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Abstract
Minimum distance, general Hamming weights and relative generalized Hamming
weights are parameters of great importance in coding theory and cryptography.
Their computation is often very hard and for this reason there exist some bounds
to estimate them. We analyse the footprint bound and the Feng-Rao bounds with
the one-way well-behaving property. Furthermore we give two improvements of
these bounds for primary and dual codes. We propose three different applications
of the bounds:

• Using the footprint bound we propose a new method to build small-bias
spaces from Hermitian codes that perform well.

• We illustrate how to bound or compute the relative generalized Hamming
weights of one-point algebraic geometric codes, Hermitian codes and q-ary
Reed-Muller codes.

• Finally with our improvement we prove that affine variety codes are better
than their reputation.

Summary
Before the exposition of the five papers we give an introduction.

Introduction

The introduction is divided into two parts.

In the first part we illustrate how the footprint bound, the Feng-Rao bounds
with one-way well-behaving property and our improvements of these bounds are
useful tools in the case of affine variety codes. Further we generalize these two last
bounds showing how to apply them for any primary and dual linear codes.

The second part is structured in three sections where we focus on three appli-
cations of these bounds. The first one is dedicated to a new method for building
small-bias spaces from Hermitian codes. Using the footprint bound we show that
this construction performs well. In the second section we illustrate how to apply
the relative generalized Hamming weights to evaluate the security of linear secret
sharing schemes. We use the Feng-Rao bound to bound the relative generalized
Hamming weights for one-point algebraic geometric codes (in particular Hermitian
codes). Furthermore with the help of the footprint bound we show how to compute
the exact values of the relative generalized Hamming weights of q-ary Reed-Muller
codes. In the last section we prove, using our improvements, that the affine variety
codes are better than their reputation.
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Papers

Paper I is dedicated to a new method for constructing small-bias spaces from
Hermitian codes. We show that our construction is competitive in speed of con-
struction and that it performs better than the ones related to norm-trace codes.
Paper II and III examine our improvement of the Feng-Rao bound with one-way
well-behaving property for primary and dual linear codes respectively. In Paper IV
we explain how to use the relative generalized Hamming weights to evaluate the
security of linear secret sharing schemes. Furthermore in this paper we show how
to bound these parameters with one-point algebraic geometric codes and Hermitian
codes especially. Paper V is focused on the computation of the relative generalized
Hamming weights of q-ary Reed-Muller codes.
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Abstrakt på dansk
Minimumsafstand, genereliserede Hammingvægte og relative genereliserede Ham-
mingvægte er parametre af stor betydning i kodningsteori og kryptografi. Bereg-
ningen af dem er ofte meget vanskellig – og af den grund findes der grænser
ved hjælp af hvilke, man kan estimere dem. Vi analyserer fodaftryksgrænsen og
Feng-Rao-grænserne i one-way well-behaving versionerne. Videre præsenterer vi to
forbedringer af disse grænser – nemlig for primære koder og for duale koder. Vi
præsenterer tre forskellige anvendelser af grænserne:

• Ved hjælp af fodaftryksgrænsen indfører en ny metode til at bygge gode
small-bias spaces fra Hermitiske koder.

• Vi viser, hvordan man kan estimere og beregne de relative genereliserede
Hammingvægte for et-punkts algebraisk geometrikoder, Hermitiske koder og
q-æriske Reed-Muller koder.

• Endelig viser vi ved hjælp af vores forbedrede grænser, at affine varietetskoder
er bedre end deres rygte.

Resume på danks
Afhandlingen indledes med en introduktion, hvorefter de fem artikler følger.

Introduktion

Introduktionen er inddelt i to dele.

I den første del illustrerer vi, hvorledes fodaftryksgrænsen, Feng-Rao grænserne
i one-way well-behaving versionerne og vores forbedringer af disse kan tjene som
nyttige værktøjer i forbindelse med affine varietetskoder. Endvidere generaliserer
vi de to sidstnævnte grænser, således at de kan anvendes på vilkårlige primære eller
duale lineære koder.

Del to er inddelt i tre underafsnit, hvor vi fokuserer på de tre anvendelser af
grænserne. Det første underafsnit beskæftiger sig med en ny metode til at kon-
struere small-bias spaces fra Hermitiske koder. Ved hjælp af fodaftryksgrænsen
viser vi, at denne konstruktion har gode egenskaber. I det næste underafsnit
forklarer vi, hvorledes man kan anvende relative genereliserede Hammingvægte til
at evaluere sikkerheden af lineære secret sharing schemes. Ved hjælp af Feng-
Rao grænsen viser vi, hvorledes man kan estimere de relative genereliserede Ham-
mingvægte for et-punkts algebraiske geometrikoder (herunder specielt Hermitiske
koder). Endvidere viser vi, hvorledes man i tilfældet af q-æriske Reed-Muller koder,
ved hjælp af fodaftryksgrænsen kan beregne de eksakte værdier af de relative ge-
nereliserede Hammingvægte. I det sidste underafsnit beviser vi ved hjælp af vores
forbedrede grænser, at affine varietets koder er bedre ende deres rygte.
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Artikler

Artikel I beskæftiger sig med en ny metode til at konstruere small-bias spaces
ved hjælp af Hermitiske koder. Vi demonstrerer, at vores konstruktion er konkur-
rencedygtig med hensyn til konstruktionshastighed samt at vores small-bias spaces
har bedre parametre end small-bias spacene defineret ved hjælp af norm-trace-
koder. Artikel II og III undersøger vores forbedringer af Feng-Rao grænserne i ver-
sionen med one-way well-behaving – såvel for primære som duale koder. I artikel
IV forklarer vi, hvorledes man kan anvende relative genereliserede Hammingvægte
til at evaluere sikkerheden af lineære secret sharing schemes. Endvidere viser vi i
denne artikel, hvorledes man kan estimere disse parametre for et-punkts algebraiske
geometrikoder og for Hermitiske koder specielt. Artikel V fokuserer på beregningen
af relative genereliserede Hammingvægte for q-æriske Reed-Muller koder.
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Chapter 1

Bounds

Throught the introduction we use the following notation: q is a power of a prime
and we denote with Fq a field with q elements. Given a monomial ordering ≺, we
denote by lm(F ) the leading monomial of the polynomial F .

In this part we give the definition of generalized Hamming weights and relative
generalized Hamming weights. We continue introducing the footprint bound, the
Feng-Rao bound and our improvements of the Feng-Rao bound.

1.1 Generalized Hamming weights and relative gen-
eralized Hamming weights

A well-know concept in coding theory is the generalized Hamming weights [12, 10,
24] which we start by introducing. Recall that for D ⊆ Fnq the support of D is
defined as

supp(D) = {i | ci 6= 0 for some ~c = (c1, . . . , cn) ∈ D}.
Definition 1. Let C be a linear code and k its dimension. For r = 1, . . . , k, the
r-th generalized Hamming weight (GHW) of C is defined by

dr(C) = min{#supp(D) | D is a linear subcode of C and dim(D) = r}.

The sequence (d1(C), . . . , dk(C)) is called the hierarchy of the GHWs of C.

In particular d1(C) is the minimum distance of C. A further generalization of
GHWs was introduced by Luo et al. in [15].

Definition 2. Let C2 ( C1 be linear codes, ` = dim(C1)−dim(C2) the codimension
of C1 and C2, and n the length of the codes. For m = 1, . . . , `, the m-th relative
generalized Hamming weight (RGHW) of C1 with respect to C2 is defined by

Mm(C1, C2) = min
J⊆{1,...,n}

{#J | dim((C1)J)− dim((C2)J) = m}

where (Ci)J = {~c ∈ Ci | ct = 0 for t /∈ J} for i = 1, 2. The sequence (M1(C1, C2), . . . ,
M`(C1, C2)) is called the hierarchy of the RGHWs of C1 with respect to C2.
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If C2 is the zero code {~0} then the m-th RGHW of C1 with respect to C2

is equivalent to the m-th GHW of C1. This fact should be more clear from the
following result [14, Lem. 1].

Theorem 3. Let C2 ( C1 be linear codes and ` = dim(C1) − dim(C2) be the
codimension of C1 and C2. For m = 1, . . . , ` we have that

Mm(C1, C2) = min{#supp(D) | D is a linear subcode of C1,

D ∩ C2 = {~0} and dim(D) = m}.

1.2 The footprint bound

The computation of the above mentioned parameters is usually hard, however
there exists some bounds to estimate them. If our code is an affine variety code
the footprint bound, the Feng-Rao bounds and our improvement of the Feng-Rao
bound are powerful tools. Because in this case the Feng-Rao bounds and our
improvements can be viewed as consequences of the footprint bound from Gröbner
basis then we start introducing the affine variety codes and the footprint bound.

Affine variety codes were introduced by Fitzgerald and Lax in [7] as follows.
Consider an ideal I ⊆ Fq[X1, . . . , Xs] and define

Iq = I + 〈Xq
1 −X1, . . . , X

q
s −Xs〉

Rq = Fq[X1, . . . , Xs]/Iq.

Let {P1, . . . , Pn} = VFq
(Iq) be the corresponding variety over Fq. Here, Pi 6= Pj

for i 6= j. Define the Fq-linear map ev : Rq → Fnq by ev(F+Iq) = (F (P1), . . . , F (Pn)).
It is well-known that this map is a vector space isomorphism.

Definition 4. Let L be an Fq vector subspace of Rq. Define C(I, L) = ev(L) and
C⊥(I, L) =

(
C(I, L)

)⊥.

We shall call C(I, L) a primary affine variety code and C⊥(I, L) a dual affine
variety code. We now give the definition of footprint and the theorem for the
computation of the footprint bound [9, 11].

Definition 5. Given a monomial ordering ≺ and an ideal I ⊆ k[X1, . . . , Xs] (here
k is any field) the footprint is

∆≺(I) := {Xα1
1 · · ·Xαs

s | Xα1
1 · · ·Xαs

s is not a leading monomial
of any polynomial in I}.

Theorem 6. Assume I is zero-dimensional (meaning that ∆≺(I) is finite). The
variety VF̄(I) satisfies #VF̄(I) ≤ #∆≺(I).

As a consequence of the footprint bound we obtain the following result that we
can use to bound the RGHWs of an affine variety code.

3



Corollary 7. Let D = spanFq
{ev(F1), . . . , ev(Fm)} be a subspace of C(I, L) and

≺ any monomial ordering. We have:

#supp(D) ≥ n−#∆≺(〈F1, . . . , Fm〉+ Iq)

Thus if we consider two Fq-vector subspaces of Rq, L2 ( L1, then we obtain:

Mm(C(I, L1), C(I, L2))

= min{#supp(D) | D is linear subcode of C(I, L1),

dim(D) = mand D ∩ C(I, L2) = {~0}}
≥ min{#supp(D) | D = spanFq

{ev(F1), . . . , ev(Fm)},
lm(Fi) ∈ lm(L1), lm(Fi) /∈ lm(L2) for i = 1, . . . ,m,
lm(Fi) 6= lm(Fj) for i 6= j}

≥ n−max{#∆≺(〈F1, . . . , Fm〉+ Iq) |
lm(Fi) ∈ lm(L1), lm(Fi) /∈ lm(L2) for i = 1, . . . ,m,
lm(Fi) 6= lm(Fj) for i 6= j}

for m = 1, . . . , `, where ` = dim(C(I, L1))− dim(C(I, L2)) is their codimension.

In Paper I we use the footprint bound to evaluate a new method for constructing
small-bias spaces from Hermitian codes and in Paper V we use it to compute the
RGHWs of q-ary Reed-Muller codes.

1.3 The Feng-Rao bounds

1.3.1 The Feng-Rao bound for primary affine variety codes
In this section we recall the interpretation from [8] of the Feng-Rao bound for
primary affine variety codes.

Definition 8. Let G be a Gröbner basis for Iq with respect to a monomial ordering
≺. An ordered pair of monomials (Mi,Mj),Mi,Mj ∈ ∆≺(Iq) is said to be one-way
well-behaving (OWB) if for all H ∈ Fq[X1, . . . , Xs] with Supp(H) ⊆ ∆≺(Iq) and
lm(H) = Mi it holds that

lm(MiMj rem G) = lm(HMj rem G).

Here, F rem G means the remainder of F after division with G (see [6, Sec. 2.3] for
the division algorithm for multivariate polynomials).

Definition 9. A basis {B1 + Iq, . . . , Bdim(L) + Iq} for a subspace L ⊆ Rq where
Supp(Bi) ⊆ ∆≺(Iq) for i = 1, . . . ,dim(L) and where lm(B1) ≺ · · · ≺ lm(Bdim(L)),
is said to be well-behaving with respect to ≺. Also we define

�≺(L) = {lm(B1), . . . , lm(Bdim(L))}

where {B1 + Iq, . . . , Bdim(L) + Iq} is any well-behaving basis for L.

4



Using this definition and the footprint bound as described in Theorem 6 we
obtain the Feng-Rao bound with OWB property.

Theorem 10. Let G be a Gröbner basis for Iq with respect to a monomial ordering
≺. Consider a non-zero word ~c and let F be the unique polynomial such that
Supp(F ) ⊆ ∆≺(Iq) and ~c = ev(F ). Let lm(F ) = P . We have

wH(~c) ≥ #{K ∈ ∆≺(Iq) | ∃N ∈ ∆≺(Iq) such that
(P,N) is OWB and lm(PN rem G) = K}. (1.1)

A bound on the minimum distance of C(I, L) is found by taking the minimum
of (1.1) when P runs through �≺(L).

The Feng-Rao bound is particularly suited for affine varieties which satisfy
the order domain conditions [8, Def. 4.22]. In its most general form the or-
der domain conditions involve a weighted degree monomial ordering with weights
w(X1), . . . , w(Xs) in Nr0\{~0}, with r a positive integer (see [8, Def. 4.21]).

Definition 11. Let w(X1), . . . , w(Xs) ∈ Nr0\{~0} and define the weight ofXi1
1 · · ·Xis

s

to be the number w(Xi1
1 · · ·Xis

s ) = i1w(X1) + · · ·+ isw(Xs). The weighted degree
ordering ≺w onM(X1, . . . , Xs) is the ordering with Xi1

1 · · ·Xis
s ≺w Xj1

1 · · ·Xjs
s if

either w(Xi1
1 · · ·Xis

s ) < w(Xj1
1 · · ·Xjs

s ) holds or w(Xi1
1 · · ·Xis

s ) = w(Xj1
1 · · ·Xjs

s )

holds but Xi1
1 · · ·Xis

s ≺ Xj1
1 · · ·Xjs

s . Here, ≺ is some fixed monomial ordering.

We now state the order domain conditions.

Definition 12. Consider an ideal I ⊆ k[X1, . . . , Xs] where k is a field. Let a
weighted degree ordering ≺w be given. Assume that I possesses a Gröbner basis G
with respect to ≺w such that:

(C1) Any F ∈ G has exactly two monomials of highest weight.

(C2) No two monomials in ∆≺w
(I) are of the same weight.

Then we say that I and ≺w satisfy the order domain conditions.

These conditions give us the following interesting property.

Proposition 13. Assume I ⊆ Fq[X1, . . . , Xs] and ≺w satisfy the order domain
conditions. A pair (P,N) where P,N ∈ ∆≺w

(Iq) is OWB if w(P ) + w(N) ∈
w(∆≺w

(Iq)).

We can generalize Theorem 10 to also work for RGHWs.

Corollary 14. Let G be a Gröbner basis for Iq with respect to a monomial ordering
≺. Let D = {ev(F1), . . . , ev(Fm)} be an m-dimensional subspace of Fnq where with-
out loss of generality lm(Fi) 6= lm(Fj) for i 6= j. Let lm(Fi) = Pi for i = 1, . . . ,m.
We have:

#supp(D) ≥ #

m⋃

i=1

Λ̃Pi

where Λ̃P = {K ∈ ∆≺w
(Iq) | ∃N ∈ ∆≺(Iq) such that (P,N) is OWB and lm(PN

rem G) = K}.
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If I and ≺w satisfy the order domain conditions then by Proposition 13 we can
redefine the set Λ̃P in the following way:

Λ̃P = {N ∈ ∆≺w
(Iq) | w(P ) + w(N) ∈ w(∆≺w

(Iq))}.
Also if we consider two Fq-vector subspaces of Rq, L2 ( L1, then we obtain:

Mm(C(I, L1), C(I, L2)) ≥ min{# ∪ms=1 Λ̃Pi |
Pi ∈ ∆≺w(Iq) ∩ lm(L1),

Pi /∈ lm(L2) for any i = 1, . . . ,m,

Pi 6= Pj for i 6= j}
for m = 1, . . . , `, where ` = dim(C(I, L1))− dim(C(I, L2)) is their codimension.

1.3.2 Our improved Feng-Rao bound for primary affine va-
riety codes

The order domain conditions historically [11, 21, 2, 8] were designed to support the
Feng-Rao bounds and therefore it is not surprising that the bounds do not work
very well without the order domain conditions. The improvement to the Feng-
Rao bound that we introduced in Paper II allows us to consider relaxed conditions
by producing good estimates in the case that the order domain condition (C1) is
satisfied but (C2) is not.

Definition 15. Let G be a Gröbner basis for Iq with respect to a fixed arbitrary
monomial ordering ≺. Write ∆≺(Iq) = {M1, . . . ,Mn} with M1 ≺ · · · ≺ Mn. Let
I = {1, . . . , n} and consider I ′ ⊆ I. An ordered pair of monomials (Mi,Mj),
1 ≤ i, j ≤ n is said to be strongly one-way well-behaving (SOWB) with respect
to I ′ if for all H with Supp(H) ⊆ {Ms | s ∈ I ′}, Mi ∈ Supp(H) it holds that
lm(MiMj rem G) = lm(HMj rem G).

Remark 16. SOWB is a generalization of OWB. Concretely (Mi, Mj) is OWB if
and only if (Mi,Mj) is SOWB with respect to {1, . . . , i}.
Theorem 17. Let ≺ be a fixed arbitrary monomial ordering. Consider ~c =
ev(
∑i
s=1 asMs + Iq), as ∈ Fq, s = 1, . . . , i, and ai 6= 0. Let v be an integer

0 ≤ v < i. We have wH(~c) ≥ σ(i, v) where σ(i, v) = min{#L(1), . . . ,#L(v + 1)}.
Here, for t = 1, . . . , v

L(t) =
{
K ∈ ∆≺(Iq) | ∃Mj ∈ ∆≺(Iq) such that either

(Mi,Mj) is SOWB with respect to {1, . . . , i− t, i}
and lm(MiMj rem G) = K or

(Mi−t,Mj) is SOWB with respect to {1, . . . , i− t, i}
and lm(Mi−tMj rem G) = K

}
,

and
L(v + 1) =

{
K ∈ ∆≺(Iq) | ∃Mj ∈ ∆≺(Iq) such that (Mi,Mj)

is SOWB with respect to {1, . . . , i− v − 1, i}
and lm(MiMj rem G) = K

}
.
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Given a code C(I, L) write �≺(L) = {Mi1 , . . . ,Midim(L)
} and choose numbers

vi1 , . . . , vidim(L)
with 0 ≤ vis < is, s = 1, . . . ,dim(L). The minimum distance

of C(I, L) is at least min{σ(i1, v1), . . . , σ(idim(L), vidim(L)
)}.

A generalization of this Theorem for subspaces of dimension 2 is described in
Section 6 of Paper II. This is useful to bound the second RGHWs of affine variety
codes. In Paper II we used the improved Feng-Rao bound to show that affine
variety codes are better than their reputation.

1.3.3 Formulation at linear code level

The Feng-Rao bound and our improvement can be generalized for any linear code
described by means of a generator matrix.

Consider a fixed ordered triple (U ,V,W) where U = {~u1, . . . , ~un}, V = {~v1, . . . ,
~vn}, and W = {~w1, . . . , ~wn} are three (possibly different) bases for Fnq as a vector
space over Fq. We shall always denote by I the set {1, . . . , n}.

Definition 18. Consider a basis A = {~a1, . . . ,~an} for Fnq as a vector space over
Fq. We define the function ρ̄A : Fnq → {0, 1, . . . , n} as follows. For ~c ∈ Fq\{~0} we
let ρ̄A(~c) = i if ~c ∈ SpanFq

{~a1, . . . ,~ai}\SpanFq
{~a1, . . . ,~ai−1}. Here, we used the

notion SpanFq
∅ = {~0}. Finally, we let ρ̄A(~0) = 0.

The component wise product plays a crucial role in the linear code enhancement
of Theorem 10 and Theorem 17.

Definition 19. The component wise product of two vectors ~u and ~v in Fnq is
defined by (u1, . . . , un) ∗ (v1, . . . , vn) = (u1v1, . . . , unvn).

Definition 20. An ordered pair (i, j) ⊆ I ×I is said to be one-way well-behaving
(OWB) if ρ̄W(~ui′ ∗ ~vj) < ρ̄W(~ui ∗ ~vj) holds for all i′ ∈ I with i′ < i.

The following theorem is the generalization of the Feng-Rao bound for primary
codes.

Theorem 21. Consider ~c =
∑i
s=1 as~us with as ∈ Fq, s = 1, . . . , i, ai 6= 0. We

have

wH(~c) ≥ #
{
l ∈ I | ∃j ∈ I such that ρ̄W(~ui ∗ ~vj) = l, (i, j) is OWB

}
.

For the computation of the RGHWs we rewrite the previous theorem in the
following way.

Corollary 22. Let D ⊆ Fnq be a space of dimension at least 1. We have

#supp(D) ≥ #
⋃

i∈ρ̄W(D)

Λi

where Λi = {l ∈ I | ∃j ∈ I such that (i, j) is OWB and ρ̄W(~ui ∗ ~vj) = l}.
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And thus we have that, given two linear codes in Fnq C2 ( C1, the Feng-Rao
bound for their RGHWs is:

Mm(C1, C2) ≥ min{#
⋃

i∈ρ̄W(D)

Λi : D subspace of C1,

D ∩ C2 = {~0},dim(D) = m}

for m = 1, . . . , ` where ` = dim(C1)− dim(C2).
In Paper IV we use the Feng-Rao bound to bound the RGHWs of one-point

algebraic geometric codes (in particular Hermitian codes).
A slight modification of Definition 20 and the above proof allows us to obtain

further improvements.

Definition 23. Let I ′ ⊆ I. A pair (i, j) ∈ I ′ × I is called strongly one-way
well-behaving (SOWB) with respect to I ′ if ρ̄W(~ui′ ∗ ~vj) < ρ̄W(~ui ∗ ~vj) holds for
all i′ ∈ I ′\{i}.

The following theorem is the linear code interpretation of Theorem 17. Besides
working for a larger class of codes, it is slightly stronger than the previous formu-
lation. Concretely, what makes it stronger than Theorem 17 is the presence of the
set Î.

Theorem 24. Consider a non-zero codeword ~c =
∑i
t=1 at~ut, at ∈ Fq for t =

1, . . . , i, ai 6= 0. Let v be an integer 0 ≤ v < i. Assume that for some set
Î ⊆ {1, . . . , i− 1} we know a priori that ax = 0 when x ∈ Î. Let z1 < · · · < zs be
the numbers in {z ∈ {i− v, . . . , i− 1} | z /∈ Î}. Write I∗ = {z ∈ {1, . . . , i− v− 1} |
z /∈ Î}. We have wH(~c) ≥ σ̄(i, v) where σ̄(i, v) = min{#L′(1), . . . ,#L′(s + 1)}.
Here for t = 1, . . . , s we have

L′(t) =
{
l ∈ I | ∃z ∈ {zs−t+1, i} and j ∈ I such that
ρ̄W(~uz ∗ ~vj) = l, (z, j) is SOWB with respect to
I∗ ∪ {z1, . . . , zs−t+1, i}

}
,

and
L′(s+ 1) =

{
l ∈ I | ∃j ∈ I such that ρ̄W(~ui ∗ ~vj) = l

(i, j) is OWB with respect to I∗ ∪ {i}
}
.

To establish a lower bound on the minimum distance of a code C we choose for
each i ∈ ρ̄U (C) the corresponding integer vi, 0 ≤ vi < i. The minimum distance is
at least min{σ̄(i, vi) | i ∈ ρ̄U (C)}.

1.3.4 The Feng-Rao bound for dual linear codes

We now reformulate the Feng-Rao bound for dual linear codes. To work with them
we need an additional definition.
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Definition 25. Let an ordered triple of bases (U ,V,W) be given. We define
m : Fnq \{~0} → I by m(~c) = l if l is the smallest number in I for which ~c · ~wl 6= 0.
Let D ⊆ Fnq be a subspace, we define m(D) =

{
m(~c) | ~c ∈ D\{~0}

}
.

Theorem 26. For ~c ∈ Fnq \{~0} write l = m(~c). The Hamming weight of ~c satisfies

wH(~c) ≥ #{(i, j) ∈ I × I | ρ̄W(~ui ∗ ~vj) = l and (i, j) is OWB}

For the computation of the RGHWs we rewrite this theorem in the following
way.

Corollary 27. Let D ⊆ Fnq be a space of dimension at least 1. We have

#supp(D) ≥ #
⋃

l∈m(D)

Vl

where Vl = {i ∈ I | ∃j ∈ I such that (i, j) is OWB and ρ̄W(~ui ∗ ~vj) = l}.

Thus letting u be the largest element in ρ̄W(C1\{~0}), for m = 1, . . . ,dimC1 −
dimC2 = dimC⊥2 − dimC⊥1 we have

Mm(C⊥2 , C
⊥
1 ) ≥ min{# ∪ms=1 Vis | 1 ≤ i1 < · · · < im ≤ u,

i1, . . . , im /∈ ρ̄W(C2)}.

1.3.5 Our improved Feng-Rao bound for dual linear code
As done in the primary case, it is possible to improve the Feng-Rao bound for dual
codes.

Definition 28. Consider the numbers 1 ≤ l, l + 1, . . . , l + g ≤ n. A set I ′ ⊆ I is
said to have the µ-property with respect to l with exception {l+ 1, . . . , l+ g} if for
all i ∈ I ′ there exists j ∈ I such that

(1a) ρ̄W(~ui ∗ ~vj) = l,

(1b) for all i′ ∈ I ′ with i′ < i one of the following conditions holds:

– ρ̄W(~ui′ ∗ ~vj) < l,

– ρ̄W(~ui′ ∗ ~vj) ∈ {l + 1, . . . , l + g}.

Assume next that l + g + 1 ≤ n. The set I ′ is said to have the relaxed µ-property
with respect to (l, l + g + 1) with exception {l + 1, . . . , l + g} if for all i ∈ I ′ there
exists j ∈ I such that either conditions (1a) and (1b) above hold or

(2a) ρ̄W(~ui ∗ ~vj) = l + g + 1,

(2b) (i, j) is one-way well-behaving with respect to I ′, i.e. for all i′ ∈ I ′ with
i′ < i, ρ̄W(~ui′ ∗ ~vj) < ρ̄W(~ui ∗ ~vj),

(2c) no i′ ∈ I ′ with i′ < i satisfies ρ̄W(~ui′ ∗ ~vj) = l.
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Theorem 29. Consider a non-zero codeword ~c and let l = m(~c). Choose a non-
negative integer v such that l + v ≤ n. Assume that for some indexes x ∈ {l +
1, . . . , l + v} we know a priori that ~c · ~wx = 0. Let l′1 < · · · l′s be the remaining
indexes from {l + 1, . . . , l + v}. Consider the sets I ′0, I ′1, . . . , I ′s such that:

• I ′0 has the µ-property with respect to l with exception {l + 1, . . . , l + v}.

• For i = 1, . . . , s, I ′i has the relaxed µ-property with respect to (l, l′i) with
exception {l + 1, . . . , l′i − 1}.

We have
wH(~c) ≥ min{#I ′0,#I ′1, . . . ,#I ′s}. (1.2)

To establish a lower bound on the minimum distance of a code C we repeat the
above process for each l ∈ m(C). For each such l we choose a corresponding v, we
determine sets I ′i as above and we calculate the right side of (1.2). The smallest
value found constitutes a lower bound on the minimum distance.

The generalization for the computation of RGHWs is very technical. However in
Proposition 22 of Paper III we give an estimation of the support size of a subspace
of dimension 2.
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Chapter 2

Applications

In the following part we show three applications of the bounds that we illustrated
previously. The first section is dedicated to a new method for constructing small-
bias spaces from Hermitian codes. In the second one we introduce the concept of
secret sharing schemes and explain the importance of the RGHWs to evaluate the
security of these schemes. Then using the footprint bound or the Feng-Rao bound
we give some formulas to estimate or to compute the hierarchy of RGHWs of some
linear codes. In the third section we show, using our improvements of the Feng-Rao
bounds, that affine variety codes are better than their reputation.

2.1 New method for constructing small-bias spaces
from Hermitian codes

To obtain our new method for constructing small-bias spaces from Hermitian codes
we use the following ideal:

I
(2)
q2 := 〈Xq+1

1 − Y q1 − Y1, X
q+1
2 − Y q2 − Y2, X

q2

1 −X1, Y
q2

1 − Y1, X
q2

2 −X2, Y
q2

2 − Y2〉

and the corresponding variety VFq2
(I

(2)
q2 ) = {Q1, . . . , Qq6}.

As described in Definition 11 we define the monomial function w(2) given by
w(2)(X1) = (q, 0), w(2)(Y1) = (q + 1, 0), w(2)(X2) = (0, q), and finally w(2)(Y2) =
(0, q+1). Let ≺N2

0
be any monomial ordering on N2

0 and define ≺w(2) as a weighted
degree ordering.
For the code construction we need the following bijective evaluation map

ev : Fq2 [X1, Y1, X2, Y2]/I(2) → Fq
6

q2

given by ev(F +I
(2)
q2 ) = (F (Q1, ), . . . , F (Qq6)). We consider a codeword ~c = ev(F +

I
(2)
q2 ) where without loss of generality we assume that F ∈ ∆≺

w(2)
(I

(2)
q2 ). We write

λ(2) = (λ1, λ2) = w(2)(lm(F )). Thus we obtain the estimate

#∆≺
w(2)

(〈F (X1, Y1, X2, Y2)〉+ I
(2)
q2 ) ≤ q6 − (q3 − λ1)(q3 − λ2).
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Hence by the footprint bound we obtain wH(~c) ≥ (q3 − λ1)(q3 − λ2).
Consider the code Ẽ(δ) which is to Hermitian codes what Massey-Costello-

Justesen codes [16] are to Reed-Solomon codes

Ẽ(δ) := SpanFq2

{
ev(Xi1

1 Y
j1
1 Xi2

2 Y
j2
2 + I

(2)
q2 ) | 0 ≤ i1, i2 < q2,

0 ≤ j1, j2 < q, (q3 − w(Xi1
1 Y

j1
1 ))(q3 − w(Xi2

2 Y
j2
2 )) ≥ δ

}
.

Proposition 30. Assume δ ≥ T where T = q3 − g where g is the genus of the
Hermitian curve. The parameters of Ẽ(δ) are [n = q6, k ≥ T 2− δ+ δ ln(δ/T 2), d ≥
δ].

2.1.1 Epsilon balanced code
In this section we show that by using the previous construction as outer code we
obtain a good ε-bias space. We start by giving the definition of ε-bias space and
ε-balanced code, then in Theorem 33 we show that these definitions are strongly
correlated.

Definition 31. A multiset1 X ⊆ Fk2 is called an ε-bias space if

1

#X

∣∣∣∣∣
∑

~x∈X
(−1)

∑
i∈T xi

∣∣∣∣∣ ≤ ε

holds for every non-empty indexed set T ⊆ {1, . . . , k}.

Definition 32. A binary [n, k] code is said to be ε-balanced if every non-zero code
word ~c satisfies

1− ε
2
≤ wH(~c)

n
≤ 1 + ε

2
.

We can create ε-bias spaces using the generator matrix of an ε-balanced code.
In fact we have that:

Theorem 33. Let G be a generator matrix for an ε-balanced binary [n, k] code.
The columns of G constitute an ε-bias space X ⊆ Fk2 of size n. Similarly, using the
elements of an ε-bias space X as columns of a generator matrix an ε-balanced code
is derived.

A standard construction from [1] tells us how to make small-balanced codes
(meaning ε-biased codes with ε small):

Theorem 34. Let q = 2s for some positive integer s and consider a q-ary [N,K,D]
code C. Let Cs be the (binary) [2s, s]2 Walsh-Hadamard code. The concatenated
code derived by using C as outer code and Cs as inner code is an ε = (N −D)/N -
balanced binary code of length n = N2s and dimension k = Ks.

1A multiset is a generalization of the notion of a set in which the elements can be repeated.
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The literature contains various examples of small-bias spaces that cannot all be
compared to each other. We refer to [4, Sec. 1] for more details. In the following
table we concentrate on important families of multisets for which comparison can
be made. Note that a family of ε-bias spaces is considered to behave well if when
given ε and k the size of X is small. Our construction used as outer code gives us
in some range one of the best solution.

