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MAKING MEANING OF CREATIVITY AND MATHEMATICS 
TEACHING  
Morten Misfeldt 

Research Lab: ICT and Designs for Learning, Aalborg University  
 

Creativity and innovation are important 21st-century skills, and mathematics 
education contributes to the development of these skills. However, it is far from clear 
how we as mathematics educators should respond to the need to contribute to our 
students’ development of creativity and innovation. One reason is that it is not clear 
what relation such creative and innovative skills have to mathematics, and how we 
should teach them. In this paper, I review different conceptions of creativity in 
mathematics education and investigate what mathematical innovation and creativity 
“are” in the mathematical classroom. I show how different conceptions of 
mathematical innovation and creativity dominate different parts of the mathematics 
education literature, and explain how these differences can be viewed as framing 
mathematical creativity toward different domains.  

CREATIVITY AND INNOVATION IN THE MATHEMATICS CLASSROOM  
Enhancing students’ creativity and innovation is an important educational goal within 
and across specific school topics. Enhanced creativity and innovation supposedly 
empower students to cope with their lives, increase their potential value in the labor 
market, and allow them to participate in aesthetic and joyful experiences (Loveless, 
2002; Organization for Economic Cooperation and Development [OECD], 2010). 
Mathematics education thus faces the challenge of how to develop curriculum and 
teaching that enhance creativity and innovation.  
The broad discussion of the goal of education simultaneously acknowledges 
mathematics as a core subject and suggests the need for a close connection between 
mathematics and valued general skills and competencies such as creativity and 
innovation (Partnership for 21st Century Skills, 2009). However, creativity and 
innovation have different meanings, and therefore, addressing creativity and 
innovation when teaching mathematics is not easy. In the Partnership for 21st-Century 
Skills (P21), creativity and innovation are defined as the ability to create new and 
worthwhile ideas (alone and in collaboration with others), and acting on these ideas 
to make useful contributions (Partnership for 21st-Century Skills, 2009). However, it 
is far from clear what makes an idea worthwhile and what constitutes a useful 
contribution. Creativity has previously been described as an innate property of an 
individual who is virtuous in a specific field, such as a psychological tendency to 
divergent thinking, as a situated tendency to act in interesting and non-foreseen ways 
(Joas, 1996), an acknowledgement of aesthetic and constructive considerations 
(Loveless, 2002), and as a matter of connecting disciplinary knowledge to practical 
and professional situations (Shaffer, 2004). These views of creativity are related to 



  
each other and to the P21 framework definition of creativity and innovation. When 
such fluffy concepts meet a national mathematics curriculum, many interpretations 
and practices are possible. “Creativity enhancing mathematics teaching” can thus 
signify everything from virtuous teaching of gifted students (Sriraman & Lee, 2011) 
to an inclusive pedagogical trend that acknowledge aesthetic concerns and students as 
producers in the mathematics classroom (Resnick, 2012).  
This situation calls for two questions to be answered: What is creativity in 
mathematics education? And how should we teach for and assess creativity in 
mathematics education? In this paper, I mainly address the first question by surveying 
the existing mathematics education literature on creativity in the classroom.  
Creativity as domain specific? 

An obvious starting point is to ask whether creativity and innovation are domain-
specific or domain-independent abilities. In a review of the domain specificity of 
creativity in mathematics education research, Plucker and Zabelina (2008) revealed 
strong evidence that creativity to some extent is domain specific; no person is likely 
to be creative in all domains of life. However, in the same review, the researchers 
presented many arguments for the opposite position—namely, that creativity is an 
inert ability. The domain specificity that we observe can be explained by the fact that 
significant results of creativity require strong knowledge and skills in an area. Thus, 
creativity might very well be a general ability, but using this ability to obtain results 
acknowledged as creative requires the possession of skills and knowledge. As an 
example, using divergent thinking (Guilford, 1967; Torrance, 1963) as a measure of 
creativity takes domain independence for granted when the nature of creativity is 
addressed. Whether creativity is domain specific or domain independent, it makes 
sense to review mathematical creativity as a phenomenon in its own right, but this 
phenomenon might or might not be explainable as an independent ability or as the 
sum of skills in an area and a general creative ability.  
Mathematical creativity 
Poincaré’s 1908 essay (1946) marks a starting point for deliberate investigation of the 
creative mathematical process. Introspectively, he describes how conscious and 
subconscious processes interact in the creation of mathematical insights. Hadamard 
(1954) builds on this essay and develops an explicit stage model for mathematical 
creative processes. The stages are preparation, incubation, illumination, and 
verification. Hadamard describes how when a creative individual, in the incubation 
stage, leaves his or her desk, is sleeping, or thinking about something other than the 
addressed problem, all of a sudden a solution or insight appears. Using such stage 
models gives a picture of mathematical practice as a lonely thinking process, where 
long periods of work and experiences of getting stuck are continued by not thinking 
about a certain problem and finally (perhaps) suddenly seeing a solution.   
 



