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Indoor air in homes contains a variety of organic agents such as bacteria, endotoxin and fungi. Epide-
miological studies have shown links between these components and respiratory problems and the
development of allergies.

Twenty-eight dwellings located in the Greater Copenhagen area in Denmark were investigated in this
study. Temperature, relative humidity and air exchange rate were measured. Dwelling characteristics
including floor area, volume of the living room, floor material, year of construction of buildings and floor
level were collected. The microbial exposure was measured by quantifying fungi, bacteria and endotoxin
concentration in airborne dust collected by Electrostatic Dust fall Collectors (EDCs). The Total Inflam-
matory Potential (TIP) of the dust was also measured.

Significantly higher concentrations of fungi were found in dwellings with high relative humidity
(p = 0.03), larger room volume (p = 0.03) and in dwellings located on the second floor or higher
(p = 0.02). Small floor area per person and low air exchange rate were significantly associated with
increased concentrations of bacteria (both p < 0.01). Spring season (p = 0.01), buildings constructed

before the 20th century (p = 0.09) and wooden floor (p = 0.03) were associated with high TIP.
In conclusion, people living in smaller dwellings or in dwellings on upper floors are at higher risk of
microbial exposure. While TIP was affected by some dwelling characteristics, it was mainly influenced by

season.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Varieties of fungal and bacterial genera are commonly found
indoors in the form of airborne particles called “bioaerosol”. Along
with other pollutants, fungi and bacteria in settled dust can become
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airborne [13]. Airborne microorganisms have a tendency to
aggregate into particles of different sizes depending on source,
species, relative humidity and the mechanism of aerosolization
[26,36]. Several studies have indicated that the presence of fungi,
bacteria and endotoxin in the indoor environment is associated
with serious inflammation-related health risks such as asthma,
allergies and respiratory discomfort [18,32,58]. Furthermore,
several studies indicate that dose response relationship between
exposure to microorganisms and the development of asthma
exacerbate the symptoms [16,19,28,31,41,42].

The evaluation of TIP is based on the differentiated HL-60 cell-
line, which, upon exposure to microbial compounds, reacts by
producing reactive oxygen species (ROS). Human airways and lung
alveoli contain small number of granulocytes. In the human body
the pulmonary vasculature is the largest reservoir of granulocytes.
The pulmonary vasculature can distribute the granulocytes rapidly
and thus respond against pathogens [53]. Although the isolated
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granulocytes are short-lived [60], the production of ROS of gran-
ulocytes can represent a readout for microbial exposure. ROS can be
quantified by a luminol dependent chemiluminometric assay.

Fungi and bacteria, as well as endotoxin, are present in the outer
cell wall of gram-negative bacteria that naturally occur outdoors.
Levels of outdoor fungi are affected by local climate conditions,
such as rainfall and temperature [12]. Outdoor concentrations of
bacteria and fungi contribute to the indoor levels via infiltration
through the building envelope [21]. However, studies comparing
the indoor and outdoor levels of bacteria often find the indoor/
outdoor ratios are above 1 [2,6,21,34,52], showing the importance
of indoor sources. Several studies have suggested that in environ-
ments like homes [35], university buildings [37], schools [6] and
day-care centers [4], the main source of airborne bacteria indoors
are humans and human activities. Bacterial exposure levels in
homes are influenced by many factors, including, for example,
relative humidity of indoor air and seasons during the year [22,44].
Moisture has a great influence on fungal growth and bacterial
viability [59]. The temperature, ventilation rate and construction
details are often reflected in the year of construction which, have
been shown to influence the moisture level in dwellings [9,27,45].

Measurement of fungi, bacteria, endotoxin and assessment of
TIP can be costly. It is not clear whether building characteristics can
be used as a proxy for these microbial agents. Moisture-related
problems in buildings have been interlinked to respiratory prob-
lems [24,27,29]. Although the relationship between moisture in
homes and microbial exposure is well studied, the relationship
between building characteristics is not yet fully understood.
Improved understanding would be valuable in assessing the extent
to which the building characteristics can serve as a surrogate for
measurements of microbial exposure.