Outer code #X
Reed-Solomon codes (RS) O

(
k2

ε2 ln2(k/ε)

)

Algebraic geometric codes (AG) O
(

k
ε3 ln(1/ε)

)

Hermitian codes (BT) O
((

k
ε2 ln(1/ε)

) 5
4

)

Norm-Trace codes O
((

k

εl−
√

l ln(1/ε)

) l+1
l

)

Our construction (OC) O
((

k
ε+(1−ε) ln(1−ε)

) 4
3

)

Bound #X
Gilbert-Varshamov (GV) O

(
k
ε2

)

Linear programming (LP) O
(

k
ε2 log(1/ε)

)

One way of comparing the above results is to choose ε = k−α, α ∈ R+ and then to
take the logarithm with base k. The big O notation suggests that we then let k go
to infinity. The origin of this point of view is [4, Sec. 1].

Outer code logk(#X )
Reed-Solomon codes (RS) 2 + 2α+ o(1)

for all α ∈ R+

AG codes (AG) 1 + 3α+ o(1)
for all α ∈ R+

Hermitian codes (BT) 5
4 + 5

2α+ o(1)
for all α > 1

2

Norm-Trace codes l+1
l (1 + α(l −

√
l)) + o(1)

for l = 4, 5, . . . , and for all α ≥
√
l
l

Our construction (OC) 4
3 + 8

3α+ o(1)
for all α ∈ R+

Bound logk(#X )
Gilbert-Varshamov (GV) 1 + 2α+ o(1)

for all α ∈ R+

Linear programming (LP) 1 + 2α+ o(1)
for all α ∈ R+
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Figure 2.1: Comparison of various constructions: First axis is α, second axis cor-
responds to logk(#X ) when k →∞.

2.2 Relative generalized Hamming weights

2.2.1 Linear secret sharing schemes

In this section we show how to compute or estimate the RGHWs of different linear
codes. We start by introducing the ramp secret sharing schemes so that the reader
will understand the importance of the hierarchy of the RGHWs of linear codes.

Definition 35. Let n, `, t and r be positive integers, t < r and ` ≤ n. A ramp
secret sharing scheme with t-privacy and r-reconstruction is an algorithm that given
an input ~s ∈ F`q, called a secret, outputs a vector ~x = (x1, . . . , xn) ∈ Fnq , the vector
of shares that we want to share among n players, such that given a collection of
shares {xi | i ∈ I}, I ⊆ {1, . . . , n}; one has no information about ~s if #I ≤ t and
one can recover ~s if #I ≥ r.

We shall always assume that t is largest possible and that r is smallest possible
such that the above holds.

A linear ramp secret sharing scheme with n participants and shares belonging
to Fq can be described as a coset construction C1/C2 where C2 ( C1 ⊆ Fnq are
linear codes over Fq [5]. Given C1, C2 as above let L ⊆ Fnq be such that C1 = L⊕C2

(here, denotes the direct sum). We shall call ` = dim(L) = dim(C1)− dim(C2) the
codimension of C1 and C2. We consider a secret ~s ∈ F`q, a vector space isomor-
phism ψ : F`q → L and ~c2 ∈ C2, chosen randomly (uniformly distributed). Finally
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we consider ~x = ψ(~s) + ~c2 ∈ C1. The n shares consist of the n coordinates of ~x.

We now generalize the notation of t-privacy and r-reconstruction.

Definition 36. We say that a ramp secret sharing scheme has (t1, . . . , t`)-privacy
and (r1, . . . , r`)-reconstruction if t1, . . . , t` are chosen largest possible and r1, . . . , r`
are chosen smallest possible such that for m = 1, . . . , `:

• an adversary cannot obtain m q-bits of information about ~s with any tm
shares,

• it is possible to recover m q-bits of information about ~s with any collection
of rm shares.

In particular, one has t = t1 and r = r`.

From [3, Th. 6.7],[13, Th. 4] and Theorem 6 of Paper IV we have the following
characterization of these parameters:

Theorem 37. Let C1/C2, where dimC1 − dimC2 = `, be a linear ramp secret
sharing scheme with (t1, . . . , t`)-privacy and (r1, . . . , r`)-construction. Then for
m = 1, . . . , ` we have tm = Mm(C⊥2 , C

⊥
1 )− 1 and rm = n−M`−m+1(C1, C2) + 1.

Unfortunately, it is not easy to find the hierarchy of RGHWs of two general
linear codes and only for a few classes of codes these parameters have been found or
estimated. Actually – until recently – only for a single class of codes the parameters
were known, namely MDS codes for which the situation is particular simple [15].

In the next sections we show how to compute or estimates the RGHWs of one-
point algebraic geometric codes (in particular Hermitian codes) and q-ary Reed-
Muller codes.

2.2.2 One-point algebraic geometric codes
Given an algebraic function field F of transcendence degree one, let P1, . . . , Pn,
Q be distinct rational places. For f ∈ F write ρ(f) = −νQ(f), where νQ is the
valuation at Q, and denote by H(Q) the Weierstrass semigroup of Q. That is,
H(Q) = ρ

(
∪∞µ=0 L(µQ)

)
. In the following let {fλ | λ ∈ H(Q)} be any fixed basis

for R = ∪∞µ=0L(µQ) with ρ(fλ) = λ for all λ ∈ H(Q). Let D = P1 + · · ·+ Pn and
define

H∗(Q) = {µ | CL(D,µQ) 6= CL(D, (µ− 1)Q)}
= {γ1, . . . , γn} ( H(Q).

Here, the enumeration is chosen such that γ1 < · · · < γn. Consider the map
ev : F → Fnq given by ev(f) = (f(P1), . . . , f(Pn)).

As proved in Section 5 of Paper IV using the Feng-Rao bound we can define the
function Z that it is useful to bound the RGHWs of one-point algebraic geometric
codes.
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Definition 38. Consider a numerical semigroup Γ and a positive integer µ. Define
Z(Γ, µ, 1) = 0 and for 1 < m ≤ µ.

Z(Γ, µ,m) = min
{

#{α ∈ ∪m−1
s=1 (is + Γ) | α /∈ Γ} |

− µ+ 1 ≤ i1 < · · · < im−1 ≤ −1
}
.

Theorem 39. Let µ1, µ2 be positive integers with µ2 < µ1.
For m = 1, . . . ,dimCL(D,µ1Q)− dimCL(D,µ2Q) we have

Mm(CL(D,µ1Q), CL(D,µ2Q)) ≥ n− µ1 + Z(H(Q), µ,m)

where µ = µ1 − µ2.

Using the Feng-Rao bound for dual codes we can also obtain an estimate of the
RGHWs of the duals of one-point algebraic geometric codes

Theorem 40. Let µ1, µ2 and m be as in Theorem 39. We have

Mm(C⊥L (D,µ2Q), C⊥L (D,µ1Q))

≥ min

{
#
(
H(Q) ∩

(
∪ms=1 (γis −H(Q))

))

| γi1 , . . . , γim ∈ H∗(Q), µ2 < γi1 < · · · < γim ≤ µ1

}
.

2.2.3 Hermitian codes

In this section we focus when our one-point algebraic geometric code is a Hermitian
code. The Hermitian function field over Fq2 is given by the equation xq+1− yq − y
and it possesses exactly q3 + 1 rational places which we denote P1, . . . , Pq3 , Q – the
last being the pole of x. The Weierstrass semigroup of Q, H(Q) = 〈ρ(x) = q, ρ(y) =
q+1〉, has g = q(q−1)/2 gaps and conductor c = q(q−1). LetD = P1+· · ·+Pq3 . In
the following by a Hermitian code [23, 22] we mean a code of the form CL(D,µQ).
Clearly, this code is of length n = q3. As is well-known the dual of a Hermitian
code is a Hermitian code.

Theorem 41. Consider the Hermitian curve xq+1−yq−y over Fq2 . Let P1, . . . , Pn=q3 ,
and Q be the rational places and D = P1 + · · ·+Pn. Let µ1, µ2 be non-negative inte-
gers with 1 ≤ µ1−µ2 ≤ q+ 1. For 1 ≤ m ≤ dim(CL(D,µ1Q))− dim(CL(D,µ2Q))
we have:

Mm(CL(D,µ1Q), CL(D,µ2Q)) ≥ n− µ1 + q(m− 1)− (m− 2)(m− 1)

2
.

The equality holds if c − 1 ≤ µ2 and µ1 < n − c (recall that the conductor c =
q(q−1)). Further in this case we have that dim(CL(D,µ1Q))−dim(CL(D,µ2Q)) =
µ1 − µ2.
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2.2.4 q-ary Reed-Muller codes

Let u and s be positive integers, and write n = qs. To define a q-ary Reed-
Muller codes we enumerate the elements of (Fq)s as {P1, . . . , Pn} and consider
ev : Fq[X1, . . . , Xs] → Fnq , ev(f) = (f(P1), . . . , f(Pn)). The q-ary Reed-Muller
code of order u in s variables is defined by

RMq(u, s) = {ev(f) : f ∈ Fq[X1, . . . , Xs],deg(f) ≤ u}
= spanFq

{ev(Xa1
1 · · ·Xas

s ) | 0 ≤ a1, . . . , as < q, a1 + · · ·+ as ≤ u}.

We shall use the convention deg(0) = −1 and spanFq
∅ = {~0}. Hence RMq(−1, s) =

{~0}.
Using the footprint bound we are able to find the hierarchy of the RGHWs of

q-ary Reed-Muller codes.

Definition 42. We write

Qsq = {(a1, . . . , as) ∈ Ns0 | 0 ≤ ai < q, i = 1, . . . , s}

and given ~a = (a1, . . . , as) ∈ Qsq, we call deg(~a) = deg( ~X~a) =
∑s
t=1 at the degree

of ~a. Let a, b be two integers with 0 ≤ a ≤ b ≤ s(q − 1), then we define

Fq((a, b), s) = {~a ∈ Qsq | a ≤ deg(~a) ≤ b}.

Theorem 43. Given C2 = RMq(u2, s) ( C1 = RMq(u1, s), let ~a be the m-th
element in F (u2 + 1, u1) with respect to the anti lexicographic ordering. Because
F (u2 + 1, u1) ⊆ F (0, u1) ⊆ Qsq there exist r and t such that ~a is the r-th element in
F (0, u1) and the t-th element in Qsq with respect to the anti lexicographic ordering.
We have

Mm(C1, C2) = t− r +m.

To compute the GHWs of C1 is enough to suppose that C2 = {~0}. In this case
u2 = −1 and r = m, thus for r = 1, . . . , ` we obtain dr(C1) = t where t is the index
in Qsq of the r-th element of F (0, u1).

2.3 Affine variety codes are better than their rep-
utation

As mentioned our improvement of the Feng-Rao bound is effective for affine variety
codes where the order domain condition (C1) is satisfied, but the order domain
condition (C2) is not. A particular simple class of curves that satisfy the order
domain conditions are the well-known Cab curves. They were introduced by Miura
in [18, 19, 20] to facilitate the use of the Feng-Rao bound for dual codes.

We begin by giving the definition of generalized Cab polynomials and (Fpm ,Fp)
polynomials. Then we give a proposition that shows how to obtain (Fpm ,Fp) poly-
nomials.
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Definition 44. Let w(X) = b
gcd(a,b) and w(Y ) = a

gcd(a,b) where a and b are two
different positive integers. Given a field k, let F (X,Y ) = Xa + αY b + R(X,Y ) ∈
k[X,Y ], α ∈ k\{0}, be such that all monomials in the support of R have smaller
weight than w(Xa) = w(Y b) = ab

gcd(a,b) . Then F (X,Y ) is called a generalized Cab
polynomial.
If k = Fq and F (X,Y ) is a generalized Cab polynomial with aq zeros, then we say
that F is an optimal generalized Cab polynomial.

The generalized Cab polynomials with aq zeros are called optimal because a
bivariate polynomial with leading monomial Xa can have no more zeros over Fq,
as is seen from the footprint bound in Theorem 6.

Definition 45. Let m be an integer, m ≥ 2. A polynomial F (X) ∈ Fpm [X] is
called an (Fpm ,Fp)-polynomial if F (γ) ∈ Fp holds for all γ ∈ Fpm .

Proposition 46. Let Ci1 , . . . , Cit be the different cyclotomic cosets modulo pm−1
(multiplication by p). Here, for s = 1, . . . , t it is assumed that is is chosen as
the smallest element in the given coset. For s = 1, . . . , t, Fis(X) =

∑
l∈Cis

X l,
is an (Fpm ,Fp)-polynomial. Furthermore, the polynomial Xpm−1 is an (Fpm ,Fp)-
polynomial.

Generalized Cab polynomials F (X,Y ) = G(X) −H(Y ) can be obtained using
the trace polynomial G(X) of degree a and an (Fpm ,Fp)-polynomialH(Y ) of degree
b different from the trace polynomial as described in Proposition 46. Furthermore
these polynomials have aq zeros and thus they are optimal. Using these polynomials
we obtain codes for which we can easily apply our improved Feng-Rao bound.

Theorem 47. Let Iq be defined from an optimal generalized Cab polynomial with
aq zeros and let the weights w(X) and w(Y ) be as in Definition 44. Let ≺w be a
weighted degree ordering as defined in Definition 11. Consider ~c = ev(f + Iq), we
can assume without losing of generality lm(f) ∈ ∆w(Iq). Write lm(f) = Xα1Y α2

and T = α1 rem w(Y ). We have that

wH(~c) ≥ (a− α1)(q − α2) + ε where

ε =





0 if q − b ≤ α2 < q

T (q − α2 − b) if 0 ≤ α1 ≤ a− w(Y )

and 0 ≤ α2 < q − b
α1(q − α2 − b) if a− w(Y ) < α1 < a and

q − w(X)− α1
b−w(X)
a−w(Y ) < α2 < q − b

T (q − α2 − w(X)) if a− w(Y ) < α1 < a and
0 ≤ α2 ≤ q − w(X)− α1

b−w(X)
a−w(Y ) .

Remark 48. If for codes from optimal generalized Cab polynomials rather than
applying the bound in Theorem 17 we apply the footprint bound then the ε in
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Theorem 47 should be equal 0. If we apply the Feng-Rao bound (Theorem 10)
with OWB then the ε in Theorem 47 should be replaced with:

{
0 if q − b ≤ α2 < q

T (q − α2 − b) and 0 ≤ α2 < q − b.

We see that our new bound improves the Feng-Rao bound by




0 if q − b ≤ α2 < q

or 0 ≤ α1 ≤ a− w(Y )

(α1 − T )(q − α2 − b) if a− w(Y ) < α1 < a and
q − w(X)− α1

b−w(X)
a−w(Y ) < α2 < q − b

T (b− w(X)) if a− w(Y ) < α1 < a and
0 ≤ α2 ≤ q − w(X)− α1

b−w(X)
a−w(Y ) .
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Chapter 3

Summary of the papers

3.1 Paper I

In this paper we propose a new method for constructing small-bias spaces through
a combination of Hermitian codes as explained in Section 2.1.1 of the introduc-
tion. Using the footprint bound we prove that our construction has competitive
performance with more known codes, as one-point algebraic geometric codes. In
particular we illustrate that although for α < 1 our construction performs worse
than the spaces coming from the algebraic geometric codes, we have that to build
spaces with α < 1

2 from the one-point algebraic geometric construction requires
quite a number of operations. In contrast, our construction is considerable fast.
We prove that the small bias-spaces obtained in this paper performs better than
the ones related to norm-traces codes reported in [17].

3.2 Paper II and III

These two papers focus on the improvements on the Feng-Rao bounds for primary
and dual codes, respectively. Paper II starts by showing that the Feng-Rao bound
with one-way well-behaving property is a powerful tool to bound the Hamming
weight of a word in primary affine variety codes that satisfy the order domain con-
ditions. We show that we can avoid the second order domain condition without
losing significant performance for the minimum distance. To prove this fact we
use our improved Feng-Rao bound based on the strongly one-way well-behaving
property, a generalization of the one-way well behaving property. As mentioned in
Section 2.3 of the introduction we prove that for a family of primary affine variety
codes based on Cab polynomials it is possible to obtain a formula for our improved
bound. In section 5 of paper II we give an example which illustrates that the
construction of a good affine variety code is not always trivial. We conclude the
discussion on affine variety codes with a proposition that explains how to bound the
second generalized Hamming weight of affine variety codes. The paper continues

20



showing that it is possible to use our improvement at linear code level and that
there exist a related bound for dual codes.
Paper III is focused on the improved Feng-Rao bound for dual codes. After intro-
ducing the Feng-Rao bound with one-way well-behaving property, we show that
we can improve it in similar way as we did for primary codes. The last section is
dedicated to several examples that illustrate that our improved bound gives inter-
esting results.

3.3 Paper IV and V
These two papers are focused on the computation of the RGHWs of some linear
codes. Paper IV introduces the linear secret sharing schemes and explains why the
computation of RGHWs is crucial to evaluate the security of these cryptographic
systems. The paper continues by applying the Feng-Rao bound with one-way well-
behaving property to bound the RGHWs of one-point algebraic geometric codes, in
particular Hermitian codes. Using the footprint bound Paper V continues the anal-
ysis of the previous paper computing precisely the RGHWs of q-ary Reed-Muller
codes. The main result is given in Theorem 20 and we propose an algorithm to
use it in an efficient way. The last section gives several formulas for the RGHWs
of q-ary Reed-Muller codes in two variables.
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Abstract

We propose a new method for constructing small-bias spaces through a combina-
tion of Hermitian codes. For a class of parameters our multisets are much faster to
construct than what can be achieved by use of the traditional algebraic geometric
code construction. So, if speed is important, our construction is competitive with
all other known constructions in that region. And if speed is not a matter of in-
terest the small-bias spaces of the present paper still perform better than the ones
related to norm-trace codes reported in [12].

Keywords: Small-bias space, balanced code, Gröbner basis, Hermitian code.
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Chapter 1

Introduction

Let ~X = (X1, . . . , Xk) be a random vector that takes on values in Fk2 . As shown by
Vazirani [17] the variables X1, . . . , Xk are independent and uniformly distributed
if and only if

Prob

(∑

i∈T
Xi = 0

)
= Prob

(∑

i∈T
Xi = 1

)
=

1

2
(1.1)

holds for every non-empty set of indexes T ⊆ {1, . . . , k}. In particular, if (1.1) is to
hold for a space X ⊆ Fk2 then necessarily X must be equal to Fk2 . There is a need
for much smaller spaces X ⊆ Fk2 with statistical properties close to that of (1.1).
In the following by a space we will mean a multiset X with elements from Fk2 (this
we write X ⊆ Fk2). The multiset X is made into a probability space by adjoining to
each element ~x ∈ X the probability p(~x) = i(~x)/|X | where i(~x) denotes the number
of times ~x appears in X . As a measure for describing how close a given space X
is to the above situation with respect to randomization, Naor and Naor [15], and
Alon et. al. [1] introduced the concept of ε-biasness [15, Def. 3]. (See also [14]).

Definition 1. A multiset X ⊆ Fk2 is called an ε-bias space if

1

|X |

∣∣∣∣∣
∑

~x∈X
(−1)

∑
i∈T xi

∣∣∣∣∣ ≤ ε (1.2)

holds for every non-empty index set T ⊆ {1, . . . , k}.

Clearly, the ε in Definition 1 can be taken to be a number between 0 and 1. Good
randomization properties are achieved when ε is close to 0 as (1.2) becomes (1.1)
when ε = 0. Multisets with ε small are called small-bias spaces. Citing [15,
Abstract] they are used to construct almost k-wise independent random variables.
From [15, Abstract] we have the following list of applications:

• Derandomization of algorithms.

• Reducing the number of random bits required by certain randomized algo-
rithms, e.g., verification of matrix multiplication.
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• Exhaustive testing of combinatorial circuits.

• Communication complexity: Two parties can verify equality of strings with
high probability exchanging only a logarithmic number of bits.

• Hash functions.

Further examples can be found in [15, Sec. 10].
Rather than saying that a multiset is an ε-bias space we will often just say that it
is ε-biased. Another name for ε-bias space is ε-bias set [2, Def. 1] and [12, Def. 1.1].
This notion may be a little misleading as the item under consideration is actually
a multiset.
One way of constructing small-bias spaces is through the use of error-correcting
codes.

Definition 2. A binary [n, k] code is said to be ε-balanced if every non-zero code
word ~c satisfies

1− ε
2
≤ wH(~c)

n
≤ 1 + ε

2
.

Here [n, k] means that the code is linear, of dimension k and length n. Further,
wH denotes the Hamming weight.

There is a simple direct translation [1] between the concepts described in Defi-
nition 1 and Definition 2:

Theorem 3. Let G be a generator matrix for an ε-balanced binary [n, k] code. The
columns of G constitute an ε-bias space X ⊆ Fk2 of size n. Similarly, using the
elements of an ε-bias space X as columns of a generator matrix an ε-balanced code
is derived.

The following example illustrates the above theorem. It also shows why it is
important in Definition 1 to work with multisets rather than sets.

Example 1. Consider the matrix

G =




0 1 0 1 0 1 0 1 0 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0


 .

The code having G as a generator matrix is ε-balanced with ε = 1/3 and indeed the
multiset made from the columns of G is ε = 1/3 biased. Treating the columns as a
set (rather than a multiset) we derive

X ′ = {(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1), (0, 0, 0)}.

The smallest value of ε for which X ′ is ε-biased is ε = 3/5.

A standard construction from [1] tells us how to make small-balanced codes
(meaning ε-biased codes with ε small):
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Theorem 4. Let q = 2s for some integer s and consider a q-ary [N,K,D] code C.
Let Cs be the (binary) [2s, s]2 Walsh-Hadamard code, s ≥ 1. The concatenated code
derived by using C as outer code and Cs as inner code is an ε = (N−D)/N -balanced
binary code of length n = N2s and dimension k = Ks.

Proof. The result relies on the fact that every non-zero codeword of Cs contains
exactly as many 0s as 1s.

The literature contains various examples of small-bias spaces that cannot all
be compared to each other. We refer to [2, Sec. 1] for more details. In the follow-
ing we will concentrate on important families of multisets for which comparison
can be made. We remind the reader of how bigO notation works when given
functions of multiple variables. In our situation we have real valued positive func-
tions fi(x, y), i = 1, 2 where x can take on any value in Z+ but for every fixed
choice of x the variable y can only take on values in an interval I(x) ⊆ R+. By
f1(x, y) = O (f2(x, y)) we mean that a witness (C, κ) exists such that for all x with
κ < x and all y ∈ I(x) it holds that f1(x, y) ≤ Cf2(x, y). We are interested in up-
per bounding the size of X which will be done in terms of bigO estimates as above.
At the same time we are interested in lower bounding the length of the words in the
multiset X . Such estimates are described using bigOmega notation. We remind
the reader that by definition f(x) = Ω(g(x)) if and only if g(x) = O (f(x)). As we
are only interested in bigOmega estimates the meaning of k changes accordingly.
In the following list of results note that a family of ε-bias spaces is considered to
behave well if when given ε and k the size of X is small.

• Using Reed-Solomon codes as outer codes in Theorem 4 one achieves [1, 2]
for all possible choices of ε and k

X ⊆ FΩ(k)
2 , |X | = O

(
k2

ε2 log2(k/ε)

)
.

This is called the RS-bound.

• Let P1, . . . , PN−1, Q be rational places of an algebraic function field over Fq
and denote by g the genus. Assume N = (

√
q− 1)g. That is, we assume that

the function field attains the Drinfeld-Vladut bound. Using codes CL(U =
P1 + · · ·+PN−1,mQ) with g < m as outer codes one gets for all ε and k (see
Section 2 for a discussion)

X ⊆ FΩ(k)
2 , |X | = O

(
k

ε3 log(1/ε)

)
.

This result which is in the folklore is known as the AG-bound.

• Using Hermitian codes with m < g as outer codes one achieves [2] for ε ≥ k− 1
2

X ⊆ FΩ(k)
2 , |X | = O

((
k

ε2 log(1/ε)

) 5
4

)
. (1.3)

This we call the BT-bound after the authors of [2], Ben-Aroya and Ta-Shma.
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• Using in larger generality Norm-Trace codes of low dimension as outer codes

one achieves [12] for l = 4, 5, . . . and ε ≥ k−
1√
l (see Section 5)

X ⊆ FΩ(k)
2 , |X | = O



(

k

εl−
√
l log(1/ε)

) l+1
l


 .

Here, l = 4 corresponds to the Hermitian case described in [2].

• The Gilbert-Varshamov bound also applies to the small-bias spaces (as usual
in a non-constructive way). It is derived by plugging into the Gilbert-
Varshamov bound for binary codes d = n/2 and to make a Taylor approxi-
mation on the resulting formula. The construction uses Theorem 3 directly.
It guarantees for all ε and k the existence of multisets with

X ⊆ FΩ(k)
2 , |X | = O

(
k

ε2

)
.

• The linear programming bound tells us that we cannot hope to produce ε-bias
spaces with

X ⊆ FΩ(k)
2 , |X | = O

(
k

ε2 log(1/ε)

)
.

One way of comparing the above results is to choose ε = k−α, α ∈ R+ and then to
take the logarithm with base k. The bigO notation suggests that we then let k go
to infinity. The origin of this point of view is [2, Sec. 1]. When making the above
operation we must be careful to specify which choices of α are allowed. We remind
the reader of the little-o notation. Given functions fi(x) : Z+ → R+, i = 1, 2 by
f1(x) = o(f2(x)) we mean that for every choice of c ∈ R+ there exists a κ(c) ∈ Z+

such that when κ(c) < x then necessarily f1(x) ≤ cf2(x). The above list of results
translates to (note that when given α we want logk(|X |) to approach a low value):

• RS-bound: The family of concatenated codes from Theorem 4 with Reed-
Solomon codes as outer codes gives

logk(|X |) = 2 + 2α+ o(1)

for all choices of α ∈ R+.

• AG-bound: The family of concatenated codes from Theorem 4 with algebraic
geometric codes as outer codes and g < m gives

logk(|X |) = 1 + 3α+ o(1)

for all choices of α ∈ R+.

• BT-bound: The family of concatenated codes from Theorem 4 with Hermitian
codes as outer codes and m < g gives

logk(|X |) =
5

4
+

5

2
α+ o(1)

for all choices of α ∈]1/2,∞[.
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Figure 1.1: Comparison of various constructions: First axis is α, second axis cor-
responds to logk(|X |) when k →∞.

• The family of concatenated codes from norm-trace codes of low dimension
gives

logk(|X |) =
l + 1

l
(1 + α(l −

√
l)) + o(1)

for l = 4, 5, . . ., and for all α ∈ [1/
√
l,∞[ (see Section 5).

• The Gilbert-Varshamov bound and the Linear Programming bound in com-
bination tell us that we can achieve

logk(|X |) = 1 + 2α+ o(1)

for all choices of α ∈ R+ but no better than this.

In the present paper we shall introduce a new family of small-bias spaces using a
combination of Hermitian codes as outer code. This family gives

logk(|X |) =
4

3
+

8

3
α+ o(1)

for all choices of α ∈ R+. We allow 2g < m and it is therefore surprising that
for α ∈]1,∞[ the achievements are better than those of the Hermitian codes with
g < m. Our small-bias spaces perform better than the ones derived from norm-
trace codes for all l ≥ 5 (see Section 5 for the proof). For α < 1 they behave
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better than what can be achieved using Reed-Solomon codes as outer code. For
α < 1 admittedly the new ε-bias spaces perform worse than the spaces coming
from the AG construction. This, however, is only part of the picture. It turns out
that to construct the spaces with α < 1/2 from the AG construction requires quite
a number of operations. In contrast, our construction is considerable faster. We
shall revert to this issue in Section 4. Before dealing with the new construction we
will investigate how to ensure ε = k−α in the case of the AG bound. It turns out
that for α < 1/2 the situation is rather complicated. We include the description
here, as to our best knowledge, the details cannot be found in the literature.
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Chapter 2

The AG-bound

Let q be a power of 2 and consider an algebraic function field over Fq2 of genus g
with at least N = (q − 1)g rational places. That is, the function field attains the
Drinfeld-Vladut bound. As noted in the introduction Theorem 4 equipped with a
one-point algebraic geometric code from the above function field produces ε-bias

spaces X ⊆ FΩ(k)
2 with

|X | = O
(

k

ε3 log2( 1
ε )

)
. (2.1)

In the following we investigate how to achieve corresponding values ε and k under
the requirement ε = k−α, α > 0, and k → ∞. Observe, that in this situation for
any fixed α we have ε → 0. For completeness we start by proving (2.1) in this
setting.
Consider rational places P1, . . . , PN−1, Q and let U = P1 + · · · + PN−1 and G =
(ag)Q with a ≥ 1. The code CL(U,G) has parameters N = (q − 1)g − 1, K ≥
degG−g = (a−1)g, and D ≥ N−degG = ((q−1)−a)g−1. As we are interested in
asymptotics we shall assume N = (q−1)g and D ≥ ((q−1)−a)g. From Theorem 4

we get ε-bias spaces with ε = a/(q−1), X ⊆ FΩ(k)
2 . Here, k = 2 log2(q)(a−1)g and

we have |X | = q2N = (q3 − q2)g. As a is bounded below by 1 and ε → 0 we need
q → ∞ when k → ∞. So the task basically boils down to establishing a sequence
of function fields over increasingly large fields and a corresponding function a(q)
such that

|X | = O


 2 log2(q)(a− 1)g
(

a
q−1

)3

log2

(
q−1
a

)


 . (2.2)

Note that the argument on the right side is a function in the single variable q as
by construction now g is a function of q. We have

2 log2(q)(a− 1)g
(

a
q−1

)3

log2

(
q−1
a

) ≥
1

2

log2(q)(a− 1)

a3(log2(q − 1)− log2(a))
|X |
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as (q − 1)3 ≥ 1
4 (q3 − q2) holds for q ≥ 2. In conclusion (2.2) holds if a(q) = O (1).

We first assume that the sequence of function fields are the Hermitians which are
function fields with g = q(q − 1)/2. Here, actually the number of rational places
is 2qg + q2 + 1 but we shall only use (q − 1)g of them. Let a = 1 + q−c where
0 ≤ c < 2. Clearly, a(q) = O (1) as requested. We have k = 2 log2(q)q−cg = q2−cqβ

where β(q)→ 0 for q →∞. Hence, asymptotically ε = k−α with α = 1/(2− c). In
other words the situation is clear for α ∈ [ 1

2 ,∞[.
To achieve α ∈]0, 1

2 [ is more difficult. The problem is to keep a(q) = O (1) at the
same time as having ε = k−α. For this purpose we consider families of towers of
function fields over Fq2 attaining the Drinfeld-Vladut bound [5]. We will need one
tower for each value of q. Note that in such a tower for arbitrary v ≥ 2 we can find
a function field with g ≥ qv. Say g = qv+d(q), where d(q) ≥ 0 holds. Let a(q) =
1 + q−d(q) then clearly a(q) = O (1) holds. We have k = 2 log2(q)(a − 1)g = qv+β

where β(q) → 0 for q → ∞. Also ε = q−1+γ where γ(q) → 0 for q → ∞. Hence,
k−α = ε asymptotically means vα = 1 ⇒ α = 1/v. As we only assumed v ≥ 2 we
have established that all α ∈]0, 1

2 [ can be attained.
For our purpose the best candidate for a family of good towers of function fields is
the second construction by Garcia and Stichtenoth [5]. In [16] it was shown how
to construct CL(U,G) codes from this tower using

O
(
(N logq(N))3

)
(2.3)

operations over Fq2 . Although we might only need codes of small dimension the
method as stated requests us to find bases for all one-point codes. As shall be
demonstrated in Section 4 the small-bias spaces of the present paper can be con-
structed much faster than what (2.3) guarantees for the AG construction.
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Chapter 3

The new small-bias spaces

In the present paper we propose a new choice of outer codes in the construction
of Theorem 4. As already mentioned this results in small-bias spaces with good
properties. The new choice of outer codes is derived by combining two Hermitian
codes as described below. The easiest way to explain the combination is by using
the language of affine variety codes [4] and we therefore start our investigations
with a presentation of Hermitian codes as such.

Definition 5. Given a monomial ordering ≺ and an ideal I ⊆ F[X1, . . . , Xm] (here
F is any field) the footprint is

∆≺(I) := {Xα1
1 · · ·Xαm

m | Xα1
1 · · ·Xαm

m is not a leading

monomial of any polynomial in I}.

We have the following two useful results [3, Pro. 4 and Pro. 8, Sec. 5.3].

Theorem 6. The set {M + I | M ∈ ∆≺(I)} is a basis for F[X1, . . . , Xm]/I as a
vector space over F.

As a corollary one gets the following result often referred to as the footprint
bound [7, 9].

