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Abstract—This paper investigates active damping of LCL-filter 

resonance in a grid-connected voltage source converter with only 
grid-current feedback control. Basic analysis in the s-domain 
shows that the proposed damping technique with a negative 
high-pass filter along its damping path is equivalent to adding a 
virtual impedance across the grid-side inductance. This added 
impedance is more precisely represented by a series RL branch in 
parallel with a negative inductance. The negative inductance helps 
to mitigate phase lag caused by time delays found in a digitally 
controlled system. The mitigation of phase-lag, in turn, helps to 
shrink the region of non-minimum-phase behavior caused by 
negative virtual resistance inserted unintentionally by most 
digitally implemented active damping techniques. The presented 
high-pass-filtered active damping technique with a single 
grid-current feedback loop is thus a more effective technique, 
whose systematic design in the z-domain has been developed in the 
paper. For verification, experimental testing has been performed 
with results obtained matching the theoretical expectations 
closely.  
 

Index Terms—Voltage source converter, LCL filter, resonance 
damping, non-minimum phase system, virtual impedance  

I. INTRODUCTION 

CL resonance has always been an important concern for 
LCL-filtered voltage source converters [1]. A wide variety 

of resonance damping techniques have thus been developed 
with the trend generally favoring active damping techniques 
because of the additional power losses experienced by passive 
damping techniques [2]. Active damping techniques can also be 
broadly divided into those realized by cascading a digital filter 
with the current controller [3], and those realized by feeding 
back the filter state variables [4]-[16]. The former represents a 
sensor-less technique realized by plugging in a digital filter, 
which unfortunately, is sensitive to parameter uncertainties and 
variations [10]. It is therefore not as popular as the feedback of 
filter state variables for damping purposes. Among the state 
variables fed back, the filter capacitor current has been widely 
chosen [4]-[9], and is usually realized with a proportional 
resistive gain. 
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The proportional resistive gain is, however, easily modified 

by transport delays found in a digital system. The outcome is a 
negative virtual resistance, which upon introduced, will add 
open-loop Right-Half-Plane (RHP) poles to the system. These 
open-loop poles will, in turn, introduce a non-minimum-phase 
closed-loop behavior to the system [7]. Such a non-minimum- 
phase behavior has subsequently been resolved by replacing the 
usual proportional gain with a High-Pass Filter (HPF) along the 
capacitor current feedback loop [8]. The capacitor current must 
however still be measured, which in practice, will demand an 
additional sensor or a complex software-based observer [6]. 

To avoid additional sensing, the single-loop current control 
schemes have increasingly been studied [9]-[16]. In [11], for 
example, it has been shown that a stable grid current control 
scheme can be implemented with only a single control loop 
without damping. The reason has been identified as an inherent 
damping introduced by the transport delays in the considered 
digital control system. This inherent damping effect is however 
available only when the LCL resonance frequency is above 
one-sixth of the system sampling frequency [9], [12]. It is, 
therefore, not always suitable like in weak grids, where grid 
impedances and hence system LCL resonance frequencies may 
vary widely. As a precaution, the external active damping is 
recommended, especially in the power-electronics-based power 
systems, where the interactions among multiple converters may 
lead to harmonic instability if not damped appropriately [13]. 

It is therefore encouraging to develop a robust active 
damping technique that relies only on the feedback of grid-side 
current (hence no additional sensor) [14]-[17]. Ideally, the 
developed scheme will require an s2 term for inserting the 
necessary positive virtual resistance, which in practice, is not 
implementable because of the possible noise amplification. A 
second-order Infinite Impulse Response (IIR) filter [14] or a 
first-order HPF with a negated output [15], [16] has thus been 
suggested as a replacement for the s2 term. Another alternative 
is to use the optimized loop shaping design discussed in [17], 
where the current controller and active damping have been 
designed together as a fifth-order feedback transfer function in 
the z-domain. In terms of simplicity, the HPF is clearly more 
attractive, while not compromising accuracy significantly. Its 
parameter design has thus been discussed in [15] and [16], but 
not its alteration caused by the transport delays. Its equivalent 
circuit notation has also not been discussed. These issues, when 

Grid-Current-Feedback Active Damping for 
LCL Resonance in Grid-Connected Voltage 

Source Converters 

Xiongfei Wang, Member IEEE, Frede Blaabjerg, Fellow IEEE, and Poh Chiang Loh 

L



 

left unresolved, will more easily lead to non-minimum-phase 
response of the system, owing to the overlooked presence of 
negative virtual resistance. 