The objective of this study was to i) investigate possible asso-
ciations between building characteristics and concentrations of
fungi and bacteria and endotoxin in tested dwellings, and ii)
investigate associations between building characteristics and total
inflammatory potential of settled dust.

2. Methodologies

Twenty-eight dwellings in the Greater Copenhagen area were
investigated in this study. Characteristics of the dwellings are given
in Table 1. All dwellings were situated within a radius of 1600 m
from major roads (with more than 70,000 vehicles per 24 h) and
were not equipped with mechanical supply ventilation. Aside from
traffic, no other significant source of pollution was present nearby.
Neither visible mold nor water damage was observed in the
dwellings throughout the experimental period. A detailed
description of the study design and investigated dwellings is pre-
sented in Ref. [55].

The residents were elderly couples (in 22 dwellings) and in-
dividuals (6 dwellings). They were non-smokers. They spent 83%
(median) of their time at home during the study period. All par-
ticipants were above 51 years of age and had been living in their
dwellings for at least four years. One couple was later excluded as
the study was terminated in their dwelling due to complaints of
noise, leaving 48 participants living in 27 dwellings for analysis.

The measurements included number concentrations of ultrafine
particles (UFP), PM;5, air exchange rate (AER), temperature and
indoor air humidity, and the investigated bioaerosols: bacteria,
fungi and endotoxin, as well as TIP. The measurements in each
apartment lasted for 14 days and all measurements were
completed within a seven-month period starting November 2010.

Table 1

Building characteristics and settings in the dwellings.
ID T (°C) RH? (%) Area p. person Living room Floor Flooring Pets Year of AER (h™1) Exp. period® PM, 5¢ UFP®

(m?/person) volume (m3)  level material® construction (ngm=3)  (@#cm3)

1 20.30 29.70 10.9 68 1st \Y No 1903 0.587 w 6.76 7079
2 20.90 26.80 9.8 51 G Y No 1891 0.803 Y 6.84 17,620
4 21.30 40.40 5.2 54 G W No 1884 0.198 W —f 27,488
5 21.50 33.60 15.2 76 G P No 2004 0.250 W 8.11 10,945
6 21.30 37.00 13.8 76 3rd P Yes 1939 0.146 w 8.99 6327
7 21.10 44.50 10.5 53 4th C No 1954 0.251 W 9.45 —f
8 23.00 24.70 9.3 46 4th W Yes 2003 1.266 W 8.38 3706
9 21.60 29.20 15.8 81 4th Y No 2005 0.806 % 6.56 5255
10 22.60 32.30 7.6 40 1st W No 1883 0.568 Y 12.27 7669
11 22.90 29.60 123 65 2nd W No 1892 0.295 W 6.19 16,946
12 23.83 24.85 11.9 60 2nd P Yes 1979 0.486 S 9.39 16,286
13 23.46 23.15 18.0 104 4th P Yes 1896 0.878 S 13.32 8893
14 21.10 30.40 17.5 83 5th '\ Yes 1927 0.506 S 12.71 4023
15 22.28 25.08 7.6 46 G W No 1901 0.577 S 14.2 13,677
16 22.38 24.90 27.5 149 4th Y No 1924 0.549 S 2.77 16,053
17 23.37 27.19 16.2 104 G P No 1902 —f S 7.46 4036
18 23.25 16.67 39.2 100 5th C No 1974 _f S 5.55 —f
19 20.96 35.71 9.6 55 3rd w No 1895 0.451 S 11.12 94,783
20 21.92 27.17 18.0 112 1st C No 1893 0.366 S —f 3090
21 21.99 27.75 285 162 4th '\ No 2001 0.514 S 5.46 7155
22 21.60 36.95 6.9 35 3rd W No 1956 —f S 6.2 8662
23 21.72 32.69 17.8 42 2nd Y No 1797 0.654 S 7.62 13,692
24 2297 34.78 27.0 71 2nd W No 1800 0.396 S 341 4449
25 23.20 37.30 191 124 1st C No 1902 0.317 S 9.61 3435
26 22.86 43.18 191 106 2nd Y No 1921 0.289 S 13.95 5506
27 23.36 34.77 191 52 3rd W No 1904 0.197 S 2.32 —f
28 21.99 38.30 21.2 52 2nd W Yes 1995 0.639 S 9.33 —f
2 Average value over the whole two-week exposure period.
° Floor material in living room: W — wooden flooring, cork or linoleum; P — parquets; C — carpet.
¢ Experimental period: W — Winter (November—February), S — Spring (February—May).
4 Average value over two-week exposure period.
e

f Missing data due to failure of measuring device.

