
 

  

 

Aalborg Universitet

Optimal Power Flow in three-phase islanded microgrids with inverter interfaced units

Sanseverino, Eleonora Riva; Quang, Ninh Nguyen; Di Silvestre, Maria Luisa; Guerrero, Josep
M.; Li, Chendan
Published in:
Electric Power Systems Research

DOI (link to publication from Publisher):
10.1016/j.epsr.2015.01.020

Publication date:
2015

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Sanseverino, E. R., Quang, N. N., Di Silvestre, M. L., Guerrero, J. M., & Li, C. (2015). Optimal Power Flow in
three-phase islanded microgrids with inverter interfaced units. Electric Power Systems Research, 123, 48-56.
DOI: 10.1016/j.epsr.2015.01.020

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 26, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60607205?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.epsr.2015.01.020
http://vbn.aau.dk/en/publications/optimal-power-flow-in-threephase-islanded-microgrids-with-inverter-interfaced-units(f6a6b0e6-b1e4-4dff-bff2-8b0e05f6a3fb).html


This document downloaded from www.microgrids.et.aau.dk is the preprint version of the paper: 

E. Riva Sanseverino, N. N. Quang, M. L. Di Silvestre, J. M. Guerrero, C. Li, “Optimal Power Flow in three-phase islanded 

microgrids with inverter interfaced units,” Electric Power Systems Research, 2015 

 

 

Optimal Power Flow in three-phase islanded microgrids with 

inverter interfaced units 

 

Eleonora Riva Sanseverino
(1)

*, Ninh Nguyen Quang*, Maria Luisa Di Silvestre*, Josep M. Guerrero**, 

Chendan Li** 

 

*DEIM, Università di Palermo, Building 9, Viale delle Scienze 90128, Italy  

**Department of Energy Technology, Aalborg university Pontoppidanstraede 101,  

9220 Aalborg East Denmark 

 

(1) corresponding author: email eleonora.rivasanseverino@unipa.it; tel. 003909123860262; fax 0039091488452 

 

 

Abstract— In this paper, the solution of the Optimal Power Flow (OPF) problem for three phase 

islanded microgrids is studied, the OPF being one of the core functions of the tertiary regulation 

level for an AC islanded microgrid with a hierarchical control architecture. The study also aims at 

evaluating the contextual adjustment of the droop parameters used for primary voltage and 

frequency regulation of inverter interfaced units. The work proposes a mathematical method for the 

OPF solution also considering the droop parameters as variables. The output of the OPF provides an 

iso-frequential operating point for all the generation units and a set of droop parameters for 

primary regulation. In this way, secondary regulation can be neglected in the considered 

hierarchical control structure. Finally, the application section provides the solution of the OPF 

problem over networks of different sizes and a stability analysis of the microgrid system using the 

optimized droop parameters, thus giving rise to the optimized management of the system with a new 

hierarchical control architecture. 

 

Keywords— Optimal power flow, three phase systems, islanded operation, microgrids 

1. Introduction 

ptimal Power Flow, OPF, in electrical power systems is the problem of identifying the optimal dispatch 

of generation sources to get technical and economical issues. The problem is typically solved in 

Distribution Management Systems (DMS), which implement the highest level of the hierarchy of 

controllers within microgrids [1]. They take care of control functions such as optimized real and reactive 
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power dispatch, voltage regulation, contingency analysis, capability maximization, or reconfiguration. 

Microgrids, that are small low or medium voltage networks supplying interconnected loads by distributed 

energy resources, often show unbalanced loads and can work autonomously from the main grid. For this 

reason, a three phase OPF in islanded distribution systems is needed. The formulation of the problem 

should also account for the presence of inverter-interfaced units with control laws specifically designed to 

contrast voltage and frequency deviations when a sudden load variation occurs. Therefore the first issue to 

be analyzed is the efficient solution of the three phase Power Flow [2] in islanded three phase unbalanced 

systems; the formulation of the problem may also put into evidence the droop regulators parameters, so as 

to account for voltage and frequency deviations within admissible ranges.  

In [3], a parametric study on these systems shows the dependency of power losses on the droop 

parameters, thus it makes sense to consider as part of the solution of the OPF also the set of droop 

parameters affecting the power injection from grid forming units. In the problem, the other variables are 

the power injections from PQ generation buses. Besides, according to traditional power flow solution 

method, a slack bus is needed; the latter is considered as an infinite bus capable of supplying or absorbing 

whatever real or reactive power flow thus keeping the system frequency and local bus voltage constant. 

This method for load flow solution is not suitable in islanded microgrids systems having small and 

comparable capacity generators. In these systems indeed, there is no generator that can be physically 

regarded as a slack bus. In order to face the problem above, in this paper it is proposed to model inverter 

interfaced generation units using the control law used for primary voltage and frequency regulation and a 

suitable power flow calculation method without a slack bus has been proposed in 2009 [2]. Differently 

from what is commonly done for loads, represented with a constant power model (P, Q), in this 

formulation, loads power depends on voltage and frequency. Constant power model may indeed lead to 

inconsistent and misleading results about loss reduction and other subsequent calculations on stability [5].  

Authors in [2] devise a power flow calculation method for islanded power networks. However, the loads in 

the study only depend on voltage, not on frequency and the application is devoted to balanced transmission 

systems. Therefore the proposed model is not suitable for power flow calculations in microgrids, which 

typically show unbalanced loads. The power flow formulation in three phase unbalanced micro-grid with 

voltage and frequency dependent load modeling may bring misleading results with traditional methods, 

such as the Newton Raphson method, due to the presence of sparse matrices. A complete formulation of 

the problem here discussed can be found in [6], where a new method that can solve this problem called 

Newton Trust Region Method is proposed. The method is designed by a combination of Newton Raphson 

Method and Trust Region Method. The paper shows that this new method is a helpful tool to perform 

accurate steady state studies of islanded microgrids and the solution of a 25 bus test system is achieved 
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after a few iterations. However, the authors do not investigate the dependency between the droop 

parameters values and the power losses value for each loading condition and do not solve the OPF 

problem. The OPF in three phase unbalanced systems working in islanded conditions has been dealt with 

only recently, although some authors have investigated the influence of the network parameters over 

stability issues affecting the local controllers [4], showing that the selection of droop characteristics 

requires a thorough investigation of system steady-state and dynamic behavior.  