This paper thus begins by presenting an impedance-based 
analysis in the s-domain for generalizing the physical circuit 
property of grid current feedback active damping. The analysis 
specifically demonstrates that the grid current active damping 
is equivalent to the insertion of a virtual impedance in parallel 
with the grid-side inductance. In case of a HPF with a negated 
output along the damping path, the virtual impedance can 
further be notated as a series RL branch in parallel with a 
negative inductance. The resistive part of the RL branch may 
become negative when influenced by transport delays, which 
may then cause non-minimum-phase response that can impair 
the overall system stability and robustness. The non-minimum- 
phase problem can, however, be minimized by the negative 
virtual inductance in parallel with the series RL damper. 

This mitigation effect is not inherited by other existing active 
damping techniques based on the feedback of filter capacitor 
current, and has presently not been discussed in the literature. It 
is thus the intention of this paper to study the combined 
negative resistive and inductive effects introduced by the grid 
current active damping. Moreover, the frequency region, within 
which negative virtual resistance exists, will also be identified, 
and shown to be dependent on the ratio between HPF cutoff 
frequency and system sampling frequency. A robust damping 
performance can subsequently be ensured by developing a 
systematic co-design procedure for the active damping and grid 
current controller. The procedure is explained with root locus 
analyses in the z-domain, before verifying it experimentally. 

II. IMPEDANCE-BASED ANALYSIS 

A. System Description 

Fig. 1 illustrates a three-phase grid-connected voltage source 
converter with an LCL filter and a constant DC-link voltage Vdc 

for simplicity. Parasitic resistances of the circuit have been 
ignored to arrive at the worst case condition, where no passive 
damping of resonance exists. The Synchronous Reference 
Frame Phase-Locked Loop (SRF-PLL) has also been employed 
for synchronizing the converter with the Point of Common 
Coupling (PCC) voltage [18]. A low-bandwidth SRF-PLL has 
been designed to avoid the undesired low-frequency instability 
[19]. The grid voltage Vg has also been assumed as balanced, 
which then allows per-phase diagrams to be used for analysis in 
Fig. 2, where the per-phase grid current control scheme has 
been shown. The illustrated scheme clearly has the grid current 
i2 sensed and fed back for regulation and active damping 
purposes. For current regulation, controller Gc(s) used is the 
Proportional-Resonant (PR) controller represented by (1) in the 
stationary αβ frame [9]. 
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where kp and ki are proportional and resonant gains, 
respectively, and ω1 is the grid fundamental frequency. 

**

 
Fig. 1.  Three-phase grid-connected LCL-filtered voltage source converter with 
single-loop grid current control scheme.   

 

*

 
Fig. 2.  Per-phase block diagram of the grid current control loop. 

 
Complementing, Gad(s) is for active damping, whose transfer 

function is analyzed in the following subsections. Influencing 
Gc(s) and Gad(s) is the digital time delay Gd(s), whose notation 
is given in (2) [20]. 
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where Ts is the system sampling period. The digital time delay 
is composed by the half sampling period of modulation delay, 
and one sampling period of computation delay. 

B. Impedance-Based Equivalent Circuits 

For demonstrating circuit properties realized by grid current 
active damping, its representation in Fig. 2 is redrawn as in Fig. 
3 (a), after introducing the following two modifications, while 
keeping the system closed-loop response unchanged. 

 Instead of sensing grid current i2 in Fig. 2, voltage 
across the grid-side inductor L2 is sensed in Fig. 3 (a). 

 Instead of adding at the output of Gc(s) in Fig. 2, the 
summing node has been shifted to after 1/(L2s) in Fig. 
3 (a). 

For retaining its closed-loop characteristics, Zv(s) in Fig. 3 
(a) is further set as (3). 
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Transfer functions surrounded by the dashed enclosure in 

Fig. 3 (a) can eventually be redrawn like the equivalent circuit 
shown in Fig. 3 (b). This representation immediately informs
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Fig. 3.  Equivalent control diagram and generalized equivalent circuit for the 
grid current active damping scheme. (a) Control diagram. (b) Equivalent 
circuit. 

 
that grid current active damping is no different from paralleling 
a virtual impedance Zv(s) across the grid-side inductance L2. 
The added impedance can be shaped by varying Gad(s) rather 
than Gd(s), which is usually fixed by the chosen sampling 
frequency. For example, with Gd(s) = 1 fixed by having no 
system delay, a resistive damper Zv(s) = Rv like in Fig. 4 (a) can 
be inserted by shaping Gad(s) = s2 for cancelling the same s2 
term found in the numerator of (3).  