Theorem 7. Assume I is zero-dimensional (meaning that ∆≺(I) is finite). The
variety VF̄(I) satisfies |VF̄(I)| ≤ |∆≺(I)|.

Consider the Hermitian polynomial Xq+1−Y q−Y and the corresponding ideal

I = 〈Xq+1 − Y q − Y 〉 ⊆ Fq2 [X,Y ].

Define a monomial function w by w(X) = q and w(Y ) = (q + 1) and consider the
weighted degree monomial ordering ≺w given by Xα1Y β1 ≺w Xα2Y β2 if one of the
following two conditions holds:

1. w(Xα1Y β1) < w(Xα2Y β2).

2. w(Xα1Y β1) = w(Xα2Y β2) but β1 < β2.
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Observe for later use that no two different monomials in

∆≺w(I) = {XiY j | 0 ≤ i and 0 ≤ j < q}

are of the same weight implying that w : ∆≺w(I)→ 〈q, q+1〉 is a bijection. Observe
also that the Hermitian polynomial Xq+1−Y q−Y contains exactly two monomials
of highest weight. The implication of this is that

w(lm(F (X,Y )) = w(lm(F (X,Y ) rem {Xq+1 − Y q − Y })

holds for any polynomial F (X,Y ) that possesses exactly one monomial of highest
weight in its support.
Consider next the ideal

Iq2 := 〈Xq2 −X,Y q2 − Y 〉+ I.

The variety VFq2 (I) = VFq2 (Iq2) consists of n = q3 different points {P1, . . . Pn}.
The set {Xq2−X,Xq+1−Y q−Y } constitutes a Gröbner basis for Iq2 with respect
to ≺w and therefore

∆≺w(Iq2) = {XiY j | 0 ≤ i < q2, 0 ≤ j < q}

holds. It now follows from Theorem 6 that

{XiY j + Iq2 | 0 ≤ i < q2, 0 ≤ j < q}

is a basis for Fq2 [X,Y ]/Iq2 as a vector space over Fq2 . The code construction relies
on the bijective evaluation map ev : Fq2 [X,Y ]/Iq2 → Fnq2 given by ev(F (X,Y ) +

Iq2) = (F (P1), . . . , F (Pn)). Theorem 7 tells us that we can estimate the Hamming
weight of a word ~c = ev(F (X,Y ) + Iq2) by

wH(~c) ≥ n− |∆≺w(〈F (X,Y )〉+ Iq2)|.

Without loss of generality we can assume Supp(F ) ⊆ ∆≺w(Iq2). From the discus-
sion prior to the definition of Iq2 we conclude that no two different monomials in
F (X,Y ) are of the same weight. As a consequence

w(lm(XαY βF (X,Y )) = w(lm(XαY βF (X,Y ) rem {Xq+1 − Y q − Y })

holds for all XαY β . Write Λ = w(∆≺w(I)) = 〈q, q + 1〉, Λ∗ = w(∆≺w(Iq2)) ⊆ Λ
and λ = w(lm(F )) ∈ Λ∗. We have

|∆≺w(〈F (X,Y )〉+ Iq2)| ≤ |(Λ∗ − (λ+ Λ))| ≤ |(Λ\(λ+ Λ)| = λ,

where the last equality comes from [10, Lem. 5.15]. Hence, wH(~c) ≥ n − λ holds.
Observe that

Λ∗ = {λ1, . . . , λg} ∪ {2g, . . . , n− 1} ∪ {λn−g+1, . . . , λn}, (3.1)

where λi ≤ g − 1 + i for i = 1, . . . , g. This is a general result for Weierstrass
semigroups and not particular for the Hermitian function field. Having described
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the Hermitian codes as affine variety codes we are now ready to introduce the
combination of codes on which our construction of small-bias spaces rely. Consider
the ideal

I
(2)
q2 := 〈Xq+1

1 − Y q1 − Y1, X
q+1
2 − Y q2 − Y2,

Xq2

1 −X1, Y
q2

1 − Y1, X
q2

2 −X2, Y
q2

2 − Y2〉

and the corresponding variety

VFq2 (I
(2)
q2 ) = VFq2 (Iq2)× VFq2 (Iq2) = {Q1, . . . , Qq6}.

Define a monomial function w(2) given by w(2)(X1) = (q, 0), w(2)(Y1) = (q +
1, 0),w(2)(X2) = (0, q), and finally w(2)(Y2) = (0, q+ 1). Let ≺N2

0
be any monomial

ordering on N2
0 and define ≺w(2) by

X
α

(1)
1

1 Y
β
(1)
1

1 X
α

(2)
1

2 Y
β
(2)
1

2 ≺(2)
w X

α
(1)
2

1 Y
β
(1)
2

1 X
α

(2)
2

2 Y
β
(2)
2

2

if one of the following two conditions holds:

1. w(2)(X
α

(1)
1

1 Y
β
(1)
1

1 X
α

(2)
1

2 Y
β
(2)
1

2 ) ≺N2
0
w(2)(X

α
(1)
2

1 Y
β
(1)
2

1 X
α

(2)
2

2 Y
β
(2)
2

2 )

2. w(2)(X
α

(1)
1

1 Y
β
(1)
1

1 X
α

(2)
1

2 Y
β
(2)
1

2 ) = w(2)(X
α

(1)
2

1 Y
β
(1)
2

1 X
α

(2)
2

2 Y
β
(2)
2

2 )
but

X
α

(1)
1

1 Y
β
(1)
1

1 X
α

(2)
1

2 Y
β
(2)
1

2 ≺lex X
α

(1)
2

1 Y
β
(1)
2

1 X
α

(2)
2

2 Y
β
(2)
2

2 .

Here, X1 �lex Y1 �lex X2 �lex Y2 is assumed. The set {Xq+1
1 − Y q1 − Y1, X

q+1
2 −

Y q2 − Y2, X
q2

1 − X1, X
q2

2 − X2} is a Gröbner basis for I
(2)
q2 with respect to ≺w(2)

giving us the basis

{Xi1
1 Y

j1
1 Xi2

2 Y
j2
2 + Iq2 | 0 ≤ i1, i2 < q2, 0 ≤ j1, j2 < q}

for Fq2 [X1, Y1, X2, Y2]/I
(2)
q2 as a vectorspace over Fq2 . For the code construction we

need the following bijective evaluation map

EV : Fq2 [X1, Y1, X2, Y2]/I(2) → Fq
6

q2

given by EV(F (X1, Y1, X2, Y2)+I
(2)
q2 ) = (F (Q1, ), . . . , F (Qq6)). Define Λ(2) = Λ×Λ

and
(
Λ(2)

)∗
= Λ∗ × Λ∗. We have

(
Λ(2)

)∗
= w(2)(∆≺

w(2)
(I

(2)
q2 ))

where no two monomials in ∆≺
w(2)

(I
(2)
q2 ) have the same weight. Similar to the

situation of a Hermitian code we consider a codeword ~c = EV(F (X1, Y1, X2, Y2) +
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I
(2)
q2 ) where without loss of generality we will assume that F (X1, Y1, X2, Y2) ∈

∆≺
w(2)

(I
(2)
q2 ). We write λ(2) = (λ1, λ2) = w(2)(lm(F )). We can estimate

|∆≺
w(2)

(〈F (X1, Y1, X2, Y2)〉+ I
(2)
q2 )| ≤ |Λ(2) − (λ(2) + Λ(2))|

≤ q6 − (q3 − λ1)(q3 − λ2).

Hence, wH(~c) ≥ (q3 − λ1)(q3 − λ2).

Consider the code Ẽ(δ) which is to Hermitian codes what Massey-Costello-Justesen
codes [13] are to Reed-Solomon codes

Ẽ(δ) := SpanFq2

{
ev(Xi1

1 Y
j1
1 Xi2

2 Y
j2
2 + I

(2)
q2 ) | 0 ≤ i1, i2 < q2,

0 ≤ j1, j2 < q, (q3 − w(Xi1
1 Y

j1
1 ))(q3 − w(Xi2

2 Y
j2
2 )) ≥ δ

}
.

From our discussion we conclude that the minimum distance satisfies d(Ẽ(δ)) ≥ δ.
To estimate the dimension we make use of the characterization (3.1). The task is
to estimate the number of (λ1, λ2)s that satisfies (q3 − λ1)(q3 − λ2) ≥ δ. For this
purpose we can replace Λ∗ with

{g, g + 1, . . . , q3 − 1} ∪ {λn−g+1, . . . , λn}.

When estimating the dimension k(Ẽ(δ)) we shall furthermore ignore the elements
in {λn−g+1, . . . , λn}. Writing T = q3 − g we thereby get

k(Ẽ(δ)) ≥ |{(i, j) | 0 ≤ i, j ≤ T − 1, (T − i)(T − j) ≥ δ}|

≥
∫ T− δ

T

0

∫ T− δ
T−i

0

djdi = T 2 − δ + ln.

(
δ

T 2

)
,

where the last inequality holds under the assumption δ ≥ T .

Proposition 8. Assume δ ≥ T where T = q3 − g. The parameters of Ẽ(δ) are
[n = q6, k ≥ T 2 − δ + δ ln(δ/T 2), d ≥ δ].

In [8] Feng-Rao improved codes C̃(δ) over Fq2 [X1, Y1, X2, Y2]/I
(2)
q2 were consid-

ered and a formula similar to the above proposition was derived under a stronger
assumption on δ. Feng-Rao improved codes are described by means of their parity
check matrix which is not very useful when the aim is to construct a small-bias
space. This is why we included the description of Ẽ(δ) in the present paper. We

have a proof that Ẽ(δ) = C̃(δ), however, we do not include it here as it has
no implication for the construction of small-bias spaces. Observe that to derive
Proposition 8 we did not use detailed information about the Weierstrass semigroup
Λ but relied only on the genus and the number of roots of the Hermitian polyno-
mial. Proposition 8 can be generalized to hold for not only two copies of Hermitian
function fields but to arbitrary many such copies. Such constructions, however, are
not useful when dealing with small-bias spaces so we do not treat them here.
From Proposition 8 and Theorem 4 we get a new class of ε-bias spaces:
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Theorem 9. For any ε, 0 < ε < 1 using codes Ẽ(δ) as outer code in the construc-
tion of Theorem 4 one can construct ε-bias spaces with

X ⊆ FΩ(k)
2 , |X | = O

((
k

ε+ (1− ε) ln(1− ε)

) 4
3

)
. (3.2)

Proof. In the following we will use the substitution 1− ε = δ/N which follows from
ε = (N − δ)/N . Assume δ >

√
N . We then have δ > T which is the condition in

Proposition 8. Note that δ >
√
N is equivalent to ε < 1 − (1/

√
N). For N → ∞

this becomes ε < 1 which is actually no restriction at all. From the proposition we
get

K

N
≥

(
q3 − g
q6

)2

− δ

q6
+

δ

q6
ln

(
δ

(q3 − g)2

)

≥ o(1) + 1− (1− ε) + (1− ε) ln(1− ε)
= o(1) + ε+ (1− ε) ln(1− ε).

With q2 = 2s we have

|X | ≤ 2s

s

(
k

o(1) + ε+ (1− ε) ln(1− ε)

)
.

But |X | = (2s)4 implies 2s = |X |1/4 and (3.2) has been demonstrated.

Theorem 10. Consider the family of ε-bias spaces in Theorem 9. Given α ∈ R+

choose ε = k−α and let k →∞. We have

logk(|X |) =
4

3
+

8

3
α+ o(1). (3.3)

Proof. We have

logk(|X |) ≤ 4

3
− 4

3
logk(ε+ (1− ε) ln(1− ε)).

We now apply Taylors formula to derive ln(1 − ε) = −ε − ε2/2(1− c)2 for some
c ∈ [0, ε]. This produces

logk(|X |) ≤ 4

3
− 4

3
logk

(
ε+ (1− ε)(−ε− ε2

2(1− ε)2
)

)

≤ 4

3
− 4

3
logk

(
ε2
(

2(1− ε)2 − ε2
(1− ε)2

))
.

With ε = k−α we arrive at (3.3).
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Chapter 4

Time complexity
considerations

To build the multiset X in our construction we need to construct a generator matrix
for the concatenated code. This involves the following tasks:

1. Build the generator matrix G1 for Ẽ(δ).

2. Express every entry of G1 as a binary vector giving us G2 (a matrix with
binary vectors as entries).

3. For every row in G2 we produce s = log2(q2) rows. This is done by taking
cyclic shifts of all the vectors appearing in the row. We arrive at a matrix
G3.

4. Every entry in G3 is a vector of length s and it must be multiplied with the
s× 2s generator matrix of the Walsh-Hadamard code producing G4.

The total cost in binary operations is estimated as follows:

1. Determining functions and points for the code construction is inexpensive.
To produce one entry costs O (log(N) log(log(N))) operations. G1 is a K×N
matrix. Using K ≤ N−D+1, ε = (N−D)/N , ε = k−α, and k = K log2(N)/6

we arrive at K ≤ N
1

1+α (log2(N))
−α
1+α 6

α
1+α . So the price for building G1 is

O
(
N

2+α
1+α (log(N))

1
1+α log(log(N))

)
.

2. To produce one entry in G2 costs O
(
N

1
3 log(N

1
3 ) log(log(N

1
3 ))
)

operations.

That is, to produce G2 from G1 amounts to

O
(
N

7+4α
3+3α log(N)

1
1+α log(log(N))

)
operations.

3. There will be O
(
N

2+α
1+α (log(N))

1
1+α

)
entries in G3 each coming with a cost

of s operations. Altogether we have O
(
N

2+α
1+α (log(N))

2+α
1+α

)
operations.
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4. The price for multiplying with a generator matrix for the Walsh-Hadamard
code is N

1
3 log(N) giving a total cost of

O
(
N

7+4α
3+3α (log(N))

2+α
1+α

)
(4.1)

operations for producing G4 from G3.

Clearly, the overall cost is that of (4.1). Note that (4.1) counts binary operations
in contrast to (2.3) which counts operations in Fq2 .
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Chapter 5

Small-bias spaces from
norm-trace codes

The method developed by Ben-Aroya and Ta-Shma for Hermitian codes in [2] were
generalized to norm-trace codes by Matthews and Peachey in [12]. Given r ≥ 2
consider the Cab curve [11]

X
qr−1
q−1 − Y qr−1 − Y qr−2 − · · · − Y q − Y

known as the norm-trace curve over Fqr [6]. Clearly, r = 2 corresponds to the
Hermitian function field. The following theorem from [12] coincides with (1.3)
when l = 4.

Theorem 11. Given an integer l, l ≥ 4, define r = b(l+2)/3c. Let k be a positive
integer and ε a real number, 0 < ε < 1 such that

ε
(

logv(1/ε)
) 1√

l

≤ k
−1√
l (5.1)

holds. Here, v is any fixed real number larger than 1. Using the norm-trace function

field over Fqr one can construct an ε-bias space X ⊆ FΩ(k)
2 with

|X | = O



(

k

εl−
√
l logv(1/ε)

) l+1
l


 .

In the above theorem it is not completely clear how well the cases l ≥ 5 compete
with the case l = 4. Below we address this question and also compare the small-
bias spaces from Theorem 11 with those achieved by using the codes Ẽ(δ) as is
done in the present paper.
We first translate Theorem 11 into the setting from Section 1 where for increasing k
and fixed α we consider a sequence of ε-bias multisets with ε = k−α. Condition (5.1)
from Theorem 11 then translates into

k1−α
√
l ≤ α logv(k).

44



For fixed v, logv(k) = O
(
kβ
)

holds for any β > 0. Therefore we have

1− α
√
l ≤ logk(α).

Letting k →∞ we get the condition

1√
l
≤ α.

Theorem 11 therefore guarantees that for any α ≥ 1/
√
l we can construct an infinite

sequence of ε-bias spaces with ε = k−α, X ⊆ FΩ(k)
2 such that

logk(|X |) =
l + 1

l
(1 + α(l −

√
l)) + o(1). (5.2)

Given an α and two integers l1, l2 ≥ 4 with α ≥ 1/
√
li, i = 1, 2 it is clear from (5.2)

that the best result is obtained by choosing the smallest li. So the advantage of
Theorem 11 over (1.3) boils down to the fact that Theorem 11 allows for any α
provided that the l is chosen accordingly while (1.3) requires α ≥ 1/2. Recall from

Section 3 that using the code Ẽ(δ) in the construction of Theorem 4 one achieves

logk(|X |) =
4

3
+

8

3
α+ o(1) (5.3)

for any choice of α. We now compare this result with (5.2) ignoring of course the
o(1) parts. For fixed l (5.2) is a linear expression in α which is smaller than the
linear expression from (5.3) when α = 0. We now show that for α = 1/

√
l (which

is the smallest α allowed) (5.2) is larger than (5.3) when l ≥ 5. It follows that none
of the cases l ≥ 5 can compete with the construction of the present paper. To show
that (5.2) is larger than (5.3) for α = 1/

√
l we substitute k =

√
l into (5.2)-(5.3)

to get
1

k2
(k3 − 4

3
k2 − 5

3
k).

The function k3 − 4
3k

2 − 5
3k is positive for k belonging to the interval from 0 to

approximately 2.119 and negative for higher values of k. Therefore for all l ≥ 5
indeed (5.3) is better than (5.2). The situation is illustrated in Figure 5.1.
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Figure 5.1: Comparison of new construction with NT-construction where l ∈
{5, . . . , 10}. First axis is α, second axis corresponds to logk(|X |) when k →∞.
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Abstract

We present a new bound for the minimum distance of a general primary linear code.
For affine variety codes defined from generalised Cab polynomials the new bound
often improves dramatically on the Feng-Rao bound for primary codes [1, 12]. The
method does not only work for the minimum distance but can be applied to any
generalised Hamming weight.
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Chapter 1

Introduction

In this paper we present an improvement to the Feng-Rao bound for primary
codes [1, 12, 10]. Our method does not only apply to the minimum distance but
estimates any generalised Hamming weight. In the same way as the Feng-Rao
bound for primary codes suggests an improved code construction our new bound
does also. The new bound is particularly suited for affine variety codes for which it
often improves dramatically on the Feng-Rao bound. Interestingly, for such codes
it can be viewed as a simple application of the footprint bound from Gröbner basis
theory. We pay particular attention to the case of the affine variety being defined
by a bivariate polynomial that, in the support, has two univariate monomials of
the same weight and all other monomials of lower weights. Such polynomials can
be viewed as a generalisation of the polynomials defining Cab curves and therefore
we name them generalised Cab polynomials. We develop a method for constructing
generalised Cab polynomials with many zeros by the use of (Fpm ,Fp)-polynomials,
that are polynomials returning values in Fp when evaluated in Fpm (see, [23, Chap.
1]). Here, p is any prime power and m is an integer larger than 1. With this
method in hand we can design long affine variety codes for which our bound pro-
duces good results. The new bound of the present paper is closely related to an
improvement of the Feng-Rao bound for dual codes that we presented recently
in [9]. Recall from [10] that the usual Feng-Rao bound for primary and dual codes
can be viewed as consequences of each other. This result holds when one uses the
concept of well-behaving pairs or one-way well-behaving pairs. For weakly well-
behaving pairs a possible connection is unknown. In a similar way as the proof
from [10] breaks down for weakly well-behaving, it also breaks down when one tries
to establish a connection between the new bound from the present paper and the
new bound from [9]. We shall leave it as an open problem to decide if the two
bounds are consequences of each other or not.

In the first part of the paper we concentrate solely on affine variety codes. For
such codes the new method is intuitive. We start by formulating in Section 2 our
new bound at the level of affine variety codes and explain how it gives rise to an
improved code construction Ẽimp(δ). Then we continue in Section 3 by showing
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how to construct generalised Cab polynomials with many zeros. In Section 4 we
give a thorough treatment of codes defined from so-called optimal generalised Cab
polynomials demonstrating the strength of our new method. In Section 5 we show
how to improve the improved code construction Ẽimp(δ) even further. This is
done for the case of the affine variety being the Klein quartic. Having up till now
only considered the minimum distance, in Section 6 we explain how to deal with
generalised Hamming weights. Section 7 generalises the new bound to arbitrary
primary linear codes. In Section 8 we recall the recent bound from [9] on dual
codes, and in Section 9 we discuss the relation between this bound and the new
bound of the present paper. Section 10 is the conclusion.
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Chapter 2

Improving the Feng-Rao bound
for primary affine variety codes

Affine variety codes were introduced by Fitzgerald and Lax in [5] as follows. For
q a prime power consider an ideal I ⊆ Fq[X1, . . . , Xm] and define

Iq = I + 〈Xq
1 −X1, . . . , X

q
m −Xm〉, (2.1)

Rq = Fq[X1, . . . , Xm]/Iq.

Let {P1, . . . , Pn} = VFq (Iq) be the corresponding variety over Fq. Here, Pi 6= Pj for
i 6= j. Define the Fq-linear map ev : Rq → Fnq by ev(A+ Iq) = (A(P1), . . . , A(Pn)).
It is well-known that this map is a vector space isomorphism.

Definition 1. Let L be an Fq vector subspace of Rq. Define C(I, L) = ev(L) and
C⊥(I, L) =

(
C(I, L)

)⊥.

We shall call C(I, L) a primary affine variety code and C⊥(I, L) a dual affine
variety code. For the case of primary affine variety codes both the Feng-Rao bound
and the bound of the present paper can be viewed as consequences of the footprint
bound from Gröbner basis theory as we now explain.

Definition 2. Let J ⊆ k[X1, . . . , Xm] be an ideal and let ≺ be a fixed monomial
ordering. Here, k is an arbitrary field. Denote by M(X1, . . . , Xm) the monomials
in the variables X1, . . . , Xm. The footprint of J with respect to ≺ is the set

∆≺(J) = {M ∈M(X1, . . . , Xm) |M is not
the leading monomial of any polynomial in J}.

Proposition 3. Let the notation be as in Definition 2. The set {M + J | M ∈
∆≺(J)} constitutes a basis for k[X1, . . . , Xm]/J as a vector space over k.

Proof. See [3, Pro. 4, Sec. 5.3].
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We shall make extensive use of the following incidence of the footprint bound
(for a more general version, see [8]).

Corollary 4. Let F1, . . . , Fs ∈ Fq[X1, . . . , Xm]. For any monomial ordering ≺ the
variety VFq (〈F1, . . . , Fs〉) is of size equal to #∆≺(〈F1, . . . , Fs, X

q
1 −X1, . . . , X

q
m −

Xm〉).
Proof. Follows from Proposition 3 and the fact that the map ev is a bijection.

We next recall the interpretation from [7] of the Feng-Rao bound for primary
affine variety codes.

Definition 5. A basis {B1 + Iq, . . . , Bdim(L) + Iq} for a subspace L ⊆ Rq where
Supp(Bi) ⊆ ∆≺(Iq) for i = 1, . . . ,dim(L) and where lm(B1) ≺ · · · ≺ lm(Bdim(L)),
is said to be well-behaving with respect to ≺. Here, lm(F ) means the leading mono-
mial of the polynomial F .

For fixed ≺ the sequence (lm(B1), . . . , lm(Bdim(L))) is the same for all choices
of well-behaving bases of L. Therefore the following definition makes sense.

Definition 6. Let L be a subspace of Rq and define

�≺(L) = {lm(B1), . . . , lm(Bdim(L))},

where {B1 + Iq, . . . , Bdim(L) + Iq} is any well-behaving basis for L.

The concept of one-way well-behaving plays a crucial role in the Feng-Rao
bound as well as in our new bound. It is a relaxation of the well-behaving property
and the weakly well-behaving property [7, 12] and therefore it gives the strongest
bounds.

Definition 7. Let G be a Gröbner basis for Iq with respect to ≺. An ordered pair of
monomials (Mi,Mj), Mi,Mj ∈ ∆≺(Iq) is said to be one-way well-behaving (OWB)
if for all H ∈ Fq[X1, . . . , Xm] with Supp(H) ⊆ ∆≺(Iq) and lm(H) = Mi it holds
that

lm(MiMj rem G) = lm(HMj rem G).

Here, F rem G means the remainder of F after division with G (see [3, Sec. 2.3]
for the division algorithm for multivariate polynomials).

Remark 8. An alternative, but equivalent, definition is that (Mi,Mj) is OWB if

lm(Mi′Mj′ rem G) ≺ lm(MiMj rem G) (2.2)

holds for all i′ < i and j = j′. From this form it is easy to see the relation to
well-behaving pairs (WB) and weakly well-behaving pairs (WWB). A pair is WB if
(2.2) holds for all i′ ≤ i, j′ ≤ j such that (i′, j′) 6= (i, j). Finally, for WWB the
requirement is that the result should hold for all pairs (i′, j′) such that either i′ < i
and j′ = j or i′ = i and j′ < j. Hence, OWB implies WWB which implies WB.

As noted in [7] the concept of OWB is independent of which Gröbner basis G
is used as long as Iq and ≺ are fixed. We are now ready to describe the Feng-Rao
bound for primary affine variety codes. We include the proof from [7, Th. 4.9].
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Theorem 9. Let G be a Gröbner basis for Iq with respect to ≺. Consider a non-
zero word ~c and let A be the unique polynomial such that Supp(A) ⊆ ∆≺(Iq) and
~c = ev(A). Let lm(A) = P . We have

wH(~c) ≥ #{K ∈ ∆≺(Iq) | ∃N ∈ ∆≺(Iq) such that
(P,N) is OWB and lm(PN rem G) = K}. (2.3)

A bound on the minimum distance of C(I, L) is found by taking the minimum
of (2.3) when P runs through �≺(L).

Proof. From Corollary 4 we know that

wH(~c) = n−#∆≺(Iq + 〈A〉)
= #∆≺(Iq)−#∆≺(Iq + 〈A〉)

= #

(
∆≺(Iq)\∆≺(Iq + 〈A〉)

)
. (2.4)

If N,K ∈ ∆≺(Iq) satisfy that (P,N) is OWB and lm(PN rem G) = K then
K ∈ ∆≺(Iq)\∆≺(Iq + 〈A〉). Hence,

wH(~c) ≥ #{K ∈ ∆≺(Iq) | ∃N ∈ ∆≺(Iq) such that
(P,N) is OWB and lm(PN rem G) = K}.

The Feng-Rao bound is particular suited for affine varieties which satisfy the
order domain conditions [7, Def. 4.22] (the order domain conditions are listed in
Definition 11 below). For other varieties it does not seem to produce very good
results. The new bound of the present paper solves this problem for affine varieties
which satisfy the first half of the order domain conditions. This gives a lot of
freedom as the latter set of varieties is much larger than the former. In its most
general form the order domain conditions involve a weighted degree monomial
ordering with weights w(X1), . . . , w(Xm) in Nr0\{~0}, r a positive integer (see [7,
Def. 4.21]). Here, for simplicity we shall only consider weights in N.

Definition 10. Let w(X1), . . . , w(Xm) ∈ N and define the weight of Xi1
1 · · ·Xim

m

to be the number w(Xi1
1 · · ·Xim

m ) = i1w(X1) + · · ·+ imw(Xm). The weighted degree
ordering ≺w onM(X1, . . . , Xm) is the ordering with Xi1

1 · · ·Xim
m ≺w Xj1

1 · · ·Xjm
m if

either w(Xi1
1 · · · Xim

m ) < w(Xj1
1 · · ·Xjm

m ) holds or w(Xi1
1 · · ·Xim

m ) = w(Xj1
1 · · ·Xjm

m )

holds but Xi1
1 · · ·Xim

m ≺′ Xj1
1 · · ·Xjm

m . Here, ≺′ is some fixed monomial ordering.
When ≺′ is the lexicographic ordering ≺lex with Xm ≺lex · · · ≺lex X1 we shall call
≺w a weighted degree lexicographic ordering.

We now state the order domain conditions which play a central role in the
present paper.

Definition 11. Consider an ideal J ⊆ k[X1, . . . , Xm] where k is a field. Let a
weighted degree ordering ≺w be given. Assume that J possesses a Gröbner basis F
with respect to ≺w such that:
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(C1) Any F ∈ F has exactly two monomials of highest weight.

(C2) No two monomials in ∆≺w(J) are of the same weight.

Then we say that J and ≺w satisfy the order domain conditions.

If J satisfies the conditions in Definition 11 then k[X1, . . . , Xm]/J is an order
domain (see [7, Th. 4.31]). This explains why they are called the order domain
conditions.

In the following we restrict to weighted degree orderings where ≺′=≺lex. That
is, ≺w shall always be a weighted degree lexicographic ordering.

Example 1. Consider I = 〈X2+X−Y 3〉 ⊆ F4[X,Y ] and I4 accordingly (see (2.1)).
Choosing X = X1, Y = X2, w(X) = 3 and w(Y ) = 2 we see that the order domain
conditions are satisfied. By inspection we have

∆≺w(I4) = {1, Y,X, Y 2, XY, Y 3, XY 2, XY 3}

with corresponding weights {0, 2, 3, 4, 5, 6, 7, 9}. Consider a word ~c = ev(A + I4)
where A = a11+a2Y +a3X, a1, a2 ∈ F4 and a3 ∈ F4\{0}. By Corollary 4 the length
is n = 8. We now estimate the Hamming weight wH(~c) = #

(
∆≺w(I4)\∆≺w(I4 +

〈A〉)
)
(see (2.4)). The following elements in ∆≺w(I4) do not belong to ∆≺w(I4 +

〈A〉). Namely, lm(A · 1) = X, lm(A · Y ) = XY , lm(A · Y 2) = XY 2, lm(A · Y 3) =
XY 3, and lm(A · X rem X2 + X − Y 3) = Y 3. Observe that the last calculation
holds due to the fact that X2 + X − Y 3 contains exactly two monomials of the
highest weight. We have shown that the Hamming weight of ~c is at least 5. With
the proof of Theorem 9 in mind an equivalent formulation of the above is to observe
that (X, 1), (X,Y ), (X,Y 2), (X,Y 3), and (X,X) are OWB. Another equivalent
method is guaranteed by the condition that ∆≺w(I) does not contain two monomials
of the same weight. This implies that rather than counting the above OWB pairs
we only need to observe that w(∆≺w(I4)) ∩

(
w(X) + w(∆≺w(I4))

)
= {3, 5, 6, 7, 9}.

Again, a set of size 5.

The following Proposition (corresponding to [7, Pro. 4.25]) summarises how the
Feng-Rao bound is supported by the order domain condition.

Proposition 12. Assume I ⊆ Fq[X1, . . . , Xm] and ≺w satisfy the order domain
conditions. Consider Iq = I + 〈Xq

1 − X1, . . . , X
q
m − Xm〉. A pair (P,N) where

P,N ∈ ∆≺w(Iq) is OWB if w(P ) + w(N) ∈ w(∆≺w(Iq)).

The order domain conditions historically [15, 22, 1, 7] were designed to support
the Feng-Rao bounds and therefore it is not surprising that the bound does not
work very well without them. The improvement to the Feng-Rao bound that we
introduce below allows us to consider relaxed conditions in that we can produce
good estimates in the case that the order domain condition (C1) is satisfied but
(C2) is not. Note that the order domain condition (C1) alone does not ensure that
the quotient ring is a domain – consider for instance 〈(X2 − Y 3)(X2 + Y 3)〉. The
following example illustrates the idea in our improvement to Theorem 9.
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Example 2. Consider I = 〈X4 + X2 + X − Y 6 − Y 5 − Y 3〉 ⊆ F8[X,Y ]. Let
≺w be the weighted degree lexicographic ordering (Definition 10) given by X = X1,
Y = X2, w(X) = 3 and w(Y ) = 2. From [24, Sec. 3] and [9, Sec. 4.2] we know
that the variety VF8

(I8) is of size 32. Combining this observation with Corollary 4
we see that

∆≺w(I8) = {XαY β | 0 ≤ α < 4, 0 ≤ β < 8}.
By inspection we see that some weights appear twice in ∆≺w(I8), some only once.
Consider ~c = ev(A+ I8) where lm(A) = X3. That is,

A = a11 + a2Y + a3X + a4Y
2 + a5XY + a6Y

3 + a7X
2 +

a8XY
2 + a9Y

4 + a10X
2Y + a11XY

3 + a12X
3.

Here, ai ∈ F8, i = 1, . . . , 12 and a12 6= 0. Note that A has two monomials of the
highest weight if a11 6= 0, namely X3 and XY 3. Following the proof of Theorem 9
we consider P = X3 and look for N,K ∈ ∆≺w(I8) such that (P,N) is OWB and
lm(PN rem G) = K. We have the following possible choices of (N,K), namely
(1, X3), (Y,X3Y ), (Y 2, X3Y 2), . . . , (Y 7, X3Y 7), (X3, X2Y 6), (X3Y,X2Y 7). From
this we conclude that wH(~c) ≥ 10.
Note that X3 ·X rem G = Y 6. However, (X3, X) is not OWB as

XY 3 ≺w X3 but XY 3 ·X rem G = X2Y 3 �w Y 6. (2.5)

Our improved method consists in considering separately two different cases: XY 3 ∈
Supp(A) and XY 3 /∈ Supp(A).

