

The posterior distribution of w givenO could be obtained by taking the product
of (E.11) and (E.12), as follows:

p(w|O) ∝ exp(wTTTΣ−1Ft− 1
2wTTTNΣ−1Tw−

1
2(w− µp)TΣp

−1(w− µp))

∝ exp(− 1
2(w− φ)TL(w− φ))

(E.13)

with φ and L in the form as stated above.

4 Prior-compensated i-vector Extraction
In the Bayesian sense, an informative prior increases the prior belief of the location
and dispersion of each source in a heterogeneous dataset. We note that a different
spread is observed for each source in the i-vector space, as was also reported in a
previous study [7]. In the case of cross-source trials, the test i-vectors belonging to
one source and target i-vector belonging to another can no longer be assumed to lie
close to one another, even when representing the same speaker. The implication
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of applying (E.8) directly would intensify the difference across speech sources,
resulting in poorer performance.

We propose to compensate for the differences across speech sources (e.g., tele-
phone versus microphone) by applying the prior mean and covariance at separate
stages in the i-vector extraction phase. More specifically, we project the prior mean
to the acoustic space, while the covariance remains intact as part of the prior. The
operation of separating the prior mean and covariance is based on the equality of
marginalization which we shall now demonstrate.

Proposition 2: Let Π(c) be the marginal distribution for Gaussian c obtained
by modeling m = m0 + Tw with the prior w ∼ N (µp,Σp). For this source, the
same marginalization Π(c) can be realized by modeling m = m0 + Tw + Tµp
with the prior w ∼ N (0,Σp). This gives the following equality:

Π(c) =
∫
N (O|m0(c) + Tcw,Σ0)N (w|µp,Σp)dw

=
∫
N (O|m0(c) + Tcµp + Tcw,Σ0)N (w|0,Σp)dw

(E.14)

The proof of the proposition is given in the appendix.
Comparing the first and second rows of (F.11), the prior mean µp is brought

forward to the conditional density, which describes the acoustic observation O.
By doing so, the projection Tcµp of the prior mean imposes a shift on the global
mean vector m0(c). This also gives rise to prior distributions with a common mode
at the origin (i.e., zero mean) but different dispersions Σp for individual sources.
Algorithmically, the projection Tcµp is applied on the observation by re-centering
the first order statistics F̃(c), as follows

˜̃F(c) =
∑
t

γt(c)(ot −m0(c)−Tcµp)

= F̃(c)−N(c)Tcµp

(E.15)

In a sense, the re-centering brings heterogeneous sources to a common mode at
the origin of the total variability space and allows the priors to differ only with
regard to one anothers’ covariance.

The proposed prior-compensated i-vector extraction can be summarized into
the following steps:

1. Start out with an already trained T matrix. For each source, extract an
informative prior N (µp,Σp) using the minimum divergence estimation as
described in Section 3.1.

2. Re-center the first order statistics F̃ around the relevant source-specific mean
to give ˜̃F, as in (E.15).
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3. Extract i-vectors, by matching the now zero-mean informative priorN (0,Σp)
for each source to the relevant re-centered first-order statistics:

φ =L−1(TTΣ−1(F̃−NTµp))

=L−1(TTΣ−1 ˜̃F)
(E.16)

where the precision L is as given in (E.9).

5 Experiments

5.1 Datasets and System Setup
Our experiments were carried out on the short2-short3 core-task of SRE’08 [5] and
the core-core task of SRE’10 [6]. For all experiments, a gender dependent setup was
used. The features used for training the 512-Gaussian UBMs were 57-dimensional
MFCCs (including the first and second derivatives). The first order statistics used
for training each total variability matrix were centered and whitened [17]. For all
experimental setups, a total variability matrix was trained with non-informative
priors being used in the E-step.

We compare four individual experimental setups in this work, of which three
are reference systems and one is the proposed system. In the telephone only setup,
a 600 dimensional T matrix was trained using only the telephone data. In the
pooled system, a 600 dimensional T matrix was trained using pooled telephone
and microphone data. In the cascade system, a 400 dimensional T matrix was
trained using the telephone data, and a 200 dimensional T matrix was trained
using microphone data [3]. The telephone data used to train these systems was
taken from SRE’04, 05 and 06. The microphone data was taken from SRE’05, 06
and MIXER 5. The same dataset was used to derive the informative priors.

In the 2-prior system, the already trained pooled T matrix was used as the
starting point. Using minimum divergence estimation (Section 3.1), we trained
one prior for the telephone subset and another prior for microphone and interview
subsets. We chose to use only one prior for both microphone and interview since
there was not enough interview data to reliably estimate the interview prior. I-
vectors were extracted by performing re-centering of the first-order statistics using
the prior’s mean, followed by computation of the posteriors using the prior’s infor-
mative covariance. LDA was used to bring the dimension of the 600-dimensional
i-vectors down to 400. After carrying out length normalization, PLDA was used
to model the channel variability. For the PLDA model, a separate 200 dimen-
sional telephone matrix and 50 dimensional microphone matrix were trained, in a
decoupled manner, similar to the setup in [18].
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CC1: int-int CC2: int-int CC3: int-int CC4: int-tel CC5: tel-mic CC6: tel-tel CC7: tel-tel CC8: tel-tel
EER F M F M F M F M F M F M F M F M

Telephone only 3.51 2.84 1.50 0.32 3.61 2.97 5.69 4.07 6.65 4.17 5.85 4.67 2.73 2.32 3.24 1.43
Pooled 3.22 2.54 1.28 0.33 3.29 2.64 4.65 3.89 5.62 3.05 5.86 4.15 2.84 1.60 3.32 1.04
Cascade 3.17 3.01 1.25 0.41 3.26 3.22 5.38 4.27 6.10 4.12 5.86 4.06 2.98 1.66 3.81 1.32
2-prior 2.34 1.95 1.32 0.32 2.39 2.04 4.32 3.91 5.37 3.21 5.79 3.84 2.87 1.39 3.27 0.90

Table E.1: SRE’08 Performance comparison for the sub-task short2-short3. Left: FEMALE Trials, Right: MALE Trials

CC1: int-int-
same-mic

CC2: int-int-
diff-mic CC3: int-tel CC4: int-mic CC5: nve-nve-

diff-tel
CC6: nve-hve-
diff-tel

CC7: nve-hve-
mic

CC8: nve-lve-
diff-tel

CC9: nve-lve-
mic

EER F M F M F M F M F M F M F M F M F M
Telephone only 3.06 2.02 5.65 3.45 4.21 3.55 3.96 2.72 3.59 3.47 8.09 4.64 8.49 4.91 2.01 1.14 2.46 1.54

Pooled 3.16 2.22 5.13 3.14 3.34 2.82 3.78 2.54 3.00 2.60 7.13 4.01 7.98 4.95 1.66 1.54 2.55 1.34
Cascade 3.12 2.29 5.60 3.29 4.01 2.62 4.04 2.87 3.41 3.13 7.10 4.33 8.19 5.25 1.83 1.68 3.08 1.61
2-prior 2.43 1.67 4.44 2.25 3.87 3.19 3.33 2.22 3.00 2.89 7.11 4.13 7.49 4.16 1.59 1.56 2.48 1.15

Table E.2: SRE’10 Performance comparison for the sub-task core-core. Left: FEMALE Trials, Right: MALE Trials
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5.2 Results
We present results for the four systems, for both male and female trials. For all
results, we used Equal Error Rate (EER). For the SRE’08 results, shown in Table
E.2 for both male and female trials, a substantial improvement was seen in sub-
tasks 1 and 3, corresponding to the int-int condition. We could not beat the
baseline for sub-task 2, which we believe is due to the smaller number of trials. For
the mixed trials, i.e. sub-tasks 4 and 5, source-specific informative priors showed
improved robustness against both the telephone-only and cascade cases. For the
pooled case however, the results were a lot closer and we did not beat this baseline
in all cases. Interestingly, our approach improved on several of the tel-tel only
conditions, especially in the male case. From these results, it appears that source-
specific informative priors offer the greatest strength in enhancing performance
trials where the sources of the trail and target match.

We now discuss the SRE’10 results shown in Table E.2. For the single source
interview and mic sub-tasks, as given by sub-tasks 1, 2, 7 and 9, we were able to
beat all baselines in 3 out of 4 sub-tasks in the female case and all cases in the
male case. For telephone only trials, given by sub-tasks 5, 6 and 8, in only one case
could all baselines be beaten. We believe the reason for the slightly worse results
for SRE’10 is the similarity of the data used to train the T matrices and subspace
PLDA models to that of SRE’08. For the cross-channel conditions, we noted better
performance for the int-mic cross channel than for int-tel, strengthening our belief
that best performance is gained where source and target trials are better.