Shaping Gad(s) = s2 is, however, not practically feasible, 
leading next to the series RL damper represented by (4) and 
shown in Fig. 4 (b). The series RL damper can be implemented 
by Gad,1(s) in (5), which clearly does not have the undesired s2 
term, yet is still having a first-order derivative term, which in 
practice, is commonly approximated by a first-order HPF term. 
That makes it no different from the second HPF term in (5).  
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A third possibility is thus to consider only the second HPF 

term in (5) with its negative polarity retained (implemented by 
placing a HPF with negated output along the damping path). 
Note that the same high-pass scheme has been mentioned in 
[15] and [16], yet neither its physical circuit meaning nor the 
accompanied nontrivial features are discussed. These issues are 
investigated here by deriving its circuit equivalence using the 
analytical technique developed earlier. Transfer functions and 
circuit representation obtained are shown in (6), (7) and Fig. 4 
(c). 
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where Lv,2 and Rv,2 are virtual inductance and resistance 
furnished by the HPF active damping, and ωad and kad are cutoff 
frequency and gain of the HPF, respectively. 

Fig. 4 (c) again shows a series RL damper, but now with an 
additional negative virtual inductance (−Lv,2) connected in 
parallel. This negative virtual inductance, if chosen equal to the 
grid-side inductance L2, will lead to only Rv,2 and L2 in series on 
the grid-side of the filter. The HPF gain in (7) will also simplify 
to kad = ωadL1. However, this simplified case is only for the 
conceptual information, since the grid-side inductance will drift 
in practice, making it hard to be exactly cancelled by the 
negative virtual inductance in parallel. 

Then, with a finite time delay considered, the virtual 
impedance in (4) changes to (8) and (9), and that in (6) changes 
to (10) and (11). 
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From either (9) or (11), the observation noted is imaginary 

and real terms of the virtual impedance can both become 
negative after introducing the finite time delay. The negative 
imaginary term will tend to shift the actual LCL resonance 
frequency ωres, while the negative real term will add open-loop 
RHP poles to the current control loop. The latter causes the 
non-minimum-phase behavior, which should preferably be 
avoided if a fast dynamic response is demanded. Comparing the 
real terms in (9) and (11) also informs that the negative 
paralleled virtual inductance (−Lv,2) in Fig. 4 (c) helps to lessen 
the likelihood of Re{Zv,2} in (11) being negative. It is thus an 
important feature furnished by the HPF-based grid current 
active damping, which has so far been overlooked by [15] and 
[16], even though the same HPF scheme has been tried. 

With this understanding, the next immediate task is to 
identify the critical frequency ωv, above which Re{Zv,2d} in (11) 
becomes negative. The task can be done by first replacing 
Gad(s) in (3) with the HPF parameters kad and ωad. The 
expression obtained is given in (12), which when equated to



 

   
(a) (b) (c) 

   
Fig. 4.  Virtual impedance-based equivalent circuits realized by grid current active damping. (a) Single resistance. (b) Series RL damper. (c) Series RL damper with 
paralleled –L. 
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Fig. 5.  Critical frequency ωv versus HPF cutoff frequency ωad. 

 
zero, leads to (13). 
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where ωs = 2πfs, and fs is the system sampling frequency. 

Equation (13) can further be plotted as Fig. 5 for showing the 
relationship between critical frequency ωv and HPF cutoff 
frequency ωad. It is shown in particular that with ωad = 0 or the 
HPF reduced to only a negative proportional gain (kad ≠ 0), the 
critical frequency read is ωv = ωs/6. This value can also be 
determined from the virtual impedance expression given in (3), 
which upon substituted with ωad = 0, simplifies to (14). Any 
resonance frequency ωres above ωs/6 considered for damping 
will then lead to negative Re{Zv,2d0}, and hence non-minimum- 
phase characteristic of the system. A simple solution is to invert 
the polarity of kad when ωres  ωs/6 and ωad = 0. Alternatively, 
active damping can be removed since it is not necessary for ωres 
 ωs/6 [9], [12]. 
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A third possibility is to set a non-zero ωad for generating a 

high critical ωv that saturates at ωv = ωs/3. Damping of 
resonance in the range of ωs/6  ωres  ωv  ωs/3 can then be 

performed with no negative virtual resistance introduced. Yet, 
above ωs/3, synthesis of negative virtual resistance cannot be 
avoided, which means the non-minimum-phase response will 
always be experienced. The value of ωs/3 can therefore be 
referred to as the theoretical upper limit for ωv when a HPF 
with negated output is used for synthesizing the demanded 
active damping. This limit is, however, not achievable in 
practice, where noise amplification and digital sampling error 
will realistically limit the HPF cutoff frequency ωad to below 
the Nyquist frequency of 0.5ωs. With ωad = 0.5ωs further 
assumed, Fig. 5 gives the companion practical upper limit as ωv 
 0.28ωs, which needless to say, is smaller than the theoretical 
limit. 