Case 1: Assume a11 6= 0. Following (2.5) we see that lm(A · X rem G) = X2Y 3.
In a similar way we derive lm(A ·XY rem G) = X2Y 4 and lm(A ·XY 2 rem G) =
X2Y 5. From this we conclude

∆≺w(Iq + 〈A〉) ⊆ {XαY β | 0 ≤ α < 3, 0 ≤ β < 8,

and if α = 2 then β < 3}

and therefore that wH(~c) = n−#∆≺w(I8 + 〈A〉) ≥ 32− 19 = 13.

Case 2: Assume a11 = 0. This means that we do not have to worry about (2.5)
and consequently lm(A ·X rem G) = Y 6 holds. In a similar way we derive lm(A ·
X2 rem G) = XY 6, lm(A ·XY rem G) = Y 7, and lm(A ·X2Y rem G) = XY 7. We
conclude that

∆≺w(Iq + 〈A〉) ⊆ {XαY β | 0 ≤ α < 3, 0 ≤ β < 6}

and therefore from the proof of Theorem 9 we have that wH(~c) = n−#∆≺w(I8 +
〈A〉) ≥ 32− 18 = 14.

In conclusion wH(~c) ≥ min{13, 14} = 13.

With Example 2 in mind we now improve upon Theorem 9.
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Definition 13. Let G be a Gröbner basis for Iq with respect to a fixed arbitrary
monomial ordering ≺. Write ∆≺(Iq) = {M1, . . . , Mn} with M1 ≺ · · · ≺ Mn. Let
I = {1, . . . , n} and consider I ′ ⊆ I. An ordered pair of monomials (Mi,Mj),
1 ≤ i, j ≤ n is said to be strongly one-way well-behaving (SOWB) with respect
to I ′ if for all H with Supp(H) ⊆ {Ms | s ∈ I ′}, Mi ∈ Supp(H) it holds that
lm(MiMj rem G) = lm(HMj rem G).

Remark 14. SOWB is a generalisation of OWB. Concretely (Mi,Mj) is OWB if
and only if (Mi,Mj) is SOWB with respect to {1, . . . , i}.

In the following, when writing ∆≺(Iq) = {M1, . . . ,Mn}, we shall always assume
that M1 ≺ · · · ≺Mn holds.
Consider a non-zero codeword ~c = ev(A + Iq), where A =

∑i
s=1 asMs, i ≥ 2,

as ∈ Fq for s = 1, . . . , i and ai 6= 0. Let v be an integer 1 ≤ v < i. We consider
v + 1 different cases that cover all possibilities:

Case 1: ai−1 6= 0.

Case 2: ai−1 = 0, ai−2 6= 0.

...

Case v: ai−1 = ai−2 = · · · = ai−v+1 = 0, ai−v 6= 0.

Case v+1: ai−1 = · · · = ai−v = 0.

For each of the above v + 1 cases we shall estimate n − #∆≺(Iq + 〈A〉). Then
the minimal obtained value constitutes a lower bound on wH(~c). Note that in
Example 2 we used v = 1.

Theorem 15. Let ≺ be a fixed arbitrary monomial ordering. Consider ~c =
ev(
∑i
s=1 asMs + Iq), as ∈ Fq, s = 1, . . . , i, and ai 6= 0. Let v be an integer

0 ≤ v < i. We have wH(~c) ≥ σ(i, v) where σ(i, v) = min{#L(1), . . . ,#L(v + 1)}.
Here, for t = 1, . . . , v

L(t) =
{
K ∈ ∆≺(Iq) | ∃Mj ∈ ∆≺(Iq) such that either

(Mi,Mj) is SOWB with respect to {1, . . . , i− t, i}
and lm(MiMj rem G) = K or

(Mi−t,Mj) is SOWB with respect to {1, . . . , i− t, i}
and lm(Mi−tMj rem G) = K

}
,

and

L(v + 1) =
{
K ∈ ∆≺(Iq) | ∃Mj ∈ ∆≺(Iq) such that (Mi,Mj)

is SOWB with respect to {1, . . . , i− v − 1, i}
and lm(MiMj rem G) = K

}
.
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Given a code C(I, L) write �≺(L) = {Mi1 , . . . ,Midim(L)
} and choose numbers

vi1 , . . . , vidim(L)
with 0 ≤ vis < is, s = 1, . . . ,dim(L). The minimum distance

of C(I, L) is at least min{σ(i1, v1), . . . , σ(idim(L), vidim(L)
)}.

Proof. To establish the bound on wH(~c) note that if v = 0 then only the last
set L(v + 1) is present and this set equals the set in (2.3). For v > 0 the v + 1
expressions correspond to the v + 1 cases described prior to the theorem (in the
same order). The proof technique resembles the arguments used in Example 2.

Remark 16. Consider an ideal I ⊆ Fq[X1, . . . , Xm] and a corresponding weighted
degree lexicographic ordering ≺w such that the order domain condition (C1) is
satisfied but (C2) is not. Let F be a Gröbner basis for I with respect to ≺w.
Assume Theorem 15 is used to estimate the Hamming weight of ~c = ev(A + Iq)
where lm(A) = Mi. A natural choice of v is the unique non-negative integer which
satisfies w(Mi) = w(Mi−1) = · · · = w(Mi−v) > w(Mi−v−1). To see why this choice
of v is natural, note that when reducing AMj modulo F the weight of the leading
monomial remains the same. Hence, the leading monomial of AMj rem F can not
be equal to MtMj rem F for t ≤ i − v − 1. On the other hand as illustrated in
Example 2 this may happen when t ≥ i − v. If both order domain conditions are
satisfied the above choice of v is v = 0. In this case Theorem 15 simplifies to the
usual Feng-Rao bound Theorem 9.

Theorem 15 can be applied to any code C(I, L). However, it is not clear if
there is any advantage in considering other choices of L than L = SpanFq{ev(Mi1 +
Iq), . . . , ev(Mik + Iq)}. When i1 = 1, . . . , ik = k we shall denote the corresponding
code by E(k). Observe that Theorem 15 suggests an improved code construction
as follows.

Definition 17. Consider a set of integers v1, . . . , vn with 0 ≤ vi < i for i = 1, . . . n.
Let L = SpanFq{ev(Mi + Iq) | σ(i, vi) ≥ δ}, The corresponding code C(I, L) is
denoted by Ẽimp(δ).

Proposition 18. The minimum distance of Ẽimp(δ) satisfies d(Ẽimp(δ)) ≥ δ.
The above improved code construction is in the spirit of Feng and Rao’s work.

When improved codes are constructed on the basis of the Feng-Rao bound, The-
orem 9, rather than on the basis of the improved bound of the present paper,
Theorem 15, the notation used is Ẽ(δ) (see [7, Def. 4.38]). In Section 5 we shall
see that one can sometimes derive even further improved codes from Theorem 15
than Ẽimp(δ). In a straight forward manner one can enhance the above bound to
deal also with generalised Hamming weights. We postpone the discussion of the
details to Section 6.

A huge class of ideals and weighted degree lexicographic orderings satisfies the
conditions in Remark 16. For every such pair I, ≺w it is easy to apply the method of
Theorem 15 using a computer. In the remaining part of the paper we shall mainly
concentrate on studying certain families of affine variety codes for which we can
derive closed formula expressions. The potential of Theorem 15 goes beyond this.
We leave it as an open research problem to establish closed formula expressions for
other families.
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Chapter 3

Generalised Cab polynomials

As mentioned in the previous section good candidates for our new bound are affine
variety codes where the order domain condition (C1) is satisfied, but the order
domain condition (C2) is not. A particular simple class of curves that satisfy the
order domain conditions are the well-known Cab curves. They were introduced by
Miura in [19, 20, 21] to facilitate the use of the Feng-Rao bound for dual codes. In
this section we introduce generalised Cab polynomials which correspond to allowing
the same weight to occur more than once in the footprint (condition (C2)). It
should be stressed that we make no assumption that generalised Cab polynomials
are irreducible as it has no implication for our analysis.
From [21, App. B and the lemma at p. 1416] we have a complete characterisation of
Cab curves. We shall adapt the description in [18] which is an English translation
of Miura’s results. From [18, Th. 1] we have:

Theorem 19. Let k̄ be the algebraic closure of a perfect field k, X ⊆ k̄2 be a possibly
reducible affine algebraic set defined over k, x, y the coordinates of the affine plane
k̄2, and a, b relatively prime positive integers. The following two conditions are
equivalent:

• X is an absolutely irreducible algebraic curve with exactly one k rational place
Q at infinity, and the pole divisors of x and y are bQ and aQ, respectively.

• X is defined by a bivariate polynomial of the form

αa,0x
a + α0,by

b +
∑

ib+ja<ab

αi,jx
iyj , (3.1)

where αi,j ∈ k for all i, j and αa,0, α0,b are non-zero.

The definition of Cab curves given in the literature is that of (3.1). We recall
the following result from [21]. We adapt the description from [18, Cor. 3].

Proposition 20. Let F (X,Y ) ∈ k[X,Y ] be a polynomial of the form (3.1), Q a
unique place at infinity of the Cab curve defined by F (X,Y ). Then

{XiY j + 〈F (X,Y )〉 | 0 ≤ i ≤ a− 1, 0 ≤ j}
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is a k-basis for k[X,Y ]/〈F (X,Y )〉 and the elements in the basis have pairwise
distinct discrete valuations at Q. If the Cab curve is non-singular, then

k[X,Y ]/〈F (X,Y )〉 = L(∞Q)

holds, and as a basis for L(mQ), m ≥ 0, we can choose

{XiY j + 〈F (X,Y )〉 | 0 ≤ i ≤ a− 1, 0 ≤ j, ai+ bj ≤ m}.

Let w(X) and w(Y ), respectively, be minus the discrete valuation of x at Q and
minus the discrete valuation of y at Q, respectively. Consider the corresponding
weighted degree lexicographic ordering with X = X1 and Y = X2. If we combine
(3.1) with the first part of Proposition 20 we see that Cab curves satisfy the order
domain conditions. Observe, that we can consider the related affine variety codes
C(I, L) and C⊥(I, L) regardless of the curve being non-singular or not. This point
of view is taken in [15, Sec. 4.2]. Even if the curve is non-singular no simple generic
method is known to describe the corresponding affine variety code as an algebraic
geometric code. We now introduce generalised Cab polynomials.

Definition 21. Let w(X) = b
gcd(a,b) and w(Y ) = a

gcd(a,b) where a and b are two
different positive integers. Given a field k, let F (X,Y ) = Xa + αY b + R(X,Y ) ∈
k[X,Y ], α ∈ k\{0}, be such that all monomials in the support of R have smaller
weight than w(Xa) = w(Y b) = ab

gcd(a,b) . Then F (X,Y ) is called a generalised Cab
polynomial.

Miura in [19, Sec. 4.1.4] treated the curves related to irreducible generalised Cab
polynomials. Besides that we do not require the generalised Cab polynomials to be
irreducible, our point of view is different from Miura’s as we will use for the code
construction the algebra Fq[X,Y ]/〈F (X,Y )〉. For generalised Cab polynomials this
algebra does not in general equal a space L(m1P1 + · · ·+msPs), P1, . . . , Ps being
rational places. We mention that the variations of Cab curves considered by Feng
and Rao in [4] are different from Definition 21.

For the code construction we would like to have generalised Cab polynomials
with many zeros and at the same time to have a variety of possible a, b to choose
from, as these parameters turn out to play a crucial role in our bound for the
minimum distance. As we shall now demonstrate there is a simple technique for
deriving this when the field under consideration is not prime. The situation is
in contrast to Cab curves for which it is only known how to get many points for
restricted classes of a and b. Our method builds on ideas from [24] and [19, Sec. 5].
Let p be a prime power and q = pm where m ≥ 2 is an integer. The technique that
we shall employ involves letting F (X,Y ) = G(X) − H(Y ) where both G and H
are (Fpm ,Fp)-polynomials.

Definition 22. Let m be an integer, m ≥ 2. A polynomial F (X) ∈ Fpm [X] is
called an (Fpm ,Fp)-polynomial if F (γ) ∈ Fp holds for all γ ∈ Fpm .

An obvious characterisation of (Fpm ,Fp)-polynomials is that F (X) = (Xpm −
X)Q(X) +F ′(X), where F ′(X) is an (Fpm ,Fp)-polynomial of degree less than pm.
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Here, we used the convention that deg(0) = −∞. By Fermat’s little theorem the
set of (Fpm ,Fp)-polynomials of degree less than pm constitutes a vector space over
Fp. Clearly, one could derive a basis by Lagrange interpolation. For our purpose,
however, it is interesting to know what are the possible degrees of the polynomials
in the vector space.

Proposition 23. Let Ci1 , . . . , Cit be the different cyclotomic cosets modulo pm−1
(multiplication by p). Here, for s = 1, . . . , t it is assumed that is is chosen as
the smallest element in the given coset. For s = 1, . . . , t, Fis(X) =

∑
l∈Cis X

l,
is an (Fpm ,Fp)-polynomial. Furthermore, the polynomial Xpm−1 is an (Fpm ,Fp)-
polynomial.

Proof. For all the polynomials F in the proposition we have F p mod Xpm −X =
F .

The set {Fi1 , . . . , Fit , Xpm−1} contains two of the most prominent (Fpm ,Fp)-
polynomials, namely the trace polynomial F1(X) = Xpm−1

+Xpm−2

+ · · ·+Xp+X
and the norm polynomial X(pm−1)/(p−1). Note that the norm polynomial equals
F(pm−1)/(p−1) if p > 2. For p = 2 it equals Xpm−1. Observe also that except for
the constant polynomial F0 = 1, the trace polynomial is of lowest possible degree.
From [14, Prop. 3.2] we have (see also [2]):

Proposition 24. A polynomial F (X) ∈ Fpm [X] is an (Fpm ,Fp)-polynomial of
degree less than pm − 1 if and only if

F (X) = F1(H(X)) rem (Xpm−1 − 1)

for some H(X) ∈ Fpm [X].

From Proposition 23 and Proposition 24 we conclude:

Corollary 25. Let F (X) be an (Fpm ,Fp)-polynomial of degree less than pm. Then
deg(F ) ∈ {deg(Fi1), . . . ,deg(Fit), p

m − 1}.
We now return to the question of designing generalised Cab polynomials F (X,Y ) =

G(X) − H(Y ) with many zeros. One way of doing this is to choose G(X) to be
the trace polynomial [24, Sec. 3]. As is well-known this polynomial maps exactly
pm−1 elements from Fpm to each value in Fp. Hence, such a polynomial F (X,Y )
must have p2m−1 zeros. However, there are other polynomials in the above set with
properties similar to the trace polynomial.

Proposition 26. Consider the polynomials Fis , s = 1, . . . , t related to a field
extension Fpm/Fp, m ≥ 2 (Proposition 23). We have gcd(is, p

m − 1) = 1 if and
only if for each η ∈ Fp there exist exactly pm−1 γ ∈ Fpm such that Fis(γ) = η.

Proof. We have Fis(X) = F1(Xis) mod (Xpm−1 − 1), where F1(X) is the trace
polynomial. Under the condition that gcd(is, p

m − 1) = 1 the monomial Xis

defines a bijective map from Fpm → Fpm . This proves the “only if” part. We leave
the “if” part for the reader.
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Example 3. Consider first the field extension F8/F2. The non-trivial cyclotomic
cosets modulo 7 are C1 = {1, 2, 4}, and C3 = {3, 6, 5}. From this we find the
following (F8,F2)-polynomials: F1(X) = X4 + X2 + X, F3(X) = X6 + X5 + X3,
and X7. The first two polynomials have the property described in Proposition 26.
This is a consequence of 7 being a prime.
Consider next the field extension F16/F2. The non-trivial cyclotomic cosets modulo
15 are C1 = {1, 2, 4, 8}, C3 = {3, 6, 12, 9}, C5 = {5, 10}, C7 = {7, 14, 13, 11}.
Hence, we get the following (F16,F2)-polynomials F1(X) = X8 + X4 + X2 + X,
F3(X) = X12+X9+X6+X3, F5(X) = X10+X5, F7(X) = X14+X13+X11+X7,
and X15. The polynomials with the property described in Proposition 26 are F1(X),
F7(X).
Consider finally the field extension F32/F2. Observe that 31 is a prime. Hence,
all the polynomials Fis , is > 0, have the property of Proposition 26. These are
F1(X) = X16 + X8 + X4 + X2 + X, F3(X) = X24 + X17 + X12 + X6 + X3,
F5(X) = X20 + X18 + X10 + X9 + X5, F7(X) = X28 + X25 + X19 + X14 + X7,
F11(X) = X26+X22+X21+X13+X11, and F15(X) = X30+X29+X27+X23+X15.
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Chapter 4

Codes from optimal
generalised Cab polynomials

In this section we consider codes from generalised Cab polynomials over Fq with
n = aq zeros. These polynomials are optimal in the sense that a bivariate polyno-
mial with leading monomial Xa can have no more zeros over Fq, as is seen from
the footprint bound Corollary 4. Hence, we shall call them optimal generalised Cab
polynomials.

We list a couple of properties of optimal generalised Cab polynomials F (X,Y ) =
Xa + αY b +R(X,Y ). It holds that a < b, that a ≤ q and that {F (X,Y ), Y q − Y }
constitutes a Gröbner basis G for Iq = 〈F (X,Y ), Xq − X,Y q − Y 〉 with respect
to ≺w. Here, and in the remaining part of the section, ≺w is the weighted
degree lexicographic ordering in Definition 10 with weights as in Definition 21,
w(X) = b

gcd(a,b) , w(Y ) = a
gcd(a,b) , and with X = X1, Y = X2. Moreover, it holds

that {M1, . . . ,Mn} = ∆≺w(Iq) = {Xi1Y i2 | 0 ≤ i1 < a, 0 ≤ i2 < q} (recall, that
we assume M1 ≺w · · · ≺w Mn). A given weight in w(∆≺w(Iq) appears at most
gcd(a, b) times. To see this note that for general monomials Xα1Y α2 , Xβ1Y β2 with
α1 ≤ β1 we have w(Xα1Y α2) = w(Xβ1Y β2) if and only if β1 = α1 + uw(Y ) and
β2 = α2−uw(X) for some non-negative integer u. ForXα1Y α2 , Xβ1Y β2 ∈ ∆≺w(Iq)
to hold we must have β1 < a and consequently also u < gcd(a, b).

From the previous section we have a simple method for constructing optimal
generalised Cab polynomials over Fq = Fpm , where p is a prime power and m
is an integer greater or equal to 2. The method consists in letting F (X,Y ) =
G(X)−H(Y ) where G(X) is the trace polynomial and H(Y ) is an arbitrary non-
trivial (Fpm ,Fp)-polynomial. We stress that the results of the present section hold
for any optimal generalised Cab polynomial over arbitrary finite field Fq. The main
result of the section is:

Theorem 27. Let Iq be defined from an optimal generalised Cab polynomial and let
the weights w(X) and w(Y ) be as in Definition 21. Consider ~c = ev(

∑i
s=1 asMs +
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Iq), as ∈ Fq, s = 1, . . . , i and ai 6= 0. Write Mi = Xα1Y α2 and T = α1 rem w(Y ).
We have that

wH(~c) ≥ (a− α1)(q − α2) + ε where

ε =





0 if q − b ≤ α2 < q

T (q − α2 − b) if 0 ≤ α1 ≤ a− w(Y )

and 0 ≤ α2 < q − b
α1(q − α2 − b) if a− w(Y ) < α1 < a and

q − w(X)− α1
b−w(X)
a−w(Y ) < α2 < q − b

T (q − α2 − w(X)) if a− w(Y ) < α1 < a and
0 ≤ α2 ≤ q − w(X)− α1

b−w(X)
a−w(Y ) .

The proof of Theorem 27 is done by applying Theorem 15 carefully. It consists
in demonstrating how L(1), . . . ,L(v + 1) can be build from the sets B1(Xα1Y α2),
B2(Xα1Y α2) and B3(Xα1Y α2 , u) which we define below. Immediately after the
definition we illustrate with an example the main idea of the proof of Theorem 27
including the role of the below sets.

Definition 28. Let the notation be as in Definition 21 and Theorem 27. For
arbitrary integers α1, α2, 0 ≤ α1 < a, 0 ≤ α2 < q we define

B1(Xα1Y α2) = {Xγ1Y γ2 | α1 ≤ γ1 < a, α2 ≤ γ2 < q},

B2(Xα1Y α2) =





{
Xγ1Y γ2 | α1 − T ≤ γ1 < α1,

α2 + b ≤ γ2 < q

}
if T 6= 0 and

0 ≤ α2 < q − b

∅ otherwise,

and for u = 1, . . . , gcd(a, b)

B3(Xα1Y α2 , u) =





{
Xγ1Y γ2 | a− w(Y )u ≤ γ1 < α1,

α2 + w(X)u ≤ γ2 < q

}
if a− w(Y ) < α1 < a
and 0 ≤ α2 < q − b

∅ otherwise.

Observe that the set B3(Xα1Y α2 , u), u = 1, . . . , gcd(a, b) is never empty when
a − w(Y ) < α1 < a and 0 ≤ α2 < q − b hold. Similarly, B2(Xα1Y α2) is never
empty when T 6= 0 and 0 ≤ α2 < q − b hold.
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Example 4. Consider an optimal generalised Cab polynomial F (X,Y ) = X9 −
Y 12 + R(X,Y ) ∈ F27[X,Y ]. We have a = 9, b = 12, w(X) = 4, w(Y ) = 3, and
∆≺w(I27) = {Xi1Y i2 | 0 ≤ i1 < 9, 0 ≤ i2 < 27}. From the discussion at the
beginning of the section we know that gcd(a, b) = 3 equals the maximal number of
times a given weight can appear in w(∆≺w(I27)). In Figure 4.1 and Figure 4.2 this
is illustrated by the division of w(∆≺w(I27)) into 3 disjoint sets of columns, within
each set no weight appears twice.

Figure 4.1: In both parts Xα1Y α2 = X8Y 3. Left part: Light grey area is B1,
medium grey area is B2, and dark grey area plus medium grey area correspond to
B3(Xα1Y α2 , 1). Right part: Light grey area is B1, medium grey area is B2, and
dark grey area plus medium grey area correspond to B3(Xα1Y α2 , 3).

Assume first that ~c = ev(A + I27) where lm(A) = X8Y 3. We can write A =
a11 + · · · + a79X

2Y 11 + a80X
5Y 7 + a81X

8Y 3, a81 6= 0. Note that w(X2Y 11) =
w(X5Y 7) = w(X8Y 3) and that any monomial in the support of A different from
these three monomials must be of lower weight. We first make some observations
that hold regardless of a79 and a80, respectively, being zero or not. Let j = 0, . . . , 23.
Then

lm(AY j rem G) = lm(X8Y 3Y j rem G) = X8Y 3+j .

Hence, (X8Y 3, Y j) is OWB (or equivalently SOWB with respect to {1, . . . , 81})
and

B1(X8Y 3) = {X8Y 3+j | j = 0, . . . , 23}
is a subset of L(u), u = 1, 2, 3.
Similarly, let i = 0, 1, 2 and j = 0, . . . , 11. Then

lm(AX7+iY j rem G) = lm(X8Y 3X7+iY j rem G) = X6+iY 15+j .
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Figure 4.2: Left part: Xα1Y α2 = X5Y 16. Only B1 present. Right part: Xα1Y α2 =
X5Y 4. Light grey area is B1, medium grey area is B2. B3 is not present.

Hence, (X8Y 3, X7+iY j) is OWB (or equivalently SOWB with respect to {1, . . . , 81})
and

B′2(X8, Y 3) = {X6+iY 15+j | i = 0, 1, 2, j = 0, . . . , 11}
is a subset of L(u), u = 1, 2, 3. But then also B2(X8Y 3) = B′2(X8Y 3)\B1(X8Y 3)
is a subset of L(u). Note that the idea behind B′2(X8Y 3) is to multiply A with
monomials M such that X2Y 11M , X5Y 7M , and X8Y 3M belong to X9 ·∆≺w(I27).
This ensures that lm(A ·M rem X9 − Y 12 + R(X,Y )) = lm(X8Y 3 ·M rem X9 −
Y 12 +R(X,Y )).
We next consider separately the three different cases where we take into account if
a79 and a80, respectively, are zero or not.
Case 1: Assume a80 6= 0. Let i = 1, 2, 3 and j = 0, . . . , 19. then

lm(A ·XiY j rem G) = lm(X5Y 7 ·XiY j rem G) = X5+iY 7+j .

This corresponds to saying that (X5Y 7, XiY j) is SOWB with respect to {1, . . . , 81}
and

B′3(X8Y 3, 1) = {X5+iY 7+j | i = 1, 2, 3, j = 0, . . . , 19}
therefore is a subset of L(1). But then also B3(X8Y 3, 1) = B′3(X8Y 3, 1)\B1(X8Y 3,
1) is a subset of L(1). The left part of Figure 4.1 shows the sets derived so far.
Note that B2(X8Y 3) ⊆ B3(X8Y 3, 1) and the information we have therefore boils
down to B3(X8Y 3, 1) ∪ B1(X8Y 3) ⊆ L(1) (actually, one can show that equality
holds). We conclude

wH(~c) ≥ #B3(X8Y 3, 1) + #B1(X8Y 3) = 40 + 24 = 64.

Case 2: Assume a79 6= 0, a80 = 0. In this case we use the fact that lm(A ·
X rem G) = X3Y 11. We leave it for the reader to show that this results in a
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set B3(X8Y 3, 2) of size 80 which has as a subset B2(X8Y 3). Hence, wH(~c) ≥
80 + 24 = 104.
Case 3: Assume a79 = a80 = 0. Let i = 1, . . . , 9 and j = 0, . . . , 11. Then

lm(A ·XiY j rem G) = lm(X8Y 3 ·XiY j rem G) = Xi−1Y 15+j .

This corresponds to saying that (X8Y 3, XiY j) is SOWB with respect to {1, . . . , 78,
81} and

B′3(X8Y 3, 3) = {Xi−1Y 15+j | i = 1, . . . , 9, j = 0, . . . , 11}
therefore is a subset of L(3). But then also B3(X8Y 3, 3) = B′3(X8Y 3, 3)\B1(X8Y 3)
is a subset of L(3). The right part of Figure 4.1 illustrates the sets derived above.
Note that B2(X8Y 3) ⊆ B3(X8Y 3, 3) and the information gathered boils down to
B3(X8Y 3, 3) ∪ B1(X8Y 3) ⊆ L(3) (actually one can show equality). We conclude
that wH(~c) ≥ 96 + 24 = 120.
Taking finally the worst of the three cases we conclude that wH(~c) ≥ min{64, 104, 120} =
64. Note that with the Feng-Rao bound with OWB we only get wH(~c) ≥ #B2(X8Y 3)+
#B1(X8Y 3) = 24 + 24 = 48.

We next consider a word ~c = ev(A+ I27) with

A = a11 + · · ·+ a167X
2Y 20 + a168X

5Y 16.

Note that w(X2Y 20) = w(X5Y 16) and that all monomials in the support of A dif-
ferent from these two monomials must be of lower weights. A set B1(X5Y 16) is
established similarly as above (see the left part of Figure 4.2). Trying to establish a
set B′2(X5Y 16) we multiply A by X7+iY j where i and j are to be determined such
that X2Y 20 ·X7+iY j as well as X5Y 16 ·X7+iY j belong to X9 ·∆≺w(I27). However,
lm(X9+iY 20+j rem X9 − Y 12 + R(X,Y )) = XiY 32+j which is not in ∆≺w(I27).
Hence, reducing X9+iY 20+j modulo G involves reducing modulo Y 27−Y which does
not possess in its support two monomials of highest weight. Similar remarks hold for
the second mentioned monomial and in conclusion we therefore have no information
about what is the leading monomial of A ·X7+iY j rem G. Note that the reason why
we cannot define a set B′2(X5Y 16) is that the power of Y in X5Y 16 is too high. In a
similar way, to establish a set B′3(X5Y 16, u) we need the power of X in X5Y 16 to be
in {a− (gcd(a, b)−1), . . . , a−1} = {7, 8} (we leave it for the reader to verify this).
Hence, the only information we have is B1(X5Y 16) ⊆ L(u), u = 1, 2, (actually one
can show that equality holds), and consequently wH(~c) ≥ #B1(X5Y 16) = 44.

We finally assume ~c = ev(A+ I27) where A = a11 + · · ·+ a52X
2Y 8 + a53X

5Y 4,
a53 6= 0. The set B1(X5Y 4) is illustrated in the right part of Figure 4.2. As
the power of Y in X5Y 4 is small enough we also have a set B′2(X5Y 4) inside
∆≺w(I27). The corresponding set B2(X5Y 4) is illustrated in the same figure. The
power of X in X5Y 4 does not belong to {7, 8}. Hence, we have no set B′3(X5Y 4, u).
We conclude B2(X5Y 4) ∪ B1(X5Y 4) ⊆ L(u), u = 1, 2, (actually one can show
equality). From the right part of Figure 4.2 we conclude wH(~c) ≥ #B2(X5Y 4) +
#B1(X5Y 4) = 20 + 92 = 112.
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Lemma 29. For any choice of u ∈ {1, . . . , gcd(a, b)} and M ∈ ∆≺(Iq) it holds
that B1(M) ∩ B2(M) = B1(M) ∩ B3(M,u) = ∅. If B3(M,u) 6= ∅ then B2(M) ⊆
B3(M,u).

Proof. By inspection of Definition 28.

Lemma 30. Consider ~c = ev(
∑i
s=1 asMs + Iq), as ∈ Fq, s = 1, . . . , i, and ai 6= 0.

Let Mi = Xα1Y α2 and v = α1 div w(Y ) (that is, v satisfies α1 = w(Y )v + T ,
where T = α1 rem w(Y )). It holds that:

1. B1(Xα1Y α2) ⊆ L(u) for u = 1, . . . , v + 1.

2. B2(Xα1Y α2) ⊆ L(u) for u = 1, . . . , v + 1.

3. B3(Xα1Y α2 , gcd(a, b)) ⊆ L(v + 1).

4. B3(Xα1Y α2 , u) ⊆ L(u) for u = 1, . . . , v.

Proof.
Part 1: Assume Ml = Xγ1Y γ2 ∈ B1(Xα1Y α2). We have α1 ≤ γ1 < a and
α2 ≤ γ2 < q. Choosing Mj = Xγ1−α1Y γ2−α2 we get lm(MiMj rem G) = Ml. Let
i′ ∈ {1, . . . , i−1}, then by the properties of a monomial orderingMi′Mj ≺w MiMj

holds. This means that (Mi,Mj) is SOWB with respect the set {1, . . . , i}. Thus
Ml ∈ L(u) for u = 1, . . . , v + 1.

Part 2: If T = 0 or q − b ≤ α2 < q then the result follows trivially. Assume T 6= 0
and 0 ≤ α2 < q− b. Let Ml = Xγ1Y γ2 ∈ B2(Xα1Y α2). We have α1−T ≤ γ1 < α1

and α2 + b ≤ γ2 < q. Choosing Mj = Xγ1−α1+aY γ2−α2−b (which belongs to
∆≺w(Iq) by the definition of B2) we get

lm(MiMj rem G) = lm(MiMj −Xγ1Y γ2−bF (X,Y )) = Xγ1Y γ2 .

We want to prove that (Mi,Mj) is SOWB with respect the set {1, . . . , i}. We
consider Mi′ with i′ ∈ {1, . . . , i − 1}. If w(Mi′) < w(Mi) then the proof follows
from w(Mi′Mj) < w(MiMj) using the fact that reducing modulo F does not
change the weight of the leading monomial. If w(Mi′) = w(Mi) then there exists
an integer z with α1−zw(Y ) ≥ 0 such thatMi′ = Xα1−zw(Y )Y α2+zw(Y ). Therefore
γ1 − zw(Y ) ≥ 0.
Now Mi′Mj = Xa+γ1−zw(Y )Y γ2−b+zw(X) and therefore

lm(Mi′Mj rem G) = lm(Mi′Mj −Xγ1−zw(Y )Y γ2−b+zw(X)F (X,Y ))

= Xγ1−zw(Y )Y γ2+zw(X) ≺w Xγ1Y γ2 .

Again we employed the fact that reducing modulo F does not change the weight
of the leading monomial. We conclude that lm(Mi′Mj rem G) ≺w Xγ1Y γ2 and
that (Mi,Mj) is SOWB with respect the set {1, . . . , i}. Thus Ml ∈ L(u) for
u = 1, . . . , v + 1.

