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Iterative Receiver Design for ISI Channels Using
Combined Belief- and Expectation-Propagation
Peng Sun, Chuanzong Zhang, Zhongyong Wang, Carles N. Manchón, and Bernard H. Fleury, Senior

member, IEEE

Abstract—In this letter, a message-passing algorithm that com-
bines belief propagation and expectation propagation is applied to
design an iterative receiver for intersymbol interference channels.
We detail the derivation of the messages passed along the
nodes of a vector-form factor graph representing the underlying
probabilistic model. We also present a simple but efficient method
to cope with the “negative variance” problem of expectation
propagation. Simulation results show that the proposed algorithm
outperforms, in terms of bit-error-rate and convergence rate,
a LMMSE turbo-equalizer based on Gaussian message passing
with the same order of computational complexity.

Index Terms—belief propagation, expectation propagation,
turbo equalization.

I. INTRODUCTION

S INCE optimal detection of data transmitted across an
intersymbol interference (ISI) channel, like the multipath

wireless channel, is typically impractical, suboptimal receiver
structures that approach the performance of the optimal de-
tector have been proposed, with turbo equalization [1] be-
ing the most emblematic instance. In turbo equalization, the
turbo principle –originally used for decoding concatenated
codes [2]– is applied by regarding the ISI channel as an
encoder acting on the transmitted symbols.

The above “turbo”-processing algorithms are instances of
belief propagation (BP) applied on a factor graph representing
the underlying probabilistic model [3]. Additional equalizer
structures, which implement other variants of BP, have been
proposed, e.g. [4]. However, BP-based equalizers suffer from
an inherent drawback: their complexity grows exponentially
with the channel length or the number of non-zero coefficients
(depending on the selected factor graph representation) and the
modulation order.
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Different approaches have been proposed to circumvent the
aforementioned complexity issue. Basically, they introduce
approximations that make the messages passed in the sub-
graph representing the ISI channel Gaussian. In [5] this is
achieved by assuming the interference plus noise component
with respect to each modulation symbol to be Gaussian and
exploiting a relationship between the extrinsic values of the
symbols when the channel is driven by these symbols and
the LMMSE symbol estimates when the channel is driven by
Gaussian inputs. This approach turns out to be equivalent to
that in [6] when applied to turbo-equalization [5]. In [7] a
combined use of Gaussian expectation propagation (EP) [8],
[9] and BP is proposed. The use of EP, however, leads to an
unstable algorithm due to the fact that computed Gaussian EP
messages may have a negative variance. In [7] the authors
propose to circumvent this problem by replacing each EP
message with a geometric mixture of said message and a stan-
dard Gaussian message, parameterized with a damping/mixing
factor. However, “good” sequences of values of the damping
factor versus the iteration index of the algorithm need to be
tuned in advance via simulations, which severely limits the
practicability of the proposed approach.

In this paper we formulate an approximate inference method
combining BP and EP and apply it to a vector-form fac-
tor graph representation of the probabilistic model for ISI
channels to design a receiver algorithm performing joint
equalization of ISI channels and data detection. The obtained
design is similar to that presented in [7]. We propose a simple
solution to avoid the instability problem of EP that leads to a
fast converging algorithm. We present a detailed derivation of
the turbo-equalizer and a numerical evaluation that compares
its performance with that of the receiver proposed in [5].
The simulation results show that for the same complexity our
design performs better and converges faster than that in [5],
while avoiding the practical issues inherent to that in [7].

Notation- Boldface lowercase and uppercase letters denote
vectors and matrices, respectively. The identity matrix of size
M is represented by IM . Superscript (·)T

indicates transpo-
sition of a vector or matrix. The probability density function
(pdf) of a multivariate Gaussian distribution with mean vector
m and covariance matrix V is represented by N (x;m,V). The
relation f(x) = cg(x) for some positive constant c is written
as f(x) ∝ g(x).

