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Abstract - A major setback for large scale electric vehicle 

market expansion compared to their internal combustion 
competitors consists in their high price and low driving range. 
One way of reducing the cost, dimensions and mass of electric 
vehicles is to eliminate the dedicated AC/DC converter used for 
battery charging. Alternatively, charging could be done using the 
motor windings as grid side inductors and controlling the 
inverter to operate as an active boost rectifier. The challenge in 
this approach is the unequal phase inductances which depend on 
the rotor position. Another problem appears when the battery 
gets discharged below the peak of the grid voltage, typically if the 
vehicle has not been used for a longer period of time. To avoid 
high currents that could damage the battery, a voltage 
suppression mode is introduced for safe depleted battery 
charging. This paper proposes and analyzes an integrated 
charger control algorithm to charge the battery through a 
permanent magnet synchronous machine (PMSM) windings. 

Keywords - electric vehicle, battery charging, space vector 
modulation, asymmetric, unbalanced, active rectifier, voltage 
suppression 

I. INTRODUCTION  
Electric vehicles are one of the most promising solutions to 

reduce the nowadays' excessive greenhouse gasses emission. 
Even though many car manufacturers have released their 
respective electric models over the last couple of years, pure 
vehicle production is not enough to achieve the goal. Personal 
electric vehicles have to become widely used among the 
community to have a significant environmental impact. 
According to [1], number one barrier for electric car 
penetration is their cost, while the driving range is the second. 
The problems are very closely related as batteries account for 
a significant portion of the vehicle cost and mass [2]. 
Therefore, any savings regarding cost and weight in the 
electric vehicle design are very important. 

In this paper the use of a built-in inverter and motor 
windings as an active rectifier to charge the vehicle batteries is 
analyzed, eliminating the need for an additional AC/DC 
converter, reducing the mass, size and cost. The difficulty of 

this approach in comparison to conventional 3 phase rectifiers 
is the unequal phase inductances dependent on the rotor 
position. In addition, the presence of electric current in stator 
windings will cause the rotor to vibrate, alternating its position 
and introducing non-linearities to the system. Moreover, the 
boost rectifier cannot operate below the diode bridge rectifier 
voltage, which becomes an issue in case the vehicle has not 
been used for a longer period of time and the battery voltage 
has dropped below that level due to self-discharge. In that case 
high charging currents may appear and damage the battery.  

Previous work [3] - [4] conducted in this field shows that 
this approach is feasible and both the high power factor and 
low total harmonic distortion (THD) values can be achieved 
by regulating each of the phases independently. This paper 
proposes a way of controlling the power converter using space 
vector modulation (SVM). Additional control blocks feature 
generic algorithms independent of machine parameters. A 
novelty introduced is the voltage supression mode for safe 
charging of depleted batteries and experimental verification of 
the solution. 

II. SYSTEM LAYOUT 
The basic system layout is shown in Fig. 1. Main 

components of this system are: permanent magnet 
synchronous machine (PMSM), power converter, battery and a 
converter control system.  

 
Fig. 1 - Standard active boost rectifier scheme with motor windings used as 

boost inductors and an inverter to control the battery charging current 
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Fig. 3 - Rotor vibrations as a function of 
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III. CONTROL ALGORITHM 

A. Space Vector Modulation 
Space vector modulation technique has been selected for 

the active rectifier control. SVM has the advantage of 
producing the smallest current ripple, thus the emitted acoustic 
noise is the weakest [5]. Simultaneous control of all three 
phases is achieved using only two parameters - angle and 
amplitude.  

 
Fig. 5 - Representation of the reference voltage vector in the SVM plane 

Graphical representation of space vectors in a complex 
plane is shown in Fig. 5. The selected converter topology 
allows a total of eight vectors corresponding to the state of 
switches (0 - inactive, 1 - active) and each vector can be 
represented by a binary 3-digit sequence. Six of them are 
active, while two of them (000 and 111) are zero vectors. 

Any arbitrary reference vector ݒԦ௥௘௙ with an amplitude Vref 
and angle α can be constructed using the two neighboring 
vectors and null-vectors. Depending on the position and 
amplitude of the given reference vector, duty periods for the 
neighboring vectors are calculated using 

 ݀ଵ ൌ 2√3 ௥ܸ௘௙௠ܸ௔௫ ݊݅ݏ ቀ3ߨ െ  ቁߙ
(11)

 ݀ଶ ൌ 2√3 ௥ܸ௘௙௠ܸ௔௫  ሻߙሺ ݊݅ݏ
(12)

 ݀଴ ൌ 1 െ ݀ଵ െ ݀ଶ (13)

All the duty cycles are non-negative numbers less or equal 
to 1. 