More recently, in [7], the authors use Particle Swarm Optimization to choose the droop parameters and 

then perform the load flow analysis using the formulation seen in [2]. In the paper however the OPF is not 

dealt with the three phase load flow formulation. In [8], a methodology for unbalanced three-phase OPF 

for distribution management system in a smart grid is presented. However, the loads in the study do not 

depend on voltage and frequency and a traditional power flow solution method for grid connected systems 

is used. 

In [9], it is shown that with P/V droop control, the DG units that are located electrically far from the load 

centers automatically deliver a lower share of the power. This automatic power-sharing modification can 

lead to decreased line losses; therefore, there the system shows an overall improved efficiency as compared 

to the methods focusing on perfect power sharing. Such concept of unequal power sharing is developed in 

this paper, where droops are optimized based on global objectives such as power losses, the latter being an 

optimization objective that seems concurrent with dynamic stability of the system. 

In this paper, an original formulation and solution approach for the OPF problem in islanded distribution 

systems is proposed. The methodology is well suited for AC microgrids and can be envisioned as a new 

hierarchical control structure comprising only two levels: primary and tertiary regulation, the latter also 

providing iso-frequency operating points for all units and optimized droop parameters for primary 

regulation. The OPF provides a minimum losses operating point for which voltage drops are limited and 

power sharing is carried out according to the most adequate physical properties of the infrastructure thus 

giving rise to increased lifetime of lines and components. Due to the fact that the solution method is based 

on a numerical approach, the OPF is quite fast and efficient and the operating point can be calculated in 

times that are comparable to the current secondary regulation level times.    

The paper is organized as follows. In section II, the modeling of the three-phase system for power flow 

solution is described. Then the power flow solution for unbalanced three phase microgrids systems using 

the Trust Region Method is described. Then, section III presents the OPF formulation for losses 

minimization in closed form. The formulation of the OPF in this first application is devoted to balanced 

load three phase system in which the only the P-f droop parameters can be optimized, while the Q-V droop 

parameters cannot. Section IV shows the attained results and a discussion on the attained results.  
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In the application sections, two test systems different scenarios have been investigated to show: 

- the results of the OPFs solution and the results for a small 6 bus system along with the droop parameters 

attained; 

- the results of stability studies carried out over the 6 bus system above. 

 

2. Optimal Power flow in islanded AC microgrids  

In order to provide a suitable formulation of the OPF problem in islanded AC microgrids also accounting 

for primary regulation issues, it is required a precise modeling of the system’s lines and components.  

 

2.1.Lines and loads modeling 

Line modeling [6] in this study is based on the dependency on frequency of lines reactance. Carson’s 

equations are used for a three phase grounded four wire system. With a grid that is well grounded, 

reactance between the neutral potentials and the ground is assumed to be zero. Applying the Kron’s 

reduction [10] to the impedance matrix modeling the electromagnetic couplings between conductors and 

the ground, the following compact matrix formulation can be attained, please see figure 1 where 

superscript –n has been omitted: 

[𝑍𝑖𝑗
𝑎𝑏𝑐] = [

𝑍𝑖𝑗
𝑎𝑎−𝑛 𝑍𝑖𝑗

𝑎𝑏−𝑛 𝑍𝑖𝑗
𝑎𝑐−𝑛

𝑍𝑖𝑗
𝑏𝑎−𝑛 𝑍𝑖𝑗

𝑏𝑏−𝑛 𝑍𝑖𝑗
𝑏𝑐−𝑛

𝑍𝑖𝑗
𝑐𝑎−𝑛 𝑍𝑖𝑗

𝑐𝑏−𝑛 𝑍𝑖𝑗
𝑐𝑐−𝑛

](1) 

 

 

Figure 1 - Model of three phase line 

 

 

2.2.Load modeling 

The frequency and voltage dependency of the power supplied to the loads can be represented as follows: 
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𝑃𝐿𝑖 = 𝑃0𝑖|𝑉𝑖|
𝛼(1 + 𝐾𝑝𝑓∆𝑓)    (2) 

𝑄𝐿𝑖 = 𝑄0𝑖|𝑉𝑖|
𝛽(1 + 𝐾𝑞𝑓∆𝑓)    (3) 

 

where P0i and Q0i are the rated real and reactive power at the operating points respectively; α and β are the 

coefficients of real and reactive power. The values of α and β are given in [11]. △f is the frequency 

deviation (f-f0); Kpf  takes the value from 0 to 3.0, and Kqf takes the value from -2.0 to 0 [12]. 

 

2.3.Distributed Generators modeling 

The three phase real and reactive power generated from a DG unit with droop inverter interfaced 

generation can be expressed by the follow equations: 

 

𝑃𝐺𝑟𝑖 = −𝐾𝐺𝑖(𝑓 − 𝑓0𝑖)(4) 

𝑄𝐺𝑟𝑖 = −𝐾𝑑𝑖(|𝑉𝑖| − 𝑉0𝑖)(5) 

 

In these equations, the coefficients KGi and Kdi as well as V0i and f0i characterize the droop regulators of 

distributed generators. The three phase real and reactive power generated from a PQ_generator can be 

expressed by the follow equations: 

𝑃𝑃𝑄𝑖 = 𝑃𝑃𝑄𝑖𝑠𝑝𝑒𝑐                (6) 

𝑄𝑃𝑄𝑖 = 𝑄𝑃𝑄𝑖𝑠𝑝𝑒𝑐            (7) 

Where 𝑃𝑃𝑄𝑖𝑠𝑝𝑒𝑐 and 𝑄𝑃𝑄𝑖𝑠𝑝𝑒𝑐 are the pre-specified active and reactive generated of the i-th PQ_generator. 

