

Aalborg Universitet

Distributed Cloud Storage Using Network Coding

Sipos, Marton A.; Fitzek, Frank Hanns Paul; Roetter, Daniel Enrique Lucani; Pedersen,
Morten Videbæk
Published in:
IEEE Consumer Communications and Networking Conference (CCNC) 2014

DOI (link to publication from Publisher):
10.1109/CCNC.2014.7056318

Publication date:
2014

Document Version
Peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Sipos, M. A., Fitzek, F., Roetter, D. E. L., & Pedersen, M. V. (2014). Distributed Cloud Storage Using Network
Coding. In IEEE Consumer Communications and Networking Conference (CCNC) 2014 IEEE. (IEEE Consumer
Communications and Networking Conference). DOI: 10.1109/CCNC.2014.7056318

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 26, 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by VBN

https://core.ac.uk/display/60604702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/CCNC.2014.7056318
http://vbn.aau.dk/en/publications/distributed-cloud-storage-using-network-coding(18f82e46-d0bf-4673-b109-8252999c016b).html

Distributed Cloud Storage Using Network Coding
Márton Sipos1,3, Frank H.P. Fitzek2,3, Daniel E. Lucani2 and Morten V. Pedersen2

1Budapest University of Technology and Economics, Budapest, Hungary
2Department of Electronic Systems, Aalborg University, Denmark

3desk.io GmbH, Germany
Email: sipos.marton@aut.bme.hu; {ff | del | mvp}@es.aau.dk

Abstract—Distributed storage is usually considered within a
cloud provider to ensure availability and reliability of the data.
However, the user is still directly dependent on the quality of a
single system. It is also entrusting the service provider with large
amounts of private data, which may be accessed by a successful
attack to that cloud system or even be inspected by government
agencies in some countries. This paper advocates a general
framework for network coding enabled distributed storage over
multiple commercial cloud solutions, such as, Dropbox, Box,
Skydrive, and Google Drive, as a way to address these reliability
and privacy issues. By means of theoretical analysis and real–
life implementations, we show not only that our framework
constitutes a viable solution to increase the reliability of stored
data and to ensure data privacy, but it also provides a way to
reduce the storage costs and to increase the download speed
significantly. Our measurements show that the download time
could be reduced up to six fold in some scenarios exploiting four
commercial cloud solutions.

I. INTRODUCTION AND MOTIVATION

Cloud solutions have become a commodity for commercial
users over the last years. These services provide a wide
range of advantages, from allowing users to manage files over
different devices, to simplify collaboration among colleagues,
and even to simply back up personal data. More recently,
video streaming solutions are available as part of the cloud.
These video services have also the need for fast delivery times,
raising new challenges for each individual cloud. Each cloud
thus aims to provide a service that guarantees that data be
reliably stored, readily available, private, and at high data rate.

There are some issues with the single cloud approach. First,
a cloud is still vulnerable to outage due to system overload
or failure. Second, storing the entire data in a single cloud
brings forth data privacy issues if the system is compromised
by an attack or by governmental laws that force the provider
to release a user’s data. Spreading the content over multiple
clouds would force attackers to compromise multiple clouds
in order to gain access to the data. Thus, a solution that
can harness the power of multiple commercial cloud storage
systems to provide higher data rates, higher storage capacity,
higher resiliency and data availability, and increased privacy
is key to meeting end–users’ increasing expectations of cloud
services.

The main idea of this paper is to store data in a distributed
fashion over multiple cloud providers. This should help to
increase reliability and resolve the privacy issues to some
extent. Additionally, using random linear network coding
makes storage more efficient in terms of storage space and
time to retrieve the distributed data.

Network coding for distributed storage was originally pro-
posed in [1] in the context of sensor networks. It has a series
of advantages over standard end–to–end coding, including the

Fig. 1. Main idea of distributed clouds with network coding

possibility to recode already encoded data without destroying
the code properties in terms of complexity and efficiency.
Since that initial work, research has focused strongly on code
regeneration, e.g., [2], with [3] providing a comprehensive
survey on the topic. Recently, an initial research implementa-
tion of distributed storage with network coding was reported
in [4]. Research work has also focused on auditing systems
for network coding storage, e.g., [5].

