
 

  

 

Aalborg Universitet

Energy Management System with Equalization Algorithm for Distributed Energy
Storage Systems in PV-Active Generator Based Low Voltage DC Microgrids
Aldana, Nelson Leonardo Diaz; Hernández, Adriana Carolina Luna; Quintero, Juan Carlos
Vasquez; Guerrero, Josep M.
Published in:
Proceedings of the 2015 IEEE First International Conference on DC Microgrids (ICDCM)

DOI (link to publication from Publisher):
10.1109/ICDCM.2015.7152057

Publication date:
2015

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Aldana, N. L. D., Hernández, A. C. L., Vasquez, J. C., & Guerrero, J. M. (2015). Energy Management System
with Equalization Algorithm for Distributed Energy Storage Systems in PV-Active Generator Based Low Voltage
DC Microgrids. In Proceedings of the 2015 IEEE First International Conference on DC Microgrids (ICDCM) (pp.
293-298 ). IEEE Press. DOI: 10.1109/ICDCM.2015.7152057

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 29, 2017

http://dx.doi.org/10.1109/ICDCM.2015.7152057
http://vbn.aau.dk/en/publications/energy-management-system-with-equalization-algorithm-for-distributed-energy-storage-systems-in-pvactive-generator-based-low-voltage-dc-microgrids(fa69fe9c-3740-4736-99c6-6f524b9414df).html


Energy Management System with Equalization
Algorithm for Distributed Energy Storage Systems in

PV-Active Generator Based Low Voltage DC
Microgrids

Nelson L. Dı́az∗†, Adriana C. Luna∗, Juan C. Vásquez∗, and Josep M. Guerrero∗
∗Department of Energy Technology, Aalborg University, Aalborg, Denmark
†Faculty of Engineering, Universidad Distrital F. J. C., Bogotá, Colombia
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Abstract—This paper presents a centralized strategy for equal-
izing the state of charge of distributed energy storage systems in
an islanded DC microgrid. The proposed strategy is based on a
simple algorithm called equalization algorithm, which modifies
the charge or discharge rate by weighting the virtual resistor
of local droop control loops at each distributed energy storage
system. The proposed strategy, can be used as an additional
function of the microgrid energy management system where
the state of charge of distributed ESS is equalized within a
determined window of time. Finally, real-time simulation results
of a low voltage DC microgrid are presented in order to verify
the performance of the proposed approach.

Keywords—Distributed energy storage systems, Droop control,
Equalization algorithm, State of Charge.

I. INTRODUCTION

Low voltage DC power distribution systems have been
widely used for supplying critical loads, such as data cen-
ters, remote communication stations or residential applications
[1], [2]. In particular, DC power distribution systems offer
more reliability, and efficiency than conventional AC power
distribution systems [3]. In addition, aspects associated with
synchronization, reactive power flow, and harmonic currents
are not a concern in DC power systems [4].

With the fast development of Renewable energy sources
(RES), a microgrid appear as a feasible solution for a co-
ordinated integration of RES into a low voltage DC power
system [5]. However, the stochastic behavior of the RES, such
as photovoltaic (PV) generators, requires the integration of
more energy storage systems (ESS) in order to smooth the
variations at the RES [6]. As a matter of fact, when economic
and environmental issues do not allow interconnection with
the main power grid, the capacity of the ESS needs to be
increased in order to ensure several to many hours of energy
reserve [7]. For that reason, the current trend is oriented
to the integration of distributed RES and its corresponding
ESS as a unit denoted as active generator (PV+ESS) [6], [8].
Fig. 1 shows the basic scheme of an islanded DC microgrid
composed by two (PV+ESS) active generators and a critical
load. Commonly, valve regulated lead-acid (VRLA) batteries
are the most used in islanded microgrids, since they offer
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Fig. 1: Islanded DC microgrid configuration based on
(PV+ESS) active generators.

a good commitment between energy density, deep-cycle life,
transportability, availability, and cost [7], [9].

When distributed ESS are used, it is recommended a
coordinated operation between them in order to avoid deep-
discharge in one of the energy storage unit and over-charge in
the others. Differences at the SoC could limit the life-time of
the ESS with the smallest SoC, since this ESS will be exposed
to bigger deep of discharge [10]. Therefore, when the ESS are
being charged, it is desirable to prioritize the charge of the ESS
with the smallest state of charge (SoC), and on the contrary,
when the ESS are being discharged, the unit with the highest
SoC should provide more power to the microgrid than the
others in order to ensure stored energy balance [11], [12].