II. SYSTEM MODEL

The information bit vector b = [b1, . . . , bK ]T is encoded and
interleaved, yielding the codeword vector c = [c1, . . . , cN ]T.
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The coded bits are then mapped onto a binary phase shift
keying (BPSK) constellation, resulting in the vector of modu-
lated symbols x = [x1, . . . , xN ]T, which are then transmitted
over a frequency-selective channel corrupted with AWGN.
The (baseband discrete-time) signal observed at the receiver
is described by the vector r = [r1, . . . , rN+L−1]

T with entries

ri =

L−1∑
l=0

hlxi−l + ni = hTsi + ni. (1)

Here, si = [xi−L+1, . . . , xi]
T with xi = 0 for i < 1 and

i > N , h = [hL−1, . . . , h0]
T denotes the vector of channel

weights, and ni is the ith sample of a white Gaussian noise
vector with component variance σ2.

A. Probabilistic Model and Factor Graph

The posterior probability mass function (pmf) of vectors b,
c, x and s given the received signal vector r reads

p (b, c,x, s|r) ∝
K∏
k=1

fbk (bk)× fc (c, b)

×
N∏
i=1

fri (ri, si) fGi (si, si−1, xi) fMi (xi, ci)

×
N+L−1∏
i=N+1

fri (ri, si) fGi (si, si−1, 0) . (2)

In this expression fbk(bk) is the uniform prior pmf of the kth
information bit, fc(c, b) stands for the coding and interleaving
constraints, fri(ri, si) , p(ri|si) ∝ N (ri;h

Tsi, σ
2) denotes

the likelihood term for si, and fMi
(xi, ci) represents the

modulation mapping. Finally, fGi
(si, si−1, xi) expresses the

deterministic relationship between si, si−1 and xi, given by

si = Gsi−1 + exi (3)

with the L × L matrix G = [0 IL−1; 0 0T] and the L
vector e = [0T 1]T, where 0 is a zero column vector with
length L − 1. Note that G factorizes as G = G′′G′ with
G′′ = [ IL−1 0 ]T and G′ = [ 0 IL−1 ] [5].

The vector-form factor graph representation [5] of the
posterior pmf in (2) is depicted in Fig. 1. It will be used
for the derivation of the BP-EP-based receiver described in
Section IV. Note that in this representation the subgraph
representing the ISI channel (left part) in Fig. 1 has a tree
structure1.

III. COMBINED BP-EP MESSAGE-PASSING RULE

We consider a factor graph of a generic probabilistic model
made of a set of factor nodes F , and a set of variable nodes
Z . The variable nodes are grouped into two disjoint subsets
ZBP and ZEP, i.e. ZBP ∪ ZEP = Z and ZBP ∩ ZEP = ∅. Let
mf→z(z) denote the messages from a factor node f ∈ F to
a variable node z ∈ Z , and nz→f (z) be the message from

1Cycles appearing in “channel” subgraph of the scalar-form factor graph
representation of the probabilistic model (2) are absorbed in the vector-form
representation [5].

fri−1 s i−1

fri

fri+1

s i

s i+1

fGi

fGi+1

xi

xi+1 ci+1

ci

b1

bK

bk

fbK

fbk

fb1

fc

fMi

fMi+1

Fig. 1. Vector-form factor graph representation of the probabilistic model (2).

variable node z to factor node f . With these definitions, the
message update rules read

mf→z (z) =
∑
∼{z}

f (z)
∏

z′∈N (f)\{z}

nz′→f (z
′) , z ∈ ZBP (4)

mf→z (z) =
ProjEz

[
mBP
f→z (z)nz→f (z)

]
nz→f (z)

, z ∈ ZEP (5)

nz→f (z) =
∏

f ′∈N (z)\{f}

mf ′→z (z) , z ∈ Z. (6)

Here,
∑
∼{z} is the sum over all variables of f = f(z)

excluding z, N (z) and N (f) denote respectively the set of
factor nodes connected to variable node z and the set of
variable nodes connected to the factor node f . The superscript
BP of the message in the right-hand expression in (5) indicates
that this message from factor f to z ∈ ZEP is computed using
the BP rule, i.e. (4). Moreover in this expression ProjEz [·]
is the projection of the pdf given as an argument on a
specified exponential family Ez 2. Note that computing the
messages from any factor node to any variable node requires
the computation of a BP message. Moreover, messages passed
from and to a variable node z ∈ ZBP (z ∈ ZEP) are computed
using the BP (EP) rule.