 

2.4.General formulation of three phase power flow problem 

For each type of bus (such as PQ bus, PV bus or Droop-bus), we will have the different mismatch 

equations describing [6]. In this work, we assume that all buses are either droop-buses or PQ bus. For each 

PQ-Bus, we have mismatch quations as follow: 

 

{
 
 

 
 
𝑃𝑃𝑄𝑖,𝑠𝑝𝑒𝑐
𝑎,𝑏,𝑐 = 𝑃𝐿𝑖

𝑎,𝑏,𝑐(𝑓, |𝑉𝑖
𝑎,𝑏,𝑐|)

        +𝑃𝑖
𝑎,𝑏,𝑐(𝑓, |𝑉𝑖

𝑎,𝑏,𝑐|, |𝑉𝑗
𝑎,𝑏,𝑐|, 𝛿𝑖

𝑎,𝑏,𝑐 , 𝛿𝑗
𝑎,𝑏,𝑐)                     (8)

𝑄𝑃𝑄𝑖,𝑠𝑝𝑒𝑐
𝑎,𝑏,𝑐 = 𝑄𝐿𝑖

𝑎,𝑏,𝑐(𝑓, |𝑉𝑖
𝑎,𝑏,𝑐|)

        +𝑄𝑖
𝑎,𝑏,𝑐(𝑓, |𝑉𝑖

𝑎,𝑏,𝑐|, |𝑉𝑗
𝑎,𝑏,𝑐|, 𝛿𝑖

𝑎,𝑏,𝑐 , 𝛿𝑗
𝑎,𝑏,𝑐)                    (9)
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where 

   𝑃𝑃𝑄𝑖,𝑠𝑝𝑒𝑐
𝑎,𝑏,𝑐

 and 𝑄𝑃𝑄𝑖,𝑠𝑝𝑒𝑐
𝑎,𝑏,𝑐

 are the pre-specified active and reactive power at each phases of PQ-Bus i.  

  𝑉𝑖
𝑎,𝑏,𝑐

 is the voltage of each phase at bus i 

  𝛿𝑖
𝑎,𝑏,𝑐

 is the angle voltage of each phase at bus i 

  𝑃𝐿𝑖
𝑎,𝑏,𝑐

 and 𝑄𝐿𝑖
𝑎,𝑏,𝑐

 are the active and reactive load power at each phases of bus i 

  𝑃𝑖
𝑎,𝑏,𝑐

 and 𝑄𝑖
𝑎,𝑏,𝑐

 are the active and reactive power injected to the grid at each phases of bus i, can be 

attained, as follows: 

 

𝑃𝑖
𝑎 = ∑ ∑ [

|𝑉𝑖
𝑎| |𝑌𝑖𝑗

𝑎(𝑝ℎ)−𝑛| |𝑉𝑖
(𝑝ℎ)

|cos (𝜃𝑖𝑗
𝑎(𝑝ℎ) + 𝛿𝑖

(𝑝ℎ) − 𝛿𝑖
𝑎)

−|𝑉𝑖
𝑎| |𝑌𝑖𝑗

𝑎(𝑝ℎ)−n| |𝑉𝑗
(𝑝ℎ)

|cos (𝜃𝑖𝑗
𝑎(𝑝ℎ) + 𝛿𝑗

(𝑝ℎ) − 𝛿𝑖
𝑎)
]𝑝ℎ=𝑎,𝑏,𝑐

𝑛𝑏𝑟
𝑗=1
𝑗≠𝑖

  (10) 

𝑄𝑖
𝑎 = ∑ ∑ [

|𝑉𝑖
𝑎| |𝑌𝑖𝑗

𝑎(𝑝ℎ)−𝑛| |𝑉𝑗
(𝑝ℎ)

|sin (𝜃𝑖𝑗
𝑎(𝑝ℎ) + 𝛿𝑖

(𝑝ℎ) − 𝛿𝑖
𝑎)

−|𝑉𝑖
𝑎| |𝑌𝑖𝑗

𝑎(𝑝ℎ)−n| |𝑉𝑖
(𝑝ℎ)

|sin(𝜃𝑖𝑗
𝑎(𝑝ℎ) + 𝛿𝑖

(𝑝ℎ) − 𝛿𝑖
𝑎)
]𝑝ℎ=𝑎,𝑏,𝑐

𝑛𝑏𝑟
𝑗=1
𝑗≠𝑖

  (11) 

where 𝑌𝑖𝑗
𝑎(𝑝ℎ)−𝑛

 is the branch admittance between two nodes i and j 

Similar equations can be extracted for phase b and phase c. 

For each PQ-Bus i, we have the unknown variables: 

 

𝑥𝑃𝑄𝑖 = [𝛿𝑖
𝑎,𝑏,𝑐|𝑉𝑖

𝑎,𝑏,𝑐|]
𝑇
            (12) 

 

For all PQ-Bus, we have the unknown variables: 

 

𝑥𝑃𝑄 = [𝑥𝑃𝑄1…𝑥𝑃𝑄𝑛𝑝𝑞]
𝑇

              (13) 

 

where 𝑛𝑝𝑞 is the number of PQ-Bus. 

For each of the droop-buses, i, we have mismatch equations as follow: 
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{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
0 = 𝑃𝐿𝑖

𝑎,𝑏,𝑐(𝑓, |𝑉𝑖
𝑎,𝑏,𝑐|) − 𝑃𝐺𝑖

𝑎,𝑏,𝑐

        +𝑃𝑖
𝑎,𝑏,𝑐(𝑓, |𝑉𝑖

𝑎,𝑏,𝑐|, |𝑉𝑗
𝑎,𝑏,𝑐|, 𝛿𝑖

𝑎,𝑏,𝑐 , 𝛿𝑗
𝑎,𝑏,𝑐)                   (14)

0 = 𝑄𝐿𝑖
𝑎,𝑏,𝑐(𝑓, |𝑉𝑖

𝑎,𝑏,𝑐|) − 𝑄𝐺𝑖
𝑎,𝑏,𝑐

        +𝑄𝑖
𝑎,𝑏,𝑐(𝑓, |𝑉𝑖

𝑎,𝑏,𝑐|, |𝑉𝑗
𝑎,𝑏,𝑐|, 𝛿𝑖

𝑎,𝑏,𝑐 , 𝛿𝑗
𝑎,𝑏,𝑐)                    (15)

0 = |𝑉𝑖
𝑎| − |𝑉𝑖

𝑏|                                                                       (16)

0 = |𝑉𝑖
𝑎| − |𝑉𝑖

𝑐|                                                                       (17)

 0 = 𝛿𝑖
𝑎 − 𝛿𝑖

𝑏 − (
2𝜋

3
)                                                              (18)

 0 = 𝛿𝑖
𝑎 − 𝛿𝑖

𝑏 + (
2𝜋

3
)                                                              (19)

 0 = 𝑃𝐺𝑖
𝑎 + 𝑃𝐺𝑖

𝑏 + 𝑃𝐺𝑖
𝑐 − 𝑃𝐺𝑖(𝑓)                                              (20)

 0 = 𝑄𝐺𝑖
𝑎 + 𝑄𝐺𝑖

𝑏 + 𝑄𝐺𝑖
𝑐 − 𝑄𝐺𝑖(|𝑉𝑖

𝑎,𝑏,𝑐|)                                 (21)

 

 

For each Droop-bus i, we have the unknown variables: 

𝑥𝐷𝑖 = [𝛿𝑖
𝑎,𝑏,𝑐|𝑉𝑖

𝑎,𝑏,𝑐|𝑃𝐺𝑖
𝑎,𝑏,𝑐𝑄𝐺𝑖

𝑎,𝑏,𝑐]
𝑇
            (22) 

 

For all Droop-bus, we have the unknown variables: 

 

𝑥𝐷 = [𝑥𝐷1…𝑥𝐷𝑛𝑑]
𝑇
           (23) 

 

where 𝑛𝑑 is the number of Droop-bus. 