Commonly, droop control strategies are used in order to
achieve good power sharing between units [5]. Indeed, con-
ventional control loops for distributed ESS are complemented
with control actions which adjust the droop coefficients in
accordance to the SoC. In this way, it is possible to achieve
equalization at the stored energy. It this sense, several different
approaches have been proposed for equalizing the SoC at
distributed ESS such as in [13]–[20]. However all of them
assume equal capacity for all the distributed ESS. In [4],
the authors consider some differences between energy storage
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units. Despite this, the equalization strategy is applied to
ESS based on electric-double-layer capacitors rather than on
batteries. Although, the stored energy is balanced, long time
and additional control loops are required.

This paper proposes a simple function for the energy man-
agement system (EMS) of an islanded DC microgrid, based on
a centralized strategy denoted as equalization algorithm, which
achieves asymptotic approach of the SoC within an established
window of time for distributed ESS based on batteries. The
proposed equalization algorithm weights the droop coefficients
of the droop control loops, within a defined window of time,
in order to equalize the SoC for distributed ESS. Real-time
simulation results under charge and discharge conditions and
considering differences at the batteries capacity are presented
in order to validate the proposed strategy.

The paper is organized as follows. Section II explains the
operation of the microgrid and how the droop control loops
should be adjusted in order to achieve equalization. Section
III explains the proposed equalization algorithm, and finally
Sections IV and V present real-time simulation results and
conclusions respectively.

II. CONFIGURATION AND OPERATION OF THE DC
MICROGRID

The low voltage DC microgrid consider for this study-case
is composed by two PV-based active generators (PV+ESS) and
a critical load (see Fig. 1). The microgrid is formed around a
standard 48Vdc common bus, which is a kind of low voltage
DC power distribution system that is widely used, since it
allows working on a live conductor with minimum risk for
personal injury and without special safety requirements [21].
Moreover, non-isolated buck DC/DC converters operating in
continuous mode are used for the conversion stage of each
RES and ESS as proposed in [15].

In isladed operation, it is expected that the RES’ operate
by using a maximum power point tracking (MPPT) algorithm,
in order to obtain from the RES the maximum amount of
available energy. Fort that reason, RES’ operate as constant
power sources following the current reference given by the
MPPT algorithms. This current reference can be obtained from
MPPT methods as the one proposed in [22]. However MPPT
strategies are out of the scope of this paper, interested readers
may also refer to [23]. To get back to the point, the inductor
current of the converter is controlled by typical inner current
loops. Fig. 2 shows the scheme of the inner current control for
each RES.

Meanwhile, the ESS operate in voltage control mode
(VCM) being responsible of regulating the bus voltage. At
this mode, the batteries will be charged or discharged in order
to compensate the unbalance between the energy generated
by RES and load consumption [20], [24]. Commonly, The
power unbalance is equally shared between ESS by means
of conventional droop control loop [5]. Therefore, the voltage
at the common bus (VDC) is established by the following
equation:

VDC = V ∗
DC −Rd · IESSi (1)

where Rd is the virtual resistance of the droop control loop,
V ∗
DC is the voltage reference of the common DC bus, and
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IESSi is the output current of each ESS. In this case, a typical
double-loop VCM controller is implemented for a bidirectional
non-isolated buck converter, as can be seen in Fig.3. When the
same virtual resistance (Rd) is applied to each ESS control
loop, the current is equally shared between ESS (see Fig. 4(a)).

Under the discharge of the battery, for balancing the SoC
between ESS, the ESS with the highest SoC should supply
more power to the microgrid than the other. On the contrary,
when the batteries are being charged the ESS with the smallest
SoC should get more energy from the microgrid than the
other. This behavior can be achieved by weighting the virtual
resistance (Rd) by a factor αi as is shown in Fig. 4(b), where
the largest SoC have been assumed for ESS2. Therefore, (1)
can now be rewritten as follows:

VDC = V ∗
DC −Rd · αi · IESSi (2)
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Fig. 4: Droop characteristics: (a) Equal virtual resistance Rd
(b) Weighted virtual resistance αRd.