IV. ITERATIVE RECEIVER DESIGN

In this section we derive a receiver that performs joint equal-
ization and decoding for ISI channels by passing messages
along the edges of the factor graph depicted in Fig. 1. The
complexity of standard BP applied on this factor graph grows
exponentially with L, the dimension of the state vectors si, ∀i.
Such intractable complexity can be reduced by approximating
messages passed along the edges of the channel part of the
graph (to the left of and including the variable nodes xi, ∀i)
with Gaussian messages. This can be done by approximating
the messages from xi to fGi

, ∀i, with Gaussian messages. The
EP framework provides an elegant and efficient tool to do so.
Similarly to [7] we split the variable nodes in the graph as
follows: ZEP = {xi;∀i} and ZBP = Z \ ZEP. Moreover we
set Exi = G, ∀i, where G is the Gaussian family.

A. Calculation of messages

1) Equalization – input messages: Assuming that, for
the ith symbol, the message from fMi

to xi can

2For a pdf b(z) ProjE [b(z)] = argminb′(z)∈E D (b(z)||b′(z)), with
D(·||·) denoting the Kullback-Leibler divergence, and E being a specific
exponential family.
As indicated by the indexing, Ez might depend on the variable node.
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be expressed as mBP
fMi
→xi

(xi) = βi,1δ (xi + 1) +

βi,2δ (xi − 1) and the message from xi to fMi has the
form nxi→fMi

(xi) ∝ N (xi; ~mxi
, ~vxi

), the belief b(xi) ∝
mBP
fMi
→xi

(xi)nxi→fMi
(xi) of xi has mean and variance

mp
xi

=
βi,2 exp {2~mxi

/~vxi
} − βi,1

βi,2 exp {2~mxi
/~vxi
}+ βi,1

, (7)

vpxi
= 1− (mp

xi
)2. (8)

The message mfMi
→xi (xi) is computed from (5) to be

mfMi
→xi

(xi) =
ProjG [m

BP
fMi
→xi

(xi)nxi→fMi
(xi)]

nxi→fMi
(xi)

∝ N (xi; ~mxi
, ~vxi

) (9)

where

~vxi = [(vpxi
)−1 − ~v−1xi

]−1 (10)

~mxi
= ~vxi

[(vpxi
)−1mp

xi
− ~v−1xi

~mxi
]. (11)

We further have nxi→fGi
(xi) = mfMi

→xi
(xi) by (6).

When running the BP-EP algorithm, it can be observed
that the variance parameter ~vxi

in (10) and (11) sometimes
takes negative values, which results in a bad performance, see
also [7]. To avoid this problem, the variance ~vxi is replaced
by its absolute value | ~vxi | in both (10) and (11). We will
see in the numerical evaluations that this simple “trick” is
very efficient and provides a viable alternative to the damping
method proposed in [7], see Section I.

2) Equalization – downward messages: Assuming that
the message nsi−1→fGi

(si−1) ∝ N (si−1;m
↓
si−1

,V ↓si−1
) is

known, the message mfGi
→si

(si) is obtained via (4) to be

mfGi
→si

(si) ∝ exp

{
−1

2
(si −m⇓

si
)TV ⇓−1si

(si −m⇓
si
)

}
(12)

with

m⇓
si

= Gm↓
si−1

+ e ~mxi
(13)

V ⇓si
= GV ↓si−1

GT + eeT ~vxi . (14)

The message nsi→fGi+1
(si) is calculated from (6) to be

nsi→fGi+1
(si) = mfGi

→si(si)mfri→si(si) (15)

∝ exp

{
−1

2
(si −m↓

si
)TV ↓−1si

(si −m↓
si
)

}
where

m↓
si

= m⇓
si

+ 1

σ2+hTV ⇓sih
(ri − hTmi

⇓)V ⇓si
h (16)

V ↓si
= V ⇓si

− 1

σ2+hTV ⇓sih
V ⇓si

hhTV ⇓si
(17)

and mfri→si
(si) = fri(ri, si).