So we have the total number of mismatch equations, n, and their corresponding unknown variables X: 

 

𝑛 = 12 × 𝑛𝑑 + 6 × 𝑛𝑝𝑞            (24) 

𝑋 = [𝑥𝐷𝑥𝑝𝑞𝑓]                          (25) 

 

The mismatch equations are nonlinear algebraic equations. The Trust region method is a robust method to 

solve such problems. Using the function “fsolve” of Matlab which uses the Trust region method, we can 

obtain the unbalanced three phase power flow solution. 

Using the load flow problem formulation, parametric studies [3] on an islanded 25 bus test system, whose 

parameters are taken from [13], have been carried out. The load flow problem has been solved using the 

methodology proposed above. As expected, the results show that there are many different sets of 

parameters satisfying the condition f = 50Hz, while power losses change. Changing the droop parameters 
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produces a change of the power loss in the system. With f within the admissible range, the set of 

parameters satisfying the condition of minimum losses power sharing can thus be chosen.  

3. Optimal Power Flow calculation 

The Optimal Power Flow in this paper is carried out to minimize power losses. The solution algorithm is 

iterative and uses Lagrange method. The solution strategy has proved to be efficient for the definition of 

new operating points and new droop parameters for primary regulation; moreover, the proposed 

architecture integrating the proposed OPF may replace the secondary regulation level by finding an iso-

frequency working condition for all units. It has indeed been shown, through parametric studies [3] that the 

power losses term is of course connected to the droop parameters values and thus such choice influences 

the steady state operation of microgrids.  

Moreover sharing power among units so as to get a minimum loss operation will lead also to increased 

stability margins and probably a stable operation as proved in [14], [15].  

The role of the OPF in the proposed controller architecture is depicted in figure 2 below and expressed by 

the following formula. 

𝑓 = (𝑓0𝑖 + ∆𝑓) − (𝐾𝐺𝑖 + ∆𝐾𝐺𝑖) ∗ (𝑃𝐺𝑟𝑖 − 𝑃0𝐺𝑟𝑖) (26) 
 

Where: 𝑓0𝑖 and 𝑃0𝐺𝑟𝑖 are the rated frequency and power of generator i  

      𝑓 and 𝑃𝐺𝑟𝑖 are frequency and generated power of generator i at the new operating point 

     ∆𝑓  and ∆𝐾𝐺𝑖  are frequency deviation and droop parameter to get the new operating point, 

respectively carried out by secondary and tertiary control. In this way, the OPF outputs a new operating 

point at a new frequency and also resets the different primary regulation parameters.  

 

Figure 2 – Action of the OPF in the proposed controller architecture 
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A general formulation for the power losses equation, referred to as Kron’s loss formula, is the following 

[16]: 

 

𝑃𝐿𝑜𝑠𝑠 = ∑ ∑ 𝑃𝐺𝑖𝐵𝑖𝑗𝑃𝐺𝑗 + ∑ 𝐵0𝑖𝑃𝐺𝑖
𝑛𝑔
𝑖=1

+ 𝐵00
𝑛𝑔
𝑗=1

𝑛𝑔
𝑖=1

   (27) 

 

where  𝑛𝑔 is the number of generators (including of droop generators ( 𝑛𝑔𝑟) and PQ generators (𝑛𝑃𝑄)), 

    𝑃𝐺𝑖 and 𝑃𝐺𝑗 are matrix of generated real powers 

 

𝑃𝐺𝑗 = [

𝑃𝐺1
𝑃𝐺2
⋮

𝑃𝐺𝑛𝑔

];   𝑃𝐺𝑖 = [𝑃𝐺1 𝑃𝐺2 … 𝑃𝐺𝑛𝑔]  (28) 

 

    𝐵𝑖𝑗, 𝐵0𝑖 and 𝐵00are loss coefficients or B-coefficients.  

Such formulation linearly relates the power losses with the generated powers, considering constant the 

system’s frequency and bus voltages modules and displacements. Although the expression was originally 

written for transmission systems, it can also be used for microgrids, since it does not imply any assumption 

that is strictly valid for transmission. Besides, in the solution algorithm, the B-coefficients formulation for 

power losses is re-calculated at each iteration and this will be cleared out in later. The algorithm repeatedly 

calculates the system’s electrical parameters (voltages modules, voltages displacements and frequency) 

through the solution of the power flow for new values of the generated power. Nonetheless, since the B-

coefficient formulation is adequate for systems that have balanced loads, this hypothesis is a basic 

assumption to use the proposed method.  

The three phase injected real and reactive power from a DG unit which is Droop_bus are calculated in (3) 

and (4) and in this application, the reactive power depends on voltage but the relevant parameter (𝐾𝑑𝑖) can 

not be optimized. 

The optimal dispatch problem is thus that to find the set of droop parameters (𝐾𝐺𝑖) and generating powers 

(𝑃𝐺𝑖) minimizing the power losses function expressed in (27), subject to the constraint that generation 

should equal total demands plus losses 

 

∑ 𝑃𝐺𝑟𝑖 + ∑ 𝑃𝑃𝑄𝑖
𝑛𝑃𝑄
𝑖=1

= ∑ 𝑃𝐿𝑖
𝑛𝑑
𝑖=1 + 𝑃𝐿𝑜𝑠𝑠

𝑛𝑔𝑟
𝑖=1

 (29) 
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where 𝑃𝐺𝑟𝑖 is the real power of droop_generator i; 𝑃𝑃𝑄𝑖 is the real power of PQ_generator i; 𝑃𝐿𝑖 is the real 

power of load bus i and 𝑛𝑑 is the number of load bus. 