Average value over 24-h measurement. Measurement in dwelling no 3. was terminated and excluded from analyses.
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The UFP concentrations (# cm—>) were measured by means of
continuous monitoring using NanoTracer PNT 1000 (Philips
Electronics N.V., Netherlands) placed in the living room. The
NanoTracer counted particles in the range from 10 nm up to
300 nm. The UFP are defined as particles smaller than 100 nm,
thus also slightly larger particles than in the usual UFP cut-off of
100 nm were included. The UFP measurements consisted of
representative 24-h period. The PM,5 concentrations were
measured using a cyclone sampling head GK 2.05-KTL (BGI
Incorporated, USA) powered by BGI 400 sampling pumps (BGI
Incorporated, USA) with a constant sampling rate of 4 | min~.
The pumps collected particles continuously over the entire study
period; however, the filters were changed after seven days.
Concentrations of PM 5 were calculated as mg m~>. Details of the
procedure are given in Ref. [55].

Temperature (°C) and relative humidity (%, RH) were
measured using TinyTags (Gemini Data Loggers, UK), which were
placed in the living rooms. The TinyTags were set to measure in a
continuous mode giving the average in ten-minute intervals.
Perfluorocarbon tracer-gas method (PFT) was used to measure
the air exchange rates (AER, h!) in the dwellings. The dwellings
were treated as single zones. Details of the PFT technique
including analysis of tracer gases have been described previously
[7]. The uncertainty of single-zone tracer-gas measurements is
below 20%.

Dwelling characteristics collected by researchers included floor
area, volume of the living room, flooring material, year of con-
struction, floor level of the dwelling and the presence of pets.

Electrostatic Dust fall Collectors (EDCs) were used to collect
settled dust. The EDC consists of four polypropylene, electrostatic
fleece cloths (ZEEMAN Alphen, Holland) each with a surface area of
0.02 m? (0.19 x 0.11 m). EDCs have proven effective for measuring
endotoxin units (EU m~2 day~') as well as for and fungal colony
forming units (CFU m~2 day ') and bacteria (CFU m 2 day ')
[21,40]. In 20 dwellings one EDC was placed at the top of book-
shelves in the living room for a period of 14 days. Due to space
constraints, in seven dwellings the EDC was placed not on the top of
the bookshelf but between bookshelves. The average height of EDC
locations was 1.83 + 0.23 m. Fungi, endotoxin and bacteria present
in the dust on the EDCs were extracted and quantified as described
elsewhere [35].

To measure the TIP of indoor dust different cell based in vitro
assays have been used based on the Human Promyelocytic
Leukaemia cell line (HL-60) [21] a human macrophage cell line
[33], a lung epithelial cell line (A549) [3,33,51]. The detailed
procedure and evaluation of TIP (TIP m~2 day ') of settled dust is
described in Refs. [35,57]. The Electrostatic Dust fall Collector
(EDC) has been used for sampling sedimenting microorganisms
and other particles including endotoxin in the indoor environ-
ment [35]. The EDC was chosen for this study because of its time
integrating sampling ability, which is important given that indoor
exposure varies during a day due to different activities and oc-
cupancy levels [35] and the opening of windows [34]. The ability
of collected dust samples to induce ROS production was evalu-
ated by quantifying the TIP of settled dust. The TIP assay is based
on the Human Promyelocytic Leukaemia cell line (HL-60) differ-
entiated to granulocytes like cells [11,15]. Reasons for the assay to
be relevant for assessment of potential airway inflammation
caused by indoor exposure is that neutrophilic and eosinophilic
granulocytes are elevated in subjects with asthma [10,61].
Neutrophilic granulocytes can be also induced as a response to
exposure to bioaerosols [30,39]. Finally, as cell activation is
related to the multifactorial composition of the bioaerosol sam-
ple, it could be used as a measurement of the TIP of a given
sample.