6 Conclusion
In this paper, we proposed a novel method of using a single T matrix to better de-
scribe the source variation from a heterogeneous dataset. The gist of our proposal
is to compensate for source variation by applying the prior mean and covariance at
separate stages in the i-vector extraction. We showed that by using an existing T
matrix, introducing informative priors for each source into the i-vector extraction
stage leads to performance gains in 5 out of 8 and 6 out of 8 common conditions
for the short2-short3 core-task in SRE’08 for the female and male case, respec-
tively, and 5 out of 9 common conditions for the core-core task in SRE’10, for both
the female and male case. The results show that source-specific informative priors
offer the greatest strength in enhancing performance trials where the sources of
the trail and target are similar, or match.
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A Proof of Proposition 2
Proof. We first derive the probability distribution of p(m) where m = m0+Tw
and w ∼ N (µp,Σp). The mean is computed as:

E[m] = m0 + Tµp (E.17)

and covariance as:

E[(m− E[m])2] =TE[wwT]TT −Tµpµp
TTT (E.18)

Realizing that the covariance of the prior distribution for P (w) is simply Σp =
E[(w − E[w]2)] = E[wwT] − µpµp

T, substituting back into into (F.25) and
simplifying, gives:

E[(m− E[m])2] =TΣpTT (E.19)

Note that for the case of the non-informative prior, the mean and covariance are
reduced to m0 and TTT, respectively. In the same vein, we compute the mean
for the marginalization modeled by m = m0 + Tw + Tµp and w ∼ N (0,Σp).
We find the mean to be

E[m] = m0 + Tµp (E.20)

which is identical to the formally derived mean. The covariance is computed
as:

E[(m− E[m])2] =TE[wwT]TT (E.21)

Now the covariance Σp = E[(w − E[w])2] = E[wwT], which when substituted
back into (F.29), gives:

E[(m− E[m]2)] =TΣpTT (E.22)

which is identical to the formally derived covariance. These will contribute
equally to the marginalization Π(c) given in (F.11). This concludes the proof.
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1. Introduction

Abstract
In total variability modeling, variable length speech utterances are mapped to
fixed low-dimensional i-vectors. Central to computing the total variability ma-
trix and i-vector extraction, is the computation of a posterior distribution for a
latent variable conditioned on an observed feature sequence of an utterance. In
both cases the prior for the latent variable is assumed to be non-informative,
since for homogeneous datasets there is no gain in generality in using an infor-
mative prior. This work shows in the heterogeneous case, that using informa-
tive priors for computing the posterior, can lead to favorable results. We focus
on modeling the priors using minimum divergence criterion or factor analysis
techniques. Tests on the NIST 2008 and 2010 Speaker Recognition Evalua-
tion (SRE) dataset show that our proposed method beats three baselines: For
i-vector extraction using an already trained matrix, for the short2-short3 task in
SRE’08, six out of eight common conditions, for both genders, were improved.
For the core-core task in SRE’10, six out of nine female and five out of nine
male common conditions were improved. When incorporating prior information
into the training of the T matrix itself, the proposed method beats the baselines
for six out of eight common conditions, for both genders, for SRE’08, and six
and five out of nine conditions, for the male and female case, respectively, for
SRE’10. Tests using factor analysis for estimating priors show that two priors
do not offer much improvement, but in the case of three separate priors (sparse
data), considerable improvements were gained.

1 Introduction
The i-vector feature extraction approach has been the state-of-the-art in speaker
recognition in recent years. The i-vectors capture the total variability, which may
include speaker, channel and source variability. Variable-length speech utterances
are mapped into fixed-length low dimensional vectors that reside in the so-called
total variability space [1].

While it is possible to work directly with the raw i-vector distribution, the fixed-
length of i-vectors has resulted in a number of powerful and well-known channel
compensation techniques that deal with unwanted channel variability and hence
improve speaker recognition performance. As a good starting point, linear dis-
criminant analysis (LDA) is a non-probabilistic method used to further reduce the
dimensionality of i-vectors, which simultaneously maximizes the inter-speaker vari-
ability and minimizes the intra-speaker variability [2]. After centering and whiten-
ing, the i-vectors are more or less evenly distributed around a hypersphere. An
important further refinement commonly carried out is length normalization, which
transforms the i-vector distribution to an (almost) Gaussian distribution that is
more straightforward to model [3]. Probabilistic LDA is a generative model that
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uses a factor-analysis approach to model separately factors that account for the
inter-speaker and intra-speaker variation [4, 5]. Many variants of PLDA, in the
context of the i-vector approach, have been proposed [6, 7]. Another well-known
method is within-class covariance normalization (WCCN), which uses the inverse
of the within-class covariance matrix to normalize the linear kernel in an SVM clas-
sifier [8]. It is typical in i-vector modeling to use multiple techniques in cascade:
for example to ensure the Gaussian assumption for PLDA, it is not uncommon to
carry out whitening followed by length normalization before the PLDA stage [7, 9].

This work deals primarily with source variation, and due to the fact that channel
variation and source variation both contribute to reducing the ability to discriminate
speakers, it is not surprising that the methods proposed to combat channel varia-
tion and source variation resemble one another. When i-vectors are extracted from
a heterogeneous dataset, as encountered in the recent NIST SREs [10, 11], not only
will they capture both speaker and channel variability, but also source variation. If
this source variation is not dealt with, it will adversely affect speaker recognition
performance [2, 12, 13]. The notion of source variation was introduced in the
recent SREs and it is related to the speech acquisition method (e.g., telephone
versus microphone channel types) and recording scenario (e.g., telephone conver-
sation versus interview styles). The various combinations of styles and channel
types (e.g., interview speech recorded over microphone channel) form a hetero-
geneous dataset consisting of relatively homogeneous subsets. In this work, the
dataset consists of telephone, microphone (telephone conversation recorded over
microphone channel), and interview subsets, or sources.

There have been several proposals to address the issue of source variation
within the context of total variability modeling. A phenomenon commonly seen in
heterogeneous datasets is the fact that not all sources are equally abundant and
most speakers appear in only one of the sources. In the context of LDA, the source
variation will be strongly represented and seen as part of the inter-speaker variability
and will therefore be optimized in the resulting LDA transform. One proposal to
address this issue is to determine a suitable inter-speaker scatter matrix [12, 13].

For training of the total variability matrix itself, one of the simplest approaches,
albeit rather crude, is to simply pool all the training data into a heterogeneous set
without distinguishing between microphone and telephone data. A more structured
proposal suggests training a supplementary matrix for the microphone subset on
top of an already trained total variability matrices on telephone data [2]. I-vectors
are then extracted from a total variability matrix that is formed by concatenating
these two matrices. An interesting observation seen with this approach is that
the microphone data resides in the combined space defined by the matrix con-
catenation, whereas the telephone data only resides in the telephone space. An
extension to this work was therefore proposed whereby PLDA is applied to project
the telephone and microphone data to the same space [14].

In this work we show how informative priors can be estimated from speech
data, and subsequently used in the Bayesian sense to annihilate source variability
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in total variability models. In JFA [15, 16] and total variability modeling [1], a non-
informative prior is assumed for the speaker, channel and total variability latent
variables, since there is no gain in generality in using an informative prior. This
assertion holds at least when a homogeneous dataset is concerned. The notion of
informative priors to encode domain knowledge is not a new concept and has been
used in machine learning applications before [17]. In the context of continuous
speech recognition, informative priors have also been used in the case of sparse
data to improve generalization of an infinite structured SVM model [18].

The contribution of this paper is to propose and investigate three different
strategies for incorporating prior information into different aspects of total vari-
ability modeling. The first strategy involves using an already trained total vari-
ability matrix to extract i-vectors [19], and comprises two stages. In the first
stage, i-vectors from each subset of the data are extracted using the standard
non-informative prior, and then all i-vectors are subsequently used to estimate a
source-specific prior. The second stage comprises using the source-specific prior in
the computation of the posterior to compute a new set of i-vectors. The hypothesis
of this strategy is that i-vector extraction using source-specific priors can be used
to compensate for unwanted source variability.

Since the ultimate performance will be affected by the initial alignment of the
total variability matrix, as a second strategy, we propose to retrain the total variabil-
ity matrix. Here, we extend the role of the source-specific prior to the computation
of the posterior mean and covariance in the E-step, needed for re-estimating the
total variability matrix for a given training iteration. For each training iteration,
we recompute the source-specific prior and use it to update the total variability
matrix. Once the training has completed, we treat this new total variability matrix
as the already existing matrix proposed in the first strategy and follow the same
approach for extracting i-vectors. The hypothesis of this strategy is that, assuming
that i-vectors are extracted according to the first strategy, that performance can
be improved by using prior information to improve the initial alignment of the total
variability matrix. As the third strategy, noting that performance may be influ-
enced by the manner and accuracy with which the prior is estimated, we propose
and investigate the use of factor analysis for estimating the priors. In this approach,
both the mean and covariance of the posterior (where the mean corresponds to
our i-vector) are taken into account.

This paper is structured as follows: Section 2 reviews the total variability
paradigm and the use of non-informative priors. Section 3 motivates the use of
informative priors when a heterogeneous dataset is concerned, and how this can be
constructed using minimum divergence estimation. We also show how the informa-
tive prior leads to a new formulation for the posterior. Section 4 shows how to use
informative priors for i-vector extraction and constructing a new total variability
matrix. Section 5 presents theory for factor analysis modeling of priors where the
data for a prior could be sparse. The following two sections present the experiments
that were carried out and our results, and the final section concludes the paper.
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2 Total Variability Modeling
The total variability model assumes that a speaker- and channel-dependent GMM
supervector m of an utterance [1] is modeled as

m = m0 + Tw (F.1)

Here, assuming C mixture components and an F dimensional feature space, m0
is the CF × 1 speaker-independent supervector obtained by concatenating the
mean vectors from the Universal Background Model (UBM) [20]. The matrix T is
defined to have low rank R so as to model the subspace where both the speaker
and channel variability covary the most, and the R× 1 hidden variable w weights
the columns of the CF × R total variability matrix T to explain the observed
deviation from the global mean. The training of the total variability matrix follows
the same process as that of training an eigenvoice matrix [15, 21]. The major
difference is that utterances from the same speakers are treated individually as
unrelated sessions [1], resulting in the matrix containing the eigenvectors with the
largest eigenvalues of the total covariance matrix.

Let {o1,o2, ...oT } represent the feature sequence of a given utterance O. The
feature vectors are assumed to be drawn from a GMM with its mean supervector as
in (F.1). For each mixture component c of the GMM, the following Baum-Welch
statistics are defined:

N(c) =
∑
t

γt(c) (F.2)

where t extends over an utterance and γt(c) is the occupancy of frame ot to the
c-th Gaussian. We further denote the centered first-order statistics as

F̃(c) =
∑
t

γt(c)(ot −m0(c)) (F.3)

Also, let N represent the CF ×CF (supervector-size) diagonal matrix whose diag-
onal blocks are N(c)× I and let F̃ represent the CF × 1 supervector obtained by
concatenating the F̃(c), where c extends over all mixtures in both cases. The train-
ing of the T matrix goes according to the well-known Expectation Maximization
(EM) algorithm [21, 22]. The most important computation is the E-step, where
for the given sequences of observations, the posterior distributions p(w|O) are de-
termined for the latent variables. Assuming a standard normal prior w ∼ N (0, I),
the posterior distribution is also Gaussian [15, 21], and is given as follows

p(w|O) = N (L−1 ·TTΣ−1F̃, L−1) (F.4)

with mean vector

φ = L−1 ·TTΣ−1F̃ (F.5)
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and precision matrix

L = (I + TTΣ−1NT) (F.6)

Here, the superscript T denotes matrix transposition. Similar to that of N, the
matrix Σ in (F.4) is constructed by having its diagonal blocks made up by the
covariance matrices of the UBM. In the M-step, the value for T is updated by
solving a set of simultaneous equations [21]. These EM steps are repeated until
convergence. Alg. F.1 lists the details of the EM Step.