The problem should also meet the following inequality constraints, expressed as follows: 

 

𝐾𝐺𝑖𝑚𝑖𝑛 ≤ 𝐾𝐺𝑖 ≤ 𝐾𝐺𝑖𝑚𝑎𝑥, 𝑖 = 1to 𝑛𝑔𝑟              (30) 

𝑃𝑃𝑄𝑖𝑚𝑖𝑛 ≤ 𝑃𝑃𝑄𝑖 ≤ 𝑃𝑃𝑄𝑖𝑚𝑎𝑥, 𝑖 = 1 to 𝑛𝑃𝑄            (31) 

|𝐼𝑚𝑛𝑖| ≤ 𝐼𝑚𝑛𝑖𝑚𝑎𝑥                      (32) 

   

where the KGi is a coefficient characterizing the droop regulator of droop_bus generator i, 𝐼𝑚𝑛𝑖  is the 

current on branch mn connecting buses m and n. 

Equation (32) is the constraint about branches ampacity limit. However, due to the objective function 

formulation, it has been considered by verifying it at every cycle of the optimization algorithm thus 

producing a sub-optimal feasible solution. Figure 3 shows how the constraint is integrated into the 

optimization problem solution.   

Following the Lagrange method, we obtain  

 

𝐿 = 𝑃𝐿𝑜𝑠𝑠 + 𝜆(∑ 𝑃𝐿𝑖
𝑛𝑑
𝑖=1 + 𝑃𝐿𝑜𝑠𝑠 − ∑ 𝑃𝐺𝑟𝑖 − ∑ 𝑃𝑃𝑄𝑖

𝑛𝑃𝑄
𝑖=1

𝑛𝑔𝑟
𝑖=1

) +    

∑ 𝜇𝑖(𝑚𝑎𝑥)(𝐾𝐺𝑖 − 𝐾𝐺𝑖(𝑚𝑎𝑥))
𝑛𝑔𝑟
𝑖=1

+∑ 𝜇𝑖(𝑚𝑖𝑛)(𝐾𝐺𝑖 − 𝐾𝐺𝑖(𝑚𝑖𝑛)) + ∑ 𝛾𝑖(𝑚𝑎𝑥)(𝑃𝑃𝑄𝑖 − 𝑃𝑃𝑄𝑖𝑚𝑎𝑥)
𝑛𝑃𝑄
𝑖=1

+
𝑛𝑔𝑟
𝑖=1

           

∑ 𝛾𝑖(𝑚𝑖𝑛)(𝑃𝑃𝑄𝑖 − 𝑃𝑃𝑄𝑖𝑚𝑖𝑛)
𝑛𝑃𝑄
𝑖=1

   (33) 

 

Where 𝜆, 𝜇𝑖(𝑚𝑎𝑥) , 𝜇𝑖(𝑚𝑖𝑛) , 𝛾𝑖(𝑚𝑎𝑥) , 𝛾𝑖(𝑚𝑖𝑛)  are the Lagrange multiplier and the 𝜇𝑖(𝑚𝑎𝑥) = 0, 𝛾𝑖(𝑚𝑎𝑥) = 0 

when 𝐾𝐺𝑖 < 𝐾𝐺𝑖𝑚𝑎𝑥 , 𝑃𝑃𝑄𝑖 < 𝑃𝑃𝑄𝑖𝑚𝑎𝑥  ; 𝜇𝑖(𝑚𝑖𝑛) = 0 , 𝛾𝑖(𝑚𝑖𝑛) = 0 when 𝐾𝐺𝑖 > 𝐾𝐺𝑖𝑚𝑖𝑛 , 𝑃𝑃𝑄𝑖 > 𝑃𝑃𝑄𝑖𝑚𝑖𝑛 . It 

means that if the constraint is violated, it will become active. To get the solution of the problem, we have 

to solve the set of equations include of the partials of the function below:  

 

𝜕𝐿

𝜕𝐾𝐺𝑖
= 0                                                                                 (34) 

𝜕𝐿

𝜕𝑃𝑃𝑄𝑖
= 0                                                                                (35) 

𝜕𝐿

𝜕𝜆
= 0                                                                                    (36) 

𝜕𝐿

𝜕𝜇𝑚𝑎𝑥
= 𝐾𝐺𝑖 − 𝐾𝐺𝑖(𝑚𝑎𝑥) = 0                                                 (37) 

𝜕𝐿

𝜕𝜇𝑚𝑖𝑛
= 𝐾𝐺𝑖 − 𝐾𝐺𝑖(𝑚𝑖𝑛) = 0                                                  (38) 
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𝜕𝐿

𝜕𝛾𝑚𝑎𝑥
= 𝑃𝑃𝑄𝑖 − 𝑃𝑃𝑄𝑖(𝑚𝑎𝑥) = 0                                              (39) 

𝜕𝐿

𝜕𝛾𝑚𝑖𝑛
= 𝑃𝑃𝑄𝑖 − 𝑃𝑃𝑄𝑖(𝑚𝑖𝑛) = 0                                               (40) 

Equations (37), (38), (39) and (40) mean that when 𝐾𝐺𝑖 and 𝑃𝑃𝑄𝑖 are within their limits, we will have:  

𝜇𝑖(𝑚𝑖𝑛) = 𝜇𝑖(𝑚𝑎𝑥) = 0    (41) 

and 

𝛾𝑖(𝑚𝑖𝑛) = 𝛾𝑖(𝑚𝑎𝑥) = 0    (42) 

 

First condition, given by (34) results in 

 

𝜕𝐿

𝜕𝐾𝐺𝑖
=

𝜕𝑃𝐿𝑜𝑠𝑠

𝜕𝐾𝐺𝑖
+ 𝜆 (

𝜕∑ 𝑃𝐿𝑖
𝑛𝑑
𝑖=1

𝜕𝐾𝐺𝑖
+
𝜕𝑃𝐿𝑜𝑠𝑠

𝜕𝐾𝐺𝑖
−
𝜕∑ 𝑃𝐺𝑟𝑖

𝑛𝑔𝑟
𝑖=1

𝜕𝐾𝐺𝑖
−
𝜕∑ 𝑃𝑃𝑄𝑖

𝑛𝑃𝑄
𝑖=1

𝜕𝐾𝐺𝑖
) = 0   (43) 

 