This paper is inherently different from previous network
coding research in the topic in terms of our goals. We are
interested in exploiting commercial systems with inherently
heterogeneous characteristics (e.g., round–trip delay, through-
put, storage cost) to provide improved services to the end–user.
The key is to exploit network coding to allocate resources
in a flexible manner in the clouds to increase the download
speed for end–users, while providing security guarantees.
More specifically, our approach is to store data in a network
coded fashion on distributed storage entities, e.g., Dropbox,
Box, Skydrive, Google drive. Network coding stores different
linear combinations of the original data in each cloud, which
allows us to avoid an overwhelming book keeping process
when downloading the data and also to avoid additional delays
from a highly loaded cloud. As given in Figure 1 the original
data, which is composed out of several uncoded packets, is
coded and stored in the distributed clouds. As network coding
is a rate–less code, more coded packets than uncoded can be
generated. In the given example enough data is stored such
that one cloud failure can be tolerated.

This paper presents detailed benefits for both the user and
the cloud operator and mathematical analysis to support these
intuitions. Then, we describe our demonstrator implementa-
tion and provide measurement results using real–life cloud

2

providers under a variety of scenarios.

II. THEORETICAL ANALYSIS

In this section we derive performance measures for our
approach. We consider a set of N cloud providers, C, where
C = {c1, c2, ..., cN}, where ci represents the i–th cloud
provider. We consider that a user, u, uses this set of clouds to
upload and download data using network coding. The size of
the file is F . The upload and download rate from the user u
and the i–th cloud is R(u,ci) and R(ci,u), respectively.

A. Reliability

If we consider that a cloud provider, ci, has a probability pi
of being unavailable (e.g., service is down, data is lost), then
the probability of all data being unavailable to the user given
that it has used T redundant clouds is

P (T,N, {pi}) = 1−
∑

a1+...+aN≥N−T

N∏
i=1

(1−pi)aip1−ai
i , (1)

where ai ∈ {0, 1} indicates that cloud i is down or not for
ai = 0 and ai = 1, respectively. For the case of pi = p,∀i =
1, ..., N , this simplifies to

P(T,N, p) = 1−
t=T∑
t=0

(
N

t

)
· (1− p)N−t · pt. (2)

For this case, we assume that each cloud contains a fraction
of packets P ≥ 1/(N − T).

B. Download Speed

In order to maximize the download speed from the clouds,
we need to consider that the amount of data stored need not be
the same as provided by the reliability criteria. The latter is an
indication of the minimum amount of data that can be stored,
but it does not consider the benefits of downloading more data
from faster clouds. We consider that each cloud ci provides a
download rate of R(ci,u) to u and that F large enough so that
the download time is much larger than the individual round trip
times from each server. Our goal is then to request a fraction
αi from cloud ci such that all clouds complete the delivery of
the data simultaneously for the user. Thus, the fraction of the
file requested from cloud ci is

αi =
R(ci,u)∑N
i=1R(ci,u)

. (3)

If both reliability and download speed are important factors
in the design, then the fraction of the data stored, Pi, stored
in cloud ci needs to be

Pi = max

(
1

N − T
, αi

)
= max

(
1

N − T
,

R(ci,u)∑N
i=1R(ci,u)

)
.

(4)
If we consider there is asymmetric round trip delays until

the packets are received, where Di represents the round trip
delay from cloud ci, then

αi =
R(ci,u)∑N
i=1R(ci,u)

·

1 +
∑
cj∈C

R(cj ,u)(Dj −Di)/F

 . (5)

C. Privacy and Security
We can consider different conditions for data privacy. The

most stringent is to force attackers to break in at least N − T
clouds to obtain the data assuming that the link to the user
is encrypted during download/upload. This condition is of
course fulfilled if we only store enough for guaranteeing
reliability. If we store additional data for boosting download
speed performance, then we need to set a different condition.
A simple way of thinking about it is that any combination of
the fractions of data of a subset of N − T − 1 clouds cannot
amount to 1, i.e., enough degrees of freedom to decode.

Of course, Pi < 1/(N − T − 1),∀i is a sufficient, but not
necessary condition to preserve privacy. A necessary condition
for preserving privacy is stated in the following. Let us define
Cm as the set of distinct subsets of C missing exactly m cloud
elements each. For example, C1 = {C \ c1, C \ c2, ..., C \ cN},
and C2 = {C \ {c1, c2}, C \ {c1, c3}, ..., C \ {cN−1, cN}}

Then, as long as

max
C∈CT+1

∑
ck∈C

Pk < 1, (6)

our condition for security is preserved. This provides an
interesting result, namely, that there is room for providing
higher download speeds without compromising security albeit
with some additional storage cost. From a practical perspec-
tive, a simple approach to test the condition is to sort Pi’s in
increasing order. Then, we can add the N − T − 1 greatest
values. If the result is lower than 1, then privacy is preserved.
Otherwise, it is compromised.