III. DISCRETE Z-DOMAIN ANALYSIS 

The impedance analyses in the s-domain aim to illustrate the 
active damping effects with the physical filter circuit, where 
components are always continuous. Therefore, demonstration 
of the circuit effects in the continuous s-domain is appropriate. 
Now, the intention is to co-design the discretized current 
controller and active damper, where classical control theory 
states that it is more accurately done in the z-domain. The root- 
locus analyses in this section are therefore performed in the z- 
domain, where results obtained can also be used for verifying 
the impedance-based equivalence identified earlier. 

Parameters used for the analyses are given in Table I, where 
three different filter capacitance values have been included for 
generating three different LCL resonance frequencies. 
Alternatively, the different resonance frequencies can be 
obtained with different grid-side inductance L2 values, which 
certainly, can also be viewed as a change in grid inductance. 
Changing of capacitance is, however, preferred for the eventual 
experimental testing owing to the ease of obtaining well-tested 
commercial capacitors, whose values over a frequency range 
are available. Different capacitances, instead of inductances, 
have therefore been chosen for analysis without compromising 
the objective of obtaining different resonance frequencies. 

A. Discrete z-Domain Model 

Fig. 6 illustrates the grid current control diagram in the 
discrete z-domain, where Lt has been used for combining L2 and 
Lg from Fig. 1 (Lt = L2 + Lg). A Zero-Order Hold (ZOH) block 
has also been included for modeling the Digital Pulse Width 
Modulation (DPWM) and its accompanied delay. The ZOH 
model is generally acceptable since it has been proven earlier to 
be a satisfactory approximation of the uniformly sampled 
DPWM, especially when its carrier is triangular [21], [22]. 



 

*

 
 
Fig. 6.  Grid current control scheme in the z-domain. 
 
Complementing the ZOH block is a z-1 delay block included for 
representing computational delay [20]. With these included 
blocks, transfer function Yg(s) for representing the passive 
“plant” in Fig. 6 and (15) can eventually be discretized as (16), 
where HZOH(s) denotes the ZOH transfer function. 
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The PR controller Gc(s) in (1) and active damper Gad,2(s) in 
(7) can also be discretized by applying Tustin transformation 
with the former further pre-warped at the grid fundamental 
frequency [23]. The expressions obtained are given in (17) and 
(18). 
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Using (16) to (18), the open-loop Tol (z) and closed-loop Tcl 

(z) transfer functions for the grid current control scheme can 
neatly be derived as (19) and (20). 
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B. Effects of Negative Virtual Resistance 

From Fig. 6, inclusion of Gad,2(z) can be viewed as the 
formation of an inner active damping control loop for reshaping  

TABLE I 
MAIN CIRCUIT PARAMETERS 

Symbol Electrical Constant Value 

Vg Grid voltage  400V 
f1 Grid frequency 50 Hz 

fsw Switching frequency 10 kHz 

fs Sampling frequency 10 kHz 

Ts Sampling period 100 μs 

Vdc DC-link voltage  750 V 

L1 Converter-side filter inductor 1.8 mH 

L2 Grid-side filter inductor 1 mH 

Cf Filter capacitor 4.7/9.4/13.5 μF 

Lg Grid inductance 0.8 mH 

 
the LCL filter. Open-loop transfer function of this inner active 
damping loop can be written as (21), which will include 
unstable poles if negative virtual resistance is inserted by 
Gad,2(z). These poles are related to the inner active damping 
loop only, excluding the outer PR controller. They appear as 
RHP poles, mentioned in Section II, when in the s-domain, and 
poles outside the unit circle when in the discrete z-domain. The 
initiation of negative virtual resistance can thus be sensed by 
identifying when the root loci of (21) move out of the unit circle 
in the z-domain. 
 