Since  

𝜕∑ 𝑃𝐺𝑟𝑖
𝑛𝑔𝑟
𝑖=1

𝜕𝐾𝐺𝑖
=

𝑑𝑃𝐺𝑟𝑖

𝑑𝐾𝐺𝑖
= −(𝑓 − 𝑓0𝑖)    (44) 

 

𝜕∑ 𝑃𝑃𝑄𝑖
𝑛𝑃𝑄
𝑖=1

𝜕𝐾𝐺𝑖
= 0     (45) 

 

𝜕∑ 𝑃𝐿𝑖
𝑛𝑑
𝑖=1

𝜕𝐾𝐺𝑖
=

𝑑𝑃𝐿𝑖

𝑑𝐾𝐺𝑖
= 0     (46) 

 

And therefore the condition for optimum dispatch becomes 

 

𝜕𝑃𝐿𝑜𝑠𝑠

𝜕𝐾𝐺𝑖
(𝜆 + 1) + 𝜆(𝑓 − 𝑓0𝑖) = 0    (47) 

 

Since 

 

𝜕𝑃𝐿𝑜𝑠𝑠

𝜕𝐾𝐺𝑖
= (𝑓 − 𝑓0𝑖) (−2∑ 𝐵𝑖𝑗𝑃𝐺𝑗

𝑛𝑔
𝑗=1

− 𝐵0𝑖)    (48) 

 

substituting in (47) we have 
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{2∑ 𝐵𝑖𝑗𝑃𝐺𝑗
𝑛𝑔
𝑗=1

+ 𝐵0𝑖} (𝜆 + 1) − 𝜆 = 0   (49) 

 

or 

𝐵𝑖𝑖(𝑓 − 𝑓𝑜𝑖)𝐾𝐺𝑖 − ∑ 𝐵𝑖𝑗𝑃𝐺𝑗 =
𝐵0𝑖

2

𝑛𝑔
𝑗=1
𝑗≠𝑖

−
𝜆

2(𝜆+1)
   (50) 

Second condition, given by (35) results in 

 

𝜕𝐿

𝜕𝑃𝑃𝑄𝑖
=

𝜕𝑃𝐿𝑜𝑠𝑠

𝜕𝑃𝑃𝑄𝑖
+ 𝜆 (

𝜕∑ 𝑃𝐿𝑖
𝑛𝑑
𝑖=1

𝜕𝑃𝑃𝑄𝑖
+
𝜕𝑃𝐿𝑜𝑠𝑠

𝜕𝑃𝑃𝑄𝑖
−
𝜕∑ 𝑃𝐺𝑟𝑖

𝑛𝑔𝑟
𝑖=1

𝜕𝑃𝑃𝑄𝑖
−
𝜕∑ 𝑃𝑃𝑄𝑖

𝑛𝑃𝑄
𝑖=1

𝜕𝑃𝑃𝑄𝑖
) = 0  (51) 

 

Since  

𝜕∑ 𝑃𝐺𝑟𝑖
𝑛𝑔𝑟
𝑖=1

𝜕𝑃𝑃𝑄𝑖
= 0   (52) 

 

𝜕∑ 𝑃𝑃𝑄𝑖
𝑛𝑃𝑄
𝑖=1

𝜕𝑃𝑃𝑄𝑖
= 1    (53) 

 

𝜕∑ 𝑃𝐿𝑖
𝑛𝑑
𝑖=1

𝜕𝑃𝑃𝑄𝑖
=

𝑑𝑃𝐿𝑖

𝑑𝑃𝑃𝑄𝑖
= 0   (54) 

 

And therefore the condition for optimum dispatch becomes 

 

𝜕𝑃𝐿𝑜𝑠𝑠

𝜕𝑃𝑃𝑄𝑖
(𝜆 + 1) − 𝜆 = 0          (55) 

 

Since 

𝜕𝑃𝐿𝑜𝑠𝑠

𝜕𝑃𝑃𝑄𝑖
= 2∑ 𝐵𝑖𝑗𝑃𝐺𝑗

𝑛𝑔
𝑗=1

+ 𝐵0𝑖    (56) 

 

substituting in (49) we have 

 

{2∑ 𝐵𝑖𝑗𝑃𝐺𝑗
𝑛𝑔
𝑗=1

+ 𝐵0𝑖} (𝜆 + 1) − 𝜆 = 0      (57) 

 

or 
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𝐵𝑖𝑖𝑃𝑃𝑄𝑖 + ∑ 𝐵𝑖𝑗𝑃𝐺𝑗 =
𝜆

2(𝜆+1)
−
𝐵0𝑖

2

𝑛𝑔
𝑗=1
𝑗≠𝑖

       (58) 

 

Third condition, given by (36) results in 

 

∑ 𝑃𝐿𝑖
𝑛𝑑
𝑖=1 + 𝑃𝐿𝑜𝑠𝑠 − ∑ 𝑃𝐺𝑟𝑖 −∑ 𝑃𝑃𝑄𝑖

𝑛𝑃𝑄
𝑖=1

𝑛𝑔𝑟
𝑖=1

= 0       (59) 

 

Expressing (50) and (58) in form of matrix, we have 

[
 
 
 
𝐵11 𝐵12 … 𝐵1𝑛𝑔
𝐵21
⋮

𝐵𝑛𝑔1

𝐵22
⋮

𝐵𝑛𝑔2

…
⋱
…

𝐵2𝑛𝑔
⋮

𝐵𝑛𝑔𝑛𝑔]
 
 
 

[
 
 
 
 
 
𝐾𝐺1(𝑓 − 𝑓01)

𝐾𝐺2(𝑓 − 𝑓02)
⋮

−𝑃𝑃𝑄1
⋮

𝐾𝐺𝑛𝑔(𝑓 − 𝑓0𝑛𝑔)]
 
 
 
 
 

=
1

2

[
 
 
 
 
 𝐵01 −

𝜆

𝜆+1

𝐵02 −
𝜆

𝜆+1

⋮

𝐵0𝑛𝑔 −
𝜆

𝜆+1]
 
 
 
 
 

        (60) 

We use the gradient method to solve this set of equation in (60). First, we estimated an initial value of 𝜆(𝑘), 

then we can solve the set of linear equations. From (60), formulation to calculate 𝐾𝐺𝑖 at the 𝑘𝑡ℎ iteration 

can be extracted as 

 