2.1. Statistical analyses

Statistical analyses were conducted using SPSS® IBM® (Ver.
20.0.0, 2011). A General linear model (GLM) was used to evaluate
the influence of measured and observed dwelling characteristics on
concentrations of fungi, bacteria and endotoxin. The tested
explanatory variables included: air temperature (°C), indoor air
relative humidity (%), area per person (m? person~!), volume of the
living room (m?), floor level (ground floor to1st floor; 2nd floor and
higher), floor material (carpet; wood or linoleum), year of con-
struction (built before 1900; between 1901 and 1960; 1961 or
later), presence of pets (present; not present) and air exchange rate
(0—0.5; above 0.5 h™'). In analyses of the influence of building
characteristics on TIP, we included concentrations of PMj 5 (g m~3)
and particle number concentration of UFP (# cm ). For descriptive
purposes, the influence of the variable floor level on TIP was eval-
uated for each floor level individually, except the 5th floor. The 5th
floor was grouped together with the 4th floor.

For all statistical analyses, the following approaches were used:
i) univariate regression analyses, where each explanatory variable
was included individually in the model; and ii) a multiple regres-
sion approach, including all explanatory variables with mutual
adjustment. The influence of the explanatory variables on microbial
exposure were expressed as a percentage change in concentrations
of fungi, bacteria, endotoxin and TIP according to each given
increment in the linear determinant variable or class variable.
Analysed data for fungi, bacteria and endotoxin was not normally
distributed. However, the data was normally distributed after nat-
ural logarithmic transformation and the logarithmically trans-
formed data was used for the statistical analysis.

Pearson correlation coefficients were calculated to estimate
correlation between the season (winter or spring) and concentra-
tions of bacteria, TIP and fungi and between PM,s and fungal
concentrations.

3. Results and discussion

In the present study we evaluated possible associations between
dwelling characteristic and levels of fungi, bacteria and endotoxin
in settled dust, as well as TIP, in 27 Danish dwellings. The charac-
teristics of the dwellings are given in Table 1.

3.1. Concentrations of fungi

The fungal concentrations ranged from 127.6 to 6515
CFU m~2 day~! with a geometric mean of 1442 CFU m2 day .
Table 2 shows associations between nine dwelling characteristics
and fungal concentrations. In the multivariate analysis, the amount
of fungi was significantly higher in apartments with high indoor air
relative humidity (p = 0.03), room volume (p = 0.03) and on higher
floor levels (p = 0.02). The squared coefficient of multiple corre-
lation for multivariate association was relatively low (R* = 0.48,
Table 2) in this study, which means that our model does not fully
explain the variation in fungal concentrations. This can either hide
some important associations or result in false-significant results,
thus the data should be interpreted with caution.

In this study, larger rooms were significantly associated with
higher concentrations of fungi (p = 0.05 and p = 0.03 for univariate
and multivariate association, respectively). Significantly higher
fungi concentrations were also found in dwellings with larger area
per person (p = 0.05). However, this was only true in the univariate
model. In the multivariate model, this association changed direc-
tion and lost significance (Table 2). This could be explained as a
result of interference with variable RH in the multivariate analysis.
Pearson correlation between RH and area per person showed an
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Table 2
Concentrations of fungi measured in tested dwellings.

Univariate association

Multivariate association

% difference (95% CI)* P-value % difference (95% CI)° P-value
Temperature (°C) 4.0 (-9.5; 17.5) 0.58 35.5 (-5.4; 46.5) 0.18
Indoor air RH (%) 4.0 (-0.3; 8.3) 0.08 94 (1.8; 17.1) 0.03
Area p. person (m?/pers.) 3.7(0.1; 7.2) 0.05 -0.9(-74;3.1) 0.10
Room volume (m?) 0.8 (0.0; 1.6) 0.05 1.3(0.3; 2.9) 0.03
Floor level
>1st floor (n = 18) 42.5(-15.9; 101) 0.24 124.1 (57.9; 190) 0.02
ground—1st floor (n = 9) — — — —
Floor material
Carpet (n = 4) 51.7 (—26.1; 130) 0.30 43.3 (-33.7; 120) 0.28
Wood or linol. (n = 23) - - - -
Pets
No (n = 21) 87.2 (22.3; 152) 0.06 78.6 (—10.1; 161) 0.11
Yes (n = 6) - - - -
Year of construction
17th century — 1900 (n = 9) —44.1 (123; 34.5) 0.15 —43.1 (-170; 34.3) 0.12
1901-1960 (n = 11) 4.5 (-71.4; 80.4) 0.91 73.3 (—49.0; 195.6) 0.32
1961—present (n = 7) — — — —
AER (h™1) —78.8 (—187; 29.8) 0.1 —69.9 (-145; 15.4) 0.16

