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Variable-Length Coding for Short Packets over a
Multiple Access Channel with Feedback

Kasper F. Trillingsgaard and Petar Popovski
Department of Electronic Systems, Aalborg University, Aalborg, Denmark

Abstract—We consider a two-user discrete memoryless multi-
ple access channel with a common stop-feedback signal from
the receiver to both transmitters. The achievable regions are
characterized using joint decoding and successive cancellation
decoding and, it is shown that the achievable regions are signif-
icantly larger for variable-length stop-feedback codes compared
to fixed-blocklength codes. This is analogous to the result by
Polyanskiy et al. (2011) for the point-to-point channel. An
important conclusion is the following. In the asymptotic case the
capacity region can be achieved by joint decoding, but also by
successive cancellation decoding and time-sharing. For the case
of finite blocklength, joint decoding performs significantly better
than successive cancellation decoding, even when aiming for the
corners of the achievable regions.

I. INTRODUCTION

Modern wireless networks are mainly based on reliable
transmission of large packets through the use of good channel
codes, as dictated by the asymptotic information-theoretic
results. On the other hand, many emerging applications that
involve machine-to-machine (M2M) communication rely on
transmission of very short data packets within strict deadlines,
where the asymptotic information-theoretic results are not
applicable. The fundamentals of such a communication regime
have recently been addressed in [1], where it was shown
that the rates achievable by fixed-blocklength codes in point-
to-point communication is tightly approximated in terms of
the channel capacity and channel dispersion. Interestingly,
[2] found that allowing the use of variable-length (VLF)
coding based on stop-feedback improves the achievable rates
dramatically, since the transmission may be terminated early
for favorable noise realizations. In [3], [4], the results for fixed-
blocklength codes are extended to the two-user multiple access
channel.

We consider a two-user discrete memoryless multiple-
access channel with stop-feedback. Each user has a message
destined to the receiver and there is a common stop-feedback
signal from the receiver to both transmitters after each channel
use. This implies that the receiver can terminate the transmis-
sion, by feeding back an ACK signal, when it has decoded both
messages from the receivers with a certain reliability 1 − ε.
Analogously to the achievability bound of VLF codes for the
point-to-point channel in [2], we provide achievability bounds
for VLF codes for the multiple access channel with stop-
feedback based on joint decoding of both users and successive
cancellation decoding. Note that variable-length coding for
multiple access channel has previously been considered in [5]
for another setting, in which the receiver is allowed to decode

the messages from both transmitter at different random times.

Using the achievability results, the achievable regions of the
multiple access channels with stop-feedback are computed for
specific channels and it is shown that VLF codes improves the
achievable rates significantly compared to fixed-blocklength
codes in [3]. Moreover, it is shown that joint decoding yields
better achievable rates than successive cancellation decoding.
This is in contrast to the achievability of the capacity region of
the multiple access channel in the asymptotic regime, where
one can equally well use either joint decoding or successive
cancellation decoding with time sharing.

The paper is organized as follows. Section II describes the
system model. Section III contains two achievability theorems,
with proofs given in the appendix. Section IV presents numer-
ical results and Section V concludes the paper.

II. SYSTEM MODEL

We consider a two-user discrete memoryless multiple-
access channel (DM-MAC) with stop-feedback consisting of
finite input alphabets X1 and X2, finite output alphabet Y and
a conditional pmf PY |X1,X2

defining the channel, whose n-th
extension is

PY n|Xn
1 ,X

n
2
(yn|xn1 , xn2 ) =

n∏
i=1

PY |X1,X2
(yi|x1i, x2i). (1)

There is a common stop-feedback signal from the receiver
to both the transmitters after each channel use. That implies
that the receiver can terminate the transmission, by feeding
back an ACK signal, when it has decoded the messages from
the receivers with a certain reliability. The system model is
depicted on Fig. 1. An (l,M1,M2, ε) VLF code for the DM-
MAC is defined as follows.