D. Storage Costs
For the case in which reliability is the only concern, the

overall storage size, H , that is needed for the distributed
approach when a file of size F bytes is used equals

H(N,T, F, P) =
N

N − T
· F = F + F · T

N − T
, (7)

where we assume that each cloud will contain a fraction
P = 1/(N − T) of the data. Clearly if N >> T , the storage
cost becomes negligible.

If more factors are important, then

H(N,T, F, {Pi}) =
N∑
i=1

Pi · F. (8)

E. Overall costs
Let us consider that we have a storage cost of H = N

N−T ·F
and a cost of having the data unavailable Uc. The optimal
choice for T will be given by the problem:

min
T
H(N,T, F, P) + Uc · P (T,N, {pi}) . (9)

3

100 101 102 103 104 105 106

Cost of Unavailable Service

101

102
C

o
st

Clouds N=2
Clouds N=4
Clouds N=6
Clouds N=8
Clouds N=10

Fig. 2. Overall Cost

100 101 102 103 104 105 106

Cost of Unavailable Service

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

O
p
ti

m
a
l
T

Clouds N=2
Clouds N=4
Clouds N=6
Clouds N=8
Clouds N=10

Fig. 3. Optimal number of redundant clouds

Figure 2 and Figure 3 show that the overall cost can be
maintained low by using a higher number of cloud providers,
even if the number of redundant ones is high. For example,
N = 10, T = 4 provides not only a low overall cost but also
allows for a configuration that is stable for a wider regime of
Uc.

III. CLOUD TESTBED

A. Testbed Setup

To evaluate and showcase the previously presented ana-
lytic results, we have created an implementation to conduct
measurements in a real–life environment. This subsection
discusses the implementation details as well as the technical
specifications of our testbed. The implementation was done in
C++ using the KODO library [6] (fully fledged network coding
software library) and the Qt framework. It was compiled
with GCC 4.6.2 set to O2 level optimization. We chose four
cloud storage services based on their market penetration: Box,
Dropbox, Google Drive and Skydrive. All provide free storage
space and have publicly available, well documented REST–
based APIs.

Measurements were carried out in two locations, Hungary
and Germany. The first represents an ideal scenario where
the only limitation is the bandwidth provided by the cloud
providers, the second is a more realistic small–office or home
environment where the Internet connection is the bottleneck.
Unless explicitly stated, the results show the measurements
from Hungary, where we used a fiber optic network con-
nection. Several provisional measurements were conducted
using servers located in different cities in Europe (Amsterdam,
Rome, Madrid, Paris, London, Oslo). This was necessary
because the location of the servers used by the cloud services
has not been disclosed in every case. Ping times were under
55ms and download bandwidth over 94Mbps in all cases.
In Germany we used an ADSL connection, which limited
our achieved results. Bandwidth was over 24 Mbps, ping
under 45ms. In both cases a machine equipped with an AMD
Athlon II X3 450 CPU at 3.2GHz, 4GB of RAM and a clean
installation of Windows 7 was used.

B. Measurement Campaign and Metric

We distributed and retrieved a 16MB file containing random
data. First, a simple replication based approach was examined,
then one based on random linear network coding (RLNC) [7].
A subset of packets covering the entire data was distributed to
all providers in both cases. For the RLNC approach, we used
a generation size of 32 and operated over GF(28), resulting
in packets of size 512k (and a few extra bytes overhead for
the coding coefficients). Decoding was done once enough
packages were downloaded. For the non–encoded replication–
based approach, we used the same packet size of 512k. Each
provider was artificially limited in the number of parallel
downloads it could sustain. This constraint was achieved by
using a sliding window–like technique. Initially, a set number
of packets was requested from each provider with a new
request being issued once one was served. We decided to use
this simple retrieval technique, because in theory this ensured
that download times were optimal in case an approach using
network coding was employed. This results from the fact that
every provider is used at its maximum capacity all the time.
Each measurement was repeated one hundred times.

We employed several metrics, the two more important ones
are presented here: the time taken to retrieve a 16MB file and
the number of useful packets received from each provider. The
first one is the variable we chose to optimize for, whilst the
second provides insight into the processes taking place. Our
goal is two-fold, show that distributing data to several cloud
storage providers shortens retrieval time and that employing
random linear network coding provides consistent results in a
changing environment.