Algorithm F.1: Expectation-Maximization (EM) algorithm steps
used for each iterative update of the T matrix given I training
utterances [21].

input : T,N, F̃
output: T
begin

// Reset accumulators
A = 0
C = 0
// Expectation Step - Compute the posterior

p(w|O) = N (φ, L−1)
for i = 1 to I do

Li = (I + TTΣ−1NiT)
φi = L−1

i ·TTΣ−1F̃i
E[wiwT

i ] = φiφi
T + Li

// Accumulate Statistics
A = A + Ni.E[wiwT

i ]
C = C + F̃i.φi

end
// Maximization Step - Solve the set of simultaneous

equations:
∑
i

NiTE[wiwT
i ] =

∑
i

Fiφi

T = C.A−1 // Solves for T
end

Extracting an i-vector φ is identical to computing the posterior distribution
above, where only the posterior mean is retained [1]. Later on, we shall see how
this identical process for i-vector extraction and training of the T matrix allows us
to introduce an informative prior at separate stages of the total variability model.
In future, when referring to the posterior inference of the hidden variables, the
reader should have both simple i-vector extraction, as well as posterior covariance
computation (needed when training the T matrix) in mind.
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The prior over the hidden variable w is usually taken to be a standard normal
distribution. While it is indeed possible to define an informative prior, this prior
can always be absorbed to the global mean vector m0 and the loading matrix
T [15, 23]. This step causes the resulting prior to become non-informative, thereby
requiring no alteration to (F.4). As such, there is no compelling reason to use an
informative prior, at least for the case when the dataset is homogeneous. In fact,
this is a common step used in the training of the T matrix, known as the minimum
divergence re-estimation step [15, 16, 24]. It leads to faster convergence and can
be carried out once or several times.

3 Prior Modeling
An informative prior encodes domain knowledge (i.e., the source variation) by
capturing the underlying dependencies between the parameters [17]. In this section,
we show how informative priors of the form w ∼ N (µp,Σp), where µp 6= 0
and Σp 6= I, can be modeled and used for computing the posterior distribution.
Mathematically, this posterior distribution will have the highest density in regions
that agree with both the observed data as well as the prior [5]. Informative priors
are of particular benefit when a heterogeneous dataset is concerned. In the NIST
series of speaker recognition evaluations (SREs), for instance, the dataset contains
“telephone”, “interview” or “microphone” speech sources [10, 11]. We propose
to estimate the hyper parameters using minimum divergence criterion based on
source data from a heterogeneous dataset. A variant of this has been used before
in the context of adapting PLDA models [25]. We then show how to incorporate
the informative prior in the posterior computation.

3.1 Introducing Informative Priors
Consider the case where individual speech sources (e.g., telephone, microphone, or
interview in NIST SRE) forms a relatively homogeneous subset and each speech
source has I number of utterances. For each utterance, we compute the posterior
distribution according to (F.4) using a given T matrix. Later we shall see that
the precise state of T (either converged or still undergoing training) that is used
depends on the intended use of the prior. Given the set of posterior distributions,
we seek for a Gaussian distribution N (µp,Σp) that best describes the I posterior
distributions. This can be achieved by minimizing the Kullback-Leibler (KL) diver-
gence of the desired distribution N (µp,Σp) from all the I posteriors N (φi,L−1

i ).
As shown in [26], the closed form solution is as follows, consisting of the mean
vector

µp = 1
I

I∑
i=1

φi (F.7)
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and the covariance matrix

Σp = 1
I

I∑
i=1

(φi − µp)(φi − µp)T + 1
I

I∑
i=1

L−1
i (F.8)

Notice that the mean µp of the informative prior is given by the average of all
the i-vectors belonging to a target set (recall that an i-vector is given by the
mean of the posterior distribution). The deviation of the i-vectors from µp forms
the empirical term in the covariance Σp, while the second term accounts for the
posterior covariances of the i-vectors.

In the above formulation, the number of utterances I could be different for each
speech source. Notice also the central idea here is to use a single T matrix for
all sources of data, where the variability due to different sources is modeled at the
prior using (F.7) and (F.8). Together, the combination of T and the source-specific
priors better models the variation across sources from the heterogeneous dataset.
Both the initial alignment of data in T as well as the accuracy and strength of the
prior will influence the degree at which the source variation can be modeled.

3.2 Posterior Inference with Informative Prior
We now formulate the expression for the posterior distribution for the general case
when the informative prior as estimated above is used in place of a non-informative
one.

Proposition 1: Consider an informative prior p(w) ∼ N (µp,Σp) with mean
µp and the covariance matrix Σp. The posterior distribution p(w|O) is Gaussian
with mean

φ = L−1(TTΣ−1F̃ + Σp
−1µp) (F.9)

and precision matrix

L = TTNΣ−1T + Σp
−1 (F.10)

Note that by setting µp = 0 and Σp = I, the posterior mean and precision
L reduce to the standard form in (F.4). The proof of the proposition is in the
appendix.

4 Total Variability Modeling Using Multiple Prior
In the Bayesian perspective, an informative prior increases the prior belief of the
location and dispersion of each source in a heterogeneous dataset. We note that
a different spread is observed for each source in the i-vector space. In the case of
cross-source trials, the test i-vectors belonging to one source and target i-vector be-
longing to another can no longer be assumed to lie close to one another, even when
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representing the same speaker. The implication of applying (F.9) directly would
intensify the difference across speech sources, resulting in poorer performance. We
shall demonstrate further in this section.

4.1 Prior-compensated i-vector Extraction
We propose to compensate for the differences across speech sources (e.g., telephone
versus microphone) by applying the prior mean and covariance at separate stages
in the i-vector extraction. More specifically, we propagate the prior mean to the
acoustic space, while the covariance remains intact as part of the prior. The
operation of segregating the prior mean and covariance is based on the equality of
marginalization which we shall now demonstrate.

Proposition 2: Let Π(c) be the marginal distribution for Gaussian c obtained by
modeling m = m0+Tw with the prior w ∼ N (µp,Σp). The same marginalization
Π(c) can be realized by modeling m = m0 + Tw + Tµp with the prior w ∼
N (0,Σp). This gives the following equality:

Π(c) =
∫
N (O|m0(c) + Tcw,Σ0)N (w|µp,Σp)dw

=
∫
N (O|m0(c) + Tcµp + Tcw,Σ0)N (w|0,Σp)dw

(F.11)

The proof of the proposition is in the appendix.
Comparing the first and second rows of (F.11), the prior mean µp is brought

forward to the conditional density, which describes the acoustic observation O.
By doing so, the term Tcµp imposes a shift on the global mean vector m0(c).
This also gives rise to prior distributions with a common mode at the origin (i.e.,
zero mean) but different dispersions Σp for individual sources. Algorithmically,
the projection Tcµp is applied on the observation by re-centering the first-order
statistics F̃(c), as follows

˜̃F(c) =
∑
t

γt(c)(ot −m0(c)−Tcµp)

= F̃(c)−N(c)Tcµp

(F.12)

This re-centering process brings heterogeneous sources to a common mode at the
origin of the total variability space and allows the priors to differ only with regard
to one anothers’ covariance.

The proposed prior-compensated i-vector extraction can be summarized into
the following steps:

1. Start out with an already trained T matrix.

2. For each source, extract an informative prior N (µp,Σp) using the minimum
divergence estimation as described in Section 3.1.
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3. Re-center the first-order statistics F̃ around the relevant source-specific mean
to give ˜̃F, as in (F.12).

4. Extract i-vectors, by matching the now zero-mean informative priorN (0,Σp)
for each source to the relevant re-centered first-order statistics:

φ =L−1(TTΣ−1(F̃−NTµp))

=L−1(TTΣ−1 ˜̃F)
(F.13)

where the precision L is as given in (F.10).

In the above process, the prior mean is projected to the acoustic space and
applied on the observed feature vectors ( (F.12) and (F.13) ). The end result is
that i-vectors extracted from different sources are being pulled toward a common
mode at the origin. In retrospect, the prior covariance could have been used in
a similar manner. Nevertheless, this is not done so for the following reasons:
Propagating the prior covariance to the acoustic space will cause the T matrix to
scale and rotate differently for each source. As a result, the i-vectors extracted from
different sources will lie in vector spaces that do not correspond to one another.
Alg. F.2 lists the details of the prior-compensated i-vector extraction steps.

Algorithm F.2: Prior compensated i-vector extraction steps
input : T,N, F̃
output: φ

begin
// For each source, determine N (µp,Σp)

µp = 1
I

I∑
i=1

φi

Σp = 1
I

I∑
i=1

(φi − µp)(φi − µp)T + 1
I

I∑
i=1

L−1
i

// Re-center first order statistics˜̃F(c) = F̃(c)−N(c)Tcµp
// Extract i-vector

φ = L−1(TTΣ−1 ˜̃F)
end

Figs. F.1 and F.2 show scatter plots of i-vectors extracted from utterances
for all three sources, to show the effect of applying source-informative priors. In
Fig. F.1, a non-informative prior is used, and here it is evident that there is a
different spread in the i-vector space for each source. In Fig. F.2, one informative
prior is used for the telephone data and another informative prior is used for the
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Fig. F.1: Distribution of i-vectors for three sources projected onto 2-dimensional space
defined by the first two principal axes of PCA. Non-informative case.

Fig. F.2: Distribution of i-vectors for three sources projected onto 2-dimensional space
defined by the first two principal axes of PCA. Informative case.

microphone and interview data. Offsetting the prior mean1 for each source in the
i-vector extraction phase brings together the centers for all the sources.