Definition 1. An (l,M1,M2, ε) variable-length stop-feedback
(VLF) code, where l is a positive real, M1 and M2 are integers
and 0 ≤ ε ≤ 1, consists of

• two message sets Mi = {1, . . . ,Mi}, i ∈ {1, 2},

• two sequences of encoders f
(i)
n : Mi → X , for

i ∈ {1, 2}, such that the i-th encoder transmits
Xin = f

(i)
n (Ji) in the n-th channel use and Ji ∈Mi

denotes the message encoded by the i-th encoder,
drawn uniformly from Mi,

• a sequence of decoders gn : Yn → M1 ×M2 that
assign estimates (Ĵ1, Ĵ2) to each received sequence
Y n,978-1-4799-5863-4/14/$31.00 c© 2014 IEEE
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Fig. 1. The multiple access channel with ACK/NACK feedback. (Ĵ1, Ĵ2)
denotes the output of the decoder gn.

• a stopping time τ ∈ Z+ that depends on Y n, but is
independent of Xin and satisfies E [τ ] ≤ l,

such that average probability of error satisfies

Pr [gτ (Y τ ) 6= (J1, J2)] ≤ ε. (2)

Additionally, a source of common randomness is needed
for codebook generation at the users. The above definition
implies that the rate pair (log(M1)/l, log(M2)/l) is achievable
with an average blocklength l and average probability of error
ε if and only if an (l,M1,M2, ε) VLF code exists.

As in [2], the random stopping time corresponds to the time
until an ACK signal is fed back and is thereby only allowed to
depend on the received symbols Y τ . In [2], the point-to-point
channel with full noiseless feedback is addressed, but their
achievable scheme only utilizes stop-feedback. In our work
we only allow stop-feedback since if full noiseless feedback
is allowed for the DM-MAC, the capacity region is enlarged
since the encoders may cooperate [6]. In that case the capacity
region is only known for a few channels.

Throughout the paper, the information densities are denoted
as

ı(X1;Y |X2) = log
PY |X1,X2

(Y |X1, X2)

PY |X2
(Y |X2)

, (3)

ı(X2;Y |X1) = log
PY |X1,X2

(Y |X1, X2)

PY |X1
(Y |X1)

, (4)

ı(X1, X2;Y ) = log
PY |X1,X2

(Y |X1, X2)

PY (Y )
, (5)

where log(·) denotes the natural logarithm.

For the DM-MAC without stop-feedback, [3] uses the
dependency testing bound to show that there exists fixed-
blocklength codes with an achievable regions of rate pairs
(R1(n, ε), R2(n, ε)) satisfying

R1(n, ε) ≤ I(X1;Y |X2)

−
√
V (X1, Y ;X2)/nQ

−1(λ1ε) +O(1), (6)
R2(n, ε) ≤ I(X2;Y |X1)

−
√
V (X2, Y ;X1)/nQ

−1(λ2ε) +O(1), (7)
R1(n, ε) +R2(n, ε) ≤ I(X1, X2;Y )

−
√
V (X1, X2;Y )/nQ−1(λ3ε) +O(1). (8)

for some joint distribution
PX1(x1)PX2(x2)PY |X1,X2

(y|x1, x2) where Q−1(·) is
the inverse Q-function, λ1, λ2, λ3 are positive constants
satisfying λ1 + λ2 + λ3 = 1, I(X1;Y |X2), I(X2;Y |X1)
and I(X1, X2;Y ) denotes the mutual informations and

V (X1, Y ;X2), V (X2, Y ;X1) and V (X1, X2;Y ) are given
by

V (X1, Y ;X2) = Var [ı(X1;Y |X2)] , (9)
V (X2, Y ;X1) = Var [ı(X1;Y |X1)] , (10)
V (X1, X2;Y ) = Var [ı(X1, X2;Y )] . (11)

III. ACHIEVABILITY

In this section, two achievability theorems are presented.
The first achievability bound is analogous to the point-to-point
channel in [2] and is based on joint decoding, while the second
is based on successive cancellation decoding.

The achievability bound based on joint decoding is given
in the following theorem.