C. Testbed Results

In the following we present the testbed results for the
download time and the number of redundant packets. By
presenting the results we also motivate the use of network
coding and discuss its complexity.

1) Download Time: We begin with the measurements of
the download times for the individual clouds. We do not
wish to disclose which provider is which, so we shall refer

4

1 2 3 4 5 6
Number of parallel requests

0

10000

20000

30000

40000

50000

60000

70000
T
im

e
 t

a
ke

n
 (

m
s)

Cloud A
Cloud B
Cloud C
Cloud D

Fig. 4. Download time for individual cloud providers

to them as Cloud A, Cloud B, Cloud C and Cloud D. This
assessment is independent to a certain degree from network
coding. However, as detailed in Paragraph III-C3, network
coding is needed to achieve these results consistently in a real-
world environment, where the speed of the individual clouds
varies.

An improvement proportional to 1/n can be observed in
Figure 4 as the number of parallel downloads increases. This
is as expected assuming that the providers do not artificially
throttle the requests. The curve flattens around six, so there is
next to no incentive to use more than six parallel downloads
per provider. Another observation is that Cloud A is signifi-
cantly faster then the other three regardless of the limitation
on the number of parallel downloads. This shows that not all
clouds have the same characteristics and explains the later
gains of network coding that we see throughout the paper.

We continue by showing the benefit of increasing the
number of clouds in a distributed storage system in terms of
retrieval time. An important aspect is that the limitation on the
number of parallel downloads is per provider, so using several
of them means that the actual number of parallel connections
in the system is multiplied by the number of providers. This
is one of the reasons why employing more providers gives a
clear advantage over the single cloud solution.

Figure 5 shows the measured gains when using more
than one cloud service to retrieve files. Note, Cloud A is
significantly faster than the other three clouds, the limitations
on available storage space would still mean in practice that a
multi–cloud approach is needed to achieve a certain download
time given an amount of storage space and a required level
of reliability. Subsection II-B gives a closed formula for
calculating the optimal fraction of data to be distributed to each
cloud under such heterogeneous conditions. This basically
means that the faster clouds need to be able to provide
proportionally more storage space. Figure 6 illustrates this by
showing the time in milliseconds (ms) when each encoded
packet was received and processed. In this example six parallel
requests per provider were allowed and decoding finished at
5660ms. Cloud A has a significantly shorter round–trip time
when retrieving the data compared to the other providers and

1 2 3 4 5 6
Number of parallel requests

0

10000

20000

30000

40000

50000

60000

70000

T
im

e
 t

a
ke

n
 (

m
s)

1 cloud
2 clouds
3 clouds
4 clouds

Fig. 5. Download time when using multiple cloud providers

0 2000 4000 6000 8000 10000
Time of processing (ms)

Cloud D

Cloud C

Cloud B

Cloud A

C
lo

u
d
 p

ro
v
id

e
rs

Cloud A
Cloud B
Cloud C
Cloud D
Decoding

Fig. 6. Packet processing time

manages to download significantly more useful packages than
the other providers. If less packets were stored on Cloud A,
decoding would have been delayed. Also interesting is the
differing characteristics of the individual clouds. Even though
Cloud B and Cloud C generally manage to download the
same amount of packages, the arrival pattern shows great
differences, perhaps due to the method used to process the
requests by the providers.

2) Number of redundant packets: Figure 6 also illustrates
the disadvantage of using a higher number of parallel down-
loads. Therefore, distributed clouds have an advantage over
single clouds, but they come with a price. At the time of
decoding, there are k−1 packets in the download window for
the provider that received the last useful packet and k for all
others. These extra packets arrive after decoding is complete
and therefore must be discarded. Generally, if we consider a
set of N clouds with k parallel downloads per provider, the
number of redundant packets is

nred ≤ N · k − 1. (10)

As shown in Figure 7, this upper bound is in fact achieved in
practice in every case. This should be considered a worst–case

5

1 2 3 4 5 6
Number of parallel downloads

0

5

10

15

20

25

N
u
m

b
e
r

o
f

re
d
u
n
d
a
n
t

p
a
ck

e
ts

1 cloud
2 clouds
3 clouds
4 clouds

Fig. 7. Number of redundant packets

scenario, it happened because there was no limitation placed
on the stored data, each cloud contained packets with data
covering the entire file. If such a limitation was in place, the
number of redundant packets would have been less, because
once all the packets from a provider had been requested, the
size of the download window for that provider would have
decreased with each response.