B. Boost rectifier mode 
Batteries should be charged with constant current in order 

to maximize their lifetime. Therefore the algorithm is 
developed to follow the current reference. As the battery 
resistance is variable and dependent on the current state of 
charge, feedback current control has to be implemented. 

Since the dynamics of battery charging are low (over a 
longer period of time at the same current applied), fast dynamic 
response is not a requirement for this system. It is however 

important to keep the overshoot within certain tolerance limits 
as the violation might trigger protection devices or damage the 
battery in the worst case. 

In standard active rectifier applications the sinusoidal grid 
voltages can be converted to DC values using the rotating 
reference frame (RRF) transformation, also known as Clark-
Park transformation. This transformation allows simple 
reference tracking using PI regulators. However, due to system 
disbalance, the dq current values are not pure DC anymore and 
an inverse sequence disturbance component twice the grid 
frequency will appear at the output [6]. The higher the amount 
of system disbalance, the stronger will the component be. 

To ensure proper grid synchronization and compatibility 
with different frequencies, Synchronous Frame Phase Locked 
Loop (SF-PLL) [7] subsystem is implemented. Grid angle is 
obtained from the grid voltage measurements as they form a 
symmetrical system and contain less noise than the grid 
currents.  

Block scheme of the boost mode control system is shown 
in Fig. 6. It consist of an inner voltage control loop and an 
outer current control loop. To avoid interference between the 
loops, the outer loop has around 10 times lower bandwidth 
than the inner loop. The space vector is synthesized from the 
vd1 and vq1 signals which are converted to the Static 
Reference Frame (SRF) using the obtained grid angle and fed 
to the space vector modulator to generate the converter gate 
pulses. 

 
Fig. 6 – Block scheme of the boost control system 

In the normal (boost) operation mode the DC link current 
value is controlled using the id current reference command 
while the iq is set to zero for the converter to operate at unity 
power factor. However, as stated before, due to system 
disbalance a 100 Hz ripple component will appear at the 
output. To compensate for the disturbance, a sine wave of 
adjustable amplitude and phase is injected to the d-axis voltage 
command. 

 
Fig. 7 – Block scheme of the wave compensation controller 

The optimal sine wave amplitude and phase are dependent 
on the current reference, so they need to be dynamically 
changed. To achieve best transient performance, it is possible 
to determine the optimal values for each of the references and 



implement them in a lookup table. However, as stated before, 
since the fast dynamic performance is not a requirement for the 
system, a generic wave compensation controller has been 
developed and its block diagram is shown in Fig. 7.  

First, the ripple detector obtains the current ripple envelope. 
DC link current mean value is calculated and subtracted from 
the measured value. This extracts the ripple as an AC signal. 
Further processing is done and RMS value is calculated. This 
gives the ripple envelope which is fed to the wave optimizer. 

The wave optimizer varies the amplitude and phase 
parameters of the injected wave utilizing the bisection method 
to determine the optimum and continues doing so until the 
convergence criteria has been fulfilled. If the reference value is 
changed, the ripple increase will be detected and the process 
will restart. Amplitude and phase values are fed to the wave 
generator which generates the compensation signal at twice the 
grid frequency. 

The ripple reduction algorithm was simulated in Plecs and 
shown in Fig. 8. The machine parameters used were the same 
as for the lab prototype. The DC link reference current was 1 A 
and the battery was modeled as a 760 Ω resistor. The DC link 
capacitor was set to 5 µF. 

 
Fig. 8 - Current ripple reduction using the wave injection method 

The uncompensated response has a significant 100 Hz 
ripple component with the amplitude of 1.7 % of the reference 
value. Compensating with the wave injection method the 
ripple amplitude was reduced below 0.3 % in steady state.  

C. Voltage suppression mode 
As stated in the introduction, there might be a need to 

deliver voltages below the diode bridge voltage to charge 
depleted batteries. From the Fig. 4 (c) it is visible that this can 
be done by lowering the power factor and increasing the 
reactive power consumption. 

The block scheme of the voltage suppression mode control 
system is shown in Fig. 9. The main difference between the 
boost control system is that the outer control loop output is 
connected to both the id and iq controllers so that the power 
factor can be adjusted.  