Theorem 1. For any positive real constants γ1, γ2, γ12 and a
channel PY |X1,X2

define the stopping times

τ = inf {n ≥ 0 : ı(Xn
1 ;Y

n|Xn
2 ) ≥ γ1,

ı(Xn
2 ;Y

n|Xn
1 ) ≥ γ2, ı(Xn

1 , X
n
2 ;Y

n) ≥ γ12} ,
(12)

τ1 = inf
{
n ≥ 0 : ı(X

n

1 ;Y
n|Xn

2 ) ≥ γ1
}
, (13)

τ2 = inf
{
n ≥ 0 : ı(X

n

2 ;Y
n|Xn

1 ) ≥ γ2
}
, (14)

τ12 = inf
{
n ≥ 0 : ı(X

n

1 , X
n

2 ;Y
n) ≥ γ12

}
, (15)

where X1i, X2i, X1i, X2i, Yi are distributed according
to the joint distribution PX1X1X2X2Y

(x1, x1, x2, x2, y) =
PX1

(x1)PX1
(x1)PX2

(x2)PX2
(x2)PY |X1,X2

(y|x1, x2) for
x1 ∈ X1, x2 ∈ X2. Then, for any pair of positive integers
(M1,M2), there exists an (l,M1,M2, ε) VLF code for the
DM-MAC such that

l ≤ E [τ ] (16)
ε ≤ (M1 − 1)(M2 − 1)Pr [τ ≥ τ12]

+ (M1 − 1)Pr [τ ≥ τ1] + (M2 − 1)Pr [τ ≥ τ2] . (17)

Proof: See Appendix A.

In a communication system, τ represents the time until the
transmitted codewords are reliably detected at the receiver, i.e.
when the log-likelihood ratios of the codewords, equivalent
to the information density terms, surpasses the thresholds
γ1, γ2, γ12. Similarly, τ1, τ2 and τ12 represent the time until
the receiver would detect a pair of incorrect codewords. An
error occurs if an incorrect pair of codewords is reliably
detected before the correct pair of codewords. Note that when
γ2 → −∞, γ12 → −∞ and M2 = 1, Theorem 1 reduces to
Theorem 3 in [2] for the channel X1−Y where the codeword
from user 2 is known.

Joint decoding may not always feasible due to high com-
plexity. Therefore we also provide a corresponding achievabil-
ity bound based on successive cancellation decoding, i.e. user 1
is first decoded, then user 2 is decoded knowing the codeword
of users 1. In the asymptotic regime the capacity region can
be achieved using time-sharing.
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Theorem 2. For any positive real constants γ1, γ2 and a
channel PY |X1,X2

define the stopping times

τ = inf {n ≥ 0 : ı(Xn
1 ;Y

n) ≥ γ1, ı(Xn
2 ;Y

n|Xn
1 ) ≥ γ2}

(18)

τ1 = inf
{
n ≥ 0 : ı(X

n

1 ;Y
n) ≥ γ1

}
(19)

τ2 = inf
{
n ≥ 0 : ı(X

n

2 ;Y
n|Xn

1 ) ≥ γ1
}

(20)

where X1i, X2i, X1i, X2i, Yi are distributed according
to the joint distribution PX1X1X2X2Y

(x1, x1, x2, x2, y) =
PX1

(x1)PX1
(x1)PX2

(x2)PX2
(x2)PY |X1,X2

(y|x1, x2) for
x1 ∈ X1, x2 ∈ X2. Then, for any pair of positive integers
(M1,M2), there exists an (l,M1,M2, ε) VLF code for the
DM-MAC such that

l ≤ E [τ ] (21)
ε ≤ (M1 − 1)Pr [τ ≥ τ1] + (M2 − 1)Pr [τ ≥ τ2] . (22)

Proof: The procedure is similar to the proof of Theorem 1.

A bound similar to Theorem 2 can be found for ı(Xn
2 ;Y

n)
and ı(Xn

1 ;Y
n|Xn

2 ), and hence, as in traditional network infor-
mation theory literature, time-sharing can be used to achieve
any rate pairs in the convex hull of the two achievable regions
[6]. Note that Theorem 1 and Theorem 2 can readily be
extended to include a time-sharing variable as in [3].

IV. NUMERICAL RESULTS

In this section, the evaluation of the bounds in Theorem 1
and Theorem 2 is discussed, and the achievable regions of a
specific channel are computed for a range of average block-
lengths l.

