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Abstract

In this paper, we consider the problem of remote vector Gaussian source coding for a
wireless acoustic sensor network. Each node receives messages from multiple nodes in the
network and decodes these messages using its own measurement of the sound field as side
information. The node’s measurement and the estimates of the source resulting from decoding
the received messages are then jointly encoded and transmitted to a neighboring node in the
network. We show that for this distributed source coding scenario, one can encode a so-called
conditional sufficient statistic of the sources instead of jointly encoding multiple sources. We
focus on the case where node measurements are in form of noisy linearly mixed combinations
of the sources and the acoustic channel mixing matrices are invertible. For this problem, we
derive the rate-distortion function for vector Gaussian sources and under covariance distortion
constraints.

The research leading to these results has received funding from the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement n◦ ITN-GA-2012-316969.



I. INTRODUCTION

A Wireless Acoustic Sensor Network (WASN) is a set of wireless microphones equipped
with some communication, signal processing, and possibly memory units, which are
randomly scattered in the environment. The communication unit allows a sensor node to
communicate with a base station and also with other nodes, and the signal processing unit
enables a node to perform local processing. The random structure of the network removes
the array-size limitations imposed by classical microphone arrays, thereby providing
better performance in sense of high-SNR spatio-temporal sampling of the sound field
and spatial diversity. The interested reader is referred to [1] for a review of WASNs.

Due to strict power and bandwidth constraints on wireless microphones, it might
not be possible for nodes which are far from the base station to directly deliver their
messages. A multi-hop scenario where the message goes along adjacent nodes until
reaching the base-station is a commonplace alternative. We assume that a node is supposed
to receive messages from multiple neighboring nodes and then combine them with its
own measurement of the sound field into a new message to be forwarded through the
network. This is illustrated in Fig.1.

In [2], this problem was solved for scalar Gaussian sources in a non-distributed
setting i.e., without making use of the availability of the nodes’ measurements as side
information. It was shown that coding at intermediate nodes can result in significant gains
in terms of sum-rate or distortion. In this paper, we consider vector Gaussian sources
and also take into account the fact that messages received by a node are correlated with
the node’s measurement of the sound field. Thus, we consider a distributed scenario,
and make use of the destination node’s measurement as side information to decrease the
required rate for transmission to each node [3], [4], [5].

We derive the rate-distortion (RD) function for an arbitrary node in the network with
a distortion constraint defined in form of a covariance matrix, cf. [6], [7]. In Section II,
we introduce the notation and formulate the problem, which turns out to involve joint
coding of multiple sources. In Section III, we derive a conditional sufficient statistic
for multiple Gaussian sources and show that for the above-mentioned distributed source
coding (DSC) problem, one can encode a conditional sufficient statistic instead of joint
encoding of multiple sources. The RD function for the resulting problem will be derived
in Section IV. The paper is concluded in Section V.

II. NOTATION AND PROBLEM FORMULATION

We denote by I(·; ·), h(·), and E[·] the information theoretic operations of mutual
information, differential entropy, and expectation, respectively. Probability density func-
tions are denoted by f(·) and covariance and cross-covariance matrices are denoted by
Σ. We assume that all covariance matrices are of full rank. We denote Markov chains by
two-headed arrows; e.g. u↔ v↔ w. We assume that the source generates independent
Gaussian vectors of length n denoted by x ∈ Rn. While the vectors are independent, the
components of each vector are correlated. Node j makes a noisy measurement yj of the
source given by:

yj = Ajx + nj, (1)



Figure 1: A schematic graph of the WASN

where nj is the additive Gaussian noise at node j and the matrix Aj models the mixing
effect of the acoustic channel. The noise is assumed to be independent of x. Node j
also receives messages from nodes i, l, ... denoted by ui,ul, ..., from which it can make
estimations x̂i, x̂l, ... of the source by decoding the messages with yj as the decoder side
information. The problem is to find the minimum rate Rj to jointly encode yj, x̂i, x̂l, ...
into a message uj to be sent to node k, while satisfying the given distortion constraint
Dj and considering yk as side information. This is illustrated in Figs.1 and 2.

Note that one could further decrease the network sum-rate by taking into account the
correlation between the messages which are sent to a common node. However, we leave
out this possibility in this paper.