3 Estimated change in average fungi concentrations (in CFU m~2 day!). For example, a change of the variable floor level 42.5 is interpreted as 42.5% increase of
CFU m~2 day ™! of fungi in dwellings located above the first floor compared with group of dwellings on the ground and first floor.

b The model in the multivariate association explained 48% of the variance (R? = 0.48).

inverse correlation (r = —0.348, p = 0.08). Although the correlation
is not significant, the variable, together with the variable area per
person, showed the highest significance level among tested vari-
ables. A similar conclusion was drawn by Ref. [45], who found
relative humidity to have a more significant impact on concentra-
tion of fungi as compared to the impact of the occupied area. The
positive association between relative humidity and concentrations
of airborne fungi aligns with the fact that high relative humidity
allows fungal growth. However, the observation contrasts with the
more transient observation that more spores are aerosolised from
many different common indoor fungi at high air velocity if the
fungal colonised area is dried out [20,23]. High relative humidity
has also been shown as a factor to increase fungal concentrations in
other continents and cultures [5,45]. Analysing the impact of oc-
cupants' presence [35], showed fungal levels of
8.2 x 102 CFU m~2 day~! (average level) in absence of occupants
and of 3.0 x 103 CFU m~2 day~' (average level) when occupants
were present. This difference was not significant in this study,
however.

Elevated fungal concentrations measured in dwellings on higher
floor levels (p = 0.02) contrast with results of [49], who found the
highest levels of fungi on the ground floor. The difference might be
explained by different building characteristics in our study
compared to [49]. In Denmark, the Danish government released the
“The Building Act of 1856,” legislating a thinner exterior building
wall and increasing floor levels of the building. The thin uninsu-
lated building exterior walls might have increased the risk of water
condensation in dwellings and thus enhanced the growth of fungi
on the wall surface. It may also be speculated if the roof structures
are a significant source of fungal spores. Finally, the apartments are
not vertically airtight and the apartments at higher floor levels are
— because of the “stack effect” — expected to have a transfer of air
from apartments below to account for much of their air exchange.
There may be an accumulation of mold spores in the transferred air
as it moves from one floor to the next.

In our study we did not find a correlation between airborne
PM, 5 and fungal concentration (r = —0.04, p = 0.83). In previously
conducted studies particle-size intervals of fungi present in indoor
air have been reported mostly within the upper limit of 4.7 um in
diameter [38,47]. Another study has quantified size-resolved fungal
concentrations collected under both an occupied and a vacant state

in a school classroom [43]. In both states PM number was increased
predominately in the 3—5 pm range. It is most likely that the upper-
size limit of the PM collected in our study (i.e. 2.5 um in diameter)
was unable to include the entire size range of fungi mass.

3.2. Bacteria concentrations

The concentrations of bacteria were found to range from 102.5
to 23923 CFU m2 day! with geometric mean
2302 CFU m~2 day~ .. Uni- and multivariate associations between
analysed building characteristics and bacterial levels are displayed
in Table 3. The coefficient of determination is slightly higher for the
multivariate analysis between bacteria concentrations and dwell-
ings characteristics (R* = 0.57, Table 3) than fungi, but still too low
to fully explain the variation in concentrations. Area per person was
significantly correlated with bacteria levels, such that higher levels
of bacteria were found in apartments with smaller area per person
(p < 0.01). This is in accordance with what was earlier found by Ref.
[48], who reported a significant inverse association between size of
occupied area and concentration of bacteria.