Part 3: If 0 ≤ α1 ≤ a − w(Y ) or q − b ≤ α2 < q then the result follows trivially.
Assume a− w(Y ) < α1 < a and 0 ≤ α2 < q − b, then v = gcd(a, b)− 1. Let Ml =
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Xγ1Y γ2 ∈ B3(Xα1Y α2 , gcd(a, b)). As w(X) gcd(a, b) = b and w(Y ) gcd(a, b) = a
we have 0 ≤ γ1 < α1 and α2 + b ≤ γ2 < q. Choosing Mj = Xγ1−α1+aY γ2−α2−b

we get lm(MiMj rem G) = Ml. We want to prove that (Mi,Mj) is SOWB with
respect the set {1, . . . , i − v − 1}. We consider Mi′ with i′ ∈ {1, . . . , i − 1}. If
w(Mi′) < w(Mi) the proof follows because w(Mi′Mj) < w(MiMj) using the fact
that reducing modulo F does not change the weight of the leading monomial. As
v = gcd(a, b) − 1 there does not exists any i′ ∈ {1, . . . , i − v − 1, i} such that
w(Mi′) = w(Mi). From this it follows that (Mi,Mj) is SOWB with respect the set
{1, . . . , i− v − 1} and thus Ml ∈ L(v + 1).

Part 4: If q − b ≤ α2 < q or 0 ≤ α1 ≤ a− w(Y ) then the result follows trivially.
Assume a − w(Y ) < α1 < a and 0 ≤ α2 < q − b, then v = gcd(a, b) − 1. Let
Ml = Xγ1Y γ2 ∈ B3(Xα1Y α2 , u). We have a − w(Y )u ≤ γ1 < α1 and α2 +
w(X)u ≤ γ2 < q. By the definition of ≺w and the form of ∆≺w(Iq) we have that
Mi−u = Xα1−w(Y )uY α2+w(X)u. Choosing Mj = Xγ1−α1+w(Y )uY γ2−α2−w(Y )u we
get lm(Mi−uMj rem G) = Ml. Note that Mi−u and Mj are in ∆≺w(Iq) because
v = gcd(a, b) − 1, a − w(Y ) < α1 < a and 0 ≤ α2 < q − b. We want to prove
that (Mi,Mj) is SOWB with respect the set {1, . . . , i−u, i}. We considerMi′ with
i′ ∈ {1, . . . , i − 1}. If w(Mi′) < w(Mi) then the proof follows from w(Mi′Mj) <
w(MiMj) using the fact that reducing modulo F does not change the weight of
the leading monomial. The monomials Mi′ which satisfy w(Mi′) = w(Mi−u) are
Mi and Mi−z for z = u, . . . , v. However, MiMj rem G ≺w Mi−uMj rem G because
γ1 + w(Y )u > a and Mi−tMj ≺w Mi−uMj for any t = u + 1, . . . , v due to the
properties of a monomial ordering. From this it follows that (Mi,Mj) is SOWB
with respect the set {1, . . . , i− u, i} and thus Ml ∈ L(u), for u = 1, . . . , v.

Lemma 31. Consider ~c = ev(
∑i
s=1 asMs + Iq), as ∈ Fq, s = 1, . . . , i, and ai 6= 0.

Write Mi = Xα1Y α2 . For u = 1, . . . , v + 1, with v = α1 div w(Y ), we have

B1(Xα1Y α2) ∪B2(Xα1Y α2) ⊆ L(u), (4.1)
B1(Xα1Y α2) ∪B3(Xα1Y α2 , u) ⊆ L(u). (4.2)

Proof. The lemma follows directly from Lemma 29 and Lemma 30.

It is not hard to compute the cardinality of the sets B1, B2 and B3. For
u = 1, . . . , gcd(a, b), we have that:

#B1(Xα1Y α2) = (a− α1)(q − α2),

#B2(Xα1Y α2) =

{
α1(q − α2 − b) if 0 ≤ α2 < q − b
0 otherwise,

#B3(Xα1Y α2 , u) =





(w(Y )u− a+ α1)· if 0 ≤ α2 < q − b and
(q − α2 − w(X)u) a− w(Y ) < α1 < a

0 otherwise.

We are ready to prove Theorem 27.
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Proof of Theorem 27. Let v = α1 div w(Y ). If 0 ≤ α1 ≤ a − w(Y ) then by
Lemma 31 we obtain

wH(~c) ≥ min{#L(1), . . . ,#L(v + 1)}
≥ #B2(Xα1Y α2) + #B1(Xα1Y α2)

= (a− α1)(q − α2) +{
α1(q − α2 − b) if 0 ≤ α2 < q − b
0 otherwise.

If a− w(Y ) < α1 < a, then v = gcd(a, b)− 1 and by Lemma 31 we obtain

wH(~c) ≥ min{#L(1), . . . ,#L(v + 1)}
≥ min{#B3(Xα1Y α2 , u) + #B1(Xα1Y α2) |

u = 1, . . . , gcd(a, b)}
= (a− α1)(q − α2) +




min{(w(Y )u− a+ α1)(q − α2− if 0 ≤ α2 < q − b
− w(X)u) | u = 1, . . . , v + 1}

0 otherwise.

The function f(u) = (w(Y )u−a+α1)(q−α2−w(X)u) is a concave parabola, thus
we have minimum in u = 1 or u = v+1 = gcd(a, b). By inspection f(1) = (w(Y )−
a+ α1)(q − α2 −w(X)) = T (q − α2 −w(X)) and f(gcd(a, b)) = (w(Y ) gcd(a, b)−
a+α1)(q−α2−w(X) gcd(a, b)) = α1(q−α2−b). We therefore get the equivalence:

f(1) ≤ f(gcd(a, b))⇔ α2 ≤ q − w(X)− α1
b− w(X)

a− w(Y )
,

and the theorem follows.

Remark 32. If for codes from optimal generalised Cab polynomials rather than
applying Theorem 15 we apply the Feng-Rao bound (Theorem 9) with OWB then
the ε in Theorem 27 should be replaced with:

{
0 if q − b ≤ α2 < q

T (q − α2 − b) and 0 ≤ α2 < q − b.
This is because our improvement comes from the sets B3(Xα1Y α2) as can be seen
from the proof of Lemma 30. We see that our new bound improves the Feng-Rao
bound by





0 if q − b ≤ α2 < q

or 0 ≤ α1 ≤ a− w(Y )

(α1 − T )(q − α2 − b) if a− w(Y ) < α1 < a and
q − w(X)− α1

b−w(X)
a−w(Y ) < α2 < q − b

T (b− w(X)) if a− w(Y ) < α1 < a and
0 ≤ α2 ≤ q − w(X)− α1

b−w(X)
a−w(Y ) .
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Remark 33. One can prove that equality holds in (4.1) whenever B3(Xα1Y α2 , 1) =
∅. When this set is not empty equality holds in (4.2). Theorem 27 therefore is the
strongest possible result one can derive from Theorem 15 regarding the minimum
distance of codes from optimal generalised Cab polynomials.

In the following we apply Theorem 27 in a number of cases where F (X,Y ) =
G(X) − H(Y ) ∈ Fpm [X,Y ] with G(X) being the trace polynomial and H(Y )
being an (Fpm ,Fp)-polynomial of another degree. Recall from the discussion at
the beginning of the section that these are optimal generalised Cab polynomials.
The strength of our new bound Theorem 15 and Theorem 27 lies in the cases
where a and b are not relatively prime, as for a and b relatively prime it reduces
to the usual Feng-Rao bound for primary codes (see the last part of Remark 16).
The well-known norm-trace polynomial corresponds to choosing H(Y ) to be the
norm polynomial. This gives a = pm−1 and b = (pm − 1)/(p − 1) which are
clearly relatively prime. The related codes, which are called norm-trace codes,
are one-point algebraic geometric codes. It seems fair to compare the outcome of
Theorem 27, when gcd(a, b) > 1 keeping a fixed but varying b, with the parameters
of the norm-trace codes over the same alphabet. The two corresponding sets of
ideals have the same footprint ∆≺w(Iq) and consequently the corresponding codes
are of the same length. We remind the reader that it was shown in [6] that the
Feng-Rao bound gives the true parameters of the norm-trace codes.

Example 5. In this example we consider optimal generalised Cab polynomials de-
rived from (F8,F2)-polynomials. The trace polynomial G(X) is of degree a = 4
and from Example 3 we see that besides the norm polynomial which is of degree
b = 7 we can choose H(Y ) as F3(Y ) = Y 6 + Y 5 + Y 3 which is of degree b = 6.
The corresponding codes are of length n = 32 over the alphabet F8. In Figure 4.3
we compare the parameters of the related two sequences of improved codes Ẽimp(δ)
(Definition 17). For few choices of δ the norm-trace code is the best, but for many
choices of δ, from (a, b) = (4, 6) we get better codes. We note that the latter se-
quence of codes contains two non-trivial codes that have the best known parameters
according to the linear code bound at [13], namely [n, k, d] equal to [32, 2, 28] and
[32, 15, 12].
Concentrating solely on the case (a, b) = (4, 6) we finally investigate in a couple
of cases how well our new bound, Proposition 18, performs in comparison with the
usual Feng-Rao bound for primary codes. By Proposition 18 the minimum distance
of Ẽimp(13) is at least 13 but the Feng-Rao bound with OWB and WB, respectively,
only produces the numbers 10 and 8, respectively. For Ẽimp(12) the lower bounds on
d are 12, 10, and 8, respectively. For Ẽimp(10) they are 10, 8, and 7, respectively,
and finally for Ẽimp(9), 9, 8, and 7, respectively.

Example 6. In this example we consider optimal generalised Cab polynomials de-
rived from (F16,F2)-polynomials. The trace polynomial G(X) is of degree a = 8 and
from Example 3 we see that besides the norm polynomial which is of degree b = 15
we can choose H(Y ) to be of degree 10, 12 and 14. The corresponding codes are of
length n = 128 over the alphabet F16. In Figure 4.4 we compare the parameters of
the related two sequences of improved codes Ẽimp(δ) when b = 10 and when b = 15
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Figure 4.3: Improved codes from Example 5. A ◦ corresponds to (a, b) = (4, 6),
and an ∗ corresponds to (a, b) = (4, 7) (the norm-trace codes).

(the norm-trace codes). For most choices of δ from (a, b) = (8, 10) we get the best
codes. The norm-trace codes are never strictly best.
Concentrating on the codes Ẽimp(δ) related to (a, b) = (8, 10) we compare in Fig-
ure 4.5 our new bound Proposition 18 with the Feng-Rao bound – the latter equipped
with OWB and WB, respectively. For many rates Proposition 18 is superior.

Example 7. In this example we consider optimal generalised Cab polynomials de-
rived from (F32,F2)-polynomials. The trace polynomial G(X) is of degree a = 16
and from Example 3 we see that besides the norm-polynomial which is of degree
b = 31 we can choose H(Y ) to be of degree 20, 24, 26, 28 and 30. The correspond-
ing codes are of length n = 512 over the alphabet F32. In Figure 4.6 we compare the
parameters of the related three sequences of improved codes Ẽimp(δ) when b = 20,
b = 26 and when b = 31 (the norm-trace codes). For no choices of δ the norm-trace
codes are strictly best (this holds for all values of k/n). For some choices b = 20
gives the best codes for other choices the best parameters are found by choosing
b = 26.

Example 8. In this example we consider optimal generalised Cab polynomials de-
rived from (F64,F2)-polynomials. The trace polynomial G(X) is of degree a = 32
and by studying cyclotomic cosets we see that as an alternative to the norm poly-
nomial which is of degree b = 63 we can for instance choose an H(Y ) of degree 42.
The corresponding codes are of length n = 2048 over the alphabet F64. In Figure 4.7
we compare the parameters of the related two sequences of improved codes Ẽimp(δ)
when b = 42 and when b = 63 (the norm-trace codes). As is seen the first codes
outperform the last codes for all parameters.
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Figure 4.4: Improved codes from Example 6. A ◦ corresponds to (a, b) = (8, 10),
and an ∗ corresponds to (a, b) = (8, 15) (the norm-trace codes).

Figure 4.5: Estimated parameters of the codes Ẽimp(δ) from Example 6 with
(a, b) = (8, 10). A ◦ corresponds to Proposition 18. The estimates coming from
the Feng-Rao bound when equipped with OWB and WB, respectively, are marked
with + and �, respectively.
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Figure 4.6: Improved codes from Example 7. A ◦ corresponds to (a, b) = (16, 20),
an ∗ to (a, b) = (16, 26), and finally a + corresponds to (a, b) = (16, 31) (the
norm-trace codes).

Concentrating finally on the codes Ẽimp(δ) related to (a, b) = (32, 42) we compare
in Figure 4.8 our new bound Proposition 18 with the Feng-Rao bound – the lat-
ter equipped with OWB and WB, respectively. As demonstrated Proposition 18 is
superior.
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Figure 4.7: Improved codes from Example 8. The upper curve corresponds to
(a, b) = (32, 42), the lower curve to (a, b) = (32, 63) (the norm-trace codes)

Figure 4.8: Estimated parameters of the codes Ẽimp(δ) from Example 8 with
(a, b) = (32, 42). Upper point plot corresponds to Proposition 18. The estimates
coming from the Feng-Rao bound when equipped with OWB and WB are the lower
point plots.
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Chapter 5

A new construction of
improved codes

In Definition 17 we presented a Feng-Rao style improved code construction Ẽimp(δ).
As shall be demonstrated in this section it is sometimes possible to do even better.
Recall that the idea behind Theorem 15 is to consider case 1 up till case v + 1 as
described prior to the theorem. Consider a general codeword

~c = ev
( i∑

s=1

asMs + Iq
)
∈ C(I, L)

ai 6= 0, where L is some fixed known subspace of Fnq . From L we might a priori
be able to conclude that certain ass equal zero for all codewords as above. Hence,
some of the cases, case 1 up to case v, do not occur. Clearly we could then leave
out the corresponding sets in Theorem 15. This might result in a higher estimate
on wH(~c). We illustrate the phenomenon with an example in which we also show
how to derive improved codes based on this observation.

Example 9. In this example we consider the Klein quartic X3Y + Y 3 + X ∈
F8[X,Y ]. Let w(X) = 2 and w(Y ) = 3. The ideal I = 〈X3Y + Y 3 + X〉 ⊆
F8[X,Y ] and the corresponding weighted degree lexicographic ordering ≺w satisfy
order domain condition (C1) but not (C2) (as usual, in the definition of ≺w we
choose X = X1 and Y = X2). Hence, it makes sense to apply Theorem 15. The
footprint of I8 = 〈X3Y + Y 3 +X,X8 +X,Y 8 + Y 〉 is (for a reference see [7, Ex.
4.19] and [4, Ex. 3.3]):

∆≺w(I8) = {1, X, Y,X2, XY, Y 2, X3, X2Y,XY 2, X4, Y 3, X2Y 2,

X5, XY 3, Y 4, X6, X2Y 3, XY 4, X7, Y 5, X2Y 4, Y 6}

written in increasing order with respect to ≺w. Consider

~c = ev
(
a11 + a2X + a3Y + a4X

2 + a5XY + a6Y
2 + a7X

3 + I8
)
,
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a7 6= 0. We have w(X3) = w(Y 2) > w(XY ). Hence, by Remark 16 we choose
v = 1.
By inspection the set corresponding to case 1 is

L(1) = {X3, X4, X5, X6, X7, X2Y 4}.

(Note that X2Y 4 belongs to L(1) of the following reason: We have lm(X3X5 rem X8+
X) = X and lm(Y 2X5 rem X3Y + Y 3 + X) = X2Y 4, and from w(Y 2X5) =
w(X2Y 4) > w(X) we conclude that (Y 2, X5) is SOWB with respect to {1, 2, 3, 4, 5, 6, 7}.)
The set corresponding to case 2 is

L(2) = {X3, X4, Y 3, X5, XY 3, Y 4, X6,

X2Y 3, XY 4, X7, Y 5, X2Y 4, Y 6}.

If we know a priori that a6 = 0 then we can conclude from the above that wH(~c) ≥
#L(2) = 13. Without such an information we can only conclude

wH(~c) ≥ min{#L(1),#L(2)} = 6.

It can be shown using Theorem 15 that Ẽimp(11) = C(I, L) where

L = ev
(
SpanF8

{1 + I8, X + I8, Y + I8, X
2 + I8, XY + I8, Y

2 + I8}
)
.

That is, a code with parameters [n, k, d] equal to [22, 6,≥ 11].
If instead we choose

L̃ = ev
(
SpanF8

{1 + I8, X + I8, Y + I8, X
2 + I8, XY + I8, X

3 + I8}
)

then we do not need to consider the case 1 described above. By inspection the code
parameters [n, k, d] of C(I, L̃) are [22, 6,≥ 12].
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Chapter 6

Generalised Hamming weights

As mentioned at the end of Section 2 it is possible to lift Theorem 15 to also deal
with generalised Hamming weights. Recall that these parameters are important in
the analysis of the wiretap channel of type II as well as in the analysis of secret
sharing schemes based on coding theory, see [25], [17] and [16]. In the following
definition note that d1 corresponds to the minimum distance.

Definition 34. Let C ⊆ Fnq be a code of dimension k. For t = 1, . . . , k the tth
generalised Hamming weight is

dt(C) = min{#SuppD | D is a subspace of C of dimension t}.

Here, SuppD means the entries for which some word in D is different from zero.

We start with an example that illustrates the idea in our generalisation of
Theorem 15.

Example 10. This is a continuation of Example 2 where we considered I = 〈X4 +
X2 +X−Y 6−Y 5−Y 3〉 ⊆ F8[X,Y ] and the weighted degree lexicographic ordering
≺w (Definition 10) given by X = X1, Y = X2, w(X) = 3 and w(Y ) = 2. The
reduced Gröbner basis for I8 with respect to ≺w equals G = {X4+X2+X−Y 6−Y 5−
Y 3, Y 8 − Y }. We shall estimate #SuppD for D = SpanF8

{ev(A+ I8), ev(B + I8)}
where

A = a11 + a2Y + a3X + a4Y
2 + a5XY + a6Y

3 + a7X
2 +

a8XY
2 + a9Y

4 + a10X
2Y + a11XY

3 + a12X
3 + a13Y

5 +

a14X
2Y 2 + a15XY

4 + a16X
3Y,

B = b11 + b2Y + b3X + b4Y
2 + b5XY + b6Y

3 + b7X
2 +

b8XY
2 + b9Y

4 + b10X
2Y + b11XY

3 + b12X
3.

Here, ai ∈ F8, i = 1, . . . , 16, bi ∈ F8, i = 1, . . . , 12 and a16 6= 0 and b12 6= 0.
Depending on a15 being equal to zero or not, A has in its support either one or two
monomials of highest weight which is 11. Similarly, depending on b11 being zero or
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not, B has in its support either one or two monomials of highest weight which is
9.

Case (1,1): Assume a15 6= 0, b11 6= 0. We have lm(A) = X3Y , lm(A ·X rem G) =

X2Y 4, lm(B) = X3 and lm(B ·X rem G) = X2Y 3. Hence,

∆≺w(I8 + 〈A,B〉) ⊆ {XαY β | 0 ≤ α < 3, 0 ≤ β < 8 and if
α = 2 then β < 3}

and therefore by Corollary 4 (see also the proof of Theorem 9)

#SuppD = n−#∆≺w(I8 + 〈A,B〉) ≥ 32− 19 = 13.

Case (2,1): Assume a15 = 0, b11 6= 0. We have lm(A) = X3Y , lm(A ·X rem G) =

Y 7, lm(B) = X3 and lm(B ·X rem G) = X2Y 3. Hence,

∆≺w(I8 + 〈A,B〉) ⊆ {XαY β | 0 ≤ α < 3, 0 ≤ β < 7 and if
α = 2 then β < 3}

and therefore

#SuppD = n−#∆≺w(I8 + 〈A,B〉) ≥ 32− 17 = 15.

Case (1,2): Assume a15 6= 0, b11 = 0. We have lm(A) = X3Y , lm(A ·X rem G) =

X2Y 4, lm(B) = X3 and lm(B ·X rem G) = Y 6. Hence,

∆≺w(I8 + 〈A,B〉) ⊆ {XαY β | 0 ≤ α < 3, 0 ≤ β < 6 and if
α = 2 then β < 4}

and therefore

#SuppD = n−#∆≺w(I8 + 〈A,B〉) ≥ 32− 16 = 16.

Case (2,2): Assume a15 = b11 = 0. We have lm(A) = X3Y , lm(A·X rem G) = Y 7,
lm(B) = X3 and lm(B ·X rem G) = Y 6. Hence,

∆≺w(I8 + 〈A,B〉) ⊆ {XαY β | 0 ≤ α < 3, 0 ≤ β < 6}

and therefore by Corollary 4 (see also the proof of Theorem 9)

#SuppD = n−#∆≺w(I8 + 〈A,B〉) ≥ 32− 18 = 14.

In conclusion #SuppD ≥ min{13, 15, 16, 14} = 13. Note that without the four
different sets of assumptions on a15 and b11 we would only be able to establish

∆≺w(I8 + 〈A,B〉) ⊆ {XαY β | 0 ≤ α < 3, 0 ≤ β < 8

and if α = 2 then β < 6}

from which we would only be able to conclude #SuppD ≥ 32− 22 = 10.
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Following the idea in Example 10 we reformulate Theorem 15 to deal with the
second generalised Hamming weight. From this the reader can understand how to
treat any generalised Hamming weight.

Proposition 35. Let D ⊆ Fnq be a subspace of dimension 2. Write D = SpanFq{
ev(
∑i1
s=0 asMs), ev(

∑i2
s=0 bsMs)}. Here, ∆≺(Iq) = {M1, . . . ,Mn}, as ∈ Fq, bs ∈ Fq

with ai1 6= 0 and bi2 6= 0. Without loss of generality we may assume i1 6= i2. Let
v1 and v2 be integers satisfying 0 ≤ v1 < i1 and 0 ≤ v2 < i2. We have

#Supp(D) ≥ min{#L(z1, z2) | 1 ≤ z1 ≤ v1 + 1, 1 ≤ z2 ≤ v2 + 1}.

The above sets are defined as follows: For z1 = 1, . . . , v1 and z2 = 1, . . . , v2 we
have

L(z1, z2) ={
K ∈ ∆≺(Iq) | ∃Mj ∈ ∆≺(Iq) such that for some u ∈ {1, 2}

(Miu ,Mj) is SOWB with respect to {1, . . . , iu − zu, iu}
and lm(MiuMj rem G) = K

or
(Miu−zu ,Mj) is SOWB with respect to {1, . . . , iu − zu, iu}
and lm(Miu−zuMj rem G) = K

}
,

For z = 1, . . . , v1

L(z, v2 + 1) ={
K ∈ ∆≺(Iq) | ∃Mj ∈ ∆≺(Iq) such that either

(Mi1 ,Mj) is SOWB with respect to {1, . . . , i1 − z, i1}
and lm(Mi1Mj rem G) = K

or
(Mi1−z,Mj) is SOWB with respect to {1, . . . , i1 − z, i1}
and lm(Mi1−zMj rem G) = K

or
(Mi2 ,Mj) is SOWB with respect to {1, . . . , i2 − v2 − 1}
and lm(Mi2Mj rem G) = K

}
.

For z = 1, . . . , v2, L(v1 + 1, z) is defined in a similar way. Finally

L(v1 + 1, v2 + 1) ={
K ∈ ∆≺(Iq) | ∃Mj ∈ ∆≺(Iq) such that (Miu ,Mj) is SOWB
with respect to {1, . . . , iu − vu − 1} and lm(MiuMj rem G) = K

for some u ∈ {1, 2}
}
.

The second generalised Hamming weight of C(I, L) is found by repeating the above
process for all possible choices of i1 < i2 corresponding to the cases that D ⊆
C(I, L).
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Proof. The proof is a straight forward enhancement of the proof for Theorem 15.

For the choice of v1 and v2 in Proposition 35 we refer to Remark 16. Admittedly,
the proposition is rather technical. Nevertheless even its generalisation to higher
generalised Hamming weights can often be quite manageable. We shall comment
further on this in Section 9.
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Chapter 7

Formulation at linear code
level

As mentioned in the introduction the Feng-Rao bound for primary codes in its
most general form is a bound on any linear code described by means of a generator
matrix. All other versions of the bound, such as the order bound for primary
codes and the Feng-Rao bound for primary affine variety codes, can be viewed as
corollaries to it. Below we reformulate the new bound in Theorem 15 at the linear
code level.
Let n be a positive integer and q a prime power. Consider a fixed ordered triple
(U ,V,W) where U = {~u1, . . . , ~un}, V = {~v1, . . . , ~vn}, and W = {~w1, . . . , ~wn} are
three (possibly different) bases for Fnq as a vector space over Fq. We shall always
denote by I the set {1, . . . , n}.

Definition 36. Consider a basis A = {~a1, . . . ,~an} for Fnq as a vector space over
Fq. We define a function ρ̄A : Fnq → {0, 1, . . . , n} as follows. For ~c ∈ Fq\{~0} we
let ρ̄A(~c) = i if ~c ∈ SpanFq{~a1, . . . ,~ai}\ SpanFq{~a1, . . . ,~ai−1}. Here, we used the
notion SpanFq ∅ = {~0}. Finally, we let ρ̄A(~0) = 0.

The component wise product plays a crucial role in the linear code enhancement
of Theorem 15.

Definition 37. The component wise product of two vectors ~u and ~v in Fnq is defined
by (u1, . . . , un) ∗ (v1, . . . , vn) = (u1v1, . . . , unvn).

Definition 38. Let (U ,V,W) and I be as above. Consider I ′ ⊆ I. An ordered
pair (i, j) ⊆ I ′×I is said to be one-way well-behaving (OWB) with respect to I ′ if
ρ̄W(~ui′ ∗ ~vj) < ρ̄W(~ui ∗ ~vj) holds for all i′ ∈ I ′ with i′ < i.

The following theorem is a first generalisation of the Feng-Rao bound for pri-
mary codes. The generalisation compared to the usual Feng-Rao bound [1, 12] is
that we allow I ′ to be different from {1, . . . ,#I ′}. This is in the spirit of Section 5.
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Theorem 39. Consider ~c =
∑t
s=1 as~uis with as ∈ Fq, s = 1, . . . , t, at 6= 0 and

i1 < · · · < it. We have

wH(~c) ≥ #
{
l ∈ I | ∃j ∈ I such that ρ̄W(~uit ∗ ~vj) = l,

(it, j) is OWB with respect to {i1, . . . , it}
}
.

(7.1)

Proof. Let l1 < · · · < lσ be the indexes l counted in (7.1). Denote by j1, . . . , jσ the
corresponding j-values from (7.1). By assumption ~c ∗ ~vj1 , . . . ,~c ∗ ~vjσ are linearly
independent and therefore

SpanFq{~c ∗ ~vj1 , . . . ,~c ∗ ~vjσ} = ~c ∗ SpanFq{~vj1 , . . . , ~vjσ}

is a vector space of dimension σ. The theorem follows from the fact that ~c ∗ Fnq is
a vector space of dimension wH(~c) containing the above space.

A slight modification of Definition 38 and the above proof allows for further
improvements.

Definition 40. Let I ′ ⊆ I. A pair (i, j) ∈ I ′ × I is called strongly one-way
well-behaving (SOWB) with respect to I ′ if ρ̄W(~ui′ ∗~vj) < ρ̄W(~ui ∗~vj) holds for all
i′ ∈ I ′\{i}.

The following theorem is the linear code interpretation of Theorem 15. Besides
working for a larger class of codes, it is slightly stronger in that we formulate it in
such a way that it supports the technique explained in Section 5. Concretely, what
makes it stronger than Theorem 15 is the presence of the set Î.

Theorem 41. Consider a non-zero codeword ~c =
∑i
t=1 at~ut, at ∈ Fq for t =

1, . . . , i, ai 6= 0. Let v be an integer 0 ≤ v < i. Assume that for some set
Î ⊆ {1, . . . , i− 1} we know a priori that ax = 0 when x ∈ Î. Let z1 < · · · < zs be
the numbers in {z ∈ {i− v, . . . , i− 1} | z /∈ Î}. Write I∗ = {z ∈ {1, . . . , i− v− 1} |
z /∈ Î}. We have wH(~c) ≥ σ̄(i, v) where σ̄(i, v) = min{#L′(1), . . . ,#L′(s + 1)}.
Here for t = 1, . . . , s we have

L′(t) =
{
l ∈ I | ∃z ∈ {zs−t+1, i} and j ∈ I such that
ρ̄W(~uz ∗ ~vj) = l, (z, j) is SOWB with respect to
I∗ ∪ {z1, . . . , zs−t+1, i}

}
,

and

L′(s+ 1) =
{
l ∈ I | ∃j ∈ I such that ρ̄W(~ui ∗ ~vj) = l

(i, j) is OWB with respect to I∗ ∪ {i}
}
.

To establish a lower bound on the minimum distance of a code C we choose for
each i ∈ ρ̄U (C) a corresponding integer vi, 0 ≤ vi < i. The minimum distance is
at least min{σ̄(i, vi) | i ∈ ρ̄U (C)}.

Proof. The proof is a direct translation of the proof of Theorem 15.
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Remark 42. For v = 0 Theorem 41 reduces to Theorem 39. For higher values of
v Theorem 41 is at least as strong as Theorem 39 and sometimes stronger. In the
same way as Theorem 15 was lifted in Section 6 to deal with generalised Hamming
weights one can lift Theorem 39 and Theorem 41.

Remark 43. The order bound applies when the code construction is supported by
an algebra with an order function (see [15, 11, 1]). Such an algebra is known as
an order domain. The idea behind the bound is to detect OWB pairs by studying
the behaviour of the order function. The method, however, does not always find all
of them.
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Chapter 8

A related bound for dual codes

In the recent paper [9] we presented a new bound for dual codes. This bound is
an improvement to the Feng-Rao bound for such codes as well as an improvement
to the advisory bound from [24]. The new bound of the present paper can be
viewed as a natural counter part to the bound from [9], the one bound dealing with
primary codes and the other with dual codes.

Definition 44. Consider an ordered triple of bases (U ,V,W) for Fnq and I as in
Section 7. We define m : Fnq \{~0} → I by m(~c) = l if l is the smallest number in
I for which ~c · ~wl 6= 0. (Here, and in the following the symbol · means the usual
inner product).

Definition 45. Consider numbers 1 ≤ l, l + 1, . . . , l + g ≤ n. A set I ′ ⊆ I is said
to have the µ-property with respect to l with exception {l + 1, . . . , l + g} if for all
i ∈ I ′ a j ∈ I exists such that

(1a) ρ̄W(~ui ∗ ~vj) = l, and

(1b) for all i′ ∈ I ′ with i′ < i either ρ̄W(~ui′ ∗~vj) < l or ρ̄W(~ui′ ∗~vj) ∈ {l+1, . . . , l+
g} holds.

Assume next that l + g + 1 ≤ n. The set I ′ is said to have the relaxed µ-property
with respect to (l, l+ g+ 1) with exception {l+ 1, . . . , l+ g} if for all i ∈ I ′ a j ∈ I
exists such that either conditions (1a) and (1b) above hold or

(2a) ρ̄W(~ui ∗ ~vj) = l + g + 1, and

(2b) (i, j) is OWB with respect to I ′, and
(2c) no i′ ∈ I ′ with i′ < i satisfies ρ̄W(~ui′ ∗ ~vj) = l.

The new bound from [9, Th. 19] reads:

Theorem 46. Consider a non-zero codeword ~c and let l = m(~c). Choose a non-
negative integer v such that l + v ≤ n. Assume that for some indexes x ∈ {l +
1, . . . , l + v} we know a priori that ~c · ~wx = 0. Let l′1 < · · · < l′s be the remaining
indexes from {l + 1, . . . , l + v}. Consider the sets I ′0, I ′1, . . . , I ′s such that:
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• I ′0 has the µ-property with respect to l with exception {l + 1, . . . , l + v}.

• For i = 1, . . . , s, I ′i has the relaxed µ-property with respect to (l, l′i) with
exception {l + 1, . . . , l′i − 1}.

We have
wH(~c) ≥ min{#I ′0,#I ′1, . . . ,#I ′s}. (8.1)

To establish a lower bound on the minimum distance of a code C we repeat the
above process for each l ∈ m(C). For each such l we choose a corresponding v, we
determine sets I ′i as above and we calculate the right side of (8.1). The smallest
value found when l runs through m(C) constitutes a lower bound on the minimum
distance.

The sets I ′i and the use of Theorem 46 are illustrated in the next section where
we discuss affine variety codes defined from ideals Iq satisfying that ∆≺w(Iq) is a
box.