1
, ,2( ) ( ) ( )ol ad ad gT z z G z Y z   (21) 

 
To illustrate, Fig. 7 shows the root loci of the inner damping 

loop obtained by closing the forward transfer function in (21) 
and changing kad. These root loci are also the open-loop pole 
trajectories of the outer grid current control loop. Presence of 
unstable poles in the inner damping loop will hence cause the 
outer grid current control loop to have non-minimum-phase 
behavior, as mentioned in Section II. For comparison, root loci 
for two different LCL resonance frequencies are considered 
with the first plotted in Fig. 7 (a) for ωres = 0.24ωs and Cf = 4.7 
μF, and the second plotted in Fig. 7 (b) for ωres = 0.17ωs and Cf 
= 9.4 μF. For both plots, the HPF cutoff frequency ωad is swept 
from 0 to 0.5ωs (Nyquist frequency) with a step size of 0.05ωs. 
The obtained root loci initially track outside the unit circle, but 
are gradually moved inside it as ωad increases. 

The inward shifting is, however, slower in Fig. 7 (a), whose 
root loci only enter the unit circle after ωad crosses 0.3ωs. The 
root loci in Fig. 7 (b), on the other hand, enter the unit circle 
upon ωad rising above 0.05ωs. These observations can be 
explained by noting that ωres = 0.24ωs in Fig. 7 (a), which 
according to Fig. 5, requires critical frequency ωv to be higher 
than 0.24ωs. With a safety margin included, ωad of the HPF 
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Fig. 7.  Root loci of the active damping loop without the PR current controller. (a) Cf = 4.7 μF, ωres = 0.24ωs. (b) Cf = 9.4 μF, ωres = 0.17ωs. 
 

should hence be chosen higher than 0.3ωs according to Fig. 5. 
Similarly, with ωres = 0.17ωs in Fig. 7 (b), ωv must be higher 
than 0.17ωs, which can be ensured by choosing ωad higher than 
0.05ωs (with again a safety margin included). The discussed 
examples have therefore demonstrated the relevance of the 
impedance-based analyses presented in Section II, from which 
Fig. 5 has been derived for explaining phenomena observed in 
this subsection. 

C. Co-Design of Active Damper and Current Controller 

The conventional approach towards designing an actively 
damped system is to design the grid current controller first 
followed by the active damper. For the former, plenty of 
existing references are available with [24] being an example. 
The method proposed in [24] uses only the total inductance 
(L1+Lt) and a defined phase margin θm for computing the 
parameters of (1), according to (22). 
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where ωc is the crossover frequency of the grid current control 
loop. Parameters of the PR grid current controller can then be 
included for designing the active damper based on root locus or 
other analytical techniques [8], [9], [15]. However, such a 
design procedure has overlooked the virtual impedance shaping 
effect that the active damping has introduced to the physical 
LCL filter. For grid current active damping, the introduced 
effect is shown in Fig. 4 (c) when a HPF with negative output is 
used as the damping transfer function (see (7)). 

For illustrating more of the virtual impedance effects, Fig. 8 
to Fig. 10 plot the closed-loop pole trajectories of the overall 
grid current control scheme with both proportional gain kp of 
the PR current controller and active damping gain kad included. 
The former (kp) is continuously varied to obtain the root loci for 
a few chosen representative kad values. Moreover, since the 
resonant term of the PR controller is designed for obtaining the 
zero steady-state error at the fundamental frequency, its effect 
at the higher crossover frequency of the current control loop is 
comparably negligible. It is thus not included with the root 

locus analyses [9].  
The subsequent root locus plots obtained are for three 

different LCL resonance frequencies (ωres = 0.24ωs, 0.17ωs, 
0.14ωs), and for each plot (or resonance frequency), three 
cutoff frequencies (ωad = 0.15ωs, 0.25ωs, 0.35ωs) and four 
gains (kad = 0, 5, 15, 35) of the HPF have been compared. 
Beginning with Fig. 8 for the case of ωres = 0.24ωs and Cf = 4.7 
μF, the closed-loop poles can be kept within the unit circle even 
with kad = 0 for representing no added active damping. 
Obtaining stable poles with kad = 0 is, however, possible only 
when ωres>ωs/6, above which the system transport delay will 
create an inherent damping effect [9], [12]. Therefore, for Fig. 
8, external active damping is strictly not necessary, but can be 
introduced for improved robustness in case that parameter drift 
causes ωres to fall below ωs/6. 