3) Equalization – upward messages: With the message
from variable node si+1 to factor node fGi+1

being of the form
nsi+1→fGi+1

(si+1) ∝ N (si+1;m
↑
si+1

,V ↑si+1
), the message

mfGi+1
→si(si) from fGi+1 to si is obtained as

mfGi+1
→si

(si) ∝
exp

{
− 1

2 (Gsi −m⇑
si
)TV ⇑−1si

(Gsi −m⇑
si
)
}

(18)

with

V ⇑−1si
m⇑

si
= −

V ↑−1si+1
e(eTV ↑−1si+1

m↑
si+1

+ ~v−1xi+1
~mxi+1

)

~v−1xi+1
+ eTV ↑−1si+1

e

+V ↑−1si+1
m↑

si+1
(19)

V ⇑−1si
= V ↑−1si+1

−
V ↑−1si+1

eeTV ↑−1si+1

~v−1xi+1
+ eTV ↑−1si+1

e
. (20)

As a consequence, the message nsi→fGi
(si) reads

nsi→fGi
(si) ∝ exp

{
−1

2
(si −m↑

si
)TV ↑−1si

(si −m↑
si
)

}
(21)

where

V ↑−1si
m↑

si
= GTV ⇑−1si

m⇑
si

+
hri
σ2

(22)

V ↑−1si
= GTV ⇑−1si

G+
hhT

σ2
. (23)

4) Equalization – output messages: The message
mBP
fGi
→xi

(xi) reads

mBP
fGi
→xi

(xi) ∝ exp

{
− (xi − ~mxi

)2

2~vxi

}
(24)

with

~mxi
= eTm↑

si
+ eTV ↑si

G′′
[
G′V ↓si−1

G′T +G′′TV ↑si
G′′
]−1

×
[
G′m↓

si−1
−G′′Tm↑

si

]
(25)

~vxi = eTV↑si
e− eTV ↑si

G′′
[
G′V ↓si−1

G′T +G′′TV ↑si
G′′
]−1

×G′′TV ↑si
e. (26)

Because both messages mBP
fGi
→xi

(xi) and nxi→fGi
(xi) in (9)

are Gaussian, we obtain from (5)

mfGi
→xi

(xi) = mBP
fGi
→xi

(xi). (27)

5) Decoding: Decoding is performed by using the BCJR
algorithm, which is an instance of BP [10]. After completion of
the forward/backward processing the BCJR decoder returns the
messages mBP

fMi
→xi

(xi), ∀i. We remark that any other code
that can be decoded using a BP-based algorithm, e.g. a turbo-
or LDPC code, could be used instead within the proposed
BP-EP framework.

B. Scheduling of the messages

After initializing mfMi
→xi

(xi), ∀i, the messages
mfGi

→si
(si) and nsi→fGi+1

(si), with i ranging from 1
to N + L − 1, are calculated in the downward recursion
using (12) and (15) respectively. Likewise, mfGi+1

→si (si)
and nsi→fGi

(si), with i ranging from N + L − 1 to
1, are obtained from (18) and (21), respectively, in the
upward recursion3. Equations (24) and (27) are used to
get the messages mfGi

→xi(xi), ∀i, which are then passed
to the BCJR decoder. The decoder outputs the messages
mBP
fMi
→xi

(xi), ∀i, and finally mfMi
→xi

(xi), ∀i, are updated
via (9).

3Note that these recursions coincide with those of a Kalman smoother [7].
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C. Reduction of complexity

Since they are performed in the update of each symbol, the
two matrix inversions in (25) and (26) make up a significant
part of the computational complexity of the BP-EP-based
algorithm. To reduce the complexity, the approach proposed
in [5] can be adopted. We calculate the belief of variable si, i.e.
b(si) ∝ mfGi

→si (si)nsi→fGi
(si) ∝ N (si;mi,V i), where

V i = (V ⇓si

−1
+ V ↑si

−1
)−1

mi = V i(V
⇓
si

−1
m⇓

si
+ V ↑si

−1
m↑

si
). (28)