Finally, the microgrid system is complemented with an en-
ergy management system (EMS) that execute the equalization
algorithm in order to obtain the values for α1 and α2 as can
be seen in Fig. 5.
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Fig. 5: Diagram of the DC microgrid with conventional inner control loops.

It is important to say that this paper will only consider the
operation of the microgrid when the ESS are being charged
or discharged. Anyhow, the operation of the microgrid should
be complemented by appropriate charge strategies that avoid
excessive overcharge in the batteries, such as in [20], and [15],
as well as load-shedding, or actions for limiting the deep of
discharge of the batteries as proposed in [25]. Next Section
will explain the proposed equalization algorithm in detail.

III. PROPOSED EQUALIZATION ALGORITHM FOR SOC

The algorithm is based on the fact that the rate of change of
the SoC is directly proportional to the battery current (Ibati ∝
mSoCi), where mSoCi is the rate of change for the SoC at
each ESS. For that reason, by adjusting mSoCi it is possible
to achieve an equalization of the SoC at distributed ESS, as is
shown in Fig. 6, where the dashed lines represent the behavior
of the SoC without compensation, and the continuous lines
represent the expected behavior of the equalization algorithm.

In order to derive the proportional relationship between
the battery current and the ration of the SoC, we consider the
ampere-hour (Ah) counting method equation [15],

SoC(∆t)Bati = SoC(0)Bati −
∫ ∆t

0

ηBati
IBati(τ)

CBati
dτ (3)

where SoC(∆t)Bati is the final SoC after a period ∆t,
SoC(0)Bati is the initial SoC, CBati is the capacity of the
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Fig. 6: Expected behavior of the equalization algorithm.

battery in (A/h), ηBati is the charging/discharging efficiency,
and IBati(τ) is the instantaneous current at each battery array
[9]. In addition, the output current of each ESS (IESSi) is
inversely proportional to the battery current (IBati) by a factor
1/D,

IESSi =
1

D
IBati (4)

where D is the duty-cycle of the PWM signal that controls the
buck converter. By considering a constant current charge from
(3), the following relationship can be obtained,

IESSi = −∆SoCBati(%)

∆t(s)

(
3600CBati(A/h)

ηBati(%)D

)
(5)



where ∆SoCBati = SoC(∆t)Bati − SoC(0)Bati. Then (5)
takes the form:

IESSi = −mSoCiKBati (6)

being, mSoCi the rate of the SoC, and KBati a proportionality
constant that depends on the main parameters of the ESS.

In a general case, where n distributed active generators
(PV+ESS) are integrated into the microgrid, it is easy to derive
the Kirchhoff current law equation for the common node as:

n∑
i=1

IESSi +

n∑
i=1

IRESi − ILoad = 0 (7)

where, (ILoad) is the load current, (IRESi) is the power
supplied for each RES, and (IESSi) is the current at each ESS.

In particular, for the proposed DC microgrid shown in Fig.
5, by combining (6) and (7), we have

2∑
i=1

−mSoCiKBati +

2∑
i=1

IRESi − ILoad = 0 (8)

Moreover, in order to perform the SoC equalization, it is
required that the straight-line equations, that represents the
behavior of the SoC within a defined period of time (∆t),
are equalized between then as:

SoC(0)Bat1 +mSoC1∆t = SoC(0)Bat2 +mSoC2∆t (9)

to be more precise SoC(∆t)Bat1 = SoC(∆t)Bat2.

To get back to the point, the main task of the equalization
algorithm is to solve the equation system composed by (8)
and (9), in order to obtain the adequate values for mSoCi

that ensure the equalization of the SoC within a defined
period (∆t). Once the value for each mSoCi is obtained, it
is necessary to obtain the adequate values for the weighting
factor αi (see (2)).

Firstly, the algorithm determines if the ESS’ are being
charged of discharged by evaluating the sign of any ESS
current. This step is necessary since under the process of
charge the smallest value of α should be assigned to the ESS
whit the smallest SoC in order to charge the ESS with the
smallest SoC faster. On the other hand, under the process of
discharge the smallest value of α should be assigned to the ESS
with the biggest SoC. In this way, the ESS with the biggest
SoC will be discharged faster than the others. Consequently, it
is also necessary to determine which ESS has the biggest SoC,
this is possible by simple comparison. As a result, the values
of α are bounded to 1. In addition, by considering differences
at the capacity of distributed ESS the maximum value of the
weighting factor (αi) is determined by:

αmax = Cmin/Cmax (10)

where Cmax and Cmin are the maximum and minimum values
of the ESS capacities. To illustrate, the algorithm is shown in
Fig. 7.