  
If we use this stage model, we tend to view creativity in the mathematical field as 
problem solving where the problems are very hard and subconscious inspirational 
processes play an important role in their solution. The bestselling book How to Solve 
It by Polya (1945) is perhaps the most well-known account of mathematical thinking 
that follows this stage model. The book is a handbook for how to work with problems 
in the mathematics classroom, but the book’s view on what creativity is is shared in 
the mathematical field by Poincaré and Hadamard. 
Haylock (1987) reviews mathematical creativity in order to develop a framework for 
assessing creativity in the mathematical classroom. He notes several authors suggest 
that divergent thinking (Guilford, 1967; Torrance, 1963) is a good measure for 
creativity, whereas others build on the incubation model proposed by Hadamard, and 
again others are more focused on the nature of mathematical theory. In his 
description of mathematical creativity in schoolchildren, he suggests that there is a 
need to transcend what he calls algorithmic fixation (that creativity follows a certain 
recipe) and content universe fixation (you are creative in a specific area of 
knowledge), and suggests that this can be done by focusing on problem solving, 
problem posing, and redefinition situations.  
Ervynck (1991) describes creative work in the context of undergraduate-level 
mathematics. He develops a stage model that relies to some extent on Hadamard, and 
distinguishes the first “technical stage” consisting of gaining familiarity with the 
involved concepts, followed by an “algorithmic” stage where more complex 
techniques related to the problem are performed, and finally a “creative” or 
constructive stage where a full-fledged mathematical construction is developed. 
Ervynck respects aspects of Hadamard’s stage model but adds a conceptual focus on 
mathematical creativity, respecting concerns about the process object duality, and 
aligning reification processes (Sfard, 1991) and creativity. Ervynck thus defines 
mathematical creativity as: 

the ability to solve problems and/or to develop thinking in structures, taking account of 
the peculiar logico-deductive nature of the discipline, and of the fitness of the generated 
concepts to integrate into the core of what is important in mathematics. (Ervynck, 1991, 
p. 47) 

The focus on problems is explicitly supplemented by respect for the logical and 
theoretical nature of mathematics, which addresses theory building and problem 
solving. Furthermore, Ervynck suggests that the nature of mathematical creativity 
might differ according to the mathematical subjects involved.  
Sriraman (Sriraman, 2008; Sriraman & Lee, 2011) has investigated mathematical 
creativity among research mathematicians, and his empirical results confirm stage 
modes similar to the one described by Hadamard. Although Sriraman surveys 
different individual psychological and social approaches to creativity, his main 
empirical project is to challenge/confirm Hadamard’s stage model. Sriraman finds: 



  
In trying to better understand the process of creativity, the author finds that the Gestalt 
model proposed by Hadamard (1945) is still applicable today. This study has attempted 
to add some detail to the preparation–incubation–illumination–verification model of 
Hadamard (1945), by taking into account the role of imagery, the role of intuition, the 
role of social interaction, the use of heuristics, and the necessity of proof in the creative 
process. (Sriraman, 2008, p. 25) 

In that sense, Sriraman considers mathematical creativity a complex phenomenon 
related to various possible constructs and theories, but maintains that the stage model 
is at the center of the consideration of mathematical creativity.    
Creativity and giftedness 
A research environment surrounds “creativity and gifted education.” This 
environment can be followed in the conference series creativity and giftedness in 
mathematics education as well as in the ICME and CERME groups. A relatively 
large body of knowledge describes the relation between mathematical performance, 
divergent thinking, problem solving and problem posing (Leikin & Pitta-Pantazi, 
2012; Silver, 2013; Sriraman, Haavold, & Lee, 2013), and on the relation between 
mathematical creativity and culture (Massarwe, Verner, & Bshouty, 2011). In the 
Nordic community, a recent Norwegian dissertation has continued the discussion of 
mathematical creativity in this tradition (Haavold, 2013). 
Constructionism  
A review of the notion of mathematical creativity shows that research 
mathematicians’ self-reported practices and experiences play an important role in the 
conceptualization of the field, and that the conception of mathematical creativity as 
“sudden insights solving hard problems” is important. However, at least one large-
scale project worked with a different conception of creativity in relation to 
mathematics. In the late ’70s, Papert and his colleagues at the Massachusetts Institute 
of Technology introduced a different take on what primary and lower secondary 
mathematics education could be in a technological era. This approach, built on 
pupils’ creative and aesthetic work in a computer-based mathematical environment, 
was developed by Seymour Papert in the context of primary and middle school pupils 
working with the Logo program (Papert, 1980). Papert developed the interpretive 
educational framework known as constructionism. According to constructionism, 
learning mathematics is especially effective when pupils develop and construct 
artifacts for which they care. Moreover, computer-based environments 
(“microworlds”) can be designed in such a way that they are especially well suited to 
supporting such epistemic constructions. From the point of view of mathematical 
creativity, the Logo project is interesting for two reasons; rather than considering 
mathematical creativity as an end, creative and constructive work is considered a 
vehicle for learning mathematics, and technology is seen as a possible catalyst for 
this constructive and creative pedagogy.  