Throughout this work, we assume that the acoustic mixing matrices are fixed and
known. We also assume that joint statistics of the source and the noise variances are
available. Finally, although the model in (1) is appropriate for acoustic networks, we do
not consider real acoustic signals in this work. Instead, we consider Gaussian sources for
simplicity of mathematical analysis. The case of real audio measurements is the focus of
our future work.

III. CONDITIONAL SUFFICIENT STATISTICS

Assume that y is a random vector or a collection of random vectors with probability
density function f(y).

Definition 3.1: A sufficient statistic for the estimation of x from y is a function T (y)
of y for which f(y|T (y),x) is not a function of x. In other words, y↔ T (y)↔ x.

Theorem 3.1 (Neyman-Fisher Factorization Theorem [8]): T (y) is a sufficient statis-
tic of y for estimating x if and only if f(y|x) can be factorized as:

f (y|x) = p (y) q (T (y) ,x) , (2)

where p (depending on y only) and q (depending on x and T (y) but not on y directly)
are nonnegative functions.



Figure 2: Node j of the network

The Factorization Theorem enables us to find a sufficient statistic for e.g. random
vectors in Gaussian noise as shown in the following lemma1.

Lemma 3.1: If yj; j = 1, 2, ..., N are measurements of a random vector x in mutually
independent Gaussian noises as in (1), then T (y1, ...,yN) is a sufficient statistic of yj
for estimating x, where

T (y1, ...,yN) =
N∑
j=1

AT
j Σ−1j yj, (3)

and Σj is the covariance matrix of the noise nj .

Proof: We prove the lemma for N = 2. The proof for the general case is similar.

Since n1 and n2 are independent, the joint conditional density function of y1 and y2

can be written as:

f (y1,y2|x) = α exp

(
−1

2
ϕ

)
, (4)

where α is independent of x, y1 and y2, and ϕ is defined as:

ϕ = (y1 − x)TΣ−11 (y1 − x) + (y2 − x)TΣ−12 (y2 − x) . (5)

Expanding ϕ, rearranging the terms, and substituting in (4), leads to

f (y1,y2|x) = α exp

(
−yT1 Σ−11 y1 + yT2 Σ−12 y2

2

)
1To the best of our knowledge, no proof for this lemma appears in the literature. We provide a proof here for

completeness.



× exp

(
−

xT
(
Σ−11 + Σ−12

)
x

2

)
exp

(
T Tx + xTT

2

)
, (6)

which shows that T is a sufficient statistic according to the Factorization Theorem.

To make the notion of sufficient statistics applicable to our DSC problem, we need to
introduce a conditional version:

Definition 3.2: A conditional sufficient statistic for the estimation of x from y given
z is a function T (y) of y for which f(y|T(y),x, z) is not a function of x.

Lemma 3.2: If y ↔ x ↔ z, then any sufficient statistic T (y) of y for estimating x
is also a conditional sufficient statistic of y for estimating x given z.

Proof:

f (y|T (y) ,x, z) =
f (y|x, z)

f (T (y) |x, z)

=
f (y|x)

f (T (y) |x)
= f (y|T (y) ,x)

= f (y|T (y)) (7)

which is independent of x.

Lemma 3.3: Given side information z at the decoder, there is no loss in terms of rate
and distortion by encoding a conditional sufficient statistic of y1, ...,yN given z instead
of joint encoding of these sources.

Proof: The proof follows along the lines of the proof for the unconditional case
presented in [9], and is therefore omitted.

Combining the results of this section, we have the following theorem for the problem
formulated in Section II:

Theorem 3.2: Given side information yk at the decoder, the RD function for the
problem of joint encoding of multiple sources yj, x̂i, x̂l, ... coincides with the RD function
for the DSC problem of encoding the single source:

Tj = AT
j Σ−1j yj + D−1i x̂i + D−1l x̂l + ... (8)

where Di is the distortion matrix for node i.

Proof: Using the backward channel model we have x = x̂i+qi where the covariance
matrix of qi is Di. This means that x̂i can be written as:



x̂i = Hix + ηi, (9)

where

Hi = (Σx −Di)Σ−1x , (10)
Σηi = (Σx −Di)Σ−1x Di. (11)

Substituting (10) and (11) in (9) and using (3) yields (8). Since Tj is a sufficient statistic
of yj, x̂i, x̂l, ... and yj, x̂i, x̂l, ... ↔ x ↔ yk, it follows from Lemma 3.2 that it is
also a conditional sufficient statistic given yk. From Lemma 3.3, one can then replace
yj, x̂i, x̂l, ... by Tj in (8) and get the same RD function.