A. Evaluation

In Theorem 1, each triple (γ1, γ2, γ12) yields an achievable
region with a certain average blocklength. To evaluate the full
achievable region of the DM-MAC with stop-feedback, we
need to compute the union of achievable regions obtained for
all choices of triples (γ1, γ2, γ12) with average blocklength less
than or equal l. This is depicted in Fig. 2, where the achievable
regions obtained from Theorem 1 are plotted for a range of
triples (γ1, γ2, γ12) with average blocklength less than or equal
100. To evaluate each point on the border of the achievable
region, a constant α ∈ (0, 1) is fixed and α log2(M1 − 1) +
(1−α) log2(M2− 1) is maximized with respect to γ1, γ2 and
γ12 under the constraint E [τ ] ≤ l

The main difficulty in the computation of the achievable
region of Theorem 1 is to compute the average blocklength and
the distribution of τ . For these operations, we need to deal
with the joint distribution of ı(Xn

1 ;Y
n|Xn

2 ), ı(X
n
2 ;Y

n|Xn
1 )

and ı(Xn
1 , X

n
2 ;Y

n) conditioned on τ ≥ n. In this work, we
have done this by discretizing the joint pmf of ı(X1;Y |X2),
ı(X2;Y |X1) and ı(X1, X2;Y ). In the n-th step, we use a three
dimensional convolution to obtain the joint pmf of the (n+1)-
th step. The probability mass corresponding to the decoding
event in the (n+ 1)-th step is then subtracted.

As in [2], the evaluation of the probability of error in
(17) can be simplified if ı(X

n

1 , X
n

2 ;Y
n), ı(X

n

1 ;Y
n|Xn

2 ) and

0.0 0.1 0.2 0.3 0.4 0.5
log2M1/n

0.0

0.1

0.2

0.3

0.4

0.5

lo
g 2
M

2
/n

Fig. 2. Achievable regions of Theorem 1 with the channel in (31) for
ε = 10−3 and δ = 0.5. Each (red) region corresponds to a specific choice
of γ1, γ2, γ12 with average blocklength less than or equal 100. The full
achievable region is given by the union of all such regions.

ı(X
n

2 ;Y
n|Xn

1 ) are independent of (Xn
1 , X

n
2 , Y

n) using the
identity

E
[
f(A

n
, Bn)

]
= E [f(An, Bn) exp{−ı(An;Bn)}] , (23)

which is valid for any measurable function f [2], where A, A
and B are random variables with joint pmf PA,A,B(a, a, b) =
PA(a)PA(a)PB|A(b|a). In that case (17) can be written as

ε ≤ (M1 − 1)(M2 − 1)E [f12(τ)]

+ (M1 − 1)E [f1(τ)] + (M2 − 1)E [f2(τ)] (24)

where

f12(n) = E [1 {τ12 ≤ n} exp{−ı(Xτ12
1 , Xτ12

2 ;Y τ12)}] (25)
f1(n) = E [1 {τ1 ≤ n} exp{−ı(Xτ1

1 ;Y τ1 |Xτ1
2 )}] (26)

f2(n) = E [1 {τ2 ≤ n} exp{−ı(Xτ2
2 ;Y τ2 |Xτ2

1 )}] , (27)

where (25) follows by setting A = (X1, X2) and B = Y in
(23), (26) by setting A = X1 and B = (X2, Y ), and (27) by
setting A = X2 and B = (X1, Y ).

When independence does not hold, the terms of the prob-
ability of error Pr [τ12 ≤ τ ], Pr [τ1 ≤ τ ], Pr [τ2 ≤ τ ] can be
loosened as following [2, Proof of Theorem 32]

Pr [τ12 ≤ τ ] ≤ exp{−γ12}, (28)
Pr [τ1 ≤ τ ] ≤ exp{−γ1}, (29)
Pr [τ2 ≤ τ ] ≤ exp{−γ2}. (30)

B. Results

The achievable regions of Theorem 1 and Theorem 2 are
evaluated for the following channel (as in [3])

Y = X1 +X2 + Z, (31)
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where + denotes the real addition and X1, X2 ∈ X = {0, 1}
are binary channel inputs distributed as Bern(12 ),
and Z is binary noise distributed as Bern(δ),
and hence Y ∈ {0, 1, 2, 3}. For this channel
(ı(Xn

1 ;Y
n|Xn

2 ), ı(X
n
2 ;Y

n|Xn
1 ), ı(X

n
1 , X

n
2 ;Y

n))
becomes a three dimensional random walk. Moreover,
(ı(X

n

1 ;Y
n|Xn

2 ), ı(X
n

2 ;Y
n|Xn

1 ), ı(X
n

1 , X
n

2 ;Y
n)) does

depend on (Xn
1 , X

n
2 , Y

n), thus the probability of error is
computed using the loosened bounds (28)-(30).