If we compare Theorem 46 with Theorem 41 we see that to some extent they
have the same flavor. Besides that one deals with dual codes and the other with
primary codes another difference is that Theorem 46 has the freedom to choose
appropriate sets I ′0, . . . , I ′s whereas the sets L′(1), . . . ,L′(s+ 1) in Theorem 41 are
unique. In [9] it was also shown how to lift Theorem 46 to deal with generalised
Hamming weights. Similar remarks as above hold for the two bounds when applied
to such parameters.
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Chapter 9

A comparison of the new
bounds for primary and dual
codes

Recall that it was shown in [10] how the Feng-Rao bound for primary codes and the
Feng-Rao bound for dual codes can be viewed as consequences of each other. This
result holds when the bound is equipped with one of the well-behaving properties
WB or OWB. Regarding the case where WWB is used a possible connection is
unknown. In a similar fashion as the proof in [10] breaks down if one uses WWB
it also breaks down when one tries to prove a correspondence between Theorem 41
and Theorem 46. We leave it as an open research problem to decide if a general
connection exists or not.
In Section 4 we analysed the parameters of primary affine variety codes coming
from optimal generalised Cab polynomials. Using the method from Section 8 one
can make a similar analysis for the corresponding dual codes producing similar
code parameters. As an alternative, below we explain how to derive this result
directly from what we have already shown regarding primary codes from optimal
generalised Cab polynomials.
Recall that for optimal generalised Cab polynomials ∆≺w(Iq) is a box:

∆≺w(Iq) = {M1, . . . ,Mn} = {Xα1Y α2 | 0 ≤ α1 < a, 0 ≤ α2 < q}.
This fact gives us the following crucial implication (as usual we assume M1 ≺w
· · · ≺w Mn):

Mi = Xα1Y α2 ⇒Mn−i+1 = Xa−1−α1Y q−1−α2 , for i = 1, . . . , n. (9.1)

Consider codewords ~c = ev
(∑i

s=1 asMs + Iq
)
, as ∈ Fq, ai 6= 0, and ~c′ ∈ Fnq

such that m(~c′) = n − i + 1. Let v be an integer, 0 ≤ v < i. Recall that in
Section 4 we determined L(u), u = 1, . . . , v + 1. If we use Theorem 46 with
{l + 1, . . . , l + v} = {l′1, . . . , l′s} (no a priori knowledge) then we can choose

I ′0 = {n− l + 1 |Ml ∈ L(v + 1)}
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and for u = 1, . . . , v
I ′u = {n− l + 1 |Ml ∈ L(u)}.

For S ⊆ {1, . . . , n} define S̄ = {1, . . . , n}\{n− s+ 1 | s ∈ S}. Consider

L = SpanFq{ev(Ms + Iq) | s ∈ S},

L̄ = SpanFq{ev(Ms + Iq) | s ∈ S̄}.
As #I ′0 = #L(v + 1) and for u = 1, . . . , v, #I ′u = #L(u) we conclude that The-
orem 46 produces the same estimate for the minimum distance of C⊥(I, L̄) as
Theorem 15 produces for the minimum distance of C(I, L). However, we do not in
general have C(I, L) = C⊥(I, L̄) and therefore the above analysis does not imply
that Theorem 15 is a consequence of Theorem 46 even in the case of optimal gen-
eralised Cab polynomials.
The above correspondence regarding the minimum distance immediately carries
over to the generalised Hamming weights. In [9, Sec. 4] we implemented the en-
hancement of Theorem 46 to generalised Hamming weights for a couple of concrete
dual affine variety codes coming from optimal generalised Cab polynomials. As a
consequence of (9.1) the estimates found in [9, Sec. 4] for C⊥(I, L̄) also hold for
C(I, L). This demonstrates the usefulness of the method described in Section 6.

We conclude the section by demonstrating that d
(
C(I, L)

)
= d
(
C⊥(I, L̄)

)
does

not hold for all generalised Cab polynomials.

Example 11. In this example we consider the generalised Cab polynomial F (X,Y ) =
G(X)−H(Y ) ∈ F32[X,Y ] where G(X) = X20+X18+X10+X9+X5 and H(Y ) =
Y 26 +Y 22 +Y 21 +Y 13 +Y 11. Observe that both G and H are (F32,F2)-polynomials
and that G satisfies the condition in Proposition 26 ensuring that for each η ∈ F2

there exists exactly 24 = 16 γ ∈ F32 such that G(γ) = η. In particular F (X,Y )
has exactly 512 zeros in F32. As a = degG > 16 {F (X,Y ), X32 − X,Y 32 − Y }
cannot be a Gröbner basis with respect to ≺w (it would violate the footprint bound,
Corollary 4). Applying Buchberger’s algorithm we find a Gröbner basis and from
that the corresponding footprint

∆≺w(I32) = {Xα1Xα2 | 0 ≤ α1 < 12, 0 ≤ α2 < 32}
∪ {Xα1Xα2 | 12 ≤ α1 < 20, 0 ≤ α2 < 16}.

Recall the improved construction Ẽimp(δ) of primary affine variety codes as intro-
duced in Definition 17. In a similar way, as Theorem 15 gives rise to the above
Feng-Rao style improved primary codes, Theorem 46 gives rise to improved dual
codes. These codes were named C̃fim(δ) in [9, Rem. 20]. In a computer experi-
ment we calculated the parameters of these codes. In Figure 9.1 we plot the derived
relative parameters. As is seen for some designed distances δ, Ẽimp(δ) has the high-
est dimension. For other designed distances δ, C̃fim(δ) is of highest dimension.
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Figure 9.1: Improved codes from Example 11. A ◦ corresponds to Ẽimp(δ), and an
∗ corresponds to C̃fim(δ).
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Chapter 10

Conclusion

In this paper we proposed a new bound for the minimum distance and the gen-
eralised Hamming weights of general linear code for which a generator matrix is
known. We demonstrated the usefulness of our bound in the case of affine variety
codes where only the first of the two order domain conditions is satisfied. For this
purpose we introduced the concept of optimal generalised Cab polynomials and we
derived closed formula expressions for the corresponding code words. We leave
it for further research to establish closed formula expressions for other families of
ideals where only the first order domain condition is satisfied. We touched upon
the connection to a bound for dual codes introduced in the recent paper [9], but
leave an investigation of a possible general relation between the two bounds for fur-
ther research. It is an interesting question if there exist examples where our new
method improves on the Feng-Rao bound for one-point algebraic geometric codes
(the case where both order domain conditions are satisfied). This would require
that we do not choose v as in Remark 16 and that we make extensive use of the
polynomials Xq

i − Xi. Also this question is left for further research. The usual
Feng-Rao bound for primary codes comes with a decoding algorithm that corrects
up to half the estimated minimum distance [10]. This result holds when the bound
is equipped with the well-behaving property WB. For the case of WWB or OWB
no decoding algorithm is known. Finding a decoding algorithm that corrects up
to half the value guaranteed by Theorem 15 would impose the missing decoding
algorithms mentioned above.
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Abstract

Salazar, Dunn and Graham in [16] presented an improved Feng-Rao bound for the
minimum distance of dual codes. In this work we take the improvement a step
further. Both the original bound by Salazar et. al., as well as our improvement are
lifted so that they deal with generalized Hamming weights. We also demonstrate
the advantage of working with one-way well-behaving pairs rather than weakly
well-behaving or well-behaving pairs.
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Chapter 1

Introduction

The celebrated Feng-Rao bound for the minimum distance of dual codes [2, 3]
was originally presented in a language close to that of affine variety codes [4]. A
more general result was derived by formulating the bound at the level of general
linear codes [15, 14, 13, 7]. Among the general linear code formulations the weak-
est version uses one basis for Fnq and the concept of well-behaving pairs (WB).
The stronger versions use two or even three bases and the concept of weakly well-
behaving (WWB) or even one-way well-behaving (OWB). The strong linear code
formulation is the most general of all versions of the Feng-Rao bound in the sense
that all other formulations, including the order bound [9], can be viewed as corol-
laries to it.

In [16] Salazar, Dunn and Graham presented a clever improvement to the Feng-
Rao bound for the minimum distance of dual codes which they name the advisory
bound [16, Def. 40]. Their exposition uses a language close to that of Feng and
Rao’s original papers. In the present paper we start by giving a general linear code
enhancement of their bound and we lift it to deal with generalized Hamming weights
improving upon the usual Feng-Rao bound for generalized Hamming weights of dual
codes [8, 7]. We remind the reader that generalized Hamming weights among other
things are relevant for the analysis of wiretap channels of type II [17, 12] and secret
sharing schemes based on error correcting codes [10]. Our proof demonstrates that
the advisory bound is a consequence of a lemma from which further improvements
can be derived. These improvements are investigated in detail and are formulated in
a separate bound. The new bound is then lifted to deal with generalized Hamming
weights. Our exposition involves as a main ingredient a relaxation of the concept
of OWB.

The paper [16] describes two families of affine variety codes for which the ad-
visory bound is sometimes strictly better than the Feng-Rao bound. The first
family [16, Sec. 3.1] is related to a curve over F8. The second family [16, Sec. 3.2]
relates to a surface over F4. In Section 4 we shall give a thorough treatment of the
curve from [16, Sec. 3.1] and a related curve over F27. As it shall be demonstrated
for these curves sometimes the new bound produces much better results than the
advisory bound. Also it is demonstrated for the first time in the literature that
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the Feng-Rao bound equipped with OWB can sometimes be much better than the
same bound equipped with WWB. We do not treat the surface from [16, Sec. 3.2]
in the present paper. This is due to the fact that it is more natural to treat the
corresponding quotient ring as an order domain with weights in N2

0 [6, 1]. Doing
so, one finds much better code parameters by applying the usual Feng-Rao bound
than what was produced in [16, Sec. 3.2] by the advisory bound. It is beyond the
scope of the present paper to give the details.
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Chapter 2

Enhancements of the
advisory bound

To explain better what is the essence of Salazar, Dunn, and Graham’s method,
below we explain it at the level of general linear codes. We also extend their
method to deal with generalized Hamming weights.

Let n be a positive integer and q a prime power. Throughout the following
two sections we consider a fixed ordered triple (U ,V,W) where U = {~u1, . . . , ~un},
V = {~v1, . . . , ~vn}, andW = {~w1, . . . , ~wn} are three (possibly different) bases for Fnq
as a vector space over Fq. By I we shall always mean the set {1, . . . , n}.

Definition 1. Let the function ρ̄W : Fnq → {0, 1, . . . , n} be given as follows. For

~c 6= ~0 we let ρ̄W(~c) = i if ~c ∈ Span{~w1, . . . , ~wi}\ Span{~w1, . . . , ~wi−1}. Here, we
used the notion Span ∅ = {~0}. Finally, we let ρ̄W(~0) = 0.

The following two concepts play a crucial role in our exposition.

Definition 2. The component wise product of two vectors ~u and ~v in Fnq is defined
by (u1, . . . , un) ∗ (v1, . . . , vn) = (u1v1, . . . , unvn).

Definition 3. Let an ordered triple of bases (U ,V,W) be given. We define m :
Fnq \{~0} → I by m(~c) = l if l is the smallest number in I for which ~c · ~wl 6= 0.

We start by stating the Feng-Rao bound for the minimum distance of dual
codes.

Definition 4. Let (U ,V,W) and I be as above.

• An ordered pair (i, j) ∈ I × I is said to be well-behaving (WB) if ρ̄W(~ui′ ∗
~vj′) < ρ̄W(~ui ∗ ~vj) holds for all i′ ≤ i, j′ ≤ j with (i′, j′) 6= (i, j).

• Less restrictive (i, j) ∈ I × I is said to be weakly well-behaving (WWB) if
ρ̄W(~ui′ ∗ ~vj) < ρ̄W(~ui ∗ ~vj) and ρ̄W(~ui ∗ ~vj′) < ρ̄W(~ui ∗ ~vj) hold for all i′ < i
and j′ < j.
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• Even less restrictive (i, j) ∈ I×I is said to be one-way well-behaving (OWB)
if ρ̄W(~ui′ ∗ ~vj) < ρ̄W(~ui ∗ ~vj) holds for all i′ < i.

The usual Feng-Rao bound for the minimum distance of dual codes reads.

Theorem 5. For ~c ∈ Fnq \{~0} write l = m(~c). The Hamming weight of ~c satisfies

wH(~c) ≥ #{(i, j) ∈ I × I | ρ̄W(~ui ∗ ~vj) = l

and (i, j) is OWB} (2.1)

≥ #{(i, j) ∈ I × I | ρ̄W(~ui ∗ ~vj) = l

and (i, j) is WWB} (2.2)

≥ #{(i, j) ∈ I × I | ρ̄W(~ui ∗ ~vj) = l

and (i, j) is WB}. (2.3)

From [13, Ex. 2.6] and [16, Sec. 3.1] we have examples where (2.2) are stronger
than (2.3). Section 4 demonstrates that also (2.1) can be stronger than (2.2). This
fact was not known before.

Although [16] considered only WB and WWB we shall state our enhancement
of the advisory bound using OWB. Doing so we get the strongest possible version
which in addition requires the minimal number of calculations.

Definition 6. Let (U ,V,W) and I be as above, and consider a subset I ′ =
{i1, . . . , is} of I with ia 6= ib for a 6= b. An ordered pair (i, j) in I ′ × I is said to
be one-way well-behaving (OWB) with respect to I ′ if ρ̄W(~ui′ ∗ ~vj) < ρ̄W(~ui ∗ ~vj)
holds for all i′ ∈ I ′ with i′ < i.
We say that I ′ has the µ-property with respect to l if for all i ∈ I ′ there exists a
j ∈ I such that

1. (i, j) is OWB with respect to I ′,

2. ρ̄W(~ui ∗ ~vj) = l.

The following theorem is an enhancement of the advisory bound from [16, Th.
48].

Theorem 7. Let ~c ∈ Fnq \{~0}. We have

wH(~c) ≥ max{#I ′ | I ′ ⊆ I, I ′ has the µ-property

with respect to m(~c)}.

Proof. The theorem is a special case of Theorem 14 below.

Remark 8. Consider the code C(s) = {~c ∈ Fnq | ~c · ~w1 = · · · = ~c · ~ws = 0}.
To estimate the minimum distance of C(s) we calculate the minimal value from
Theorem 7 when m(~c) runs through all possible numbers in {s+ 1, . . . , n}. As an
alternative to C(s) we get an improved code construction by using as parity checks
only those ~wl, l ∈ I for which Theorem 7 with m(~c) = l produces values less than

δ. The minimum distance of this code, which we denote by C̃adv(δ), is at least δ.
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We next consider the generalized Hamming weights.

Definition 9. Let C ⊆ Fnq be a code of dimension k. For t = 1, . . . , k the tth
generalized Hamming weight is

dt(C) = min{#SuppD | D is a subspace of C of dimension t}.

Clearly, d1 is nothing but the usual minimum distance. To estimate generalized
Hamming weights we first need to extend Definition 6 and Definition 3.

Definition 10. Consider 1 ≤ l1 < · · · < lt ≤ n and let I ′ ⊆ I. We will say that I ′
has the µ-property with respect to {l1, . . . , lt} if for all i ∈ I ′ there exists a j ∈ I
such that

• (i, j) is OWB with respect to I ′,
• ρ̄W(~ui ∗ ~vj) ∈ {l1, . . . , lt}.

Definition 11. Let D ⊆ Fnq be a subspace. We define

m(D) =
{
m(~c) | ~c ∈ D\{~0}

}
.

The following proposition is easily proved.

Proposition 12. If D ⊆ Fnq is a subspace of dimension t then #m(D) = t.

Our enhancement of the advisory bound is based on the following lemma from
which we shall also in the next section derive an even better bound.

Lemma 13. Consider a subspace D ⊆ Fnq . Let U ⊆ Fnq be a subspace of dimension
δ such that for all non-zero words ~u ∈ U for some ~vj ∈ V and some ~c ∈ D we have
(~u ∗ ~vj) · ~c 6= 0 then |SuppD| ≥ δ.
Proof. Aiming for a contradiction we assume that the above criteria holds true,
but that |SuppD| < δ. Without loss of generality we write
SuppD = {1, . . . , g}. Clearly g ≤ δ − 1. Consider a matrix whose rows constitute
a basis for U . After having performed Gaussian elimination we arrive at a matrix
whose last row, say ~u′, starts with δ − 1 zeros. Therefore ~u′ ∗ ~c = ~0 holds for all
~c ∈ D. On the other hand by assumption for some particular word ~c ∈ D we have
(~u′ ∗ ~vj) · ~c 6= 0⇒ ~u′ ∗ ~c 6= ~0. This is a contradiction.

Theorem 14. Consider a subspace D ⊂ Fnq . We have

#SuppD ≥ max{#I ′ | I ′ ⊆ I, I ′ has the

µ-property with respect to m(D)}.

Proof. Let I ′ = {i1, . . . , iδ}, ia 6= ib for a 6= b, be a set which has the µ-property
with respect to m(D). Consider

∑s
r=1 αr~uir , 1 ≤ s ≤ δ with αr ∈ Fq, αs 6= 0. By

assumption there exists a j ∈ I such that (is, j) is OWB with respect to I ′ and
such that ρ̄W(~uis ∗ ~vj) ∈ m(D). Therefore, ρ̄W

((∑s
r=1 αr~uir

)
∗ ~vj

)
∈ m(D) and

consequently for some ~c ∈ D we have
(∑s

r=1 αr~uir
)
∗~vj
)
·~c 6= 0. The theorem now

follows from Lemma 13.
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Remark 15. Let {~d1, . . . , ~dn−k} ⊆ Fnq be a linearly independent set and consider

the code C = {~c ∈ Fnq | ~c · ~d1 = · · · = ~c · ~dn−k = 0}. Without loss of generality

we may assume that ρ̄W(~d1) < · · · < ρ̄W(~dn−k) holds, say these numbers are
l1 < · · · < ln−k. It can be proven that m(C) = I\{l1, . . . , ln−k}.

Combining Theorem 14 and Remark 15 we get:

Theorem 16. Let C = {~c ∈ Fnq | ~c · ~d1 = · · · = ~c · ~dn−k = 0}, where {~d1, . . . , ~dn−k}
and {l1, . . . , ln−k} are as in Remark 15. For t = 1, . . . , k the tth generalized Ham-
ming weight of C satisfies

dt(C) ≥ min

{
max

{
#I′ | I′ ⊆ I, I′ has the µ-property

with respect to {m1, . . . ,mt}
}
| m1 < · · · < mt,

ms ∈ I\{l1, . . . , ln−k} for s = 1, . . . , t

}
.

In Section 4 we illustrate with a couple of examples that Theorem 16 is opera-
tional even though it does appear technical at a first glance.

In a straight forward manner one can enhance Theorem 16 to also deal with
relative generalized Hamming weights (See [12, 11]). This bound should be com-
pared with the naive bound, that the relative generalized Hamming weight is always
at least as large as the estimate on the generalized Hamming weight from Theo-
rem 16. It should also be compared to the Feng-Rao bound for relative generalized
Hamming weights. As we have no examples where the mentioned enhancement of
Theorem 16 produces results which are simultaneously better than the above men-
tioned two alternatives and as at the same time the enhancement of Theorem 16
is rather technical we do not give the details here.
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Chapter 3

Further improvements

In the following we will strengthen the results from the previous section. We start
by explaining how to improve upon Theorem 7. Given ~c ∈ Fnq \{~0}, consider the
corresponding number m(~c) = min{l | ~c · ~wl 6= 0} and a set I ′ ⊆ I which has the
µ-property with respect to m(~c). Theorem 7 relies on the observation that if for
i ∈ I ′, j ∈ I is the corresponding number such that ρ̄W(~ui ∗ ~vj) = m(~c) and (i, j)
is OWB with respect to I ′ then

~c ·
(( ∑

i′ ∈ I ′
i′ ≤ i

αi′~ui′
)
∗ ~vj

)
6= 0

holds whenever αi′ ∈ Fq, αi 6= 0. Note that the above argument uses no information
regarding the status of ~c · ~wm(~c)+1, . . . ,~c · ~wn. Indeed, if the only information we
have on ~c is m(~c) then these numbers can take on all possible combinations of
values from Fq.

Remark 17. Let C be as in Remark 15 with

ρ̄W(~d1) = l1 < · · · < ρ̄W(~dn−k) = ln−k. (3.1)

Consider a general codeword ~c ∈ C\{~0}. If the only thing we know about ~d1, . . . , ~dn−k
is (3.1) then we have no information regarding ~c · ~wl1 , . . . ,~c · ~wln−k

. If however,

as the other extreme, we know that ~d1 = ~wl1 , . . . ,
~dn−k = ~wln−k

then we have
~c · ~wl1 = · · · = ~c · ~wln−k

= 0.

Write l = m(~c) and consider the indexes l + 1, . . . , l + v ≤ n. Here, v is
some positive integer. For some of the above indexes x we may a priori know that
~c· ~wx = 0 (Remark 17). Let l′1, . . . , l

′
s be the remaining indexes from {l+1, . . . , l+v}.

The idea in our improvement to Theorem 7 is to consider separately the following
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s+ 1 cases:

Case 0: ~c · ~wl′1 = · · · = ~c · ~wl′s = 0.
Case 1: ~c · ~wl′1 6= 0.
Case 2: ~c · ~wl′1 = 0,~c · ~wl′2 6= 0.

...
Case s: ~c · ~wl′1 = · · · = ~c · ~wl′s−1

= 0,~c · ~wl′s 6= 0.

In each case z we establish a set I ′z ⊆ I such that for every non-zero linear combi-
nation

∑
i∈I′z αi~ui, αi ∈ Fq, a ~vj ∈ V exists with

~c ·
((∑

i∈I′z

αi~ui
)
∗ ~vj

)
6= 0.

From Lemma 13 it then follows that wH(~c) ≥ min{#I ′0, . . . ,#I ′s}. The following
definition is what we need to deal with the above set-up. We should stress that
although Definition 18 may appear long and technical, it is often quite manageable.
This will be demonstrated in Section 4.

Definition 18. Consider the numbers 1 ≤ l, l + 1, . . . , l + g ≤ n. A set I ′ ⊆ I is
said to have the µ-property with respect to l with exception {l+ 1, . . . , l+ g} if for
all i ∈ I ′ there exists j ∈ I such that

(1a) ρ̄W(~ui ∗ ~vj) = l,

(1b) for all i′ ∈ I ′ with i′ < i one of the following conditions holds:

– ρ̄W(~ui′ ∗ ~vj) < l,

– ρ̄W(~ui′ ∗ ~vj) ∈ {l + 1, . . . , l + g}.

Assume next that l + g + 1 ≤ n. The set I ′ is said to have the relaxed µ-property
with respect to (l, l + g + 1) with exception {l + 1, . . . , l + g} if for all i ∈ I ′ there
exists j ∈ I such that either conditions (1a) and (1b) above hold or

(2a) ρ̄W(~ui ∗ ~vj) = l + g + 1,

(2b) (i, j) is OWB with respect to I ′,

(2c) no i′ ∈ I ′ with i′ < i satisfies ρ̄W(~ui′ ∗ ~vj) = l.

From the discussion above we arrive at the following improvement to Theorem 7.

Theorem 19. Consider a non-zero codeword ~c and let l = m(~c). Choose a non-
negative integer v such that l + v ≤ n. Assume that for some indexes x ∈ {l +
1, . . . , l + v} we know a priori that ~c · ~wx = 0. Let l′1 < · · · l′s be the remaining
indexes from {l + 1, . . . , l + v}. Consider the sets I ′0, I ′1, . . . , I ′s such that:

• I ′0 has the µ-property with respect to l with exception {l + 1, . . . , l + v}.
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• For i = 1, . . . , s, I ′i has the relaxed µ-property with respect to (l, l′i) with
exception {l + 1, . . . , l′i − 1}.

We have

wH(~c) ≥ min{#I ′0,#I ′1, . . . ,#I ′s}. (3.2)

To establish a lower bound on the minimum distance of a code C we repeat the
above process for each l ∈ m(C). For each such l we choose a corresponding v, we
determine sets I ′i as above and we calculate the right side of (3.2). The smallest
value found constitutes a lower bound on the minimum distance.

Remark 20. The results in Remark 8 also hold if we replace Theorem 7 with
Theorem 19. We shall denote the resulting improved codes by C̃fim(δ) (here, fim
stands for further improved).

Remark 21. Assume I ′ has the µ-property with respect to l. One possible choice
of sets I ′0, I ′1, . . . , I ′s ⊆ I in Theorem 19 would be to choose all of them to be equal
to I ′. It follows that Theorem 19 is indeed at least as strong as Theorem 7. The
above observation relates to the fact that Theorem 19 reduces to Theorem 7 when
v is chosen to be always equal to 0.

As shall be demonstrated later in the paper, Theorem 19 can sometimes be
much better than Theorem 7. For Theorem 19 to be operational we need a clever
method to choose for each l ∈ m(C) the corresponding number v. As shall be
clear form the examples in Section 4 for affine variety codes there is a very natural
way to do this. Another remark is that when the task is to estimate the minimum
distance of a fixed code, then we can set v equal to 0 for most values of l, reserving
non-zero values to those l for which Theorem 7 produces the smallest numbers.
These are the numbers that need to be improved.

In a similar way as Theorem 7 was enhanced to deal with generalized Hamming
weighs and relative generalized Hamming weights we can enhance Theorem 19.
The notation in Definition 18 being already involved we only illustrate how to deal
with the second generalized Hamming weight. From that description it should be
clear how to deal with higher weights.

Proposition 22. Let the notation be as in Theorem 19. Consider a subspace
D ⊆ C of dimension 2, say m(D) = {a, b}. Let va be the v corresponding to l = a.
Let a′1 < · · · < a′sa be the numbers l′1 < · · · < l′s corresponding to l = a. Analogously
for the case b. Referring to Definition 18, for α = 1, . . . , sa and β = 1, . . . , sb we
define subsets of I as follows:

• I ′′0,0 is a set such that for all i ∈ I ′′0,0 for an l ∈ {a, b} a j exists such that
(1a) and (1b) hold with g = va if l = a, and g = vb if l = b.

• I ′′α,0 is a set such that for all i ∈ I ′′α,0 a j exists such that one of the following
two conditions holds:

– Either (1a), (1b) or (2a), (2b), (2c) hold with l = a, g + 1 = a′α.

– (1a) and (1b) hold with l = b, g = vb.
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• I ′′0,β is defined similarly to I ′′α,0.

• I ′′α,β is a set such that for all i ∈ I ′′α,β an l ∈ {a, b} and a j ∈ I exist such
that either (1a), (1b) or (2a), (2b), (2c) hold. Here, g+ 1 = a′α if l = a, and
g + 1 = b′β if l = b.

The support of D is of size at least equal to the smallest cardinality of the above
sets. To establish a lower bound on the second generalized Hamming weight of a
code C we repeat the above process for each (a, b) ∈ m(C)×m(C) with a < b. The
smallest value found constitutes a lower bound on the second generalized Hamming
weight.

Applying in larger generality the method described in the above proposition
we derive lower bounds on any generalized Hamming weights of C. It is clear
that this method can be of much higher complexity than the method described
in Theorem 16. To lower the complexity we choose (referring to the case of the
second weight) most va and vb equal to zero, reserving non-zero values to those
(a, b) for which Theorem 16 produces low values. As shall be demonstrated in
the following section, Proposition 22 and its generalization to higher weights can
sometimes produce much better results than Theorem 16.

Similar results on the relative generalized Hamming weights as those mentioned
at the end of Section 2 holds for the method described above.
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Chapter 4

Examples

In this section we apply the advisory bound and the improved bound from Sec-
tion 3 to affine variety codes coming from two particular curves. The first curve
corresponds to [16, Sec. 3.1]. It is a plane curve over F8. The second curve is
the natural counterpart for the field F27. We shall need a couple of results from
Gröbner basis theory.

4.1 Some results from Gröbner basis theory

Let ≺ be a monomial ordering on the set of monomials in X1, . . . , Xm. Given
an ideal J ⊆ k[X1, . . . , Xm], where k is a field, the footprint ∆≺(J) is the set of
monomials that can not be found as leading monomial of any polynomial in J .
A Gröbner basis, by definition, is a generating set for J from which the footprint
can be easily read. More formally, {L1(X1, . . . , Xm), . . . , Ls(X1, . . . , Xm)} ⊆ J is
a Gröbner basis for J with respect to ≺ if for any F (X1, . . . , Xm) ∈ J for some i ∈
{1, . . . , s} we have lm(Li) | lm(F ). Recall that {M +J |M ∈ ∆≺(J)} is a basis for
the quotient ring k[X1, . . . , Xm]/J as a vector space over k. In the following we shall
assume that k = Fq and that J contains all the equations Xq

1 −X1, . . . , X
q
m−Xm,

in which case we write J = Iq. Thus the variety of Iq is finite. Let the variety
be {P1, . . . , Pn} and consider the evaluation map ev : Fq[X1, . . . , Xm]/Iq → Fnq
given by ev(F + Iq) = (F (P1), . . . , F (Pn)). It is well-known that this map is
a vector space isomorphism implying that n = #∆≺(Iq) holds. If we embark
the vector space Fnq with a second binary operation, namely the component wise
product from Definition 2 then it becomes an Fq-algebra. It is not difficult to
see that the map ev in this way becomes an isomorphism between Fq-algebras.
Hence, if we enumerate the elements of ∆≺(Iq) = {M1, . . . ,Mn} according to

≺ and define U = V = W = {~b1 = ev(M1 + Iq), . . . ,~bn = ev(Mn + Iq)} then
we can translate information on the algebraic structure of Fq[X1, . . . , Xm]/Iq into
information regarding the well-behaving properties as introduced in Definition 4,
6, 10, 18 and Proposition 22. We shall illustrate how to do this in the following.
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Y 7 XY 7 X2Y 7 X3Y 7

Y 6 XY 6 X2Y 6 X3Y 6

Y 5 XY 5 X2Y 5 X3Y 5

Y 4 XY 4 X2Y 4 X3Y 4

Y 3 XY 3 X2Y 3 X3Y 3

Y 2 XY 2 X2Y 2 X3Y 2

Y XY X2Y X3Y
1 X X2 X3

Monomials in ∆≺w

14 17 20 23
12 15 18 21
10 13 16 19
8 11 14 17
6 9 12 15
4 7 10 13
2 5 8 11
0 3 6 9

Corresponding weights

21 26 30 32
17 23 28 31
13 19 25 29
9 15 22 27
6 11 18 24
4 8 14 20
2 5 10 16
1 3 7 12

Indexing of W

Figure 4.1: The construction of W from ∆≺w
(I).

4.2 Codes from a curve over F8

In [16, Sec. 3.1] Salazar et. al. considered curves of the form

F8(X,Y ) = G8(X)−H8(Y ) ∈ F8[X,Y ]

where G8(X) is a polynomial of degree 4 and H8(Y ) is a polynomial of degree 6
both having the property that when evaluated in F8 they return values in F2. It is
of no implication to the estimation of code parameters if we restrict to G8(X) being
the trace polynomial X4+X2+X and if we choose H8(Y ) = Y 6+Y 5+Y 3. Consider
the trace-polynomial corresponding to a general field extension. It is well-known
that the preimages of all the elements in the ground field are of the same size.
From this we conclude that the particular polynomial F8(X,Y ) = G8(X)−H8(Y )
under consideration has exactly 25 = 32 zeros.

Let I8 = 〈F8(X,Y ), X8 − X,Y 8 − Y 〉 ⊆ F8[X,Y ]. From the above discussion
we know that the corresponding variety is of size 32. If we consider a monomial
ordering such that lm(F8) = X4 then there exist exactly 32 monomials which are
not divisible by any of the monomials lm(F8) = X4, lm(Y 8 − Y ) = Y 8. Hence,
{F8(X,Y ), Y 8 − Y } is a Gröbner basis for I8 and ∆≺(I8) = {XαY β | 0 ≤ α <
4, 0 ≤ β < 8} holds. In the following we consider a particular weighted degree
lexicographic ordering for which lm(F8) = X4 holds. Let w(X) = 3, w(Y ) = 2,
and in general w(XαY β) = 3α + 2β. We define ≺w to be the monomial ordering
given by Xα1Y β1 ≺w Xα2Y β2 if either w(Xα1Y β1) < w(Xα2Y β2) or if alternatively
w(Xα1Y β1) = w(Xα2Y β2) and α1 < α2 hold.

Let ∆≺w
(I8) = {M1, . . . ,M32}, the monomials being enumerated with respect

to ≺w. For the code construction we consider the basis

W = {~w1 = ev(M1 + I8), . . . , ~w32 = ev(M32 + I8)}.
The situation is described in Figure 4.1. We then set ~ui = ~vi = ~wi for i = 1, . . . , 32
defining the bases U and V.

By definition, ρ̄W(~ui ∗ ~vj) = l if and only if

lm(MiMj rem {F8(X,Y ), X8 −X,Y 8 − Y }) = Ml.
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Further, (i, j) is WB if and only if

lm(Mi′Mj′ rem {F8(X,Y ), X8 −X,Y 8 − Y }) ≺w Ml (4.1)

holds for all i′ ≤ i and j′ ≤ j with (i′, j′) 6= (i, j). There are two particular easy
cases to analyze:

• Rule (I): If MiMj = Ml then by the property of a monomial ordering (4.1)
holds.