1The reason for the slight difference between the mean of the interview data and that of
the microphone data is due to the fact that only one prior is used.
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5. Estimation Using Factor Analysis

4.2 Prior-compensated Total Variability Matrix Estima-
tion

If we can further bring together the alignment of sources in the total variability
space, then applying prior-compensated i-vector extraction in this new space ought
to have the effect of applying a stronger source prior in the original space (note
that the strength of the prior is dependent on the estimation method used). We
propose to bring this alignment together in a single T matrix, where informative
priors are utilized in the EM algorithm that is used in the training stage.

In the E-step, we fix T, and for each source, find the posterior distribution
of the latent variables that maximizes a pre-defined lower bound (a functional).
In the M-step, we use the bound to find a more optimal value for T. The EM
algorithm guarantees that the log likelihood from Ti to Ti+1 increases, where i
represents the current training iteration. The proposed prior-compensated total
variability matrix estimation is summarized as follows:

1. In the E-step, we first determine an informative prior N (µp,Σp) using mini-
mum divergence estimation as described in Section 3.1. Using the informative
prior, compute the posterior mean using (F.9) and covariance using (F.10).

2. In the M-step, accumulate the statistics across all sources, and use these to
perform a single update for T.

3. Repeat these EM steps until convergence.

Notice that step 2 above generates the prior-compensated i-vectors, as proposed in
Section 3.2, together with their posterior covariance matrices. The source-related
information is compensated for in the E-step. The resulting total variability matrix
T could therefore be free from source-related influences. This is particularly useful
when the amount of data is not balanced across data sources in a heterogeneous
dataset. Alg. F.3 lists the details of prior-compensated EM.

5 Estimation Using Factor Analysis
In this section, we propose an estimation technique based on factor analysis. This
can be particularly advantageous in the case when the microphone and interview
data is more sparse than the telephone data, since covariance estimation using
standard methods can in some cases lead to singular matrices. As we already
know, given a set of Gaussian distributions, the Gaussian distribution that best
represents these distributions can be obtained by minimizing the KL divergence
between the two, and is given by the following objective function:

ΘMD =
I∑
i=1

E
[
log
N (w|m,L−1

i )
N (w|µp,Σp

−1)

]
(F.14)
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Algorithm F.3: Prior-compensated Expectation-Maximization
input : T,N, F̃
output: T
begin

// For each source, determine N (µp,Σp)

µp = 1
I

I∑
i=1

φi

Σp = 1
I

I∑
i=1

(φi − µp)(φi − µp)T + 1
I

I∑
i=1

L−1
i

// Reset accumulators
A = 0
C = 0
// Expectation Step - Compute the posterior

p(w|O) = N (φ, L−1)
for i = 1 to I do

Li = TTNiΣ−1T + Σp
−1

φi = L−1(TTΣ−1F̃i + Σp
−1µp)

E[wiwT
i ] = φiφi

T + Li
// Acumulate Statistics
A = A + Ni.E[wiwT

i ]
C = C + F̃i.φi

end
// Maximization Step - Solve the set of simultaneous

equations:
∑
i

NiTE[wiwT
i ] =

∑
i

Fiφi

T = C.A−1 // Solves for T
end
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5. Estimation Using Factor Analysis

Note that this objective function is identical to that proposed in (12) of [25], but
now with each posterior distribution characterized by its own separate covariance.
We now wish to model these Gaussian distributions with a factor analyzer with
mean µp and covariance

Σp
−1 = ΦΦT + D (F.15)

Consider the following reformulation of the objective function:

ΘMD =
I∑
i=1

E
[
log

N (w|m,L−1
i )

N (w|µp,ΦΦT + D)

]
(F.16)

Since there is no closed-form solution for determining the parameters Θ = {µp,Φ,D}
for the factor analyzer, they can be learned using an EM algorithm, where the fac-
tor analyzer is expressed as a marginalization between the posterior distribution
and a new hidden variable hi2. In the following M-step, the expectations are taken
with respect to w and hi:

ΘMD =
I∑
i=1

Ew

[
log

N (w|m,L−1
i )

Ehi
[N (w|µp + Φhi,D)]

]
(F.17)

In the E-step, we use standard methods to compute:

Ehi
[hi] =(ΦTD−1Φ + I)−1 ·ΦTD−1(m− µp)

Ehi [hihiT] =(ΦTD−1Φ + I)−1 + Ehi [hi]Ehi [hi]T
(F.18)

Proposition 3: The update rules for the M step for Θ are given as:

µp =1
I

I∑
i=1

m

Φ =
[

I∑
i=1

(m− µp)Ehi
[hi]T

]
.

[
I∑
i=1

Ehi
[hihiT]

]−1

D =diag
[

1
I

I∑
i=1

(m− µp)(m− µp)T + L−1
i −ΦEhi

[hi](m− µp)T

]
(F.19)

The proof of the proposition is in the appendix.
Note the significance of combining factor analysis with minimum divergence

estimation – it is simply a superposition of the individual approaches. The update
formulas for µp is identical to both the factor analysis and minimum divergence
approach. The update formula for Φ is identical to factor analysis, but not present

2Note that hidden variable w can be considered as observed, and simply corresponds to
the already determined i-vector distribution as obtained in the previous sections.
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with minimum divergence estimation. The update formula for D contains an
empirical term common to both factor analysis and minimum divergence, a term
identical to the posterior covariance in the minimum divergence approach and a
residual term identical to the residual term in the factor analysis case.

6 Experiments
Experiments were carried out on the short2-short3 task of SRE’08 [10] and the
core-core task of SRE’10 [11]. For all experiments, a gender-dependent setup
was used, resulting in the training and use of separate male and female total
variability matrices. The features used for training the 512-Gaussian UBMs were
57-dimensional MFCCs (including the first and second derivatives). The first-
order statistics used for training each total variability matrix were centered and
whitened [27].

In this work we compare four categories of systems, Category A, B, C and D.
The results for all four categories are shown in Table F.1 and Table ??. Category
A is the baseline category and contains three baseline configurations: a telephone-
only configuration, a pooled configuration and a cascade configuration. In the
telephone-only configuration, a T matrix of dimension 600 was trained using only
the telephone data. In the pooled configuration, a T matrix of dimension 600 was
trained using pooled telephone and microphone data. In the cascade configuration,
a T matrix of dimension 400 was trained using the telephone data, and a 200-
dimensional supplementary T matrix was trained using microphone data [2]. The
telephone data used to train these configurations was taken from SRE’04, 05 and
06. The microphone and interview data was taken from SRE’05, 06 and MIXER
5. For all three baseline configurations, the T matrices were trained using non-
informative priors in the E-step. Following the training stage, 600-dimensional
i-vectors were extracted using non-informative priors according to (F.5).

Category B comprises just a single configuration, where the already trained
pooled T matrix was used as the fixed total variability matrix. Using minimum
divergence estimation (Section 3.1), we trained one prior for the telephone subset
and another prior for the microphone and interview subsets. The data used to train
the telephone and microphone priors was identical to that outlined in Category
A. We chose to use only one prior for both the microphone and interview cases
since there was not enough interview data to reliably estimate a separate interview
prior. 600-dimensional i-vectors were then extracted by performing re-centering of
the first-order statistics using each prior’s mean, followed by computation of the
posteriors using each prior’s informative covariance, as outlined in Section 4.

Category C contains four configurations, C1, C2, C3 and C4. Instead of using
a pooled T matrix to extract i-vectors, a new 2-prior T matrix was trained using
separately derived priors in the E-step, as outlined in section 4.2. Once again, these
priors were extracted using minimum divergence estimation, with one prior for the
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telephone subset and another for the microphone and interview subsets. The data
used to train the telephone and microphone priors was identical to Category A and
B. After training was complete, this new 2-prior T matrix was once again used to
re-compute the priors needed for i-vector extraction, for all four configurations. For
configuration C1, i-vectors were extracted using separate telephone and microphone
priors. The priors were estimated using the minimum-divergence criterion. For C2,
the telephone prior was estimated using the minimum divergence criterion and the
microphone prior was estimated using factor analysis taking only the mean into
account. Configuration C3 was almost identical to C2, except where now the
microphone prior was estimated using factor analysis taking both the mean as well
as the covariance into account. Finally, for C4, both the telephone and microphone
priors were estimated using factor analysis taking both mean and covariance into
account.

For the final category, Category D, the number of priors was increased to three,
by using a separate prior for microphone and interview data. This category contains
three configurations, D1, D2 and D3. In all three configurations, the 2-prior T
matrix, used for Category C, was re-used here. For configuration D1, minimum
divergence estimation was used to estimate each prior. For D2, factor analysis
using only the mean of the posterior was used to estimate each prior. For D3,
factor analysis using both the mean and covariance of the posterior were used to
estimate the priors.

The following implementation details are common to all the above-mentioned
experiments: The number of iterations used to train the T matrices was set to 20.
For all priors trained using factor analysis, ten iterations were used for training the
portrait matrix Φ and D, as outlined in Section 5. The number of factors used for
the portrait matrix Φ was set to 200. After extracting i-vectors, we used a similar
experimental setup to [28] to carry out further processing and scoring. Firstly,
LDA was used to reduce the dimension of the i-vectors from 600 to 400. After
length normalization [3], PLDA was used to model the channel variability [29]. For
the PLDA model, a 200-dimensional telephone matrix was trained using telephone
data, and a 50-dimensional microphone matrix was trained, using microphone and
interview data. The matrices were trained in a decoupled manner.

7 Discussion
We present results for the all four categories, for both male and female trials. For
all results, we show both Equal Error Rate (EER) as well as the Detection Cost
Function (DCF) (DCF-08 for SRE’08 results and DCF-10 for SRE’10 results). The
SRE’08 results are shown in Table F.1, and the SRE’10 results are shown in Table
F.2. For each condition, results for both female and male trials are shown.
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Table F.1: SRE’08 performance comparison for the eight common conditions (CC) in the short2-short3 core task. Left: FEMALE Trials, Right:
MALE Trials. Each entry consists of EER (top) and DCF-08 (bottom). Entries in bold either match or beat the 3 baselines in Category A. Starred
entries (*) in rows C1-C4 shown for cases that outperform B1. Plus entries (+) shown where D3 outperforms D1 and D2. NI is Non-informative
prior (only 1).