At this point, we have shown that the above problem with multiple sources can
be converted into a single source DSC problem for Gaussian sources with covariance
distortion constraint. This problem is illustrated in Fig.3. For the case of mean-squared
error distortion constraint, the RD function was found in [10], while the case of covariance
distortion was not treated in that work. In the next section, we derive the RD function
for the covariance distortion constraint under some mild technical assumptions.

IV. RATE-DISTORTION FUNCTION

For the sake of simplicity of derivations, we write x and Tj in terms of their linear
estimations based on the known Gaussian vectors in Fig.3. In particular, we have that

Tj = Ayk + Buj + υ1, (12)
x = CTj + Gyk + υ2 = (G + CA)yk + CBuj + Cυ1 + υ2, (13)
Tj = Γyk + υ3, (14)

where υ1, υ2, υ3 are estimation errors with covariance matrices ΣTj |yk,uj
,Σx|Tj ,yk

,ΣTj |yk
,

respectively, and A,B,C,G and Γ depend only on the covariance and cross-covariance
matrices of x, Tj,yk and uj . (See Appendix for the mathematical statement for C as an
example.) We will show that if the mixing matrices Aj in (1) are invertible2, then for
Σx|Tj ,yk

≺ Dj � Σx|yk
the RD function for node j is given by:

Rj (Dj) =
1

2
log

(∣∣Σx|yk
−Σx|Tj ,yk

∣∣∣∣Dj −Σx|Tj ,yk

∣∣
)
. (15)

2The mixing matrices are actually non-square and thus non-invertible. In this work we consider a square
approximation. The general non-square case will be considered in our future work.



Figure 3: The simplified DSC problem

A. Lower Bound

First we need the following lemma:

Lemma 4.1: If the mixing matrices Aj, j = 1, 2, ..., are invertible, the matrix C in
(13) is also invertible.

Proof: See the appendix.

From the first equality in (13) we have:

CΣTj |yk
CT = Σx|yk

−Σx|Tj ,yk
. (16)

From the second equaltiy in (13) we can write:

x− x̂k = Cυ1 + υ2. (17)

Assume now that the sequence of independent vectors xi generated by the source is
encoded in block vectors X each containing N vectors. From the distortion constraint
and (17) we can write:

Dj �
1

N

N∑
i=1

E
[(

xi − x̂ik
) (

xi − x̂ik
)T]

= CΣυ1C
T + Συ2 (18)

or equivalently:

CΣTj |uj ,yk
CT � Dj −Σx|Tj ,yk

. (19)

Denoting the blocks of N vectors T ij ,y
i
k,u

i
j; i = 1, ..., N by Tj,Yk,Uj , respectively,

we have:

NRj (Dj) ≥ I (Tj;Uj|Yk)

= h (Tj|Yk)− h (Tj|Uj,Yk)

=
N∑
i=1

h
(
T ij |yik

)
− h

(
T ij |Ti−1

j ,uij,y
i
k

)



≥
N∑
i=1

h
(
T ij |yik

)
− h

(
T ij |uij,yik

)
(20)

=
N

2
log

( ∣∣ΣTj |yk

∣∣∣∣ΣTj |uj ,yk

∣∣
)

=
N

2
log

( ∣∣CΣTj |yk
CT
∣∣∣∣CΣTj |uj ,yk

CT
∣∣
)

(21)

≥ N

2
log

(∣∣Σx|yk
−Σx|Tj ,yk

∣∣∣∣Dj −Σx|Tj ,yk

∣∣
)
, (22)

where the block vector Ti−1
j contains i − 1 vectors T 1

j , ..., T
i−1
j , (20) is because con-

ditioning reduces the entropy, (21) is because C is invertible, and (22) is the result of
applying (16) and (19) to (21).

B. Upper Bound

The lower bound derived in the previous part can be used as a guideline for the best
possible performance for any coding scheme. The question is then, given the source Tj ,
how to encode it into a discrete source uj , so that for the given distortion constraint, the
required rate for transmission of uj achieves the lower bound?

