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Introduction 
HTPEM fuel cells can with great benefit be 
used in systems with fuel reformers, because 
they have a high tolerance towards carbon 
monoxide in the anode gas. Their 
performance is, however, affected by the 
presence of carbon monoxide. This effect is 
dependent on the fuel cell temperature, with 
the effect being smaller at high temperatures 
and larger at low temperatures. It is 
important to model this effect, when 
choosing optimal operating points for the fuel 
cell and fuel reformer, or constructing larger 
system models. 
It can, however, be difficult to construct 
simple, fast evaluating models of the fuel cells 
performance, which works on a specific fuel 
cell, at a certain state of degradation. This 
work presents a method to do this, based on 
Adaptive Neuro-Fuzzy Inference Systems 
(ANFIS) trained on experimental data[1].  
 
In this case the factors which are expected to 
influence the fuel cell voltage are the fuel cell 
temperature, the CO content of the anode gas 
and the fuel cell current density. Figure 1 
shows a diagram of the ANFIS model 
structure employed in this work. 
 
The model structure is split up into 5 layers. 
The first layer is the fuzzyfication layer, where 
the inputs are converted to fuzzy variables, 
which are numbers between 0 and 1. The 
conversion is done using a series of 
membership functions. Here the output of 
the membership functions can be interpreted 
as “to which degree are the inputs high or 
low.” The membership functions used in this 
work are bell-shaped. These are used because 
they give smooth transition between 
functions. The equation for the first of the six 
membership functions in figure 1 is: 

𝑂1,𝑖 =
1

1 +
𝑇𝐹𝐶 − 𝑐𝑖
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Here 𝑂1,𝑖 is the degree of membership, the 
subscript 𝑖 is the function number and 𝑎𝑖, 𝑏𝑖 
and 𝑐𝑖  are adaptive premise parameters, 
which are optimized using gradient decent 
methods during the training of the system. 
More membership functions increases the 
ability to model non-linear systems, but also 
increases complexity and calculation time.  
The next layer contains the calculation of the 
firing levels of the fuzzy rules, each 
represented by a circle called a node or a 
neuron. For the top rule firing level means: To 
which degree is 𝑇𝐹𝐶  AND 𝑥𝐶𝑂 AND 𝐼𝐹𝐶  high. 
The next layer is the normalization layer. Here 
the sum of the firing levels of all the rules is 
normalized to be 1. 
The second to last layer contains the output 
calculation, where the contribution of each 
rule to the output of the model is calculated. 
This is done using this equation. 
 

𝑂3,𝑖 = 𝑤 𝑖 ⋅ 𝑜𝑖 ⋅ 𝑇𝐹𝐶 + 𝑝𝑖 ⋅ 𝑥𝐶𝑂 + 𝑞𝑖 ⋅ 𝐼𝐹𝐶 + 𝑟𝑖  
 

Where 𝑤 𝑖 is the normalized firing level of the 
rule and 𝑜𝑖 , 𝑝𝑖 , 𝑞𝑖  and 𝑟𝑖  are adaptive 
consequent parameters optimized using least 
squares regression during the training of the 
system. 
The last layer contains the summation of the 
contributions. 

Modeling of a HTPEM Fuel Cell using Adaptive Neuro‐Fuzzy Inference Systems 
Kristian Kjær Justesen* - Søren Juhl Andreasen - Simon Lennart Sahlin 

Dept. of Energy Technology, Aalborg University, Denmark 

*kju@et.aau.dk 

 
 

Results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 References 

[1] Roger Jang Jyh-Sing. ANFIS: adaptive-network-based fuzzy inference 
system. IEEE Transactions on Systems, Man, and Cybernetics 
1993;23:665e85. 

Figure 3: Plot of the fuel cell voltage and current in experiment and model. 

Figure 2: Surface plot of the fuel cell voltage in the experiment. 

Experiment 
To be able to train the ANFIS model it is 
necessary to have an identification 
experiment, which spans the likely operating 
range of the fuel cell. In this work, a 14 cell 
stack, which is a shortened version of a 
Serenergy S 165L-25, is used. The cell is in an 
advanced state of degradation, but this 
doesn’t prevent a proof of concept. Figure 4 
shows a picture of this fuel cell stack. 
 
 
 
 
 
 
 
 
 
 
 
 
The fuel cell stack is mounted in a Greenlight 
G200 test station, which can supply an anode 
gas of the desired composition and 
temperature as well as the cooling oil, which 
controls the temperature of the fuel cell. 
The maximum expected CO concentration, 
based on reformer experiments, is 1.9 % so 
the experiment is performed at 8 equally 
spaced concentrations from 0 to 1.9. The 
maximum rated current density is 0.6 
𝐴/𝑐𝑚2  and the minimum allowable cell 

voltage is 0.4 𝑉 . The stop condition for the 
experiment will be that of these parameters, 
which is reached first. The experiment is 
performed for fuel cell temperatures of 160, 
165 and 170 [⁰C]. 

Figure 4: Picture of the fuel cell stack used in this 
work. 

Figure 1: Diagram of the ANFIS structure used in this work. 

Made for: 

Future work 
To extend the usefulness of the model 
degradation in the form of the number of 
operating hours of the fuel cell could be 
added to the model. 

Results and conclusion 
A surface plot of the fuel cell voltage at a fuel 
cell temperature of 170 [⁰C], which is 
representative of the other temperatures, can 
be seen in Figure 2. This shows, that at higher 
current densities the CO concentration has a 
larger influence than at low concentrations. 
The ANFIS models are trained in Matlab and 
the optimal number of membership functions 
is found to be 2, which gives a mean absolute 
error of 0.9%. Adding further complexity to 
the model is found to give no significant 
advantage. 
Figure 3 shows the fuel cell voltage at a fuel 
cell temperature of 170 [⁰C] from the 
experiment and the model, as well as the 
current density. Again this plot is 
representative of the performance at 160 and 
165 [⁰C]. 
It is concluded that a model of this type can 
be precise and useful for system optimization 
and modeling 