CC1: int-int CC2: int-int CC3: int-int CC4: int-tel CC5: tel-mic CC6: tel-tel CC7: tel-tel CC8: tel-tel

Configuration T I-vector F M F M F M F M F M F M F M F M

A1 Telephone-only NI 3.51
0.16

2.84
0.13

1.50
0.05

0.32
0.00

3.61
0.17

2.97
0.13

5.69
0.28

4.07
0.19

6.65
0.27

4.17
0.19

5.85
0.31

4.67
0.25

2.73
0.14

2.32
0.11

3.24
0.15

1.43
0.06

A2 Pooled NI 3.22
0.16

2.54
0.13

1.28
0.06

0.33
0.01

3.29
0.16

2.64
0.13

4.65
0.25

3.89
0.19

5.62
0.26

3.05
0.14

5.86
0.29

4.15
0.25

2.84
0.14

1.60
0.11

3.32
0.14

1.04
0.07

A3 Cascade NI 3.17
0.16

3.01
0.14

1.25
0.05

0.41
0.02

3.27
0.16

3.22
0.15

5.38
0.26

4.27
0.20

6.10
0.26

4.12
0.16

5.86
0.30

4.06
0.23

2.98
0.13

1.66
0.10

3.81
0.15

1.32
0.07

B1 Pooled 2-priors 2.34
0.12

1.95
0.09

1.32
0.06

0.32
0.00

2.39
0.12

2.04
0.10

4.32
0.23

3.91
0.20

5.37
0.26

3.21
0.17

5.79
0.29

3.84
0.24

2.87
0.13

1.39
0.11

3.27
0.12

0.90
0.07

C1 2-priors 2-priors 2.33*
0.12

1.96
0.10

1.20*
0.05*

0.24*
0.00

2.37*
0.12

2.04
0.10

4.24*
0.22*

3.90*
0.19*

5.07*
0.23*

3.09*
0.15*

5.72*
0.28*

3.67*
0.24

2.80*
0.13

1.42
0.11

3.29
0.13

0.87*
0.07

C2 2-priors 2-priors 2.26*
0.12

1.99
0.10

1.58
0.06

0.18*
0.01

2.28*
0.13

2.09
0.11

4.20*
0.21*

3.94
0.20

4.83*
0.23*

2.97*
0.16*

5.68*
0.29

3.82*
0.24

2.74*
0.13

1.56
0.11

3.42
0.14

0.76*
0.07

C3 2-priors 2-priors 2.25*
0.12

1.99
0.10

1.56*
0.06

0.27*
0.00

2.29*
0.12

2.09
0.10

4.24*
0.21*

3.86*
0.20

5.09*
0.23*

3.08*
0.15*

5.68*
0.29

3.94
0.24

2.88
0.13

1.47
0.10

3.41
0.13

0.81*
0.06

C4 2-priors 2-priors 2.40
0.13

2.01
0.10

1.60
0.06

0.27*
0.00

2.44
0.13

2.10
0.10

4.05*
0.21*

3.98
0.20

5.01*
0.24*

3.06*
0.15*

5.70*
0.28*

3.79*
0.24

2.84*
0.13

1.35*
0.11

3.34
0.14

0.78*
0.07

D1 2-priors 3-priors 4.57
0.20

3.18
0.15

2.50
0.06

0.41
0.01

4.69
0.21

3.33
0.16

7.33
0.37

4.59
0.24

5.15
0.24

3.24
0.14

5.67
0.29

3.72
0.23

2.83
0.14

1.43
0.10

3.26
0.14

0.66
0.07

D2 2-priors 3-priors 3.40
0.16

2.67
0.13

1.99
0.04

0.41
0.02

3.48
0.17

2.78
0.14

6.28
0.34

4.14
0.21

5.06
0.23

3.26
0.14

5.69
0.29

3.80
0.24

2.80
0.13

1.50
0.11

3.44
0.14

0.85
0.07

D3 2-priors 3-priors 3.00+
0.15+

2.52+
0.13

1.73+
0.04

0.27+
0.03

3.07+
0.16+

2.64+
0.14

5.77+
0.31+

4.18
0.20+

5.05+
0.24

3.27
0.15

5.71
0.28+

3.95
0.25

2.83
0.13

1.52
0.11

3.46
0.13+

0.73+
0.07
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Table F.2: SRE’10 performance comparison for the nine common conditions (CC) for the core-core core task. Left: FEMALE Trials, Right:
MALE Trials. Each entry consists of EER (top) and DCF-10 (bottom). Entries in bold either match or beat the 3 baselines in Category A. Starred
entries (*) in rows C1-C4 shown for cases that outperform B1. Plus entries (+) shown where D3 outperforms D1 and D2. NI is Non-informative
prior (only 1).

CC1: int-int-
same-mic

CC2: int-int-
diff-mic CC3: int-tel CC4: int-mic CC5: nve-nve-

diff-tel
CC6: nve-hve-
diff-tel

CC7: nve-hve-
mic

CC8: nve-lve-
diff-tel

CC9: nve-lve-
mic

Configuration T I-vector F M F M F M F M F M F M F M F M F M

A1 Telephone-only NI 3.06
0.36

2.02
0.22

5.65
0.67

3.45
0.47

4.21
0.57

3.55
0.50

3.96
0.54

2.72
0.36

3.59
0.40

3.47
0.46

8.09
0.79

4.64
0.70

8.49
0.69

4.91
0.46

2.01
0.43

1.14
0.23

2.46
0.27

1.54
0.22

A2 Pooled NI 3.16
0.34

2.22
0.20

5.13
0.60

3.14
0.40

3.34
0.55

2.82
0.40

3.78
0.50

2.54
0.36

3.00
0.37

2.60
0.45

7.13
0.79

4.01
0.67

7.98
0.70

4.95
0.45

1.66
0.29

1.54
0.23

2.55
0.23

1.34
0.24

A3 Cascade NI 3.12
0.38

2.29
0.24

5.60
0.61

3.29
0.43

4.01
0.52

2.62
0.49

4.04
0.51

2.87
0.33

3.41
0.34

3.13
0.36

7.10
0.82

4.33
0.74

8.19
0.74

5.25
0.45

1.83
0.29

1.68
0.26

3.08
0.30

1.61
0.21

B1 Pooled 2-priors 2.43
0.35

1.67
0.24

4.44
0.62

2.25
0.43

3.87
0.62

3.19
0.61

3.33
0.49

2.22
0.36

3.00
0.42

2.89
0.39

7.11
0.77

4.13
0.69

7.49
0.59

4.16
0.51

1.59
0.34

1.56
0.26

2.48
0.31

1.15
0.24

C1 2-priors 2-priors 2.56
0.24*

1.48*
0.24

4.54
0.45*

2.20*
0.45

3.86*
0.60*

2.87*
0.59*

3.32*
0.38*

2.12*
0.38

3.13
0.40*

2.82*
0.40

7.19
0.67*

4.39
0.67*

7.69
0.48*

4.67
0.48*

1.65
0.23*

1.51*
0.23*

2.65
0.25*

0.85*
0.26

C2 2-priors 2-priors 2.67
0.37

1.69
0.26

4.62
0.57*

2.54
0.39*

3.75*
0.60*

3.07*
0.58*

3.28*
0.49

2.24
0.36

3.26
0.41*

2.76*
0.38*

7.18
0.80

4.18
0.66*

7.57
0.59

4.61
0.42*

1.61
0.36

1.47*
0.18*

2.68
0.27*

1.16
0.28

C3 2-priors 2-priors 2.63
0.36

1.81
0.24

4.62
0.58*

2.58
0.42*

3.83*
0.63

3.02*
0.52*

3.39
0.49

2.27
0.33*

3.26
0.40*

2.78*
0.40

7.08*
0.75*

4.10*
0.64*

7.37*
0.57*

4.72
0.42*

1.67
0.38

1.34*
0.18*

2.70
0.27*

1.34
0.21*

C4 2-priors 2-priors 2.61
0.36

1.79
0.24

4.60
0.56*

2.53
0.42*

3.79*
0.60*

3.09*
0.57*

3.29*
0.53

2.30
0.34*

3.12
0.42

2.90
0.39

7.22
0.80

4.01*
0.69

7.81
0.58*

4.48
0.44*

1.62
0.38

1.62
0.18*

2.64
0.27*

1.27
0.26

D1 2-priors 3-priors 4.48
0.48

2.40
0.34

8.45
0.78

3.41
0.53

6.87
0.74

4.12
0.66

4.98
0.66

2.87
0.38

3.03
0.41

2.88
0.41

7.32
0.74

4.09
0.63

7.71
0.67

4.15
0.42

1.67
0.39

1.64
0.19

2.61
0.29

0.89
0.24

D2 2-priors 3-priors 3.82
0.38

2.05
0.27

6.58
0.74

3.01
0.49

6.23
0.75

4.14
0.69

4.74
0.66

3.00
0.43

3.23
0.41

2.62
0.41

6.98
0.80

4.19
0.70

8.12
0.66

4.55
0.39

1.63
0.38

1.65
0.22

2.71
0.27

1.37
0.25

D3 2-priors 3-priors 3.60+
0.37+

2.07
0.28

6.11+
0.69+

2.95+
0.48+

5.69+
0.70+

4.02+
0.61+

4.56+
0.63+

2.76+
0.40

3.20
0.39+

2.73
0.40+

6.69+
0.79

3.95+
0.69

7.90
0.64+

4.46
0.39

1.63
0.37+

1.64
0.18+

2.54+
0.26+

1.29
0.26
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7.1 2-prior Compensated i-vector Extraction from Pooled
Total Variability Matrix

We begin by discussing Category B, the first proposed configuration. Looking at
the SRE’08 results with respect to EER for B1, we note a strong improvement
in common conditions 1 and 3, corresponding to the int-int condition. We could
not beat the baseline for CC 2, which we believe is due to the smaller number of
trials. For the mixed trials, i.e. CCs 4 and 5, source-specific informative priors
showed improved robustness against both the telephone-only and cascade cases.
For the pooled case however, the results were a lot closer and we did not beat this
baseline in all cases. We observed the best results were found for the female trials,
where all baselines were improved upon. Interestingly, our approach improved on
several of the tel-tel only conditions, more notably in the male case. From these
results, it appears that source-specific informative priors offer the greatest strength
in enhancing performance trials where the sources of the trial and target match.
For the B1 results, for both the female and male tasks, we were able to improve
on six out of eight conditions.