• Rule (II): If w(Mi) + w(Mj) = w(Ml) and w(Mi′) < w(Mi) for all i′ < i
and if w(Mj′) < w(Mj) for all j′ < j, then (4.1) holds.

In a straightforward manner one derives similar rules regarding WWB and OWB.
Consider l = 17. Using Rule (I) we see that every

(i, j) ∈ {(1, 17), (2, 13), (4, 9), (6, 6), (9, 4), (13, 2), (17, 1)}

is WB with ρ̄W(~ui ∗ ~vj) = 17.
We have ρ̄W(~u3 ∗ ~v12) = 17 as

lm(M3M12 rem {F8(X,Y ), X8 −X,Y 8 − Y })
= lm(X4 rem {F8(X,Y ), X8 −X,Y 8 − Y })
= lm(Y 6 + Y 5 +X2 + Y 3 +X) = Y 6 = M17.

But M3M11 = M18 implying that ρ̄W(~u3 ∗ ~v11) = 18. Therefore (3, 12) is not
WWB. However w(Mi′) < w(M3) for all i′ < 3 and by a result similar to Rule (II),
(3, 12) therefore is OWB.
We next claim that I ′ = {1, 2, 4, 6, 9, 13, 17, 3, 12} has the µ-property with respect
to 17. To this end, the only thing missing to be checked is the case i = 12. Clearly,
ρ̄W(~u12∗~v3) = 17. Note that w(M12) = 9 does not belong to {w(Mi) | i ∈ I ′\{12}}
and by an argument similar to Rule (II) we conclude that (12, 3) is OWB with
respect to I ′.

We next apply Theorem 19 with l = 17 and v = 1. Observe that w(M17) =
w(M18) < w(M19) which is what makes the choice v = 1 natural. Using similar
arguments as above we see that

I ′0 = {1, 2, 4, 6, 9, 13, 17, 3, 12} ∪ {7}

has the µ-property with respect to 17 with exception {18} and that

I ′1 = {1, 2, 4, 6, 9, 13, 17} ∪ {3, 5, 8, 11}

has the relaxed µ-property with respect to (17, 18) with exception {}. Clearly, I ′0
is the smallest of these two sets.

In conclusion, if m(~c) = 17 we get the following estimates:

• The Feng-Rao bound in the version with WB or WWB produces wH(~c) ≥ 7.

• The same bound in the version with OWB gives wH(~c) ≥ 8.
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Feng-Rao Feng-Rao Feng-Rao Advisory Section
WB WWB OWB bound 3

d1 7 7 8 9 10
d2 8 8 10 12 13

Table 4.1: Estimates on first and second generalized Hamming weight of the code
C(16) over F8.

• From the advisory bound we get wH(~c) ≥ 9.

• Finally, our new bound produces wH(~c) ≥ 10.

Applying exactly the same techniques as above we get the following estimates of
wH(~c) when m(~c) = 21:

• The Feng-Rao bound with WB or WWB gives wH(~c) ≥ 8.

• The same bound in the version with OWB produces wH(~c) ≥ 10.

• From the advisory bound we get wH(~c) ≥ 12 (This is done by choosing
I ′ = {1, 2, 4, 6, 9, 13, 17, 21} ∪ {3, 5, 12, 16}).

• Finally, our new bound produces wH(~c) ≥ 13 (This is done by choosing
v = 1, I ′0 = {1, 2, 4, 6, 9, 13, 17, 21} ∪ {3, 7, 12, 5, 10, 16} and finally I ′1 =
{1, 2, 4, 6, 9, 13, 17, 21} ∪ {3, 5, 8, 11, 15}).

For the remaining choices of l ∈ I neither the advisory bound nor the improved
bound from the present paper produces better results than the Feng-Rao bound
with WWB. By [16], for m(~c) = 28 and m(~c) = 30, respectively, the Feng-Rao
bound with WWB improves upon the same bound with WB by lifting the estimates
from 21 to 22 and from 24 to 26, respectively.

We first consider the codes C(s) (See Remark 8 for the definition). In Figure 4.2
we illustrate the parameters k, d1(C(s)), . . . , d5(C(s)). As is seen, for all of the
five choices of bounds: the Feng-Rao bound with WB, WWB, OWB, the advisory
bound, and the bound from Section 3, there exist numbers i and s such that the
best estimate on di(C(s)) is obtained by this particular bound (and consequently
also by the sharper bounds as well). Regarding the 6th generalized Hamming
weight, only for one s we can improve upon what is derived from the Feng-Rao
bound with WB. Namely, for C(4) where the Feng-Rao bound with WB or WWB
produces the estimate 8 whereas all other bounds give 9. In Table 4.1 we illustrate
that the various bounds sometimes improve very much on each other by showing
estimates for the first two weights of the code C(16). For this particular code for
higher weights all estimates are the same.

We next consider the improved codes C̃adv(δ) and C̃fim(δ) (See Remark 8 and
Remark 20 for the definitions). For two designed distances δ = 10, 13, the code

C̃fim(δ) is of higher dimension than C̃adv(δ). In Table 4.2 we list estimates from the
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Figure 4.2: The figure lists the dimensions of codes C(s) over F8 and corresponding
estimates on d1, . . . , d5. Information about C(s) is placed at the position of ~ws+1.
An entry z1 means that the value z was obtained from the Feng-Rao bound with
WB, z2 indicate that the same bound with WWB was used, and finally z3 the same
bound with OWB. With z4 we indicate that the value z was obtained from the
advisory bound and by z5 that the method from Section 3 was used. The symbol
- inside the table indicates that the corresponding parameter does not exist.
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k d2 d3 d4 d5 d6

C̃adv(10) 16 12 14 15 16 20

C̃fim(10) 17 12 13 14 15 16

C̃adv(13) 11 16 20 22 24 26

C̃fim(13) 12 15 16 21 22 24

Table 4.2: Parameters of improved codes over F8. By definition, the codes C̃adv(10)

and C̃fim(10) are of designed minimum distance 10. Similarly, C̃adv(13) and

C̃fim(13), are of designed minimum distance 13. By k we denote the dimension.

The values of d2, . . . , d6 for C̃adv(10) and C̃adv(13) are estimated using the advisory

bound. For C̃fim(10) and C̃fim(13) the method from Section 3 is used.

advisory bound on the generalized Hamming weights of the first code and estimates
from the bound of Section 3 on the generalized Hamming weights of the latter code,
respectively. We see that for higher generalized Hamming weights there is a price
to be paid for the increase in dimension.

4.3 Codes from a curve over F27

Similarly to the curve F8(X,Y ) ∈ F8[X,Y ] from the previous section we now
consider the curve F27(X,Y ) = G27(X) − H27(Y ) ∈ F27[X,Y ]. Here, G27(X) is
the trace-polynomial X9 + X3 + X and H27(Y ) = Y 12 + Y 10 + Y 4 satisfies that
when evaluated in elements from F27 it returns values from F3. The arguments of
the previous subsection translate immediately. Only difference is that now instead
of having many pairs of monomials in the footprint being of the same weight we
now have many triples of monomials in the footprint being of the same weight. The
implication is that when applying Theorem 19 we will often need v = 2 rather than
v = 1. The codes being of length n = 35 = 243 we cannot give many details, but
restrict to consider the minimum distance and the second generalized Hamming
weight of the codes C(s). See Figure 4.3. Again, all five bounds come into action.

To illustrate how much the advisory bound and the bound of Section 3 improve
upon the various versions of the Feng-Rao bound we treat in detail the codes C(75),
C(76), C(83) in Table 4.3. These codes are of dimension 168, 167 and 160.
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Figure 4.3: Dimensions, minimum distance and second generalized Hamming
weight of codes C(s) over F27. Notation as in Figure 4.2
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Feng-Rao Feng-Rao Feng-Rao Advisory Section
WB WWB OWB bound 3

d1(C(75)) 15 15 21 29 33
d2(C(75)) 16 16 24 34 38

d1(C(76)) 15 15 21 33 36
d2(C(76)) 16 16 24 38 39

d1(C(83)) 16 16 24 34 38
d2(C(83)) 17 17 27 39 41

Table 4.3: Estimates of minimum distance and second generalized Hamming weight
for a selection of codes over F27.
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Chapter 5

Concluding remarks

In this paper we treated two improvements to the Feng-Rao bound for dual codes:
the advisory bound and a new bound which is an improvement to it. The latter
bound is closely related to a new bound for primary codes which we treat in a
separate paper [5]. Part of this research was done while the second listed author
was visiting East China Normal University. We are grateful to Professor Hao
Chen for his hospitality. The authors also gratefully acknowledge the support from
the Danish National Research Foundation and the National Science Foundation of
China (Grant No. 11061130539) for the Danish-Chinese Center for Applications of
Algebraic Geometry in Coding Theory and Cryptography.
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Abstract

Security of linear ramp secret sharing schemes can be characterized by the relative
generalized Hamming weights of the involved codes [30, 28]. In this paper we elab-
orate on the implication of these parameters and we devise a method to estimate
their value for general one-point algebraic geometric codes. As it is demonstrated,
for Hermitian codes our bound is often tight. Furthermore, for these codes the rel-
ative generalized Hamming weights are often much larger than the corresponding
generalized Hamming weights.

Keywords: linear code, Feng-Rao bound, Hermitian code, one-point algebraic
geometric code, relative dimension/length profile, relative generalized Hamming
weight, secret sharing, wiretap channel of type II.
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Chapter 1

Introduction

A secret sharing scheme is a cryptographic method to encode a secret into multi-
ple shares later distributed to participants, so that only specified sets of partici-
pants can reconstruct the secret. The first secret sharing scheme was proposed by
Shamir [39]. It was a perfect scheme, in which a set of participants unable to recon-
struct the secret has absolutely no information on the secret. Later, non-perfect
secret sharing schemes were proposed [4, 46] in which there are sets of participants
that have non-zero amount of information about the secret but cannot reconstruct
it. The term ramp secret sharing scheme is sometimes used for the latter men-
tioned type of schemes, sometimes for the union of the two types. In this paper
we will apply the most general definition, but concentrate our investigation on
non-perfect secret sharing schemes. Secret sharing has been used, for example, to
store confidential information to multiple locations geographically apart. By using
secret sharing schemes in such a scenario, the likelihoods of both data loss and
data theft are decreased. As far as we know, in many applications both perfect
and non-perfect ramp secret sharing schemes can be used. In the perfect scheme,
the size of a share must be at least that of the secret [5]. On the other hand, ramp
secret sharing schemes allow shares to be smaller than the secret, which is what
we concentrate on in this paper. Such schemes are particularly useful for storing
bulk data [7].

A linear ramp secret sharing scheme can be described as a coset construction
C1/C2 where C2 ( C1 are linear codes [6]. It was shown in [2, 28, 41] that the
corresponding relative dimension/length profile (RDLP) expresses the worst case
information leakage to unauthorized sets in such a system. The RDLP was pro-
posed by Luo et al. [30]. They [30] also proposed the relative generalized Hamming
weight (RGHW) and its equivalence to the RDLP, similar to the one demonstrated
by Forney [13] between the dimension/length profile and the generalized Hamming
weight. The m-th RGHW expresses the smallest size of unauthorized sets that
can obtain m q-bits [2, 28], where q is the size of the alphabet of C2 ( C1. In
order to investigate the potential of linear codes to construct useful ramp secret
sharing schemes, it is indispensable to study the RGHW and the RDLP. However,
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not much research has been done so far, partly because the connection between the
secret sharing and RGHW/RDLP was only recently reported. In particular, few
classes of linear codes have been examined for their RGHW/RDLP. In this paper
we study the RGHW of general linear codes by the Feng-Rao approach [17], and
explore its consequences for one-point algebraic geometry (AG) codes [43, 22] and,
in particular the Hermitian codes [42, 40, 47].

The present paper starts with a discussion of known results regarding linear
ramp secret sharing schemes and it continues with demonstrating that the RGHWs
can also be used to express the best case information leakage. The main result
of the paper is a method to estimate RGHW of one-point algebraic geometric
codes. This is done by carefully applying the Feng-Rao bounds [17] for primary
[1] as well as dual [11, 12, 37, 22, 32, 21] codes. From this we derive a relatively
simple bound which uses information on the corresponding Weierstrass semigroup
[24, 8]. As shall be demonstrated for Hermitian codes the new bound is often
sharp. Moreover, for the same codes the RGHW are often much larger than the
corresponding generalized Hamming weights (GHW) [44] which means that studies
of RGHW cannot be substituted by those of GHW.

The paper is organized as follows. Section 2 describes the use of RGHW in
connection with linear ramp secret sharing schemes, and in connection with com-
munication over the wiretap channel of type II. In Section 3 we apply the theory to
the special case of MDS codes. In Section 4 we show – at the level of general linear
codes – how to employ the Feng-Rao bounds to estimate RGHW. This method is
then applied to one-point algebraic geometric codes in Section 5. We investigate
Hermitian codes in Section 6, and treat the corresponding ramp secret sharing
schemes in Section 7.
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Chapter 2

Ramp secret sharing schemes
and wiretap channels of type
II

Ramp secret sharing schemes were introduced in [4, 46]. Let Fq be the finite field
with q elements. A ramp secret sharing scheme with t-privacy and r-reconstruction
is an algorithm that, given an input ~s ∈ F`q, outputs a vector ~x ∈ Fnq , the vector
of shares that we want to share among n players, such that, given a collection of
shares {xi | i ∈ I} where I ⊆ {1, . . . , n}, one has no information about ~s if #I ≤ t
and one can recover ~s if #I ≥ r [6]. We shall always assume that t is largest
possible and that r is smallest possible such that the above hold. We say that one
has a t-threshold secret sharing scheme if t = r + 1.

We consider the secret sharing schemes introduced in [6, Section 4.2], which was
the first general construction of ramp secret sharing schemes using arbitrary linear
codes: Let C2 ( C1 ⊆ Fnq be two linear codes. Set k2 = dim(C2) and k1 = dim(C1)

and let L ( Fnq be such that C1 = L⊕C2 (direct sum). That is, L∩C2 = {~0} and
the union of a basis for L and a basis for C2 constitutes a basis for C1. We denote
by ` = dim(L) = dim(C1/C2) = k1 − k2.

We consider a secret ~s ∈ F`q; note that ` > 0 since C1 6= C2. We fix a vector

space isomorphism ψ : F`q → L which maps the secret ~s ∈ F`q to L, and choose
~c2 ∈ C2 randomly (uniformly distributed). Finally, consider ~x = ψ(~s) + ~c2 ∈ C1.
The n shares consist of the n coordinates of ~x; this scheme is clearly Fq-linear [6].
One may also consider that the secret ~s is represented by the coset ψ(~s) + C2 in
C1/C2. Note that there are q` different cosets in C1/C2 and there are qk2 possible
representatives for every coset, i.e. for generating the shares of a secret ~s. The
schemes in [9, 31] form a particular case of the above scheme with ` = 1.

Remark 1. All linear ramp secret sharing schemes with shares in Fq are of the
above type. For constructions that use puncturing [31], [6, Sec. 4.1] we can take
C1, C2 to be the punctured codes.
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Let I ⊆ J = {1, . . . , n}. We consider that an unauthorized set of participants
obtains the shares {xi | i ∈ I}. We represent the shares by a random variable
~X, and the shares obtained by an unauthorized set of participants by fI(~x) =
(xi | i ∈ I) where fI : Fnq → F#I

q . The amount of information in q-bits that

the unauthorized set obtains is measured by I(~S; fI( ~X)), the mutual information,

where ~S is the random variable that represents the secrets, and fI( ~X) is the random
variable that represents the shares that an unauthorized set may obtain. We assume
that both ~S and ~X are uniformly distributed. In particular we have t-privacy
and r-reconstruction if t is largest possible and r is smallest possible such that
I(~S; fI( ~X)) = 0 for all #I ≤ t and I(~S; fI( ~X)) = ` for all #I ≥ r. A (non sharp)
bound for r and t was given in [6]: r < n − d(C1) and t > d(C⊥2 ) where d(Ci)
denotes the minimum distance of Ci, for i = 1, 2. The exact values can be derived
from [28, Proof of Theorem 4] as

I(~S; fI( ~X)) = `− dim((VI ∩ C1)/(VI ∩ C2)), (2.1)

= dim((C⊥2 ∩ VI)/(C⊥1 ∩ VI)), (2.2)

where I = J \ I and VI = {~x ∈ Fnq | xi = 0 for all i /∈ I}.
For the convenience of the reader we include the computation of the previous

mutual information: since the variables ~S and ~X are uniformly distributed one
has that Hq(fI( ~X)) = logq #fI(C1) = dim(fI(C1)) = k1− dim(ker(fI)∩C1), and

Hq(fI( ~X)|S) = logq #fI(C2) = dim(fI(C2)) = k2−dim(ker(fI)∩C2). Here, Hq is

the entropy function to base q. Therefore I(~S; fI( ~X)) = k1 − k2 −
(

dim(ker(fI)∩
C1) − dim(ker(fI) ∩ C2)

)
and we obtain equation (2.1). Equation (2.2) follows

from (2.1) and an extension of Forney’s second duality lemma [27, Lemma 25]: Let
V ⊆ Fnq , then

dim((C⊥2 ∩ V ⊥)/(C⊥1 ∩ V ⊥))

= dim(C1/C2)− dim((C1 ∩ V )/(C2 ∩ V )).

In order to characterize the security of secret sharing schemes, one considers
the jth relative dimension/length profile (RDLP) of two codes C2 ( C1 with j ∈
{1, . . . , n} [30]:

Kj(C1, C2) = max
I⊆J ,#I=j

dim((C1 ∩ VI)/(C2 ∩ VI)),

and the mth relative generalized Hamming weight (RGHW) with m ∈ {1, . . . , `}
[30]:

Mm(C1, C2) = min
I⊆J
{#I | dim((C1 ∩ VI)/(C2 ∩ VI)) = m}. (2.3)

In this way the worst amount of information leakage of ~s from j shares is
precisely characterized by the jth relative dimension/length profile of C⊥2 and C⊥1
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[28, Theorem 4]:

max
I⊆J ,#I=j

I(~S; fI( ~X))

= max
I⊆J ,#I=j

dim((C⊥2 ∩ VI)/(C⊥1 ∩ VI))

= Kj(C
⊥
2 , C

⊥
1 ).

The smallest possible number of shares for which an unauthorized set of partici-
pants can determine m q-bits of information is

min
I⊆J
{#I | I(~S; fI( ~X)) = m}

= min
I⊆J
{#I | dim((C⊥2 ∩ VI)/(C⊥1 ∩ VI)) = m}

= Mm(C⊥2 , C
⊥
1 ).

In particular t = M1(C⊥2 , C
⊥
1 ) − 1 [28, Theorem 9]. (See also [2, Th. 6.7] and for

the special case of ` = 1 [9, Cor. 1.7]). We now generalize the notion of t-privacy
and r-reconstruction.

Definition 2. We say that a ramp secret sharing scheme has (t1, . . . , t`)-privacy
and (r1, . . . , r`)-reconstruction if t1, . . . , t` are chosen largest possible and r1, . . . , r`
are chosen smallest possible such that:

• an adversary cannot obtain m q-bits of information about ~s with any tm
shares,

• it is possible to recover m q-bits of information about ~s with any collection of
rm shares.

In particular, one has t = t1 and r = r`.

By our previous discussion one has that tm = Mm(C⊥2 , C
⊥
1 )−1 sinceMm(C⊥2 , C

⊥
1 )

is the smallest size of a set of shares that can determine m q-bits of information
about ~s [28, Theorem 4]. We will show that (r1, . . . , r`) can be characterized in
terms of the RGHWs as well. Let r′m be the largest size of a set of shares that
cannot determine m q-bits of information about ~s, i.e.

r′m = max
I⊆J
{#I | I(~S; f( ~X)) < m}. (2.4)

This value is closely related to rm since any strictly larger set of shares will
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determine m q-bits of information about ~s and thus

rm

= r′m + 1

= max
I⊆J
{#I | I(~S; fI( ~X)) < m}+ 1

= max
I⊆J
{#I | I(~S; fI( ~X)) = m− 1}+ 1

= max
I⊆J
{#I | dim((C1 ∩ VI)/(C2 ∩ VI)) =

`−m+ 1}+ 1, by (2.1)

= n− min
I⊆J
{#I | dim((C1 ∩ VI)/(C2 ∩ VI)) =

`−m+ 1}+ 1

= n−M`−m+1(C1, C2) + 1. (2.5)

In particular one has that r = r` = n−M1(C1, C2)+1 [28, Theorem 9] (see also [9,
Cor. 1.7] for the special case ` = 1). We note that r′m corresponds to the (m−1)th
conjugate relative length/dimension profile in [48].

Theorem 3. Let C1/C2, where dim(C1) − dim(C2) = `, be a linear ramp secret
sharing scheme with (t1, . . . , t`)-privacy and (r1, . . . , r`)-reconstruction. Then for
m = 1, . . . , ` we have tm = Mm(C⊥2 , C

⊥
1 )− 1 and rm = n−M`−m+1(C1, C2) + 1.

We shall relate the above concept of (t1, . . . , t`)-privacy and (r1, . . . , r`)-reconstruction
to the literature: let D1 ( D2 ⊆ Fnq be vector spaces of codimension ` and define
for 1 ≤ m ≤ `,

Am(D1, D2) = {I ⊆ J | m = dim(D1 ∩ VI)/(D2 ∩ VI)}.

Since I(~S; fI( ~X)) = dim((C⊥2 ∩ VI)/(C⊥1 ∩ VI)) we have that, for D1 = C⊥2 and
D2 = C⊥1 , Am(D1, D2) is the collection of shares that give m q-bits of information

about ~S. In addition, A`(D1, D2) is the access structure in the sense of [25], and
Am(D1, D2) is equivalent to Am in [26, Definition 1].

In particular we are interested in the largest and smallest element of such a
collection of shares

Amin
m (D1, D2)

= {I ∈ Am(D1, D2) | @K ∈ Am(D1, D2) s.t. K ( I}
Amax
m (D1, D2)

= {I ∈ Am(D1, D2) | @K ∈ Am(D1, D2) s.t. K ) I}

and, as we are interested in its size, we define

Adm(D1, D2) = {I ∈ Am(D1, D2) | d = #I}
Amin,d
m (D1, D2) = {I ∈ Amin

m (D1, D2) | d = #I}
Amax,d
m (D1, D2) = {I ∈ Amax

m (D1, D2) | d = #I}.
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Moreover, we are interested in the smallest and the largest size of a collection
of shares that reveal m q-bits of information: the first one being the smallest d ∈
{1, . . . , n} such that Amin,d

m (D1, D2) is non-empty and it is equal to Mm(D1, D2) =
tm + 1. Analogously, the largest size of a collection of shares that reveals m q-bits
of information is the largest d ∈ {1, . . . , n} such that Amax,d

m (D1, D2) is non-empty
and it is equal to n−M`−m+1(C1, C2) + 1 = rm.

Ramp secret sharing schemes with ` > 1 are relevant in the situation where
the set of possible secrets is large but one wants to keep the size of each share
small. A further motivation for considering ` > 1 is the analogy to the wiretap
channels of type II [45, 36]. Recall that this model involves a main channel from
Alice to Bob which is assumed to be error and erasure free, and a secondary chan-
nel from Alice to the eavesdropper Eve which is a q-ary erasure channel. Consider
the slightly more general situation where also the main channel is a q-ary erasure
channel [41]. Assuming that the probability of erasure is much smaller on the main
channel than on the secondary channel we see that to achieve reliable and secure
communication we should use long codes C2 ( C1. To retain a positive information
rate on the main channel we therefore need ` > 1. The exact values of the mu-
tual information on the main and the secondary channel could be calculated from
Am(D1, D2), m = 1, . . . , ` and the erasure probabilities of the two channels; but
it seems a difficult task to determine Am(D1, D2) even for simple codes. Finding
Mm(D1, D2) = tm + 1 and n −M`−m+1(C1, C2) + 1 = rm, however, would be a
first step in this direction. As we shall see in the following, for many codes we can
easily estimate these last mentioned parameters.

In the remaining part of this paper we shall concentrate on methods to estimate
RGHW. We shall need the following definition which by [29] is equivalent to (2.3)
(see also [2, Def. 6.2]).

Definition 4. Let C2 ( C1 be linear codes over Fq. For m = 1, . . . ,dim(C1) −
dim(C2) the mth relative generalized Hamming weight is defined as

Mm(C1, C2) = min{#SuppD | D is a subspace of C1,

dim(D) = m,D ∩ C2 = {~0}}.

From this definition the connection between the RGHW and the generalized
Hamming weight (GHW) becomes clear – the latter being dm(C1) = Mm(C1, C2)
with C2 = {~0}. Before embarking with more general classes of codes in the next
section we discuss the parameters tm, rm in the case of MDS codes.

133



Chapter 3

Ramp schemes based on
MDS codes

Let C be an MDS code of dimension k. Then C⊥ is also MDS and consequently

dm(C) = n− k +m, m = 1, . . . , k (3.1)

dm(C⊥) = k +m, m = 1, . . . , n− k (3.2)

which means that all generalized Hamming weights attain the Singleton bound.
Consider two MDS codes C2 ( C1 with dim(C1) = k1 and dim(C2) = k2. By
definition, Mm(C1, C2) ≥ dm(C1), m = 1, . . . , ` = k1 − k2. However, the Singleton
bound for RGHW is identical to the Singleton bound for GHW [30, Sec. IV] and
therefore Mm(C1, C2) = dm(C1) and Mm(C⊥2 , C

⊥
1 ) = dm(C⊥2 ) [41]. Based on (3.1)

and (3.2) one can show that

Mm(C⊥2 , C
⊥
1 ) = n−M`−m+1(C1, C2) + 1, (3.3)

and from Theorem 3 it now follows that if we base a ramp scheme on two MDS
codes then the size of a group uniquely determines how much information it can
reveal:

tm = rm − 1, tm+1 = tm + 1, t1 = k2, r` = k1.

When the number of participants is larger than two times the field size minus 1
then by [23, Cor. 7.4.4] C1 and C2 cannot be MDS – unless k1 = n− 1 and k2 = 1
– and consequently we can no longer assume (3.3). What is obviously needed is a
method to estimate the left and the right side of (3.3) for codes of any length. As
shall be demonstrated in the following the Feng-Rao method makes this possible.
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Chapter 4

The Feng-Rao bounds for
RGHW

The Feng-Rao bounds come in two versions: One for primary codes [1, 18, 17] and
the other for dual codes [10, 11, 12, 37, 22, 32]. The most general formulations deal
with arbitrary linear codes, whereas more specialized formulations – such as the
order bounds – require that the code construction is supported by certain types of
algebraic structures. The bounds have been applied to the minimum distance, the
generalized Hamming weights – and for the case of dual codes of co-dimension 1 –
also the relative minimum distance [9]. It is not difficult to extend the method for
estimating GHW to a method for estimating RGHW. In the following we give the
details for primary codes in the language of general linear codes. The details for
dual codes are similar, hence for these codes we shall give a more brief description.

We start by introducing some terminology that shall be used throughout the sec-
tion. Let B = {~b1, . . . ,~bn} be a fixed basis for Fnq as a vector space over Fq and
write J = {1, . . . , n}.

Definition 5. The function ρ̄ : Fnq → J ∪ {0} is given as follows. For non-zero ~c
we have ρ̄(~c) = i where i is the unique integer such that

~c ∈ Span{~b1, . . . ,~bi}\Span{~b1, . . . ,~bi−1}.

Here we used the convention that Span ∅ = {~0}. Finally, ρ̄(~0) = 0.

The component wise product of two vectors in Fnq plays a fundamental role in our
exposition. This product is given by

(α1, . . . , αn) ∗ (β1, . . . , βn) = (α1β1, . . . , αnβn).

Definition 6. An ordered pair (i, j) ∈ J × J is said to be one-way well-behaving

(OWB) if ρ̄(~bi′ ∗~bj) < ρ̄(~bi ∗~bj) holds true for all i′ ∈ J with i′ < i.
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Definition 7. For i ∈ J define

Λi = {l ∈ J | ∃ j ∈ J such that (i, j) is OWB and

ρ̄(~bi ∗~bj) = l}.

As is easily seen – if D ⊆ Fnq is a vector space of dimension m then it holds that

#ρ̄
(
D\{~0}

)
= m. (Actually, any set {~d1, . . . , ~dm} ⊆ D\{~0} with ρ̄(~d1) < · · · <

ρ̄(~dm) constitutes a basis for D). The following result is a slight modification of
the material in [1].

Proposition 8. Let D ⊆ Fnq be a vector space of dimension at least 1. The support
size of D satisfies

#Supp(D) ≥ # ∪i∈ρ̄(D\{~0}) Λi. (4.1)

Proof. Let l1 < · · · < lσ be the elements in ∪i∈ρ̄(D\{~0})Λi and let i1, . . . , iσ and
j1, . . . , jσ be such that for s = 1, . . . , σ it holds that:

• is ∈ ρ̄(D\{~0}),

• (is, js) is OWB and ρ̄(~bis ∗~bjs) = ls.

Choose ~d1, . . . ~dσ ∈ D with ρ̄(~ds) = is, s = 1, . . . , σ. Clearly ρ̄(~ds ∗~bjs) = ls and

therefore ~d1 ∗ ~bj1 , . . . , ~dσ ∗ ~bjσ are linearly independent. In conclusion D ∗ Fnq =

{~d ∗ ~c | ~d ∈ D,~c ∈ Fnq } is of dimension at least σ. The dimension of D ∗ Fnq equals
the size of the support of D and the proposition follows.

We now turn to RGHW. Observe that although C2 ( C1 implies ρ̄(C2) ( ρ̄(C1), it
does not always hold that ~c ∈ C1\C2 implies ρ̄(~c) ∈ ρ̄(C1)\ρ̄(C2). However, some
observations can still be made.

Theorem 9. Consider linear codes C2 ( C1, dim(C1) = k1, dim(C2) = k2. Let u
be the smallest element in ρ̄(C1) that is not in ρ̄(C2). For m = 1, . . . , k1 − k2 we
have

Mm(C1, C2) ≥ min
{

# ∪ms=1 Λis | u ≤ i1 < · · · < im,

i1, . . . , im ∈ ρ̄(C1\{~0})
}
.

Proof. If D is an m-dimensional subspace of C1 with D ∩ C2 = {~0} then we can
write ρ̄(D\{~0}) = {i1, . . . , im} ⊆ ρ̄(C1\{~0}) with u ≤ i1 < · · · < im. The theorem
now follows from Proposition 8.

Corollary 10. Consider a k1-dimensional code C1, say C1 = Span{~f1, . . . , ~fk1},
where without loss of generality we assume ρ̄(~f1) < · · · < ρ̄(~fk1). For k2 < k1 let

C2 = Span{~f1, . . . , ~fk2}. We have

Mm(C1, C2) ≥ min
{

# ∪ms=1 Λis | i1 < · · · < im,

i1, . . . , im ∈ {ρ̄(~fk2+1), . . . , ρ̄(~fk1)}
}
.
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Next we treat dual codes.

Definition 11. For ~c ∈ Fnq \{~0} define M(~c) to be the smallest number i ∈ J such

that ~c ·~bi 6= 0. Here ~a ·~b means the usual inner product between ~a and ~b.

It is clear that for an m-dimensional space D we have #M(D\{~0}) = m. Also
it is clear that if D ⊆ C⊥, where C is a linear code, then M(D\{~0}) ∩ ρ̄(C) = ∅.

Definition 12. For l ∈ J define

Vl = {i ∈ J | ρ̄(~bi ∗~bj) = l for some ~bj ∈ B with (i, j) OWB}.

The following result is proved by slightly modifying the proof of [21, Prop. 3.12]
and [20, Th. 5].

Proposition 13. Let D ⊆ Fnq be a space of dimension at least 1. We have

#Supp(D) ≥ # ∪l∈M(D\{~0}) Vl.

From the above discussion we derive

Theorem 14. Consider linear codes C2 ( C1. Let u be the largest element in
ρ̄(C1\{~0}). For m = 1, . . . ,dim(C1)− dim(C2) = dim(C⊥2 )− dim(C⊥1 ) we have

Mm(C⊥2 , C
⊥
1 ) ≥ min{# ∪ms=1 Vis |

1 ≤ i1 < · · · < im ≤ u, i1, . . . , im /∈ ρ̄(C2)}. (4.2)

To apply Theorem 9, Corollary 10 and Theorem 14 we need information on which
pairs are OWB. This suggests the use of a supporting algebra. One class of algebras
that works well is the order domains [22, 35, 19]. In the present paper we will
concentrate on the most prominent example of order domain codes – namely one-
point algebraic geometric codes.