𝐾𝐺𝑖
(𝑘) =

𝐵𝑜𝑖(𝜆
(𝑘)+1)−𝜆(𝑘)−2(𝜆(𝑘)+1)∑ 𝐵𝑖𝑗𝐾𝐺𝑗

(𝑘)(𝑓−𝑓0𝑗)
𝑛𝑔
𝑗=1
𝑗≠𝑖

2(𝜆(𝑘)+1)𝐵𝑖𝑖(𝑓−𝑓0𝑖)
     (61) 

 

From (60), formulation to calculate 𝑃𝑃𝑄𝑖 at the 𝑘𝑡ℎ iteration can be extracted as 

 

𝑃𝑃𝑄𝑖
(𝑘) =

−𝐵𝑜𝑖(𝜆
(𝑘)+1)+𝜆(𝑘)−2(𝜆(𝑘)+1)∑ 𝐵𝑖𝑗𝑃𝐺𝑗

(𝑘)𝑛𝑔
𝑗=1
𝑗≠𝑖

2(𝜆(𝑘)+1)𝐵𝑖𝑖
       (62) 

 

Substituting for 𝐾𝐺𝑖 from (61) in (5) to get 𝑃𝐺𝑟𝑖 and then substituting 𝑃𝑃𝑄𝑖 from (62) and 𝑃𝐺𝑟𝑖 in (59) we 

have 

 

−∑

𝐵𝑜𝑖(𝜆
(𝑘)+1)−𝜆(𝑘)−2(𝜆(𝑘)+1)∑ 𝐵𝑖𝑗𝐾𝐺𝑗

(𝑘)(𝑓−𝑓0𝑗)
𝑛𝑔
𝑗=1
𝑗≠𝑖

2(𝜆(𝑘)+1)𝐵𝑖𝑖

𝑛𝑔𝑟
𝑖=1 +∑

−𝐵𝑜𝑖(𝜆
(𝑘)+1)+𝜆(𝑘)−2(𝜆(𝑘)+1)∑ 𝐵𝑖𝑗𝑃𝐺𝑗

(𝑘)𝑛𝑔
𝑗=1
𝑗≠𝑖

2(𝜆(𝑘)+1)𝐵𝑖𝑖

𝑛𝑃𝑄
𝑖=1 =

∑ 𝑃𝐿𝑖
𝑛𝑑
𝑖=1 + 𝑃𝐿𝑜𝑠𝑠 

(k)     (63) 

 

or 



 14 

∑

−𝐵𝑜𝑖(𝜆
(𝑘)+1)+𝜆(𝑘)−2(𝜆(𝑘)+1)∑ 𝐵𝑖𝑗𝑃𝐺𝑗

(𝑘)𝑛𝑔
𝑗=1
𝑗≠𝑖

2(𝜆(𝑘)+1)𝐵𝑖𝑖

𝑛𝑔
𝑖=1 = ∑ 𝑃𝐿𝑖

𝑛𝑑
𝑖=1 + 𝑃𝐿𝑜𝑠𝑠 

(k)    (64) 

 

or 

𝑔(𝜆(𝑘)) = ∑ 𝑃𝐿𝑖
𝑛𝑑
𝑖=1 + 𝑃𝐿𝑜𝑠𝑠 

(k)          (65) 

Expanding 𝑔(𝜆(𝑘)) in Taylor’s series about an operating point 𝜆(𝑘), and neglecting the higher-order terms 

we get 

𝑔(𝜆(𝑘)) + (
𝑑𝑔(𝜆)

𝑑𝜆
)
(𝑘)

Δ𝜆(𝑘) = ∑ 𝑃𝐿𝑖
𝑛𝑑
𝑖=1 + 𝑃𝐿𝑜𝑠𝑠 

(k)        (66) 

 

or 

Δ𝜆(𝑘) =
∑ 𝑃𝐿𝑖
𝑛𝑑
𝑖=1

+𝑃𝐿𝑜𝑠𝑠 
(k)−𝑔(𝜆(𝑘))

(
𝑑𝑔(𝜆)

𝑑𝜆
)
(𝑘) =

Δ𝑃(𝑘)

∑(
𝑑𝑃𝑖
𝑑𝜆
)
(𝑘)               (67) 

 

where 

∑ (
𝑑𝑃𝑖

𝑑𝜆
)
(𝑘)

= ∑
1

2(𝜆(𝑘)+1)
2
𝐵𝑖𝑖

𝑛𝑔
𝑖=1

𝑛𝑔
𝑖=1             (68) 

 

and therefore 

𝜆(𝑘+1) = 𝜆(𝑘) + Δ𝜆(𝑘)         (69) 

 

The flowchart of the algorithm is shown in figure 3. 
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Figure 3 - Flowchart of the algorithm  

 

4. Test Results 

In this section, the OPF algorithm has been applied to a 6 bus test system represented in figure 4, for the 

loading condition reported in Table I of Appendix B. Then the dynamic behavior of the system has been 

tested to check the stability of the attained operating point and relevant droop operation parameters. The 

electrical data of the test system are similar to [6], they are shown in Tables I-III of Appendix B; SB = 

10000kVA, VB = 230V, f = 60Hz, 𝐾𝑝𝑓 = 𝐾𝑞𝑓 = 0 (in eqns. (3) and (4). Table I shows the results attained 

after some iterations of the OPF algorithm applied for the considered 6 bus system.  

In the same Table, in bold the optimal power flow solution and the relevant droop parameters are reported.  

Initial value 

Kg=Kg0, PPQ=PPQ
0, Imn

max 

 

Set ∆𝑃𝑔0 , ∆𝑃𝑃𝑄
0 

and 𝜀 

Calculate  

B_coefficients 

Resolve the set of nonliner equations to get 

 Kgnew, PPQnew 

Calculate ∆𝐾𝑔 and ∆𝑃𝑃𝑄, Imn 

Load flow 

 

|∆𝑃𝑃𝑄| < 𝜀 & 

|∆𝑃𝑔| < 𝜀 & 
no 

Imn<Imn
max

 

Stop 

yes 
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As it can be observed, for the considered loading condition, a reduction of 14.04% of power losses is 

attained. Results of the same OPF procedure carried out for other loading conditions on the same test 

system that can be experienced realistically (changing the load factor between 0.5 p.u. and 1 p.u.) still 

show a power losses reduction that does not go below 8% in all cases. 