  
Papert relates his educational ambition explicitly to creativity and to the workings of 
the research mathematician, by directly comparing an art class with the typical 
mathematics classroom:  

In the math class students are generally given little problems which they solve or don’t 
solve pretty well on the fly. In this particular art class they were all carving soap, but 
what each student carved came from wherever fancy is bred and the project was not done 
and dropped but continued for many weeks. It allowed time to think, to dream, to gaze, to 
get a new idea and try it and drop it or persist, time to talk, to see other people's work and 
their reaction to yours--not unlike mathematics as it is for the mathematician, but quite 
unlike math as it is in junior high school. I remember craving some of the students’ work 
and learning that their art teacher and their families had first choice. I was struck by an 
incongruous image of the teacher in a regular math class pining to own the products of 
his students’ work! An ambition was born: I want junior high school math class to be like 
that. (Harel & Papert, 1991)  

The vision can be realized by mathematics instruction in which children develop 
digital artifacts and during that work are guided toward powerful and important 
mathematical ideas. 
Epistemic games  
The vision of building things with mathematics and technology can be aligned with a 
competence and labor market–oriented approach to mathematics education that has 
had an increasing international influence during the last decade (Niss et al., 2002). In 
the labor market, the value of being able to create an artifact with technology and 
mathematics is increasingly important. Papert did not address this aspect, but the 
relation to work life has been systematically addressed by Papert’s graduate student 
Shaffer (2006), who has systematically investigated and designed a didactical 
transposition from mathematical and scientific activities outside academia, into what 
he calls epistemic games. Shaffer’s main idea is to copy professional working 
situations in computer-supported practice-simulating games, to create a new kind of 
learning that enhances important innovative skills. One example is the epistemic 
game Escher’s World (2006) in which high school students, in an after-school 
activity, act as professionals in a design studio creating visual layouts by using the 
tool the Geometer’s Sketchpad. Creating visual layouts in the Geometer’s Sketchpad 
activates creative competencies and mathematical concepts (Shaffer, 2002, 2006), 
and the activity resembles an important work life activity involving mathematics. 
However, this activity has little to do with conceptualizing mathematical creativity as 
a sudden inspiration that leads to valuable solutions to existing problems. 

OVERVIEW OF CONCEPTIONS OF MATHEMATICAL CREATIVITY 
I propose a conceptualization of creativity in mathematics education that contests two 
metaphors for creativity, as problem solving and as construction, as well as creativity 
enacted inside mathematics and with mathematics. These pairs of concepts should be 



  
understood as continuums spanning the field of creativity in mathematics education, 
rather than as dichotomies that classify mathematics education activities in a binary 
fashion. The overview builds on a pragmatist approach to categorization, valuing a 
continuous rather than a dichotomist approach to differences between phenomena. 
By creativity and innovation as problem solving, I mean the idea that a 
creative/innovative mathematical activity involves finding new and valuable 
solutions to hard problems. This metaphor for creativity is predominant in the 
descriptions by Hadamard (1954) and Pólya (1945) and in the area of gifted 
education (e.g., Leikin & Pitta-Pantazi, 2012). And it is present to a larger or smaller 
extent in much of the mathematics education literature (Silver, 2013; Sriraman, 
2008). 
The conception of creativity and innovation as construction signifies the development 
of new and valuable artifacts as the primary sign of creativity/innovation. Such 
artifacts can be conceptual as well as material. The conception is prevalent in parts of 
the general literature on creativity in education (Loveless, 2002), as well as in the 
constructionist program (Papert, 1980; Resnick, 2012). But it is also present in the 
contribution by Ervynk (1991), emphasizing the construction of conceptual or 
theoretical artifacts as a reification process crucial for mathematical creativity.  
The distinction between creativity and innovation in and with mathematics deals with 
the specific role that mathematics has in framing students’ activities. Activities 
described as with mathematics contain explicit references to domains outside 
mathematics, and mathematics is typically used as a tool for obtaining something 
else. Constructionism (Papert, 1980; Resnick, 2012) and the epistemic game project 
(Shaffer, 2006) explicitly address creativity/innovation with mathematics. However, 
the area of mathematical modeling and application typically also tends to consider 
mathematics as a tool for making a difference outside mathematics (Lesh & 
Zawojewski, 2007). Opposed to this understanding, I will consider 
creativity/innovation in mathematics. Creativity and innovation in mathematics are 
used to describe situations where the problems and constructs that the students work 
with and the criteria for giving value to a certain construction, problem, or solution 
are internal to mathematics. 
 