We also examine the SRE’10 results, again with respect to their EER. For the
single source interview and mic common conditions, as given by CCs 1, 2, 7 and 9,
we were able to beat all baselines in three out of four CCs in the female case and
all CCs in the male case. For telephone-only trials, given by CCs 5, 6 and 8, in only
one instance could all baselines be beaten. We believe the reason for the slightly
worse results for SRE’10 is the decreased similarity of the data used to train the
T-matrices and subspace PLDA models to that of SRE’08. For the cross-channel
conditions, we noted better performance for the int-mic cross channel than for
int-tel, strengthening our belief that best performance is gained where source and
target trials more closely match one another. For the female sub-task, we were able
to beat 6 out 9 conditions and for the male sub-task, performance was improved
for 5 out of 9 conditions.

7.2 2-prior Compensated i-vector Extraction using 2-prior
Compensated Total Variability Matrix

In section 4.2, we saw how it is possible to incorporate informative priors into the
construction of the total variability matrix in addition to the i-vector extraction
stage. When using such a configuration with just two informative priors, using
a variety of estimation techniques, we obtain the results shown in Category C.
Starred entries (*) indicate trials where the performance was better than using a
pooled T matrix (B1).

According to the EER shown for the SRE’08 results, for C1, six out of eight
conditions beat the baselines (the same as the number beaten in the pooled T
approach) - however the conditions where this occurred were slightly different.
Generally, we noted an improvement over B1 in seven out of eight common condi-

160



7. Discussion

Fig. F.3: SRE’08 Detection Error Tradeoff (DET) curves for the four common conditions
(CC) 1, 3, 4 and 5 for the short2-short3 core task.

tions for female trials, and five out of eight common conditions for male trials. In
particular, a much better performance is seen for CC 2, which for B1, was unable
to beat the baseline. For the remaining configurations C2, C3 and C4, which used
factor analysis with varying degrees, we did not see a large deviation in the results
compared to C1. This we believe is due to the fact that combining the microphone
and interview data into a single prior reduces the sparseness of such a prior, and
renders factor analysis for estimating such a prior less effective compared to mini-
mum divergence estimation. The SRE-10 results paint a similar picture, where for
C1, six out of nine for female trials and five out of nine for male trials were able
to beat the baselines. In only two cases was there an performance improvement
over C1 for female trials and six for male trials. Interestingly, this was significantly
higher when considering the DCF-10, where an improvement was seen in C1 over
B1 for every female trial and four male trials. Once again, we did not see a large
enough deviation in C2, C3 and C4 to warrant using factor analysis for estimating
priors over minimum divergence.

Fig. F.3 shows superimposed Detection Error Tradeoff (DET) [30] curves for
the three conditions A2, B1 and C2. For the int-int CCs 1 and 3 we notice a fairly
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constant improvement, with a substantial improvement from A2 to B1, and almost
similar performance for B1 and C1. For the mixed conditions, i.e. CC 4 and 5
there is still an improvement of B1 over A2, but this is less marked, and in the case
of CC 4, we noticed for a small range of threshold values, that A2 performed the
best. For the CCs B1 and C1, we see that in general the performance of one over
the other is very much dependent on the threshold setting that is chosen, but from
visual inspection, C1 appears to perform B1 for the mixed channel conditions.

In general, it appears from the above results that incorporating prior modeling
into the estimation of the T matrix leads to a better initial estimation for T, and
we believe this has the effect of compensating for source variation even before
considering using informative priors for i-vector extraction. We believe that using
the same T matrix for i-vector estimation is equivalent to increasing the strength
of the prior and results in more effective overall source compensation.

Finally, we discuss the results for Category D, that relates to re-using the T
matrix from Category B and C, but where three priors are used for i-vector ex-
traction. Once again we present the SRE-08 EER results first. Firstly, we note
from D1, where minimum divergence was used to estimate each prior, that the
performance is generally a lot worse than all other cases - most likely due to the in-
creased sparsity of the data across three priors instead of two. When factor analysis
is used, by taking only the mean into account, to estimate the priors instead, we
notice an improvement in six out of eight (female) and three out of eight (male).
Two things are apparent here: firstly, where there is improvement, it is substantial,
and secondly, improvement is mostly seen in the microphone / interview trials and
cross trials. This second observation is expected, since there is no change in the
sparsity of the telephone data (the subset is the same in the 2-prior and 3-prior
case), and hence we do not expect to see an improvement with factor analysis
(as was also observed under category C). When using factor analysis, but taking
also the covariance into account as well as the mean, as shown in D3, we notice
improvements over D2 in five out of eight (female) and four out of eight (male).
Once again, these were mostly observed for the microphone / interview trials and
mixed channel trials. Interestingly, four female and six male conditions were able
to beat the baseline in D3, as opposed to none for both D1 and D2, showing the
effectiveness of factoring in the covariance as well into the factor analysis estima-
tion technique. For the SRE-10 data, improvements were seen in D2 over D1 in six
out of nine conditions (female) and three out of nine conditions (male). Similarly,
from D3, further improvements were seen over D2 in six out of nine (female) and
four out of nine (male) conditions. Here, three female and male trials were able
to beat all baselines. Applying factor analysis appears to work well in cases where
the data is sparse, but not so well where the data is abundant.
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8 Conclusion
In this paper, we proposed a novel method of incorporating informative priors into
the posterior computation used in total variability modeling. The purpose of doing
this is to better describe the source variation from a heterogeneous dataset. We
propose to estimate informative priors using minimum divergence estimation and
using these priors to compute the posteriors at both the i-vector extraction stage
as well as the E-step in training a T matrix. We showed that both strategies
have a positive influence on speaker recognition performance. Conducting i-vector
extraction using two-source priors using an already trained matrix of pooled data
led to performance gains in six out of eight common conditions for the short2-
short3 task in SRE’08 for both genders, and six out of nine female and five out of
nine male common-conditions for the core-core task in SRE’10. Using the source
priors in the E-step to train a new T matrix, and once again carrying out 2-prior
i-vector extraction led to performance gains in six out of eight common-conditions
for the short2-short3 core task in SRE’08 for both genders, and six out of nine
female and five out of nine male common conditions for the core-core core task in
SRE’10.

We also investigated the use of both minimum divergence and factor analysis
for the 3-prior case. In the case of minimum divergence, we found the performance
was rather poor, which we believe to be due to the sparsity of the data. However,
factor analysis for the three-prior case showed very promising results, as opposed
to minimum divergence. Using only the mean showed a dramatic performance
improvement – for SRE’08 this improvement was seen in six female and eight male
common conditions, and for SRE’10 the improvement was in nine female and three
male conditions. Considering both the mean and covariance showed an additional
improvement of five female and four male conditions for SRE’08 and six female
and four male. However, due to the sparsity of the data for the two-prior case,
only some conditions were able to beat the reference baselines.

A Proofs of the Propositions

A.1 Proposition 1
Proof. Assume that we have the parameter set {T,Σ}, a set of hidden variables
w and a sequence of observations O. From Lemma 1 in [21] we know that the
log likelihood of O given w for the parameters {T,Σ} can be expressed as the
sum of two terms:

logPT,Σ(O|w) = GT + HT,Σ (F.20)

where GT is defined by (3) in [21], and HT,Σ is defined as
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HT,Σ = wTTTΣ−1F̃− 1
2wTTTNΣ−1Tw (F.21)

Since we are primarily interested in estimating T and not Σ, and since GT does
not depend on T, this term is not considered further [21]. Given the mean µp
and covariance Σp

−1 for the prior, we can express the prior as:

P (w) ∝ exp(−1
2(w− µp)TΣp

−1(w− µp)) (F.22)

The posterior distribution for w given HT,Σ is formulated as

P (w|O) = exp(wTTTΣ−1F− 1
2wTTTNΣ−1Tw−

1
2(w− µp)TΣp

−1(w− µp))

∝ exp(− 1
2(w− µ)TP(w− µ))

(F.23)

with P and µ in the stated form as above.

A.2 Proposition 2
Proof. We first derive the probability distribution of p(m) where m = m0+Tw
and w ∼ N (µp,Σp). The mean is computed as:

E[m] = E[m0 + Tw]
= E[m0] + E[Tw]
= m0 + Tµp

(F.24)

and covariance as:

E[(m− E[m])2] =E[(m0 + Tw−m0 −Tµp).
(m0 + Tw−m0 −Tµp)T]

=TE[wwT]TT −Tµpµp
TTT

(F.25)

We continue the derivation to find an expression for E[wwT] for the informative
case. In this case we know that the covariance of the prior distribution for p(w)
is simply Σp, and so we have:

Σp = E[(w− E[w])2] = E[wwT]− µpµp
T (F.26)

Substituting the results of (F.26) into (F.25) gives:

E[(m− E[m])2] =T(Σp + µpµp
T)TT −Tµpµp

TTT

=TΣpTT (F.27)
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Note that for the case of the non-informative prior, the mean and covariance
reduce to m0 and TTT, respectively. In the same vein, we compute the mean
for the marginalization modeled by m = m0 + Tw + Tµp and w ∼ N (0,Σp).
We find the mean to be

E[m] = E[m0 + Tw + Tµp]
= m0 + Tµp

(F.28)

which is identical to the formally derived mean in (F.24). The covariance is
computed as:

E[(m− E[m])2] =E[(m0 + Tw + Tµp −m0 −Tµp).
(m0 + Tw + Tµp −m0 −Tµp)T]

=TE[wwT]TT

(F.29)

To proceed we relate Σp and E[wwT] to one another:

Σp = E[(w− E[w])2] = E[wwT] (F.30)

Substituting the result of (F.30) into (F.29) gives:

E[(m− E[m])2] =TΣpTT (F.31)

which is identical to the formally derived covariance in (F.27). These will
contribute equally to the marginalization Π(c) given in (F.11). This concludes
the proof.