To minimize the number of redundant packets necessitates
either a smarter scheduling algorithm, which tries to predict
how many packets will be received from each provider be-
forehand and makes the requests accordingly or a reduction in
the number of parallel downloads. Considering the download
times presented in Figure 5, a strong case can be made for
using no more than two or three parallel downloads, as using
more has a negligible effect on decreasing the download speed
whilst having a great effect on the increase of redundantly
downloaded packets. As given in Equation 10, redundancy
grows linearly with the number of clouds as well.

3) Motivation for Network Coding: We examined the num-
ber of packets received from each provider as we have shown
this should be a primary factor when determining the distri-
bution of packets among the clouds. Providers that are able
to supply packets faster should get a bigger cut to minimize
the required download time, as discussed in Subsection II-B.
We have found that there is a significant variance in the
distribution of the number of useful packets retrieved from
each provider as shown in Figure 8. As previously discussed
in Paragraph III-C1, Cloud A retrieves most packages before
the others. Even so, all four clouds still show a significant
spread. The same is true when using two or three clouds, but
in this case the differing distributions of the providers are even
better visible. This is an indication that even during error free
operation, the ratio of the download times of the providers
changes, necessitating a distribution and retrieval schema that
is able to adapt to the dynamically changing conditions. When
considering a conventional non-encoded approach, it is imper-
ative that the algorithm doing the distribution and retrieval take
into account what data is stored where. The location of each
packet in the original file should also be stored. It is easy to see
the advantage of an approach that employs network coding,

18 19 20 21 22 23 24 25 26
0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
a
b
ili

ty

Cloud A

1 2 3 4 5 6 7

Cloud B

1 2 3 4 5 6 7

Cloud C

0 1 2 3 4 5 6

Cloud D

Number of packets

Fig. 8. Distribution of received packets when using four clouds

since there is no need for this bookkeeping. It is not important
which packet is placed on which cloud, only the number of
packets on each cloud. This simplicity ensures that as long as
the distribution of the packets is proportional to the ratio of the
download speeds of the providers, the time taken to download
a file will be optimal.

The same applies when devising a scheduling schema for
the packets. With a non–encoded approach care must be taken
to not download the same packet from different providers.
Furthermore, if a packet takes significantly longer to download
than is expected, then perhaps this rule should no longer be
applied and the packet should be downloaded from a different
provider in order to keep overall download time as low as
possible. This however leads to more redundant information
traveling on the network and there is no guarantee that the
original packet does not arrive in the meantime. It is also not
obvious which provider should be used to make the extra
request. Generally, download scheduling algorithms for the
non–encoded approach can be devised which perform well
in more or less static environments. However, it is more
difficult to create one solutions which adapts well to changing
conditions. We have used an algorithm that tries to place the
emphasis on making the clouds race against each other by
having them start at different points in the original file. For
example for two clouds, the first starts from the beginning
and goes forward, the second starts from the end and goes
backward. For a larger number of clouds, multiple starting
locations are defined. However, we have not dealt with packets
taking longer to download than usual, as it is not clear what is
the best approach, even whether new requests lower retrieval
time or actually introduce an additional delay into the system.
With a network coded approach there are no duplicate packets,
each contains unique, useful data (if we assume all packets
are linearly independent) and the order with which packets
arrive is irrelevant. This enables the network coded approach
to outperform a non–encoded one in most cases as shown in
Figure 9 while being more robust and simple at the same time.

When employing a single cloud a replication based ap-
proach is slightly faster as it does not have a decoding over-
head. However, once at least two clouds are used, in average
the network coded approach achieves shorter download times.

4) Complexity: We have shown that employing network
coding can achieve a significant gain in the required time
taken to retrieve the original file. However, it is important to

6

1 2 3 4 5 6
Number of parallel requests

5000

10000

15000

20000

25000

30000

35000

40000
T
im

e
 t

a
ke

n
 (

m
s)

2 clouds using NC
3 clouds using NC
4 clouds using NC
2 clouds using replication
3 clouds using replication
4 clouds using replication

Fig. 9. Comparison of download times when employing network coding
versus a replication based approach

note that decoding adds an extra time overhead. Measurements
show that this extra time is around 657ms for the given
configuration. This can be lowered by opting for a smaller
field size or symbol size. For example, in the case of GF(2)
the decoding overhead drops to less than 100ms, but the
number of linearly dependent packages rises, which in turn
delays the time when decoding is finished. Minimizing the
decoding overhead and network usage is a trade-off that needs
to be considered for any given scenario. Even though we have
an extra delay in decoding, there is the benefit that we will
download a minimum number of packets. Without network
coding there is no decoding delay but a larger number of
packets will be needed.