According to the deterministic relationship given in (3), the
messages from factor node fGi−l

to variable nodes xi−l, l =
0, 1, . . . , L− 1, are obtained as

m̃BP
fGi−l

→xi−l
(xi−l) ∝

∫
b(si)δ (si,L−l − xi−l) dsi
nxi−l→fGi−l

(xi−l)

∝ exp

{
− (xi−l − ~mxi−l

)2

2~vxi−l

}
(29)

where

~vxi−l
= (V −1i,L−l − ~m−1xi−l

)−1 (30)

~mxi−l
= ~vxi−l

(V −1i,L−lmi,L−l − ~v−1xi−l
~mxi−l

) (31)

with si,L−l and mi,L−l representing the (L − l)th element
of vector si and mi respectively, and Vi,L−l denoting the
(L − l)th diagonal entry of the matrix V i. Using this, only
two matrix inversions are needed in the update of each block
of L symbols [5]. Replacing the messages in (24) by those
in (29) reduces the complexity order from O(L3) to O(L2).
The proof of the equivalence of these messages is provided in
Appendix A.

V. SIMULATION RESULTS

We evaluate the performance of the communication system
described in Section II by means of Monte Carlo simula-
tions. Two different lengths of information bit vectors are
considered: K = 32768 (long) and K = 8192 (short). The
information bits are coded using a 1/2 rate convolutional
code (23, 35)8. The vector of channel weights is set to
h = [0.227 0.460 0.668 0.460 0.227]T, which corresponds
to a severe time-dispersive (5-tap) channel [11].

Fig. 2 and Fig. 3 depict the performance of the investigated
algorithms: the proposed algorithm (BP-EP), the algorithm
presented in [5] (GABP), the algorithm implementing MAP
equalization (BP) (reproduced from Fig. 5 in [5]), and a
receiver operating in an ISI-free channel (AWGN). In Fig. 2,
the BER performance after 30 receiver iterations is shown
when the SNR ranges from 4dB to 6dB. We observe that BP-
EP significantly outperforms GABP. It also performs close to
BP, the loss expressed in terms of the SNR value where the
threshold effect occurs being about 0.3 dB. In Fig. 3, the BER
performance at 5.5dB SNR of BP-EP and GABP is depicted
as a function of the iteration index. We observe that BP-EP
converges much faster and is less sensitive to shorter codeword
lengths than GABP.

Both BP-EP and GABP receivers exhibit the same com-
plexity order per symbol. They differ only in their respective
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Fig. 2. BER performance versus Eb/N0 of the investigated receivers.
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equalization parts, both having O(L2) order of complexity
per symbol. The former algorithm approximates the messages
from fMi

to xi based on the messages passed by both
the decoder and the equalizer, while the latter only makes
use of the messages passed by the decoder for doing this.
The observed superior performance indicates that the BP-EP
approximation is better.

APPENDIX A
PROOF OF THE EQUIVALENCE BETWEEN (24) AND (29)
The proof is by induction. Thus, we merely need to show

the equivalence for l = 0 and l = 1.
For l = 0 we have according to (29)

m̃BP
fGi
→xi

(xi) ∝ ∫ b(si)δ (si,L − xi) dsi/nxi→fGi
(xi)

∝ ∫ nsi−1→fGi
(si−1)nxi→fGi

(xi)fGi
(si, si−1, xi) dsi−1dxi

×nsi→fGi
(si) δ (si,L − xi) dsi/nxi→fGi

(xi)

= ∫ nsi−1→fGi
(si−1)nsi→fGi

(si) fGi (si, si−1, xi) dsi−1dsi

= mBP
fGi
→xi

(xi). (32)

For l = 1 we first obtain from the BP rule (4)

∫ b(si)δ (si,L−1 − xi−1) dsi
∝ ∫ b(si−1)δ (si−1,L − xi−1) dsi−1. (33)

Then, using (32) and (33) yields

m̃BP
fGi−1

→xi−1
(xi−1) ∝

∫
b(si)δ (si,L−1 − xi−1) dsi
nxi−1→fGi−1

(xi−1)

∝
∫
b(si−1)δ (si−1,L − xi−1) dsi−1

nxi−1→fGi−1
(xi−1)

∝ mBP
fGi−1

→xi−1
(xi−1).
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