Addition of external damping by setting kad ≠ 0 then results 
in prominent change in the root loci with both changes in kad 
and ωad causing the closed-loop poles to move inside the unit 
circle. Consequently, the dynamic performance of the overall 
system is altered, implying that the grid current controller 
cannot be designed without considering the virtual impedance 
shaping effect introduced by the active damper. It should also 
be noted that kad cannot be increased excessively since it forces 
the root loci to move out of the unit circle from the right. This 
can be seen in Fig. 8 (a), where the right root paths are always 
out of the unit circle when kad = 35. The overall system is, 
therefore, always unstable regardless of how the grid current 
controller is designed. The “always unstable” upper limit of kad 
in Fig. 8 is also noted to increase with ωad like demonstrated by 
the higher ωad = 0.25ωs in Fig. 8 (b) and ωad = 0.35ωs in Fig. 8 
(c). The higher ωad in either of the diagrams causes critical 
frequency ωv read from Fig. 5 to become higher than ωres = 
0.24ωs set for Fig. 8. The non-minimum-phase behavior is, 
therefore, avoided when in Fig. 8 (b) and (c), permitting higher 
gains like kad in the active damper and kp in the PR grid current 
controller to be used without causing instability. 

The same root loci have been re-plotted in Fig. 9 and Fig. 10, 
but with lower resonance frequencies of ωres = 0.17ωs  ωs/6 
and ωres = 0.14ωs  ωs/6 considered. Since ωres is no longer 
higher than ωs/6, inherent damping introduced by the transport 



 

Real Axis

Im
a

g
in

ar
y

 A
x

is

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

kad = 35
kad = 15
kad = 5
kad = 0

ωad = 0.15ωs

 
-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Real Axis

Im
a

g
in

ar
y

 A
x

is

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Real Axis

Im
a

g
in

ar
y

 A
x

is

   

(a) (b) (c) 
   

Fig. 8.  Root loci of the grid current control loop with Cf = 4.7 μF and ωres = 0.24ωs. (a) ωad = 0.15ωs. (b) ωad = 0.25ωs. (c) ωad = 0.35ωs. 
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Fig. 9.  Root loci of the grid current control loop with Cf = 9.4 μF and ωres = 0.17ωs. (a) ωad = 0.15ωs. (b) ωad = 0.25ωs. (c) ωad = 0.35ωs. 
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Fig. 10.  Root loci of the grid current control loop with Cf = 14.1 μF and ωres = 0.14ωs. (a) ωad = 0.15ωs. (b) ωad = 0.25ωs. (c) ωad = 0.35ωs. 

 
delay is no longer applicable, causing the closed-loop poles to 
track outside the unit circle when kad = 0. Active damping is, 
therefore, necessary when in Fig. 9 and Fig. 10, unlike in Fig. 8.  

Other than this, patterns of the root loci in Fig. 9 and Fig. 10 
are also noted to be different, except for an observation related 
to kad which remains unchanged. More specifically, increase of 

kad is again noted to gradually destabilize the system with the 
root loci always located outside the unit circle on the right when 
kad = 35 (see Fig. 9 (a) and Fig. 10 (a)). This upper limit of kad 
can similarly be raised by increasing ωad, which unfortunately, 
is not always effective now. Explanation for that can be 
deduced from Fig. 9 (c), Fig. 10 (b) and (c), where it can be seen 



 

that root loci related to kad = 15 change their trajectories 
prominently as ωad increases. A higher ωad forces the root loci 
for kad = 15 to move closer to the boundary of the unit circle 
rather than away from it. That gives lesser damping, which is 
certainly undesirable. 

Parametric influences of the active damper on the system 
response must therefore not be ignored, and it is certainly not 
appropriate to design the grid current controller with only the 
total inductance considered, like in (22). An acceptable design 
for the overall control scheme can only be guaranteed when 
both HPF and current controller are co-designed 
simultaneously using root locus or other analytical techniques. 
In this section, root loci have been plotted in Fig. 8 to Fig. 10, 
where it has been shown that for each pair of given kad and ωad, 
its accompanied root locus is formed by two conjugate pole 
trajectories moved along by two complex pole pairs. The pole 
pairs move in opposite directions as kp increases. It is hence not 
straightforward to decide on the eventual set of parameters. 

To resolve the problem, [25] uses a basic rule related to 
direct pole placement, which is to constrain all poles to have the 
same natural frequency. In other words, kad, ωad, and kp should 
be co-designed such that the two conjugate pole trajectories 
intersect, and hence reducing the poles to only one conjugate 
pole pair. The conjugate pole pair must then be shifted so that it 
has the same natural frequency as the real pole. Such a design 
is, however, too restrictive. A slightly relaxed criterion is thus 
adopted for the design procedure recommended below, while 
still relying on direct pole placement in the z-domain for 
producing acceptable performance.  

1) Identify the resonance frequency ωres, and then choose 
a few possible values for the HPF cutoff frequency ωad 
from Fig. 5 that will help to avoid non-minimum- 
phase characteristic by ensuring that ωv  ωres.  