In Fig. 3(a) and Fig. 3(b), the achievable regions character-
ized by Theorem 1 and Theorem 2 are plotted for δ = 0.5 and
δ = 0.11. The regions are compared to the capacity regions and
the rate regions achievable by fixed-blocklength codes given
in (6)-(8) from [3] disregarding the O(1) terms.

It is seen that rates significantly higher than for fixed-
blocklength codes are achievable and around 90% of the
capacity regions is achieved at blocklengths of 100 − 200
channel uses for the channel at hand. Finally, we observe that
there is a significant gain in using joint decoding as opposed
to successive cancellation decoding, even when aiming for the
corner points of the achievable region.

V. DISCUSSION AND CONCLUSIONS

We have put forth rate regions achievable for the multiple
access channel with stop-feedback which are significantly
better than those achievable for fixed-blocklength codes. More-
over, we have found that there is a significant penalty of using
successive cancellation decoding instead of joint decoding.

The results show that the achievable regions of Theorem 1
and Theorem 2 are considerable more rounded than for fixed-
blocklength codes. A possible explanation for this observation
is that the average blocklength E [τ ] is dominated by the
information density term reaching the corresponding threshold
last. Note that τ in (12) can also be written as

τ = max(τ1, τ2, τ12), (32)

where

τ1 = inf {n ≥ 0 : ı(Xn
1 ;Y

n|Xn
2 ) ≥ γ1} (33)

τ2 = inf {n ≥ 0 : ı(Xn
2 ;Y

n|Xn
1 ) ≥ γ2} (34)

τ12 = inf {n ≥ 0 : ı(Xn
1 , X

n
2 ;Y

n) ≥ γ12} . (35)

The expected stopping times of (33)-(35) can be shown to
satisfy [2, Proof of Theorem 2]

E [τ1] ≤
γ1

I(X1;Y |X2)
+ a1 (36)

E [τ2] ≤
γ2

I(X2;Y |X1)
+ a2 (37)

E [τ12] ≤
γ12

I(X1, X2;Y )
+ a12 (38)

for some positive constants a1, a2, a12. Hence E [τ ] is equal
to max(E [τ1] ,E [τ2] ,E [τ12]) plus some penalty term that de-
pends on the correlation between the stopping times τ1, τ2, τ12.
This penalty term is expected to be most significant when the
corner points are approached.

In [7], it was found that rate-compatible convolutional
codes combined with reliablity-based decoding achieved rates
that surpassing the achievability bound for point-to-point VLF

0.0 0.1 0.2 0.3 0.4 0.5
log2M1/n

0.0

0.1

0.2

0.3

0.4

0.5

lo
g 2
M

2
/n

l→∞
l=50

l=100

l=200

l=300

l=400

(a) δ = 0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
log2M1/n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
g 2
M

2
/
n

(b) δ = 0.11. Legend is the same as for (a).

Fig. 3. Achievable regions with ε = 10−3. Solid (colored): Theorem 1,
dashed: Theorem 2, dashed-dotted: fixed-blocklength codes, (6)-(8).

codes in [2, Theorem 3]. An interesting extension is therefore
to consider the achievable rates of rate-compatible convolu-
tional codes with joint decoding, e.g. based on message passing
algorithms, for the multiple access channel with stop-feedback.

APPENDIX A
PROOF OF THEOREM 1

Proof: The proof extends the proof of Theorem 3 in [2]
to the multiple access channel.
Codebook generation: Based on common randomness, gener-
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ate infinite dimensional vectors c
(1)
j1
∈ X∞ and c

(2)
j2
∈ X∞,

j1 ∈M1 and j2 ∈M2, according to the pmfs PX1
and PX2

,
respectively.

Encoders: The i-th user uses the encoder

Xin = f (i)n (ji) = (c
(i)
ji
)n, (39)

where (c
(i)
ji
)n is the n-th entry in c

(i)
ji

. This is done until an
ACK signal is received.