IV. USER AND CLOUD OPERATOR BENEFITS

From the user’s point of view, the distributed approach
increases data availability and data privacy. Furthermore in
delay sensitive use cases, the user will experience faster
reaction times of the cloud. A commercial aspect is that users
have limited free storage by several cloud providers. The
distributed approach allows those users to accumulate several
small clouds into one large overlay cloud. Even commercial
cloud users can benefit from the distributed cloud approach.
Current cloud approaches try to lock in users by making it
expensive to move data away from one cloud provider to
another one. This makes it hard for users to change cloud
providers. Using network coding allows to build up new cloud
storage until the more expensive provider can be fully switched
off.

The cloud operator has the possibility to move around data
in the cloud more conveniently. Network coding, as no other
coding technique nowadays, has the possibility to derive extra
redundancy on the fly in a very efficient way. In case the data
is distributed over several storage entities in a network coded
fashion, each of the entities, or even a subset of the entities,
can build up more redundancy if the system wants to do that,
without contacting all other entities as required by end to end
coding schemes. Such a flexible scheme enables the cloud
providers to allocate the cloud space more efficiently, e.g.
moving highly requested data locally closer to the requesting

communication nodes as well as deleting information not
needed.

V. CONCLUSION

In this paper we introduced a general framework for network
coding enabled distributed storage over multiple commer-
cial cloud solutions. Our implementation using commercial
cloud solutions (Dropbox, Box, Skydrive, and Google Drive)
showed that from a user’s perspective the distributed cloud
in combination with network coding has advantages in terms
of costs, reliability, download speed and privacy. The paper
shows that the distributed approach alone has benefits over
a single cloud approach and that network coding improves
performance even more. The extra overhead in order to achieve
additional reliability is small and nearly vanishes if more
parallel instances are available. In our test bed we have also
shown the improvement in the download speed by a factor
of six using well–known cloud solutions, operating over them
as an overlay cloud. Beside the advantages for the user, the
benefits for the network operator have been listed, such as
the possibility to generate or remove extra redundancy at edge
caches whenever content becomes more or less requested. The
advantage of network coding enabled distributed clouds is that
each cloud is used at its maximum speed even in dynamically
changing environments. Additionally, in order to perform the
generation or deletion of extra information, network coding is
able to do so even if there is only access to a subset of the
stored data.

ACKNOWLEDGMENT

This work was partly supported by desk.io GmbH and
partially financed by the Green Mobile Cloud project granted
by the Danish Council for Independent Research (Grant No.
10-081621), by the European Union and the European So-
cial Fund through project FuturICT.hu (Grant no. TAMOP-
4.2.2.C-11/1/KONV-2012-0013) organized by VIKING Zrt.
Balatonfüred, and the Hungarian Government, managed by the
National Development Agency, and financed by the Research
and Technology Innovation Fund (grant no.: KMR_12-1-2012-
0441).

REFERENCES

[1] A. Dimakis, V. Prabhakaran, and K. Ramchandran, “Ubiquitous access
to distributed data in large-scale sensor networks through decentralized
erasure codes,” in Information Processing in Sensor Networks, 2005. IPSN
2005. Fourth International Symposium on, 2005, pp. 111–117.

[2] A. G. Dimakis, P. B. Godfrey, M. J. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” in IEEE Int. Conf. on
Computer Comm. (INFOCOM), 2007, pp. 2000–2008.

[3] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on
network codes for distributed storage,” Proceedings of the IEEE, vol. 99,
no. 3, pp. 476–489, 2011.

[4] W. Lei, Y. Yuwang, Z. Wei, and L. Wei, “Ncstorage: A
prototype of network coding based distributed storage system,”
TELKOMNIKA Indonesian Journal of Electrical Engineering, vol. 11,
no. 12, 2013. [Online]. Available: http://iaesjournal.com/online/index.
php/TELKOMNIKA/article/view/3709

[5] A. Le and A. Markopoulou, “Nc-audit: Auditing for network coding
storage,” in Int. Symp. on Network Coding (NetCod), 2012, pp. 155–160.

[6] Steinwurf ApS. (2012) Kodo Git repository on GitHub. [Online].
Available: http://github.com/steinwurf/kodo

[7] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,” IEEE
Trans. on Info. Theory, vol. 52, no. 10, pp. 4413–4430, 2006.