In this study a statistically significant correlation was observed
between low CFU of bacteria and spring season (Pearson coefficient
r = 0.38, p = 0.02, data not shown). The results from earlier studies
are contradictory. While higher indoor levels of bacteria were re-
ported during spring, compared to winter in a Danish study [21], in
Finland slight yet significant differences between seasons (winter
and summer) have been observed, with the largest differences in
winter [46].

High bacteria levels were associated with lower air change rate
(p = 0.04 and p < 0.01 for univariate and multivariate association,
respectively). In agreement with our findings [25,17], have reported
high bacteria and bacterial endotoxins to be strongly associated
with inadequate ventilation-related habits (i.e., low air exchange
rate).

Low levels of bacteria were measured in dwellings located on
higher floor levels in univariate analysis (p < 0.01), but this asso-
ciation lost significance in the multivariate analysis (Table 3).

Bacteria levels were not associated with concentrations of PM; 5
mass. Similar to fungi, bacteria levels were in another study found
to be correlated with larger particle size-ranges (3—5 pm in
diameter in collected mass) [43].
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Table 3
Bacteria levels measured in tested dwellings.

Univariate association

Multivariate association

% difference (95% CI)* P-value % difference (95% CI)° P-value
Temperature (°C) -6.1(-214;9.2) 0.45 35.4 (-3.6; 25.8) 0.17
Indoor air RH (%) 34 (-1.5;8.3) 0.19 5.9(-0.8;9.2) 0.15
Area p. person (m?/pers.) —7.0 (-10.6; —3.5) <0.01 —-10.9 (-17.1; —4.6) <0.01
Room volume (m?) -0.8 (—1.6; 0.0) 0.07 1.4 (-0.1; 2.7) 0.1
Floor level
>1st floor (n = 18) —61.8 (—124; 0.0) <0.01 —49.3 (-119; 24.2) 0.09
ground—1st floor (n = 9) — — — —
Floor material
Carpet (n = 4) —48.8 (—136; 38.2) 0.14 —21.3(-46.8; 4.1) 0.11
Wood or linol. (n = 23) — - - -
Pets
No (n = 21) 1.5 (-74.5; 77.6) 0.97 28.1 (—58.3; 108) 0.67
Yes (n = 6) — — — —
Year of construction
17th century—1900 (n = 9) 81.1(-11.8; 174) 0.22 22.4 (-97.6; 64.0) 0.38
1901-1960 (n = 11) 133 (—42.8; 223) 0.07 —69.9 (—84.2; 86.5) 0.07
1961—present (n = 7) - - - -
AER (h™1) ~77.7 (-136; —18.9) 0.04 —86.7 (—149; —24.0) <0.01

3 Estimated change in average bacteria levels (CFU m~2 day ') according to the reference condition. For example a change of the variable floor material —48.8 is interpreted
as 48.8 decrease of bacteria level in dwellings equipped with carpet in the living room compared with a group of dwellings with wood or linoleum as a floor material in the

living room.

b The model in the multivariate association explained 57% of the variance (R*> = 0.57).

3.3. Levels of endotoxin

The geometric mean concentration of endotoxin was
119 EU m~2 day ™!, ranging between 11.2 and 1077 EU m~2 day ..
Concentrations of endotoxin were significantly negatively associ-
ated with area per person in the univariate model (p = 0.01,
Table 4). This association lost significance in the multivariate
model. However, it remained as the most important variable in the
model, with p = 0.08. Similar to our findings, two other studies by
Refs. [25,17] measured significantly higher levels of endotoxin in
dwellings occupied by higher number of persons and in 10 Cali-
fornia homes significant correlations have been found between
occupancy and endotoxin exposure [14]. In another study differ-
ences in endotoxin exposures have been found when occupants
were absent from their home for two weeks. During occupancy the

Table 4
Endotoxin levels measured in tested dwellings.

levels of endotoxin were 650 EU m~2 day ! while during occupant
absence the levels dropped to 39 EU m~2 day~! (average values)
[35]. Thus, the presence of occupants seems to increase the con-
centration of airborne endotoxin considerably.