Decoder: At the n-th channel use, the decoder computes
the M1M2 information densities

S
(1)
j1,j2

(n) = ı(c
(1)
j1

(n);Y n|c(2)j2 (n)) (40)

S
(2)
j1,j2

(n) = ı(c
(2)
j1

(n);Y n|c(1)j2 (n)) (41)

S
(12)
j1,j2

(n) = ı(c
(1)
j1

(n), c
(2)
j1

(n);Y n), (42)

where c
(i)
ji
(n) denotes the first n entries of c

(i)
ji

. Define the
stopping times

τj1,j2 = inf{n ≥ 0 : S
(12)
j1,j2

(n) ≥ γ1, S(2)
j1,j2

(n) ≥ γ2
, S

(12)
j1,j2

(n) ≥ γ12} (43)

for j1 ∈M1, j2 ∈M2. The receiver feds back an ACK signal
as soon as S(12)

j1,j2
(n) ≥ γ1, S(2)

j1,j2
(n) ≥ γ2 and S(12)

j1,j2
(n) ≥ γ12

for some pair (j1, j2). The decoding time is hence given by

τ∗ = min
j1∈M1,j2∈M2

τj1,j2 (44)

The output of the decoder is given by

g(Y τ
∗
) = max{(j1, j2) : τj1,j2 = τ∗}, (45)

where the maximum is in calligraphic order.

The average transmission length satisfies

E [τ∗]
(a)

≤ 1

M1M2

M1∑
j1=1

M2∑
j2=1

E [τj1,j2 |J1 = j1, J2 = j2] (46)

(b)
= E [τj1,j2 |J1 = j1, J2 = j2] (47)
(c)
= E [τ ] , (48)

where (a) follows since minj1,j2 τj1,j2 ≤ τJ1,J2 , (b) by
symmetry of the codebook and (c) by the definition of τ in
(12).

The average probability of error is bounded as following

Pr
[
g(Y τ

∗
) 6= (J1, J2)

]
(a)

≤ Pr
[
g(Y τ

∗
) 6= (1, 1)|J1 = 1, J2 = 1

]
(49)

(b)

≤ Pr [τ1,1 ≥ τ∗|J1 = 1, J2 = 1] (50)

≤ Pr

 ⋃
M1∈M1,M2∈M2
(M1,M2)6=(1,1)

{τj1,j2 ≤ τ1,1}
∣∣J1 = 1, J2 = 1


(51)

≤ Pr

 M1⋃
j1=2

M2⋃
j2=2

{τj1,j2 ≤ τ1,1} ∪
M1⋃
j1=2

{τj1,1 ≤ τ1,1}

∪
M2⋃
j2=2

{τ1,j2 ≤ τ1,1}
∣∣J1 = 1, J2 = 1

 (52)

(c)

≤ (M1 − 1)(M2 − 1)Pr [τ2,2 ≤ τ1,1|(J1, J2) = (1, 1)]

+ (M1 − 1)Pr [τ2,1 ≤ τ1,1|(J1, J2) = (1, 1)]

+ (M2 − 1)Pr
[
τ1,2 ≤ τ1,1

∣∣(J1, J2) = (1, 1)
]
, (53)

where (a) is by (45), i.e. the highest error probability is for
the J1 = 1, J2 = 1, (b) follows from (44), (c) is by the union
bound. Note that the random stopping times τ2,1, τ1,2, τ2,2
conditioned on J1 = 1, J2 = 1 have the same distributions
as

τ ′1 = inf(n ≥ 0 : ı(X
n

1 ;Y
n|Xn

2 ) ≥ γ1, ı(Xn
2 ;Y

n|Xn

1 ) ≥ γ2
, ı(X

n

1 , X
n
2 ;Y

n) ≥ γ12) (54)

τ ′2 = inf(n ≥ 0 : ı(Xn
1 ;Y

n|Xn

2 ) ≥ γ1, ı(X
n

2 ;Y
n|Xn

1 ) ≥ γ2
, ı(Xn

1 , X
n

2 ;Y
n) ≥ γ12) (55)

τ ′12 = inf(n ≥ 0 : ı(X
n

1 ;Y
n|Xn

2 ) ≥ γ1, ı(X
n

2 ;Y
n|Xn

1 ) ≥ γ2
, ı(X

n

1 , X
n

2 ;Y
n) ≥ γ12), (56)

respectively. We obtain (17) from the fact that τ ′1 ≥ τ1,τ ′2 ≥
τ2 and τ ′2,2 ≥ τ12, where τ1, τ2 and τ12 are given in (13)-
(15).
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