 

 

Figure 4 - The 6 bus test system 

 

4.1.Stability issues and architecture of the control system 

The dynamic behavior of the system with optimized parameters has been tested for a step load change. At t 

= 10s, a three phase resistor branch (12Ω in each phase) and three phase inductor branch (0.01H in each 

phase) is added to bus 4 and bus 6 by paralleling respectively. 

The simulations, Figures 5 and 6 show that the droop parameters found after the OPF application produce 

stable results. As it was expected, the power sharing condition proposed by the OPF solution increases the 

output power from the units (DG1 and DG3) that are electrically closer to the loads that have increased 

their absorption and decreases the contribution from the electrically farthest unit (DG2). Moreover the 

contextual variation of droop gains in the same direction (increase for those that are closer and decrease for 

the farthest) implies and even more reactive response if loads will keep varying in the same direction).  

Stable behavior was expected since in [15] the stability margins are improved when: loading is shared 

according to lines capacity and frequency is higher (consequence of lower power losses in islanded 

systems). What cannot be ensured is of course that power is shared according to DG units capacity.  
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To see what happens with the system stability between one OPF execution and the other, the following 

experiment has been carried out. First the load at bus 4 was increased by 50%, the OPF was run and the 

optimized parameters for the current loading condition were calculated. Then the load was strongly 

changed in the opposite direction (decrease the load by 50% at both bus 4 and bus 6) to check the stability 

of the system. The results shown in Figures 7 and 8 show that the system is still stable.  

The application carried out even if for a simplified case (balanced loads) where only the P-f droop 

parameters can be optimized shows the possibility to carry out a centralized and optimized control of the 

system even when the grid is islanded. The load flow method, proposed in the first part of the paper, for 

unbalanced systems can indeed be easily integrated into a heuristic-based OPF giving rise to solution 

parameters both for P-f droop generation units and for Q-V droop generation units. 

The proposed OPF algorithm to be integrated into a centralized controller of a microgrid would produce 

reduced losses and voltage drops all over the system. Moreover, if carried out frequently, i.e. every few 

minutes, it eliminates the need for a distributed secondary regulation, since it produces isofrequential, and 

within admissible rated bounds, operating points for all droop interfaced generators.  

 

 

 

 Figure 5 - Comparison of voltage magnitude response in bus1 before and after the optimization  
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Figure 6 - Comparison of power magnitude response in bus 1, 2, 3 before and after the optimization  

 

 

 

Figure 7 - Comparison of voltage magnitude response in bus1 before and after decreasing the load 
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Figure 8 - Comparison of power magnitude response in bus 1, 2, 3 before and after decreasing the load 

 

 

Figure 9 – General architecture of the control system 
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The general architecture of the control system is therefore depicted in figure 9. 

After a load variation and after the primary regulation, in order to compensate for the frequency and 

amplitude deviations, the OPF is started. The frequency and voltage amplitude levels in the microgrids f 

and V at all buses are sensed and compared with the references f*MG and V*MG, if the errors are greater 

than a given threshold (which takes into account the admissible frequency and voltage deviations), then the 

OPF is started again in order to restore the operating voltage and frequency.  

 

Table I - Result of optimal load flow on 6 bus system 

 

N0. 

Iteration 

Load flow, pu Optimization, pu 

Number PGi KG Ploss PGinew KGnew Lambda 

1 

1(Droop) 0.3916 401.0638 0.0265391 0.3978 407.375 0.046917 

2(Droop) 0.3916 401.0638 
 

0.3016 308.8672 
 

3(Droop) 0.3916 401.0638 
 

0.4747 486.2074 
 

2 

1(Droop) 0.3978 407.3750 0.0241074 0.3968 406.3396 0.043823 

2(Droop) 0.3016 308.8672 
 

0.2165 221.7403 
 

3(Droop) 0.4748 486.2074 
 

0.5599 573.4366 
 

3 

1(Droop) 0.3972 406.3396 0.0228142    

2(Droop) 0.2167 221.7403     

3(Droop) 0.5605 573.4366     

 

5. Conclusions 

In this paper, a new OPF algorithm for islanded microgrids is proposed. The algorithm produces a 

minimum losses and stable operating point with relevant droop parameters and solves the OPF problem in 

closed form. It is interesting to point out that the underlying idea of a centralized controller providing 

operating points at the same frequency and within admissible bounds may lead to a simplified hierarchical 

structure only including two control levels (primary and tertiary control levels). Nevertheless, at the 

moment the proposed algorithm cannot deal with unbalanced loads and only outputs results for the P-f 

droops parameters, letting the Q-V droops parameters non optimized. 

The algorithm as it is proposed in the papers is feasible for small systems where centralized operation is 

possible and loads are typically balanced. 

Further research will be oriented towards the implementation of the similar approaches for unbalanced 

distribution systems, since the conclusions that have been drawn can be generalized. Moreover, further 

investigations will concern the implementation of the simplified hierarchical control architecture with only 

primary and tertiary regulation. Another interesting conclusion concerns the fact that minimum losses 
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operation gives rise to stable operating points at same frequency with the relevant droop parameters for 

inverter interfaced units. 

 

 

Appendix B 

Table B.1 -   Bus Data of 6 bus test system 

 

Bus 

number 

Type 

generator 

Load,  per-phase Generator Exponent of Loads 

R, Ohm L, mH Kdi VG0i, V KGi 2*pi*f0i, rad/s Alpha Beta 

1 Droop 0.0000 0.0000 17.69231 230.00 401.0638 377.00 0 0 

2 Droop 0.0000 0.0000 17.69231 230.00 401.0638 377.00 0 0 

3 Droop 0.0000 0.0000 17.69231 230.00 401.0638 377.00 0 0 

4 0 6.9500 12.2000 0.00 0.00 0.00 377.00 2.00 2.00 

5 0 0.0000 0.0000 0.00 0.00 0.00 377.00 2.00 2.00 

6 0 5.0140 9.4000 0.00 0.00 0.00 377.00 2.00 2.00 

 

Table B.2 -   Line Data of 6 bus test system 

Bus nl Bus nr R, Ohm L, H 

1 4 0.3 0.00035 

2 5 0.2 0.00025 

3 6 0.05 0.00005 

4 5 0.43 0.000318 

5 6 0.15 0.001843 

 

 

Table B.3 -   Limit of Kg on 6 bus system 

N0. 

Generator 

Type 

Generator 

Min KG, 

pu 

Max KG, 

pu 

1 Droop 100.00 750.00 

2 Droop 100.00 750.00 

3 Droop 100.00 750.00 
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