None of the other investigated parameters showed significant
impact on endotoxin levels in the present study. The explanatory
power of the multivariate model was the lowest among the three
investigated variables, with R> = 0.33. As shown in previous
studies, concentrations of endotoxin indoors depends strongly on
frequency of cleaning, activity level and presence of occupants
[13,17,54,56]. Furthermore, differences within homes, low fre-
quency of vacuuming and poor ventilation habits were shown to
lead to exposure to high levels of endotoxin [1,8,17,25]. Beside
presence of occupants, however, these parameters were not
investigated in this study, which might explain the low R>.

Univariate association

Multivariate association

% difference (95% CI)* P-value % difference (95% CI)° P-value
Temperature (°C) -9.0 (-20.7; 2.8) 0.12 —14.6 (—28.7; 29.5) 0.41
Indoor air RH (%) 1.2 (-2.5;4.9) 0.55 3.0(-7.0; 13.0) 0.47
Area p. person (m?/pers.) -3.8(-6.8; —0.9) 0.01 -9.4(-19.0; 0.2) 0.08
Room volume (m?) -0.3(-0.9;0.3) 0.47 1.4 (-0.6; 3.4) 0.20
Floor level
>1st floor (n = 18) -21.4(-73.2; 30.3) 0.36 -114(-23.7; 1.0) 0.91
ground—1st floor (n = 9) - - - -
Floor material
Carpet (n = 4) —40.0 (—-108; 27.6) 0.15 —19.5 (-54.8; 15.8) 0.28
Wood or linol. (n = 23) — - - -
Pets
No (n = 21) —14.5 (-73.3; 44.3) 0.60 —28.1 (120; 64.0) 0.74
Yes (n = 6) - - - -
Year of construction
17th century—1900 (n = 9) —21.7 (-95.3; 52.0) 0.52 —93.5 (-262; 75.8) 0.37
1901-1960 (n = 11) 10.3 (-60.9; 81.4) 0.79 31.7 (—129; 193) 0.75
1961—present (n = 7) — — — —
AER (h™1) 58.4 (—67.8; 184) 0.27 63.2 (-5.4; 132) 0.17

2 Estimated change in average endotoxin (EU m~2 day ') For example, an increase of the variable indoor relative humidity for 1% is interpreted as 1.2% increase of

EU m~2 day ! of endotoxin per °C.

b The model in the multivariate association explained 33% of the variance (R? = 0.33).
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Results of studies investigating the impact of temperature and
RH on concentrations of endotoxin are contradictory. A study per-
formed in primary schools in Australia showed a positive correla-
tion between endotoxin concentrations in floor dust and indoor air
temperature, while inverse correlation was found with RH [50].
However, two other studies showed low effect of indoor air tem-
perature and relative humidity on levels of endotoxin concentra-
tions [8,21]. In our study, indoor air temperature and relative
humidity showed no significant impact on endotoxin levels; how-
ever, our results are only valid in a relatively narrow range of indoor
air temperature and RH.

3.4. Total inflammatory potential of settled dust

The average value of TIP in the 27 samples was
49.6 TIP m~2 day !, ranging from 28 to 66.9 TIP m2 day .. Both
uni- and multivariate analyses showed significantly lower TIP
during winter season compared to spring (p < 0.01 in both asso-
ciations) (Table 5). Additionally, the TIP was positively and signifi-
cantly correlated with fungi concentrations (Pearson coefficient
r = 0.33, p = 0.04) which is in accordance with [57]; who suggests
that fungi concentration plays an important role in ability of settled
dust to induce ROS.

Lower TIP was found in apartments with high PM,5 concen-
trations (p = 0.04) and greater room volume (p = 0.02). This and/or
higher PM; 5 concentrations mass might lead to varying microbial
composition. Both room volume and PM, 5 changed direction from
being positively associated with TIP in univariate analysis to being
negatively associated in multivariate analysis (Table 5). However,
the univariate analysis was not significant for PM; 5 concentrations
or room volume.

Other parameters, such as wooden floor (as compared to carpet)
and year of construction (older homes as compared to newer) did
not show significant associations with TIP in multivariate analyses.

Table 5
Total inflammatory potential of settled dust collected in 27 tested dwellings.