Let us assume that Tj is quantized to uj , in a way that satisfies the distortion constraint.
From the results of DSC, due to the availability of the side information yk at the decoder,
it is possible to noiselessly encode uj in blocks of sufficiently large length N with a rate
arbitrarily close to H(uj|yk) = I (Tj;uj|yk) [3], [4], [5]. The remaining task is to design
a scheme for which I (Tj;uj|yk) achieves (15). This is possible by using the following
scheme:

uj = UCTj + νj, (23)

where we have denoted the eigenvalue decomposition of
(
Σx|yk

−Σx|Tj ,yk

)
by UTΛU,

and the covariance Σνj of the coding noise νj is defined as 3:

Σνj = U
(
Σx|yk

−Σx|Tj ,yk

)(
Σx|yk

−Dj

)−1(
Dj −Σx|Tj ,yk

)
UT, (24)

To verify this, one can write I (Tj;uj|yk) as h (uj|yk)−h (uj|Tj,yk), substitute (23)–(24),
and utilize (14) and (16).

It is worth noting that the RD function (15) generalizes the RD function of [11], which
treated the scalar case.

3Note that it is a symmetric positive definite matrix.



V. CONCLUSIONS, DISCUSSIONS, AND FUTURE WORK

We showed that the rate-distortion function for a distributed source coding problem
with multiple sources at the encoder is identical to the rate-distortion function for the
distributed encoding of a so-called conditional sufficient statistic of the sources. We
derived a conditional sufficient statistic for the case that additive noises are Gaussian
and mutually independent, and calculated the rate-distortion function in case that the
sources are vector Gaussian and the distortion constraint is defined as a covariance matrix.
Since vector sources were considered in order to take the memory into account, and the
covariance constraint on the distortion is a more flexible fidelity criterion compared to
mean-squared error, these results can be applied to the problem of source coding for
audio signals in presence of reverberation, which will be the scope of our future work.

APPENDIX

Assume that the Gaussian vector x is estimated using two other Gaussian vectors y
and z as:

x = Cy + Gz + n, (25)

where the covariance matrix of the estimation error n is Σn = Σx|yz, and y and z are
related to x via y = Ax + n1 and z = Bx + n2, and A and B are invertible. Therefore
we have:

Σxy = ΣxA
T , (26)

Σy = AΣxA
T + Σn1 , (27)

Σyz = AΣxB
T , (28)

Σxz = ΣxB
T . (29)

From results in linear estimation theory, we obtain the following expression for C [12]:

CΣy = Σxy +
(
ΣxyΣ

−1
y Σyz −Σxz

)
∆−1ΣT

yz, (30)

∆ = Σz −ΣT
yzΣ

−1
y Σyz. (31)

The goal is to prove that C or equivalently CΣy is invertible. Substituting (26)–(29) in
(30) yields:

CΣy = ΣxA
T +

(
ΣxA

TΣ−1y AΣxB
T −ΣxB

T
)

∆−1ΣT
yz

= ΣxA
T + Σx

(
ATΣ−1y AΣx − I

)
BT∆−1ΣT

yz

= ΣxA
T + ΣxA

T
(
Σ−1y −A−TΣ−1x A−1

)
AΣxB

T∆−1ΣT
yz

= ΣxA
T + ΣxA

T
[(

AΣxA
T + Σn1

)−1 − (AΣxA
T
)−1]

Σyz∆
−1ΣT

yz

= ΣxA
T
(
I + H−1Σyz∆

−1ΣT
yz

)
, (32)



where H is defined as:

H−1 =
(
AΣxA

T + Σn1

)−1 − (AΣxA
T
)−1

. (33)

From (31) and (26)–(29) we have:

∆ = BΣxB
T + Σn2 −BΣxA

T
(
AΣxA

T + Σn1

)−1
AΣxB

T

= BΣx

[
I−AT

(
AΣxA

T + Σn1

)−1
AΣx

]
BT + Σn2

= BΣxA
T
[
A−TΣ−1x A−1 −

(
AΣxA

T + Σn1

)−1]
AΣxB

T + Σn2

= ΣT
yz

(
−H−1

)
Σyz + Σn2 . (34)

Substituting (34) in (32) and defining P as:

P−1 =
(
ΣT
yzH

−1Σyz

)−1 − (ΣT
yzH

−1Σyz −Σn2

)−1
, (35)

we have:

CΣy = ΣxA
TH−1ΣyzP

−1ΣT
yz, (36)

which is clearly invertible.
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