2) Root loci like in Fig. 8 to Fig. 10 can be plotted using 
the chosen ωad and kad values for studying their 
influences on the system closed-loop poles. A final 
value can then be decided for ωad and another for kad 
through minimizing the distance between the two 
conjugate pole trajectories.  

3) Two conjugate pole pairs with the shortest separation 
distance can then be marked, from which proportional 
gain kp of the PR current controller can be determined. 
Natural frequencies of the conjugate pole pairs will 
then be the closest possible. 

4) Since the resonant term of the PR controller has an 
effect only at the grid fundamental frequency, its 
resonant gain ki can be approximately computed using 
(22) and an assumed crossover frequency ωc obtained 
by substituting phase margin θm = 40 to the first 
equation in (22). However, note that (22) is derived in 
[21] for a converter with L-filter only. It is therefore 
only an approximation, where ωc does not give the 
actual crossover frequency of the LCL-filtered system. 

5) The procedure can be iterated, where necessary. 
 

IV. EXPERIMENTAL RESULTS 

For verification, the three-phase converter and LCL filter 
shown in Fig. 1 were implemented and connected to a 
California Instruments MX-series AC power supply for 
emulating the grid. Circuit parameters used for the setup are 
listed in Table I, while Table II lists parameters of the PR 
controller and active damper designed using Fig. 8 to Fig. 10. 
Corresponding closed-loop poles obtained using Table II are 
also marked with “X” in the figures. The designed control 
scheme was eventually implemented using a dSPACE DS1006 
platform with a DS5101 digital waveform output board for 
generating the modulating pulses. Additionally, a DS2004 
high-speed analog-to-digital board was used for sampling the 
PCC voltage and grid current values in synchronism with the 
modulating pulses. 

With the implemented setup, Fig. 11 shows its measured grid 
voltage and current waveforms when ωres = 0.24ωs and Cf  = 4.7 
μF. Since ωres  ωs/6, the system remains stable even with no 
active damping added, as demonstrated by Fig. 11 (a) with kad = 
0. The system dynamic can however be improved by active 
damping, as understood from Fig. 8 (b) and (c). Corresponding 
results for showing the improved dynamic are given in Fig. 11 
(b) for kad = 5 and Fig. 11 (c) for kad = 15. Both figures use the 
same ωad = 0.35ωs, and experience the same current step from 5 
A to 7.5 A. Compared with Fig. 11 (a), Fig. 11 (b) and (c) 
exhibit faster response with shorter settling time and improved 
damping. These figures also confirm that with ωad = 0.35ωs, 
ωres is lower than the critical frequency of ωv = 0.27ωs read 
from Fig. 5. The improved damping in Fig. 11 (b) and (c) is 
therefore related to the positive virtual resistance inserted when 
ωres  ωv. A slightly improved transient response can also be 
seen from Fig. 11 (b) when compared with Fig. 11 (c). This 
observation is in agreement with the pole locations marked in 
Fig. 8 (c).  

Fig. 12 next shows the grid voltage and current waveforms 
when the filter resonance frequency was changed to ωres = 
0.17ωs  ωs/6 by using Cf  = 9.4 μF. Since ωres is no longer 
higher than ωs/6, the system cannot be stabilized without active 
damping, as demonstrated by Fig. 12 (a) obtained with a small 
kad of 5, ωad = 0.25ωs. It shows a critically stable operation, 
which matches with the dash-lined root locus in Fig. 9 (b). Note 
that kad has not been reduced further since it caused high 
oscillatory current that tripped the system over-current 
protection during the testing. Results for kad = 0 are therefore 
not provided. Instead, results for an increased kad of 15, but the 
same ωad, are provided in Fig. 12 (b). It can be seen from the 
results that the system is effectively damped by the larger kad, 
which hence confirms the dotted root locus drawn in Fig. 9 (b). 

For both Fig. 12 (a) and (b), it should also be mentioned that 
the system does not exhibit the non-minimum-phase behavior, 
because ωres is below ωv = 0.25ωs read from Fig. 5 when ωad = 
0.25ωs. The non-minimum-phase behavior will be avoided too 
when ωad is increased to 0.35ωs. However, according to Fig. 9 
(c) plotted with ωad = 0.35ωs, root locus corresponding to kad = 
15 is shown to shift closer to the unit circle. The system is thus 
comparably less damped. This expectation has been verified by  

 



 

TABLE II 
CONTROLLER PARAMETERS 

Test Case PR Controller (kp) PR Controller (ki) HPF (ωad) HPF (kad) 

Case I   Cf = 4.7 μF, ωres = 0.24ωs 16 600 0.35ωs 0/5/15 
Case II   Cf = 9.4 μF, ωres = 0.17ωs 12 600 0.25ωs/0.35ωs 5/15 
Case III   Cf = 14.1 μF, ωres = 0.14ωs 9 600 0.15ωs/0.25ωs 5/15 
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Fig. 11.  Measured grid voltage and currents when ωres = 0.24ωs and Cf = 4.7 μF. 
(a) kad = 0. (b) kad = 5, ωad = 0.35ωs. (c) kad = 15, ωad = 0.35ωs. 

 
the more oscillatory transient grid current waveforms observed 
in Fig. 12 (c) when compared with those in Fig. 12 (b).  