3.5. Study limitations

In this study concentrations of fungi, bacteria and endotoxin, as
well as TIP, were measured in 28 dwellings. At the time of mea-
surements, some characteristics of the dwellings, indoor climate
parameters and usage habits were recorded as well. However,
building characteristics were not the main focus of the study. This is
reflected in the low explanatory power for the presented models, as
some of the parameters shown in previous studies to have influ-
ence on the concentrations of fungi, bacteria and exotoxin were not
measured in this study. This is certainly the biggest limitation of
this study. The building characteristics include numerous variables
which were not all captured. Furthermore, the investigated build-
ings were characterised by a wide variability in the characteristics
of external envelopes and differences in outdoor conditions (e.g.,
outdoor air quality due to distance to traffic, wind pattern outdoor
RH and temperature), all of which are parameters that may impact
the concentrations of biological agents indoors. The study design
and sample size did not allow us to implement all this diversity into
our statistical models.

4. Conclusions

This study showed the size of the occupied space, together with
the season, to have the biggest influence on bacteria levels in
settled dust. Furthermore, bacteria levels were negatively associ-
ated with outdoor air exchange rate, indicating indoor sources
dominate in contributing to the indoor bacteria levels. Relative
humidity of indoor air, volume of the room and floor level also play
important roles for concentrations of airborne fungi.

Aside from some dwelling characteristics, the spring season
appears to have an impact on the inflammatory potential of settled
dust. In conclusion, selected dwelling and building characteristics
might have a predictable effect on microbial exposure.

Univariate association

Multivariate association

% difference (95% CI)* P-value % difference (95% CI)° P-value
Year season
Winter (n = 10) -13.6 (-20.3;-6.9) <0.01 —20.0 (-27.4; -12.6) 0.01
Spring (n = 17) — — — —
PMa5 (ug m~3) 0.2 (-1.2;1.3) 0.98 -24(-3.7; -1.0) 0.04
UFP (# cm ™) 0.1 (0.0; 0.1) 0.29 0.1 (-0.1; 0.1) 0.64
Temperature (°C) -0.3(-4.1;4.7) 0.88 -1.7 (-6.9; 3.6) 0.57
Indoor air RH (%) 0.1 (-0.6; 0.6) 0.94 1.2 (-3.9;6.3) 0.17
Area p. person (m?/pers.) 0.3(-0.2;0.8) 0.30 0.9 (-0.1; 1.8) 0.16
Room volume (m?) 0.1(-0.1;0.2) 0.30 —-2.9(-4.1; -1.6) 0.02
Floor level
Ground floor (n = 5) —2.3(-14.1;94) 0.70 2.5(-74.4; 69.9) 0.75
1st floor level (n = 4) 6.7 (—5.9; 19.4) 0.31 1.8 (-9.1; 12.7) 0.76
2nd floor level (n = 6) 9.4 (-1.7; 20.6) 0.10 10.1 (-0.1; 204) 0.15
3rd floor level (n = 4) 4.8 (-7.8; 17.5) 0.45 -17.9 (-35.8; 0.1) 0.14
4th floor level and higher (n = 8) - - - -
Floor material
Wood or linol. (n = 18) 24(-9.1; 13.9) 0.68 22.9(10.4; 35.4) 0.03
Parquets (n = 5) —6.1 (-20.1; 7.8) 0.39 14.1 (-0.7; 28.9) 0.16
Carpet (n = 4) — — — —
Pets
No (n = 21) -1.4(-12.9; 10.2) 0.81 -12.9 (-27.8; 2.1) 0.19
Yes (n = 6) — — — —
Year of construction
17th century—1900 (n = 9) 7.5(-2.3;174) 0.15 9.9(1.8; 17.9) 0.09
1901-1960 (n = 11) 11.6 (2.1; 21.1) 0.02 8.2 (-1.8;18.1) 0.21
1961—present (n = 7) — — — —
AER (h™1) 0.2(-2.3;2.6) 0.88 -1.4(-3.3;04) 0.24

3 Estimated change in average TIP (TIP m~2 day ). For example, an increase of the variable temperature for 1 °C is interpreted as 0.3% decrease of TIP m~2 day .

b The model in the multivariate association explained 87% of the variance (R? = 0.87).
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