  

 
Figure 1: An overview of creativity in mathematics education. 

 
If we look at the different and (partly conflicting) attempts to define creativity and 
innovation in relation to mathematics education, we can see that they are placed 
differently in the two-dimensional model. The discussions of the stage model for 
mathematical creativity are mainly framed as internal to mathematics and rely on a 
problem-solving metaphor for creativity. In contrast, Papert’s constructionism is 
framed toward children’s construction of artifacts meaningful in their own life 
worlds, and therefore, this conception can be viewed as creativity with mathematics 
building on a construction metaphor for creativity. The epistemic games project also 
mainly addresses creativity with mathematics. However, the domain for the students’ 
activities is not their own interest and life world but a professional domain imported 
to the classroom from outside. Such a situation is typical, for example, in modeling 
activities where the problems dealt with are found outside mathematics. It is 
important to be sensitive toward how different domains frame mathematical activities 
in school, particularly if we want to improve our understanding of innovation and 
creativity in the mathematics classroom. Therefore, I suggest that we need more 
empirical knowledge about how various domains of knowledge frame students’ work 
with mathematics in open scenarios related to problems and practices outside 
mathematics. 
 
 



  
MATHEMATICS EDUCATION AS FRAMED TOWARD DIFFERENT 
DOMAINS OF KNOWLEDGE 

Any teaching situation involves a particular environment or situated task within 
which the students work. Since we focus on creativity and innovation, the 
environments are characterized by (1) a potential open-ended nature and (2) a relation 
to different situations outside school that the students somehow envision or relate to 
in their classroom work. The concept frame designates the socio-cognitive structures 
that make it possible for people to interpret their world and act within that world. In 
that sense, framing is the cognitive mechanism that allows the generation of a 
“situation” from the many and diverse sensory motor inputs that an individual 
receives (Goffman, 1974, p. 10). Thus, frames are crucial for making meaning in 
situations. Skovsmose relates frames to meaning in mathematics education 
(Kilpatrick, Hoyles, Skovsmose, & Valero, 2005), and suggests that meaning must be 
considered situated and oriented toward the task that the students address, while the 
mathematics education literature tends to consider meaning as oriented toward 
abstract mathematical concepts. Relating meaning to situations and tasks (and not 
only “concepts”) makes it imperative to relate meaning to the involved “spheres of 
practice,” and the concept frame let us do that systematically. Frames relate to 
domains in the sense that any educational situation is framed by our understanding of 
the practices. Figure 2 illustrates the relationship between four domains common in 
education: (1) the domain of schooling, (2) disciplinary domains (mathematics, 
physics), (3) professional domains (agriculture, engineering), and (4) everyday 
domains (games, social media, family life; Hanghøj et al., n.d.). 
 

 
Figure 2: Relationship between the four domains (Hanghøj et al.). 

It is a valuable route for research to investigate how the different conceptions of 
creativity and innovation are framed toward different domains. When students act 
“as” designers of educational games, “as” researchers, or “as” engineers, the 
students’ experience is related to their idea of this practice but is of course different 
from the lived experiences in these practices. Therefore, to answer the initial question 
of what creativity is in relation to the teaching of mathematics education, it makes 



  
sense to investigate examples where out-of-school practices and domains frame 
activities in the mathematics classroom and ask how such examples allow students to 
enact creativity and innovation in relation to mathematics.  

CONCLUSIONS  
The purpose of this paper was to address questions about what creativity and 
innovation is in mathematics education, as well as how we should teach for and 
assess creativity and innovation in relation to the teaching and learning of 
mathematics.  
In the paper, the literature regarding creativity in mathematics education was 
reviewed and considered on two continuums (as showed in Figure 1). One of the 
proposed continuums goes from creativity in mathematics to creativity with 
mathematics, and the other one goes from a problem-solving metaphor for creativity 
to a construction metaphor. Furthermore, it was suggested that creativity in 
mathematics education is always enacted in relation to one or several domains. In that 
sense, mathematical creativity understood in some of the intrinsic definitions 
(Ervynk, 1991; Hadamard, 1954) cannot in any meaningful way be considered the 
same thing as the more general of artistic or professional activities involving the 
development of new ideas (Partnership for 21st-Century Skills, 2009; Resnick, 2012).  
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