Comparing Fig. 12 (c) with Fig. 11 (c), another important 
observation should be noted too. Both figures are obtained with 
the same active damping parameters, but a decrease of the 
resonance from ωres = 0.24ωs in Fig. 11 (c) to 0.17ωs in Fig. 12 
(c) has significantly degraded the system transient performance 
even though a smaller proportional gain kp (16 for Fig. 11 (c) in 
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Fig. 12.  Measured grid voltage and currents when ωres = 0.17ωs and Cf = 9.4 μF. 
(a) kad = 5, ωad = 0.25ωs. (b) kad = 15, ωad = 0.25ωs. (c) kad = 15, ωad = 0.35ωs. 

 
comparison with 12 for Fig. 12 (c)) has been used with the grid 
current controller. Indirectly, it implies that the active damper 
and current controller must be co-designed simultaneously 
since their parameters affect each other. 

The same grid voltage and current waveforms are re-plotted 
in Fig. 13, but now for an even lower resonance frequency of 
ωres = 0.14ωs  ωs/6 obtained with Cf  = 14.1 μF. Since ωres is 
again lower than ωs/6, reducing kad to zero will gradually lead
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Fig. 13.  Measured grid voltage and currents when ωres = 0.14ωs and Cf = 14.1 
μF. (a) kad = 5, ωad = 0.15ωs. (b) kad = 15, ωad = 0.15ωs. (c) kad = 15, ωad = 0.25ωs. 

 
to instability according to the dashed root locus plotted in Fig. 
10 (a). This expectation has been confirmed by results shown in 
Fig. 13 (a) for kad = 5 and ωad = 0.15ωs. Also observed from Fig. 
13 (b) and (c) for the same kad = 15 is the more oscillatory 
transient response of the latter obtained with a higher ωad = 
0.25ωs. This observation has similarly been explained when 
analyzing root loci for the same kad = 15 in Fig. 10 (a) and (b). 
Fig. 10 (b), in particular, uses a higher ωad = 0.25ωs, whose 
effect is to push the root loci closer to the boundary of the unit 
circle. Expected dynamic response from Fig. 10 (b) will hence 
be more oscillatory or less damped, as verified by Fig. 13 (c) in 
comparison with Fig. 13 (b). 

Further comparison between Fig. 13 (c) and Fig. 12 (b), 
which use the same active damping parameters, can also be 
performed, where the lower resonance at ωres = 0.14ωs has 

caused the results in Fig. 13 (c) to be dynamically poorer even 
though a smaller proportional gain of kp = 9 has been used with 
it. This finding is similar to that concluded earlier when 
comparing Fig. 11 (c) and Fig. 12 (c). The preferred value for 
ωad in Fig. 13 has lastly been noted to be lower than that in Fig. 
12, which is, to a great extent, expected since the smaller ωres in 
Fig. 13 does not demand a high ωad for mitigating the 
non-minimum-phase response caused by the unintentionally 
inserted negative virtual resistance (based on Fig. 5). 

V. CONCLUSIONS 

This paper studies grid current active damping and control 
for LCL-filtered voltage source converters. Through systematic 
impedance-based analyses, it has been shown that active 
damping with grid current feedback is equivalent to adding a 
virtual impedance in parallel with the grid-side filter 
inductance. This virtual impedance has further been shown to 
be a series RL branch in parallel with a negative inductance 
when a HPF with negative output is used for implementing the 
active damper. The introduced negative inductance is 
particularly helpful for reducing non-minimum-phase behavior 
caused by transport delays in a digital system. Parametric 
influences of the active damper and current controller have also 
been studied through root locus analyses, where it has been 
shown that parameters of the active damper influence the 
system poles greatly. They have therefore been included in the 
co-design procedure recommended for the active damper and 
grid current controller. Experimental results obtained have 
shown the anticipated steady-state and transient performances, 
hence validating concepts presented in the paper. 
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