Likewise, under normal operation it is expected a similar
charge/discharge ratio for both ESS (mSoC1 = mSoC2) despite
of differences at the capacity of each ESS. To achieve this
behavior, the virtual resistance Rd of the ESS with the biggest
capacity should be weighted by the relationship Cmin/Cmax.
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Fig. 7: Equalization algorithm.

TABLE I: Main Parameters of the microgrid

Parameter Symbol Value
Nominal Bus Voltage V ∗

DC 48 (V)
Nominal Load RLoad 10 (Ω)
Maximum (RES) Power Rating PRESmax 300 W
Nominal Voltage V bat 48V
Nominal Battery Capacity Cbat 0.02 (Ah)
Period of the Equalization Algorithm ∆t 5 (s)
Duty-cycle D 0.93 (Ah)
Charging/discharging efficiency ηBati 100
Virtual Resistance Rd 0.5 (Ω)

IV. HARDWARE-IN-THE-LOOP RESULTS

The proposed equalization algorithm has been tested in
a low voltage DC microgrid model established in a MAT-
LAB/Simulink model that was downloaded into a dSPACE
1006 platform in order to evaluate the performance of the al-
gorithm in real-time. The microgrid composition was presented
in Fig. 5. The power stage and main parameters are presented
in Table I. Particularly, small values of capacity (Cmax = 0.02)
have been selected in order to speed up the simulation time.
Detailed models of the VRLA batteries have been used for
simulation as is proposed in [15].

For the simulation, three main cases have been considered.
That is, CBat1 = CBat2, CBat2 > CBat1, and CBat2 < CBat1.
All the cases were simulated by considering a total generation
from RES of PRES = 260W and PRES = 100W for charging
and discharging respectively.

A. Case CBat1 = CBat2

Fig. 8 shows the performance of the equalization algorithm
when the ESS are being charged. An initial SoC of 65% and
75% have been established for ESS1 and ESS2 respectively.
Fig. 8(a) shows the equalization process for SoCBat1 and
SoCBat2. Fig. 8(b) shows the way the output current at
each ESS is equally shared between ESS when the algorithm
is not applied, and how the current is adjusted during the
equalization in order to achieve the objective. At the end,
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Fig. 8(c) shows the difference between SoC Diff(SoC) =
SoCBat1 − SoCBat2, where it is possible to see that the
difference is practically zero after two iterations. Similarly,
Fig. 9 shows the response of the microgrid when the ESS’ are
being discharged. Comparing Fig. 8 and Fig. 9, we can see
that for the discharging |IBat2| > |IBat1|, and for charging
|IBat1| > |IBat2| SoC equalization is achieved.

B. Case CBat2 > CBat1

Fig. 10 and 11 show the response of the microgrid when
CBat1 = 0.01(A/h). We can see that when the equalization
is not applied, we have |IBat2| > |IBat1|. The reason of this
is that ESS2 requires much more current in order to achieve
mSoC1 = mSoC2. However when the algorithm is applied, the
current is adjusted in order to equalizing SoC’s.

C. Case CBat2 < CBat1

Fig. 12 and 13 show the response of the microgrid when
CBat2 = 0.01(A/h). Compared to the previous case |IBat2| <
|IBat1|, when the equalization is not applied. It is possible to
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see clearly from Fig. 12 (from 10s to 11s), that the ESS is able
to smoothly transfer from charge to discharge modes during
the equalization process in order to achieve the goal.

V. CONCLUSION

The proposed been effective for SoC equalization in dis-
tributed ESS. Nevertheless, at least two iterations are required
in order to equalize completely the SoC, This is because the
transient and dynamic responses have not been considered
by the algorithm. Despite this, and by assuming a linear
behavior, the algorithm is able to equalize the SoC under
few iterations. This algorithm can be complemented by an
optimization process in order to minimize the period of time
∆t, and by taking into account the power constrains of the
system. Additionally, the algorithm can be easily adapted for
AC microgrid and grid connected microgrids whit a larger
number of interconnected active generators.
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