A.3 Proposition 3
Proof. The objective function for the factor analyzer as given by (F.17) can be
broken down as follows:

ΘMD =
I∑
i=1

Ew

[
−1

2 [log |L−1
i | + (w−m)TLi(w−m)]−

Ehi

[1
2 log |Σ| + (w− µp −Φhi)TD−1(w− µp −Φhi)

]] (F.32)

Considering momentarily only the last part of (F.32) relating to the denom-
inator in (F.17), we have:
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Ehi [log |Σ| + (w− µp −Φhi)TD−1(w− µp −Φhi)]
= log |Σ| + wTD−1w + yTD−1µp+

Ehi
[hi]TΦTD−1ΦEhi

[hi]− 2wTD−1µp−
2wTD−1ΦEhi [hi] + 2yTD−1ΦEhi [hi]

(F.33)

Plugging (F.33) back into (F.32) and expanding the first part, we have:

ΘMD =
I∑
i=1

Ew

[
−1

2

[
log |L−1

i | + wTLiw + mr
TLim−

2wTLim− log |Σ|−wTD−1w− yTD−1µp−
Ehi

[hi]TΦTD−1ΦEhi
[hi] + 2wTD−1µp+

2wTD−1ΦEhi [hi]− 2yTD−1ΦEhi [hi]
]]

=
R∑
i=1
−1

2(log |L−1
i | + Ew[w]TLiEw[w] + mr

TLim−

2Ew[w]TLim− log |Σ|− Ew[w]TD−1Ew[w]−
yTD−1µp − Ehi

[hi]TΦTD−1ΦEhi
[hi]+

2Ew[w]TD−1µp + 2Ew[w]TD−1ΦEhi
[hi]−

2yTD−1ΦEhi [hi]) (F.34)

We are now in a position to compute the update rules. Taking the derivative
of (F.34) with respect to µp gives the following:

∂

∂µp
ΘMD =

I∑
i=1
−1

2(−2D−1µp + 2D−1Ew[w]− 2D−1ΦEhi
[hi]) (F.35)

∴
R∑
i=1

µp − Ew[w] + ΦEhi
[hi] = 0 (F.36)

∴ Rµp =
R∑
i=1

Ew[w]−ΦEhi
[hi] (F.37)

Realizing that Ehi
[hi] = (ΦTD−1Φ + I)−1ΦTD−1(Ew[w] − µp), and the

Ew[w] = m, the above expression simplifies to

µp = 1
I

I∑
i=1

m (F.38)
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which is the expected expression for the mean value of µp.
We now proceed to determine the update rule for Φ by evaluating the

derivative (F.34) with respect to Φ:

∂

∂ΦΘMD =
I∑
i=1
−1

2(−2D−1ΦEhi
[hihiT]+

2D−1Ew[w]Ehi [hi]T − 2D−1µpEhi [hi]T)

∴
I∑
i=1

ΦEhi
[hihiT]− Ew[w]Ehi

[hi]T + µpEhi
[hi]T = 0 (F.39)

∴
I∑
i=1

ΦEhi
[hihiT] =

I∑
i=1

(Ew[w]− µp)Ehi
[hi]T (F.40)

Solving for Φ gives:

∴ Φ =
[

I∑
i=1

(Ew[w]− µp)Ehi
[hi]T

]
.

[
I∑
i=1

Ehi
[hihiT]

]−1

=
[

I∑
i=1

(m− µp)Ehi
[hi]T

]
.

[
I∑
i=1

Ehi
[hihiT]

]−1

(F.41)

Finally we determine the update rule for D by evaluating the derivative of
(F.34) with respect to D:

∂

∂DΘMD =
I∑
i=1
−1

2

[
−D−1 −D−1(−Ew[wwT]− µpyT−

ΦEhi
[hihiT]ΦT + 2Ew[w]yT+

2Ew[w]Ehi
[hi]TΦT − 2µpEhi

[hi]TΦT)D−1
]

(F.42)

∴
I∑
i=1
−1

2(−D−1 −D−1(−Ew[wwT]− µpyT−

ΦEhi
[hihiT]ΦT + 2Ew[w]yT + 2Ew[w]Ehi

[hi]TΦT−
2µpEhi

[hi]TΦT)D−1) = 0 (F.43)

Solving for D and taking only the diagonal (in accordance with the defini-
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tion of factor analysis, where ΦΦT is full and D is diagonal):

∴ D = diag
[

1
I

I∑
i=1

Ew[wwT] + µpyT + ΦEhi [hihiT]ΦT−

2Ew[w]yT − 2Ew[w]Ehi
[hi]TΦT + 2µpEhi

[hi]TΦT

]

= diag
[

1
I

I∑
i=1

mmr
T + L−1

i + µpyT + ΦEhi
[hihiT]ΦT−

2myT − 2mEhi [hi]TΦT + 2µpEhi [hi]TΦT

]

= diag
[

1
I

I∑
i=1

(m− µp)(m− µp)T + L−1
i +

ΦEhi
[hihiT]ΦT − 2mEhi

[hi]TΦT + 2µpEhi
[hi]TΦT

]

= diag
[

1
I

I∑
i=1

(m− µp)(m− µp)T + L−1
i +

(m− µp)Ehi
[hi]TΦT − 2mEhi

[hi]TΦT + 2µpEhi
[hi]TΦT

]

= diag
[

1
I

I∑
i=1

(m− µp)(m− µp)T + L−1
i − (m− µp)Ehi [hi]TΦT

]

= diag
[

1
I

I∑
i=1

(m− µp)(m− µp)T + L−1
i −ΦEhi [hi](m− µp)T

]
(F.44)

where Ew[wwT] = mmr
T + L−1

i .
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Additional Experiments for
Paper F

1 Background
In Papers E [1] and F [2] we addressed the issue of source variability using source-
specific informative priors. Unlike previous approaches that deal with source vari-
ability directly in the i-vector space, this approach operates in the supervector
space, meaning that the proposed algorithm is certainly more computationally ex-
pensive than the previous i-vector based approaches. The purpose of this appendix
is to add additional justification for our approach by comparing it to one of the
previous state-of-the-art i-vector based algorithms.

In [3, 4] the authors present a proposal called Source-Normalized-and-Weighted
LDA (SNAW). Two problems observed when using LDA on raw i-vectors are that
the source variability negatively impacts the estimation of the between-speaker
covariance matrix SB , and that insufficient utterances from each source for each
speaker negatively effects the estimation of the within-speaker covariance matrix
SW . To this end, the authors propose to source-normalize the i-vectors with
respect to the source mean when computing the inter-speaker scatter matrix SB .
As shown in [3, 4], for each source, assuming it has Nsrc utterances, the source
mean is computed as

µsrc = 1
Nsrc

Nsrc∑
n=1

wn (45)

For the given source, assuming µs is the mean-vector for each speaker from
that source and Ns is the number of utterances for a speaker of a given source,
the source-specific scatter matrix can be computed as:

SBsrc =
Ssrc∑
s=1

Ns(µs − µsrc).(µs − µsrc)T (46)
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The overall weighted source-normalized scatter matrix across all source is given
as:

SB =
∑ Nsrc

N
SBsrc (47)

The within-speaker scatter matrix is then computed as the residual variability
in the i-vector space:

SW = ST − SB (48)

where ST is computed as:

ST =
N∑
n=1

w.wT (49)

2 Experimental Work: Additional Baseline
Using the same training data as that used in [1, 2], we incorporate an additional
baseline. This is shown in Tables 3 and 4 as baseline A4, and corresponds to the
standard LDA computation being replaced with the SNAW approach. For easy
comparison, we include all previous experiment results. For the new baseline A4,
the T matrix corresponding to the pooled configuration was used.

3 Discussion of Results for 2-prior i-vector Ex-
traction

Looking at the SRE’08 results with respect to Equal Error Rate (EER), for female
data, A4 was the best baseline for five out of eight common conditions (CCs),
and for male data, it was the best for seven out of eight CCs. It challenged our
proposal somewhat, since for the proposed configuration B1, when we include the
additional baseline, we noticed that slightly fewer baselines were beaten than if A4
were not included. However, there was still good performance overall. For female
trials, proposal B1 beat all four baselines for four out of eight CCs, and for male
trials, for three out of eight CCs. B1 was also able to beat the A4 baseline (SNAW)
for six out of eight CCs in the female case, and four out of eight CCs for the male
case.

Looking at the SRE’10 results, again with respect to Equal Error Rate (EER)
for female and male trials, A4 was the best baseline for four out of nine CCs.
We saw markedly better performance for SRE’10 data than for SRE’08 data. For
female trials, the configuration B1 beat the four baselines for six out of nine CCs,
and for male trials, for five out of nine CCs. This was the same as reported for
the three baseline case, which is testament to the strength of using a prior-based
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Table 3: SRE’08 performance comparison for the eight common conditions (CC) in the short2-short3 core task. Left: FEMALE Trials, Right:
MALE Trials. Each entry consists of EER (top) and DCF-08 (bottom). Entries in bold either match or beat the 4 baselines in Category A. Starred
entries (*) in rows C1-C4 shown for cases that outperform B1. Plus entries (+) shown where D3 outperforms D1 and D2. NI is Non-informative
prior (only 1).