 
Fig. 9 - Block scheme of the voltage suppression mode control system 

Since the controller is not operating at a unity power factor 
anymore, higher order harmonics appear at the output making 
it more difficult to compensate using the wave injection 
method. The lower the current reference, the higher the THD as 
the power factor decreases. This means that the compensation 
wave should contain several higher order harmonics. The more 
harmonics are included the better the compensation, but also 
the higher the wave optimizer complexity. 

The injected wave compensation is done in the similar 
manner as in the boost mode – by injecting the compensation 
wave to the vd voltage reference. Even though the iq reference 
is dynamic in this case, due to the tendency to keep the power 
factor as high as possible, vq1 is significantly lower than vd1 
and therefore compensating for both values would increase the 
complexity of the system and potentially cause interference 
between the injected wave controllers while not having a 
significant effect on the current ripple reduction. 

D. Mode selection 
There are three possible operation modes for this system – 

boost, voltage suppression and passive. 

Passive mode is achieved by not giving any gate pulses to 
the rectifier and having all of the switches open. The 
conduction is done solely through the anti-parallel diodes and 
therefore the converter acts like a diode rectifier. The peak of 
the open circuit DC voltage is given by ෠ܸௗ௖ ൌ √6 ௣ܸ௛ (14) 

where Vph is the RMS value of the grid phase voltage. This 
value is used to select between the boost and voltage 
suppression mode. The selection is based on the comparison 
between the desired output voltage and the diode bridge 
voltage. The desired output voltage is calculated using 

ௗܸ௖,௥௘௙ ൌ ௗ௖,௥௘௙ܫ  · ௗܸ௖,௠௘௔௦ܫௗ௖,௠௘௔௦  (15) 

If the value obtained by equation (15) is higher than the one 
of equation (14), boost mode is selected, otherwise voltage 
suppression. 

Equation (15) calculates the desired output voltage by 
multiplying the current reference value with the calculated load 
resistance. This is required as the battery resistance is variable 
and dependent on the current state of charge. There might be a 
concern that a mode selection error will occur in situations a 
step reference change is applied to the controller due to the fact 
the battery resistance changes over time, so the calculated 



resistance at the instance of a reference change might be 
different than the actual resistance by the time the reference is 
reached. However, since the dynamics of battery resistance are 
a lot slower than the current controller, the battery resistance 
can be considered constant within the transient period and 
therefore no such error can occur. 

IV. EXPERIMENTAL VALIDATION 
The algorithm was experimentally validated using a 

downscale setup. The 2.2 kW PMSM used had parameters as 
stated in section II.A and was connected to a 5.5 kW Danfoss 
FC302 VLT converter. The converter had an integrated 295 
µF capacitor on the DC side. A 760 Ω resistor was used 
instead of an actual battery. The control algorithm was 
implemented in Simulink and deployed on a dSpace setup. 

The boost mode test is shown in Fig. 10. Due to the large 
capacitor a converter had, the current waveform was already 
smoothened. However, using a wave injection the ripple was 
still reduced from 0.68 to 0.58 V RMS (0.083% to 0.071%), 
proving the concept works. Further tests should be carried out 
on a converter with a smaller DC link capacitor. 

 
Fig. 10 - Boost mode test with the voltage DC component taken out for easier 
ripple visualization, upper plot shows the uncompensated response while the 

bottom response is compensated  

Voltage suppression mode test is shown in Fig. 11. Due to 
the limited timeframe, a compensation was performed using 
only a 100 Hz sine wave instead of a complex wave consisting 
of first several higher order harmonics. The ripple was 
reduced from 3.48 to 1.68 V RMS (0.75% to 0.36%) proving 
the concept valid and further compensation could be achieved 
by taking into account higher order harmonics. 

 
Fig. 11 - Voltage suppression mode test, upper plot shows the uncompensated 

response while the bottom response is compensated 

V. CONCLUSION 
In this paper a way of controlling an integrated vehicle 

charger using space vector modulation has been presented. 
The inverse sequence disturbance which appears due to 
disbalance in phase inductances was compensated for using 
the wave injection method. The effect of rotor vibrations on 
voltage variations was measured and assessed to be negligible. 
A voltage suppression mode was introduced for charging 
depleted batteries. All the solutions have been simulated using 
Plecs and experimentally tested on a downscale prototype. The 
results prove the concept valid, but further work is required on 
compensation in the voltage suppression mode as the injected 
wave should contain higher order harmonics to reduce the 
current ripple further. 
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