CC1: int-int CC2: int-int CC3: int-int CC4: int-tel CC5: tel-mic CC6: tel-tel CC7: tel-tel CC8: tel-tel

Configuration T I-vector F M F M F M F M F M F M F M F M

A1 Telephone-only NI 3.51
0.16

2.84
0.13

1.50
0.05

0.32
0.00

3.61
0.17

2.97
0.13

5.69
0.28

4.07
0.19

6.65
0.27

4.17
0.19

5.85
0.31

4.67
0.25

2.73
0.14

2.32
0.11

3.24
0.15

1.43
0.06

A2 Pooled NI 3.22
0.16

2.54
0.13

1.28
0.06

0.33
0.01

3.29
0.16

2.64
0.13

4.65
0.25

3.89
0.19

5.62
0.26

3.05
0.14

5.86
0.29

4.15
0.25

2.84
0.14

1.60
0.11

3.32
0.14

1.04
0.07

A3 Cascade NI 3.17
0.16

3.01
0.14

1.25
0.05

0.41
0.02

3.27
0.16

3.22
0.15

5.38
0.26

4.27
0.20

6.10
0.26

4.12
0.16

5.86
0.30

4.06
0.23

2.98
0.13

1.66
0.10

3.81
0.15

1.32
0.07

A4 SNAW NI 2.57
0.13

2.29
0.10

1.42
0.06

0.16
0.01

2.61
0.13

2.39
0.11

4.49
0.22

3.57
0.18

5.65
0.23

3.50
0.14

5.78
0.29

3.74
0.24

2.91
0.13

1.44
0.11

3.22
0.13

0.83
0.06

B1 Pooled 2-priors 2.34
0.12

1.95
0.09

1.32
0.06

0.32
0.00

2.39
0.12

2.04
0.10

4.32
0.23

3.91
0.20

5.37
0.26

3.21
0.17

5.79
0.29

3.84
0.24

2.87
0.13

1.39
0.11

3.27
0.12

0.90
0.07

C1 2-priors 2-priors 2.33*
0.12

1.96
0.10

1.20*
0.05*

0.24*
0.00

2.37*
0.12

2.04
0.10

4.24*
0.22*

3.90*
0.19*

5.07*
0.23*

3.09*
0.15*

5.72*
0.28*

3.67*
0.24

2.80*
0.13

1.42
0.11

3.29
0.13

0.87*
0.07

C2 2-priors 2-priors 2.26*
0.12

1.99
0.10

1.58
0.06

0.18*
0.01

2.28*
0.13

2.09
0.11

4.20*
0.21*

3.94
0.20

4.83*
0.23*

2.97*
0.16*

5.68*
0.29

3.82*
0.24

2.74*
0.13

1.56
0.11

3.42
0.14

0.76*
0.07

C3 2-priors 2-priors 2.25*
0.12

1.99
0.10

1.56*
0.06

0.27*
0.00

2.29*
0.12

2.09
0.10

4.24*
0.21*

3.86*
0.20

5.09*
0.23*

3.08*
0.15*

5.68*
0.29

3.94
0.24

2.88
0.13

1.47
0.10

3.41
0.13

0.81*
0.06

C4 2-priors 2-priors 2.40
0.13

2.01
0.10

1.60
0.06

0.27*
0.00

2.44
0.13

2.10
0.10

4.05*
0.21*

3.98
0.20

5.01*
0.24*

3.06*
0.15*

5.70*
0.28*

3.79*
0.24

2.84*
0.13

1.35*
0.11

3.34
0.14

0.78*
0.07

D1 2-priors 3-priors 4.57
0.20

3.18
0.15

2.50
0.06

0.41
0.01

4.69
0.21

3.33
0.16

7.33
0.37

4.59
0.24

5.15
0.24

3.24
0.14

5.67
0.29

3.72
0.23

2.83
0.14

1.43
0.10

3.26
0.14

0.66
0.07

D2 2-priors 3-priors 3.40
0.16

2.67
0.13

1.99
0.04

0.41
0.02

3.48
0.17

2.78
0.14

6.28
0.34

4.14
0.21

5.06
0.23

3.26
0.14

5.69
0.29

3.80
0.24

2.80
0.13

1.50
0.11

3.44
0.14

0.85
0.07

D3 2-priors 3-priors 3.00+
0.15+

2.52+
0.13

1.73+
0.04

0.27+
0.03

3.07+
0.16+

2.64+
0.14

5.77+
0.31+

4.18
0.20+

5.05+
0.24

3.27
0.15

5.71
0.28+

3.95
0.25

2.83
0.13

1.52
0.11

3.46
0.13+

0.73+
0.07
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Table 4: SRE’10 performance comparison for the nine common conditions (CC) for the core-core core task. Left: FEMALE Trials, Right: MALE
Trials. Each entry consists of EER (top) and DCF-10 (bottom). Entries in bold either match or beat the 4 baselines in Category A. Starred
entries (*) in rows C1-C4 shown for cases that outperform B1. Plus entries (+) shown where D3 outperforms D1 and D2. NI is Non-informative
prior (only 1).

CC1: int-int-
same-mic

CC2: int-int-
diff-mic CC3: int-tel CC4: int-mic CC5: nve-nve-

diff-tel
CC6: nve-hve-
diff-tel

CC7: nve-hve-
mic

CC8: nve-lve-
diff-tel

CC9: nve-lve-
mic

Configuration T I-vector F M F M F M F M F M F M F M F M F M

A1 Telephone-only NI 3.06
0.36

2.02
0.22

5.65
0.67

3.45
0.47

4.21
0.57

3.55
0.50

3.96
0.54

2.72
0.36

3.59
0.40

3.47
0.46

8.09
0.79

4.64
0.70

8.49
0.69

4.91
0.46

2.01
0.43

1.14
0.23

2.46
0.27

1.54
0.22

A2 Pooled NI 3.16
0.34

2.22
0.20

5.13
0.60

3.14
0.40

3.34
0.55

2.82
0.40

3.78
0.50

2.54
0.36

3.00
0.37

2.60
0.45

7.13
0.79

4.01
0.67

7.98
0.70

4.95
0.45

1.66
0.29

1.54
0.23

2.55
0.23

1.34
0.24

A3 Cascade NI 3.12
0.38

2.29
0.24

5.60
0.61

3.29
0.43

4.01
0.52

2.62
0.49

4.04
0.51

2.87
0.33

3.41
0.34

3.13
0.36

7.10
0.82

4.33
0.74

8.19
0.74

5.25
0.45

1.83
0.29

1.68
0.26

3.08
0.30

1.61
0.21

A4 SNAW NI 2.82
0.34

2.18
0.22

4.92
0.57

2.95
0.40

3.76
0.57

2.80
0.47

3.34
0.50

2.26
0.33

3.23
0.40

2.88
0.36

6.93
0.80

4.47
0.66

8.27
0.66

4.27
0.49

1.67
0.40

1.84
0.32

2.83
0.29

1.41
0.20

B1 Pooled 2-priors 2.43
0.35

1.67
0.24

4.44
0.62

2.25
0.43

3.87
0.62

3.19
0.61

3.33
0.49

2.22
0.36

3.00
0.42

2.89
0.39

7.11
0.77

4.13
0.69

7.49
0.59

4.16
0.51

1.59
0.34

1.56
0.26

2.48
0.31

1.15
0.24

C1 2-priors 2-priors 2.56
0.24*

1.48*
0.24

4.54
0.45*

2.20*
0.45

3.86*
0.60*

2.87*
0.59*

3.32*
0.38*

2.12*
0.38

3.13
0.40*

2.82*
0.40

7.19
0.67*

4.39
0.67*

7.69
0.48*

4.67
0.48*

1.65
0.23*

1.51*
0.23*

2.65
0.25*

0.85*
0.26

C2 2-priors 2-priors 2.67
0.37

1.69
0.26

4.62
0.57*

2.54
0.39*

3.75*
0.60*

3.07*
0.58*

3.28*
0.49

2.24
0.36

3.26
0.41*

2.76*
0.38*

7.18
0.80

4.18
0.66*

7.57
0.59

4.61
0.42*

1.61
0.36

1.47*
0.18*

2.68
0.27*

1.16
0.28

C3 2-priors 2-priors 2.63
0.36

1.81
0.24

4.62
0.58*

2.58
0.42*

3.83*
0.63

3.02*
0.52*

3.39
0.49

2.27
0.33*

3.26
0.40*

2.78*
0.40

7.08*
0.75*

4.10*
0.64*

7.37*
0.57*

4.72
0.42*

1.67
0.38

1.34*
0.18*

2.70
0.27*

1.34
0.21*

C4 2-priors 2-priors 2.61
0.36

1.79
0.24

4.60
0.56*

2.53
0.42*

3.79*
0.60*

3.09*
0.57*

3.29*
0.53

2.30
0.34*

3.12
0.42

2.90
0.39

7.22
0.80

4.01*
0.69

7.81
0.58*

4.48
0.44*

1.62
0.38

1.62
0.18*

2.64
0.27*

1.27
0.26

D1 2-priors 3-priors 4.48
0.48

2.40
0.34

8.45
0.78

3.41
0.53

6.87
0.74

4.12
0.66

4.98
0.66

2.87
0.38

3.03
0.41

2.88
0.41

7.32
0.74

4.09
0.63

7.71
0.67

4.15
0.42

1.67
0.39

1.64
0.19

2.61
0.29

0.89
0.24

D2 2-priors 3-priors 3.82
0.38

2.05
0.27

6.58
0.74

3.01
0.49

6.23
0.75

4.14
0.69

4.74
0.66

3.00
0.43

3.23
0.41

2.62
0.41

6.98
0.80

4.19
0.70

8.12
0.66

4.55
0.39

1.63
0.38

1.65
0.22

2.71
0.27

1.37
0.25

D3 2-priors 3-priors 3.60+
0.37+

2.07
0.28

6.11+
0.69+

2.95+
0.48+

5.69+
0.70+

4.02+
0.61+

4.56+
0.63+

2.76+
0.40

3.20
0.39+

2.73
0.40+

6.69+
0.79

3.95+
0.69

7.90
0.64+

4.46
0.39

1.63
0.37+

1.64
0.18+

2.54+
0.26+

1.29
0.26
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4. Conclusion

approach. Comparing B1 directly with A4, B1 was able to beat A4 for seven out
of nine CCs for both female and male trials.

4 Conclusion
We added the SNAW algorithm for computing the LDA transform in the i-vector
space as an additional baseline. The addition of this new baseline resulted in fewer
common conditions having a better EER when compared to all four baselines for
the SRE’08 case and no change for the SRE’10 case. 2-prior i-vector extraction
was able to beat the SNAW LDA approach for a substantial number of CCs.
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