Remark 15. In our exposition we used a single (but arbitrary) basis B for Fnq as
a vector space over Fq. Following [37] one could reformulate all the above results
in a more general setting that uses three bases U , V, and W. This point of view is
important when one considers affine variety codes [38], but it does not improve the
results for order domain codes. In [14] and [15], the concept of OWB was relaxed
giving new improved Feng-Rao bounds. All the above results could be reformulated
in this setting – but again – for order domain codes the results stay unchanged.
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Chapter 5

One-point algebraic
geometric codes

Given an algebraic function field F of transcendence degree one, let P1, . . . , Pn,
Q be distinct rational places. For f ∈ F write ρ(f) = −νQ(f), where νQ is the
valuation at Q, and denote by H(Q) the Weierstrass semigroup of Q. That is,
H(Q) = ρ

(
∪∞µ=0 L(µQ)

)
. In the following let {fλ | λ ∈ H(Q)} be any fixed basis

for R = ∪∞µ=0L(µQ) with ρ(fλ) = λ for all λ ∈ H(Q). Let D = P1 + · · ·+ Pn and
define

H∗(Q) = {µ | CL(D,µQ) 6= CL(D, (µ− 1)Q)}
= {γ1, . . . , γn} ( H(Q). (5.1)

Here, the enumeration is chosen such that γ1 < · · · < γn. Consider the map
ev : F → Fnq given by ev(f) = (f(P1), . . . , f(Pn)). The set

{~b1 = ev(fγ1), . . . ,~bn = ev(fγn)} (5.2)

clearly is a basis for Fnq and by [1, Pro. 27] a pair (i, j) is OWB if ρ(fγi) + ρ(fγj ) =

ρ(fγl), i. e. γi + γj = γl, in which case of course ρ̄(~bi ∗ ~bj) = l. From [1, Pro.
28] we know that if δ ∈ H∗(Q) and α, β ∈ H(Q) satisfy α + β = δ then we have
α, β ∈ H∗(Q). We therefore get the following lemma.

Lemma 16. Let {~b1, . . . ,~bn} be as above. For i ∈ J it holds that

{l ∈ J | γl − γi ∈ H(Q)} ⊆ Λi

where Λi is as in Definition 7.

Proposition 17. Let D ⊆ Fnq be a vector space of dimension m. There exist

unique numbers γi1 < · · · < γim in H∗(Q) such that ρ̄(D\{~0}) = {i1, . . . , im}. The
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support of D satisfies

#Supp(D) ≥ #

(
H∗(Q) ∩

(
∪ms=1 (γis +H(Q))

))
(5.3)

≥ n− γim + #{λ ∈ ∪m−1
s=1 (γis +H(Q)) |

λ /∈ γim +H(Q)}. (5.4)

Proof. By Lemma 16 the right side of (5.3) is lower than or equal to # ∪ms=1 Λis ,
and (5.3) therefore follows from Proposition 8. Another way of writing the right
side of (5.3) is n−#

(
H∗(Q)\ ∪ms=1 (γis +H(Q))

)
. This number is greater than or

equal to

n−#
(
H(Q)\ ∪ms=1 (γis +H(Q))

)

= n−#
(
H(Q)\(γim +H(Q))

)

+# {λ ∈ ∪m−1
s=1 (γis +H(Q)) | λ /∈ γim +H(Q)}.

From [22, Lem. 5.15] we know that for any numerical semigroup Γ and λ ∈ Γ, one
has λ = #

(
Γ\(λ + Γ)

)
. In particular #

(
H(Q)\(γim + H(Q))

)
= γim and (5.4)

follows.

From (5.4) we can obtain a manageable bound on the RGHWs of one-point
algebraic geometric codes as we now explain. This bound can even be used when
one does not know H∗(Q). Given non-negative integers λ1 < · · · < λm (note that
we make no assumptions that λ1, . . . , λm ∈ H(Q)) let ij = λj−λm, j = 1, . . . ,m−1
and observe that

#{λ ∈ ∪m−1
s=1 (λi +H(Q) | λ /∈ λm +H(Q)}
= #{α ∈ ∪m−1

s=1 (is +H(Q)) | α /∈ H(Q)} (5.5)

since λ is in the first set if and only if λ− λm is in the second set. The function Z
in the definition below shall help us estimate the last expression in (5.4).

Definition 18. Consider a numerical semigroup Γ and a positive integer µ. Define
Z(Γ, µ, 1) = 0 and for 1 < m ≤ µ

Z(Γ, µ,m) = min
{

#{α ∈ ∪m−1
s=1 (is + Γ) | α /∈ Γ} |

−µ+ 1 ≤ i1 < · · · < im−1 ≤ −1
}
. (5.6)

We are now ready for the main result of the section.

Theorem 19. Let µ1, µ2 be positive integers with µ2 < µ1.
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For m = 1, . . . ,dim(CL(D,µ1Q))− dim(CL(D,µ2Q)) we have

Mm(CL(D,µ1Q), CL(D,µ2Q))

≥ min

{
#
(
H∗(Q) ∩

(
∪ms=1 (γis +H(Q))

))
|

γi1 , . . . , γim ∈ H∗(Q), µ2 < γi1 < · · · < γit ≤ µ1

}

(5.7)

≥ min

{
n− γim +

#{λ ∈ ∪m−1
s=1 (γis +H(Q)) | λ /∈ γim +H(Q)} |

γi1 , . . . , γim ∈ H∗(Q), µ2 < γi1 < · · · < γit ≤ µ1

}

(5.8)

≥ n− µ1 + Z(H(Q), µ,m), (5.9)

where µ = µ1 − µ2.

Proof. Consider anm-dimensional vector spaceD ⊆ CL(D,µ1Q) withD∩CL(D,µ2Q) =
{~0}. Let γi1 < · · · < γim be as described in Theorem 17. By the definition of the
codes we have γi1 , . . . , γim ∈ {µ2 +1, . . . , µ1} (this is the situation of Corollary 10).
Consequently (5.7) and (5.8), respectively, follow from (5.3) and (5.4), respectively.
We have −µ1 ≤ −γim . Similarly, by (5.5) Z(H(Q), µ,m) is smaller than or equal
to the last term in (5.4). These observations prove (5.9).

Note that (5.9) may be strictly smaller than (5.8). Firstly, µ1 may not belong
to H∗(Q). Secondly, when applying the function Z(H(Q), µ,m) we do not discard
the numbers in {µ2 + 1, . . . , µ1 − 1} that are gaps of H(Q), and least of all the
numbers in the interval that are not present in H∗(Q). The connection to the
usual Goppa bound for primary codes is seen from the expression in (5.9): letting
m = 1 we get by Definition 18 Z(H(Q), µ,m) = 0 and the formula simplifies to
the well-known bound on the minimum distance d

(
CL(D,µ1Q)

)
≥ n− µ1.

For duals of one-point algebraic geometric codes we have a bound similar
to (5.7), but no bounds similar to (5.8) or (5.9).

Theorem 20. Let µ1, µ2 and m be as in Theorem 19. We have

Mm(C⊥L (D,µ2Q), C⊥L (D,µ1Q))

≥ min

{
#
(
H(Q) ∩

(
∪ms=1 (γis −H(Q))

))
|

γi1 , . . . , γim ∈ H∗(Q), µ2 < γi1 < · · · < γim ≤ µ1

}
.

(5.10)

140



Chapter 6

RGHWs of Hermitian codes

In this section we apply the results of Section 5 to the case of Hermitian codes
[42, 40]. Our main result is that (5.9) is often tight. The Hermitian function field
over Fq2 (q a prime power) is given by the equation xq+1 − yq − y and it possesses
exactly q3 + 1 rational places which we denote P1, . . . , Pq3 , Q – the last being the
pole of x. The Weierstrass semigroup of Q, H(Q) = 〈ρ(x) = q, ρ(y) = q + 1〉, has
g = q(q − 1)/2 gaps and conductor c = q(q − 1). Let D = P1 + · · · + Pq3 . In the
following by a Hermitian code we mean a code of the form CL(D,µQ). Clearly,
this code is of length n = q3. As is well-known the dual of a Hermitian code is a
Hermitian code. This fact will be useful when in a later section we consider ramp
schemes based on Hermitian codes. We start our investigation with a lemma that
treats a slightly more general class of semigroups than the semigroup 〈q, q + 1〉
relevant to us.

Lemma 21. Let a be an integer, a ≥ 2. Define Γ = 〈a, a + 1〉. For integers m,µ
with 1 ≤ m ≤ µ ≤ a+ 1 it holds that

Z(Γ, µ,m) =

m−2∑

s=0

(a− s) = a(m− 1)− (m− 2)(m− 1)/2. (6.1)

Proof. Recall that a positive integer λ is called a gap of Γ if λ /∈ Γ. All other
non-negative integers are called non-gaps. For the given semigroup Γ the set of
non-negative integers consists of one non-gap followed by a − 1 gaps, then two
non-gaps followed by a − 2 gaps and so on up to a − 1 non-gaps followed by
a − (a − 1) = 1 gap. All the following numbers are non-gaps. We denote the
above maximal sequences of consecutive gaps G1, . . . , Ga−1 with #Gv = a − v,
v = 1, . . . , a− 1 (such sequences are called deserts in [34, Ex. 3]).
First assume 1 ≤ m ≤ µ ≤ a+ 1. Let −µ ≤ i1 < . . . < im−1 ≤ −1. We have

#Gv ∩
(
∪m−1
s=1 (is + Γ)

)
≥ min{#Gv,m− 1}

with equality when im−1 = −1, im−2 = −2, . . . , i1 = −(m − 1). Summing up the

contribution from allGv accounts for
∑m−2
s=1 (a−s). The term in (6.1) corresponding
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to s = 0, namely a, comes from considering the number of negative integers in∑m−1
s=1 (is + Γ). Thus we have established (6.1).

Recall from Theorem 19 that we have three bounds on the RGHW of which (5.9)
is the weakest. Using Lemma 21, for Hermitian codes of codimension at most
q + 1, (5.9) translates into a closed-formula expression in (6.2). Surprisingly, this
expression is often equal to the true value of the RGHW.

Theorem 22. Consider the Hermitian curve xq+1 − yq − y over Fq2 . Let P1, . . . ,
Pn=q3 , and Q be the rational places and D = P1 + · · · + Pn. Let µ1, µ2 be non-
negative integers with 1 ≤ µ1 − µ2 ≤ q + 1. For 1 ≤ m ≤ dim(CL(D,µ1Q)) −
dim(CL(D,µ2Q)) we have

Mm(CL(D,µ1Q), CL(D,µ2Q))

≥ n− µ1 +

m−2∑

s=0

(q − s) (6.2)

= n− µ1 + q(m− 1)− (m− 2)(m− 1)/2.

If

c− 1 ≤ µ2 and µ1 < n− c. (6.3)

(recall that c = q(q − 1)) then we have dim(CL(D,µ1Q)) − dim(CL(D,µ2Q)) =
µ1 − µ2 and equality in (6.2).

Proof. Equation (6.2) is a consequence of the last part of Theorem 19 and the first
part of Lemma 21. The result concerning the dimensions is well-known. That
equality holds in (6.2) under condition (6.3) follows from Lemma 23 below.

Lemma 23. Let µ1 and m be positive integers with m ≤ q + 1, µ1 < n − c and
c− 1 < µ1 − (m− 1). Then there exist m functions f0, . . . , fm−1 such that

• fi ∈ L((µ1 − i)Q)\L((µ1 − (i+ 1))Q), i = 0, . . . ,m− 1.

• The number of common zeros of f0, . . . , fm−1 is exactly µ1 −
∑m−2
i=0 (q − i).

Proof. As is well-known ∪∞µ=0L(µQ) is isomorphic to Fq2 [X,Y ]/I, where I =
〈Xq+1 − Y q − Y 〉. The isomorphism is given by ϕ(x) = X + I and ϕ(y) = Y + I.
We call Xq+1 − Y q − Y = N(X) − Tr(Y ) the Hermitian polynomial – N being
the norm and Tr the trace corresponding to the field extension Fq2/Fq. In this
description the rational places P1, . . . , Pq3 correspond to the affine points of the
Hermitian polynomial. We remind the reader of the following few facts which play
a crucial role in the below induction proofs:

• For any δ ∈ Fq2 we have N(δ),Tr(δ) ∈ Fq.

• For every ε ∈ Fq there exists exactly q different δ such that Tr(δ) = ε.

• There exist exactly q + 1 different δ such that N(δ) = 1.
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We start by fixing some notation. Let {α1, . . . , αq} be the elements in Fq2 that
map to 1 under Tr. Let {β1, . . . , βq2−(q+1)} be the elements that do not map to 1
under N and {γ1, . . . , γq+1} the elements that do.
Write µ1 = iq + j(q + 1) with 0 ≤ j < q. First assume 1 ≤ m ≤ j + 1 and
that i < q2 − q. By induction on m (in this interval) one can show that the set
{F0, F1, . . . , Fm−1} where

F0 =
( i∏

s=1

(X − βs)
)( j∏

s=1

(Y − αs)
)
, (6.4)

F1 =
( i∏

s=1

(X − βs)
)
(X − γ1)

( j−1∏

s=1

(Y − αs)
)
, (6.5)

...

Fm−1 =
( i∏

s=1

(X − βs)
)(m−1∏

s=1

(X − γs)
)

( j−m+1∏

s=1

(Y − αs)
)
, (6.6)

has exactly iq + j(q + 1) −∑m−2
s=0 (q − s) zeros in common with the Hermitian

polynomial Xq+1 − Y q − Y (we leave the technical details for the reader).
Finally, assume j + 1 ≤ m ≤ j + q. By induction on m (in this interval) one can
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show that the set {F0, F1, . . . , Fm−1} where

F0 =
( i−q+j∏

s=1

(X − βs)
)( q−j∏

s=1

(X − γs)
)

( j∏

s=1

(Y − αs)
)
, (6.7)

F1 =
( i−q+j∏

s=1

(X − βs)
)( q−j+1∏

s=1

(X − γs)
)

( j−1∏

s=1

(Y − αs)
)
, (6.8)

...

Fj =
( i−q+j∏

s=1

(X − βs)
)( q∏

s=1

(X − γs)
)
, (6.9)

Fj+1 =
( i−q+j∏

s=1

(X − βs)
)( q−1∏

s=1

(Y − αs)
)
,

Fj+2 =
( i−q+j∏

s=1

(X − βs)
)( q−2∏

s=1

(Y − αs)
)
(X − γ1),

...

Fm−1 =
( i−q+j∏

s=1

(X − βs)
)( q−m+j+1∏

s=1

(Y − αs)
)

(m−j−2∏

s=1

(X − γs)
)
,

has exactly iq + j(q + 1) − ∑m
s=0(q − s) zeros in common with the Hermitian

polynomial Xq+1 − Y q − Y (again we leave the technical details for the reader).
For simplicity we covered the case m = j+1 and i < q2−q in both induction proofs.
Observe that the basis step m = j + 1 of the last induction proof corresponds to
the terms in (6.7), (6.8), (6.9) which are different from (6.4), (6.5), (6.6) with
m = j + 1.

For 1 ≤ m ≤ µ1 − µ2 ≤ q + 1 but with µ1 and µ2 not satisfying the condition
in (6.3) we can often derive much better estimates than (6.2).
For µ2 < c−1 it may happen that not all of the numbers µ1, µ1−1, . . . , µ1−(m−1)
belong to H(Q), and so the worst case in the proof of Theorem 19 may not be re-
alized. Hence, we should rather apply (5.8) or (5.7) (which in this situation are
equivalent).
For n − c ≤ µ1 it may happen that H∗(Q)\(µ1 + H(Q)) is strictly smaller than
H(Q)\(µ1 +H(Q)) (this will happen if µ1 = iq+ j(q+ 1), with q2− q ≤ i < q2 and
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0 < j < q). In such a case #
(
H∗(Q) ∩ (µ1 + H(Q))

)
will be strictly larger than

n− µ1. Moreover, all the numbers µ1, µ1 − 1, . . . , µ1 − (m− 1) need not belong to
H∗(Q) (this may happen if µ1 ≥ n) and again the worst case considered in the proof
of Theorem 19 may not be realizable. In this situation we should rather apply (5.7).

We illustrate our observations with three examples. The first two are concerned
with µ2 < c− 1 and the last with n− c ≤ µ1.

Example 1. In this example we consider codes over Fq2 = F16. Hence, q =
4, H(Q) = 〈4, 5〉 and n = 64. The first numbers of H∗(Q) (and H(Q)) are
0, 4, 5, 8, 9, 10, 12. Hence, dimCL(D, 8Q) = 4, dimCL(D, 12Q) = 7. Theorem 22
tells us that Mm(CL(D, 12Q), CL(D, 8Q)) is at least 52, 56 and 59, for m equal to
1, 2 and 3, respectively. Using (5.8) we now show that for m = 2 and m = 3 the true
values are at least 58 and 60, respectively. We first concentrate on m = 2. Using
the notation from Proposition 17 we must investigate all γi1 , γi2 ∈ {9, 10, 12} with
γi1 < γi2 , We have three different choices of (γi1 , γi2) to consider, namely (10, 12),
(9, 12) and (9, 10). We first observe that

12 +H(Q) = {12, 16, 17, 20, 21, 22, 24, . . .}
10 +H(Q) = {10, 14, 15, 18, 19, 20, 22, 23, 24, . . .}
9 +H(Q) = {9, 13, 14, 17, 18, 19, 21, 22, 23, 24, . . .}.

Note that if α ∈ H(Q)\(λ+H(Q)) for λ ∈ {9, 10, 12} then also α ∈ H∗(Q).

(γi1 , γi2) = (10, 12): We have

#(H∗(Q) ∩ (12 +H(Q)) = n− 12 = 52, (6.10)

#((10 +H(Q))\(12 +H(Q)) = 6.

Hence, we get the value 52 + 6 = 58.

(γi1 , γi2) = (9, 12): Combining (6.10) with

#((9 +H(Q))\(12 +H(Q)) = 6

again give us the value 52 + 6 = 58.

(γi1 , γi2) = (9, 10): We have

#(H∗(Q) ∩ (10 +H(Q)) = n− 10 = 54,

#((9 +H(Q))\(10 +H(Q)) = 4

producing the value 54 + 4 = 58.

The minimum of the above three values is 58 which is then our estimate on
M2(CL(D, 12Q), CL(D, 8Q)).
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Finally consider m = 3. There is only one choice of (γi1 , γi2 , γi3) namely
(9, 10, 12). By inspection there are exactly 8 numbers that are in either 9+H(Q) or
10+H(Q) but not in 12+H(Q). Hence, our estimate on M3(CL(D, 12Q), CL(D, 8Q))
becomes n− 12 + 8 = 60.

Example 2. This is a continuation of Example 1. The dimension of CL(D, 10Q)
and CL(D, 5Q) are 6 and 3, respectively. Theorem 22 tells us that
Mm(CL(D, 10Q), CL(D, 5Q)) is at least n− 10 = 54, n− 10 + 4 = 58 and n− 10 +
4 + 3 = 61, for m equal to 1, 2 and 3, respectively. The possible values of γis to
consider are 8, 9, 10, which constitute a sequence without gaps. Hence, according to
our discussion prior to Example 1 in this case we cannot improve upon Theorem 19.

Example 3. This is a continuation of Examples 1 and 2. The last numbers of
H∗(Q) are {65, 66, 67, 69, 70, 71, 74, 75, 79}. Hence, dim(CL(D, 69Q)) = 64 − 5 =
59 and dim(CL(D, 65Q)) = 64− 8 = 56. Theorem 22 gives no information on the
first two RGHWs and only tells us that the third relative weight is larger than or
equal to 2. This, however, is useless information as any space D of dimension 3
has a support of size at least 3. As we will now demonstrate (5.7) guarantees that
the three RGHWs are at least 3, 6, and 8, respectively. We first observe that

H∗(Q) ∩ (69 +H(Q)) = {69, 74, 79}
H∗(Q) ∩ (67 +H(Q)) = {67, 71, 75, 79}
H∗(Q) ∩ (66 +H(Q)) = {66, 70, 71, 74, 75, 79}.

The smallest set is of size 3 and we get M1(CL(D, 69Q), CL(D, 65Q)) = 3.
The smallest union of two sets is the union of the first two. This union is of size
6 giving us M2(CL(D, 69Q), CL(D, 65Q)) ≥ 6.
The union of all three sets is of size 8. Hence, M3(CL(D, 69Q), CL(D, 65Q)) ≥ 8.

6.1 A comparison between RGHW and GHW

In [33] and [3], respectively, Munuera & Ramirez and Barbero & Munuera deter-
mined the GHWs of any Hermitian code. To state all their results is too extensive.
However, already from their master theorem [33, Prop. 12], [3, Prop. 2.3], one can
deduce that the RGHWs are often much larger than the corresponding GHWs.

Definition 24. Let ev : ∪∞µ=0CL(D,µQ) → Fnq be the map ev(f) = (f(P1), . . . ,
f(Pn)). The abundance α(µ) is the dimension of ker ev when ev is restricted to
CL(D,µQ).

The following is the master theorem from [33, 3]. Here, and throughout the rest of
this section, we use the notation H(Q) = {ρ1, ρ2, . . .} with ρi < ρj for i < j.

Theorem 25. For m = 1, . . . ,dim(CL(D,µQ))

dm(CL(D,µQ)) ≥ n− µ+ ρm + α(µ). (6.11)

Equality holds under the following conditions:
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1. µ ∈ H∗(Q)

2. n−µ+ρm+α(µ) ∈ H(Q), in which case we write n−µ+ρm+α(µ) = iq+j(q+1),
where i, j are non-negative integers with j < q.

3. i ≤ q2 − q − 1 or j = 0.

Observe that Theorem 25 and Theorem 22, respectively, produce similar esti-
mates for the minimum distance and the relative minimum distance. Similarly for
the second GHW and the second RGHW. From the last part of Theorem 22 we
conclude that for m = 1, 2, whenever m ≤ µ1−µ2 ≤ q+1, c−1 ≤ µ2 and µ1 < n−c
holds, then Mm(CL(D,µ1Q), CL(D,µ2Q)) = dm(CL(D,µ1Q)) (recall that c is the
conductor). As shall be demonstrated in the following, for higher values of m,
Mm(CL(D, µ1Q), CL(D,µ2Q)) is often much larger than dm(CL(D,µ1Q)).

Proposition 26. For q > 2, 1 ≤ m ≤ q + 1 and 2q2 − q ≤ µ ≤ n − c we have
dm(CL(D,µQ)) = n− µ+ ρm.

Proof. It is well-known [42] that for µ ≤ q3−1 we have α(µ) = 0. Therefore (6.11)
simplifies to dm(CL(D,µQ)) ≥ n−µ+ρm under the conditions of the proposition.
To prove the proposition it suffices to demonstrate the conditions 1, 2, and 3 of
Theorem 25. As is well-known µ ∈ H∗(Q) when c ≤ µ < n. However, c < 2q2 − q
and therefore condition 1 follows. To see that condition 2 is satisfied note that by
assumption c ≤ n− µ and so n− µ+ ρm+α(µ) ≥ c. To demonstrate condition 3 it
suffices to show

n− µ+ ρm ≤ q3 − q2. (6.12)

Observe that ρm ≤ q(q− 1) which holds because of the assumption that m ≤ q+ 1
and q > 2 and because the number of gaps in H(Q) equals q(q − 1)/2. As a
consequence the assumption 2q2 − q ≤ µ implies q2 + ρm ≤ µ from which we
derive (6.12).

Proposition 27. Consider the field Fq2 , with q > 2. Let 3 ≤ µ̃ ≤ q+1 be fixed. For
m = 3, . . . , µ̃ there are at least q3 − 3q2 + 1 different codes CL(D,µQ) for which
dm(CL(D,µQ)) = n − µ + ρm and simultaneously Mm(CL(D,µQ), CL(D, (µ −
µ̃)Q)) = n− µ+

∑m−2
i=0 (q − i) hold. For these codes we have

Mm(CL(D,µQ), CL(D, (µ− µ̃)Q))− dm(CL(D,µQ))

=
(m−2∑

s=0

(q − s)
)
− ρm > 0. (6.13)

Proof. Follows from Theorem 25, Theorem 22 and a study of H(Q).

Note that if for fixed µ̃ we divide the number of different codes CL(D,µQ) for
which (6.13) holds by the number of different codes, which is q3, then we get the
ratio R(q) ≥ (q3 − 3q2 + 1)/q3 ≥ 1− 3/q. This ratio approaches 1 as q approaches
infinity. For q = 4, 5, 7, 8, 9, 16, and 32, respectively, R(q) is at least 0.25, 0.4, 0.57,
0.62, 0.66, 0.81, and 0.9, respectively. In Table 6.1 for different values of m and q
we list the difference between the parameters as expressed in (6.13).
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Table 6.1: Diff(m, q) is the value of (6.13).

m 3 4 5 6 7 8 9 10
Diff(m,4) 2 1 1
Diff(m,5) 3 2 3 3
Diff(m,7) 5 4 7 9 6 6
Diff(m,8) 6 5 9 12 9 10 10
Diff(m,16) 14 13 25 36 33 42 50 57

m 11 12 13 14 15 16 17
Diff(m,16) 51 56 60 63 65 55 55
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Chapter 7

Ramp schemes based on
Hermitian codes

In this section we consider ramp secret sharing schemes D1/D2 where D1 = C⊥2 ,
D2 = C⊥1 , and C2 ( C1 are Hermitian codes over Fq2 , with dim(C1)−dim(C2) = µ̃.
Recall from Theorem 3 in Section 2 that tm + 1 = Mm(C1, C2), m = 1, . . . , µ̃ is
the size of the smallest group that can reveal m q2-bits of information. Also recall
that rm = n −Mµ̃−m+1(D1, D2) + 1 is the smallest number such that any group
of this size can reveal m q2-bits of information. From Section 6 we know how to
determine/estimate Mm(C1, C2). Now [42, Th. 1] tells us that for µ ∈ H∗(Q) we
have CL(D,µQ)⊥ = CL(D, (n+ c− 2− µ)Q). To establish information on rm we
therefore need not apply Theorem 20 (the theorem for duals of one-point algebraic
geometric codes), but can instead use the already established information on the
RGHW of C2 ⊆ C1. From Theorem 22 we get the following result:

Theorem 28. Let µ, µ̃ be positive integers satisfying

µ̃ ≤ q + 1, c− 1 + µ̃ ≤ µ ≤ n− 1. (7.1)

Consider the ramp secret sharing scheme D1/D2 = C⊥2 /C
⊥
1 where C1 = CL(D,µQ)

and C2 = CL(D, (µ− µ̃)Q). The codimension (and thereby the length of the secret)
equals µ̃. Furthermore for m = 1, . . . , µ̃ it holds that

tm ≥ n− µ+
m−2∑

s=0

(q − s)− 1, (7.2)

rm ≤ n− µ+ c+ µ̃− 1−
µ̃−m−1∑

s=0

(q − s). (7.3)

Equality holds simultaneously in (7.2) and (7.3) when the second condition in (7.1)
is replaced with

2c− 2 + µ̃ < µ < n− c. (7.4)
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Table 7.1: Parameters of the ramp schemes in Example 4.

m 1 2 3 4 5 6 7 8 9
G1(m, 8) 0 8 15 21 26 30 33 35 36
G2(m, 9, 8) 28 29 31 34 38 43 49 56 64

Table 7.2: Parameters of the ramp schemes in Example 5.

m 1 2 3 4 5 6 7 8
G1(m, 16) 0 16 31 45 58 70 81 91

G2(m, 16, 16) 120 122 125 129 134 140 147 155

m 9 10 11 12 13 14 15 16
G1(m, 16) 100 108 115 121 126 130 133 135

G2(m, 16, 16) 164 174 185 197 210 224 239 255

Example 4. In this example we consider schemes over F64. That is, q = 8 and the
number of participants is n = 512. The assumption (7.1) for (7.2) and (7.3) to hold
is µ̃ ≤ 9, 55+µ̃ ≤ µ ≤ 511, the latter corresponding to 1 ≤ n−µ ≤ 457−µ̃. By (7.4)
equality holds simultaneously in (7.2) and (7.3) when 56 < n− µ < 402− µ̃ holds.

In Table 7.1 we list for µ̃ = q + 1 the values of G1(m, q) =
∑m−2
s=0 (q − s) (which is

our lower bound on (tm+1)−(n−µ)) and G2(m, µ̃, q) = c+ µ̃−1−∑µ̃−m−1
s=0 (q−s)

(which is our upper bound on rm − (n− µ)). Note that G1(m, q) = Z(H(Q), µ,m)
(Lemma 21). For the considered choice of µ̃ the secret is of size equal to 9 q2-bits.
One can get much information from Table 7.1. Assume for instance n− µ = 130.
Then the smallest group that can derive some information is of size 130 + 0 = 130,
hence t1 = 129. The smallest group size for which any group can derive some
information is r1 = 130+28 = 158. Groups of size 158 on the other hand can never
obtain more than 5 q2-bits of information as G1(5, 8) ≤ 158−130 < G1(6, 8). Some
group of size t3 + 1 = 130 + 15 = 145 can derive at least 3 q2-bits of information,
however, r3 = 130 + 31 = 161 is the smallest group size guaranteed to reveal 3
q2-bits of information. Any group of size r9 = 130 + 64 = 194 can reveal the entire
secret. Some group of size t9 + 1 = 130 + 36 = 166 can reveal the entire secret
whereas other groups of size 166 can reveal no more than 4 q2-bits of information.

Example 5. In this example we consider schemes over F256. That is, q = 16 and
the number of participants is n = 4096. Assumption (7.1) is 1 ≤ n− µ < 3857− µ̃
and by (7.4) equality holds in (7.2) and (7.3) simultaneously if

240 < n− µ < 3618− µ̃ (7.5)

In Table 7.2 we list values of G1(m, 16) and G2(m, 16, 16) where the functions
G1 and G2 are as in Example 4. Assuming (7.5), then from the table we get the
following information: Some groups of size t1 + 1 = n − µ may reveal 1 q2-bit of
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information whereas other groups of size n− µ+ 119 cannot as r1 = n− µ+ 120.
Some group of size t11+1 = n−µ+115 can reveal 11 q2-bits of information whereas
some group of the same size can not reveal anything. Any group of size n−µ+ 135
can for sure reveal 5 q2-bits of information and some group of the same size can
reveal everything. Any group of size r16 = n− µ+ 255 can reveal the entire secret.

Remark 29. Assume that (7.1) holds and let m ≤ µ̃. The difference between
the smallest size for which any group can reveal m q2-bits of information and
the smallest size for which some group can reveal m q2-bits of information equals
(n−Mµ̃+1−m(C⊥2 , C

⊥
1 ) + 1)−Mm(C1, C2) which is at most

c+ µ̃− 1−
µ̃−m−1∑

s=0

(q − s)−
m−2∑

s=0

(q − s) (7.6)

(with equality if 2c − 2 + µ̃ < µ < n − c). The maximum of (7.6) is attained at
m = 1 and m = µ̃. The corresponding “worst-case” difference equals c + µ̃ − 1 −
µ̃−1

2 (2q − µ̃ + 2). This number is highest possible when µ̃ = q and µ̃ = q + 1, in
which case it equals the genus g = (q2 − q)/2.

We conclude the section with an example in which we show how to improve
upon (7.2) and (7.3) when the condition (7.4) is not satisfied.

Example 6. In this example we consider schemes over F16. That is, q = 4 and
the number of participants is n = 64. We consider secrets of length 3. Hence, we
require that

dim(C1 = CL(D,µ1Q))− dim(C2 = CL(D,µ2Q)) = 3.

We have

H∗(Q) = {0, 4, 5, 8, 9, 10, 12, 13, · · · ,
62, 63, 65, 66, 67, 70, 71, 75}

and therefore without loss of generality the possible choices of (µ1, µ2) are {(µ(1)
1 , µ

(1)
2 ),

. . . , (µ
(62)
1 , µ

(62)
2 )} = {(5,−1), (8, 0), (9, 4), (10, 5), (12, 8), (13, 9), (14, 10), (15, 12),

. . . , (63, 60), (65, 61), (66, 62), (67, 63), (70, 65), (71, 66), (75, 67)}, where for
(5,−1) we mean that C2 equals {~0}. In the following we calculate

tm = Mm(CL(D,µ1Q), CL(D,µ2Q))− 1,

rm = n−Mµ2−µ1−m+1(CL(D, (n+ c− 2− µ2)Q),

CL(D, (n− c+ 2− µ1)Q)) + 1

= n−Mµ2−µ1−m+1(CL(D, (74− µ2)Q),

CL(D, (74− µ1)Q)) + 1,

m = 1, 2, 3, for all the above choices of (µ1, µ2).
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Recall from the discussion prior to Example 1 in Section 6 that for some choices
of (µ1, µ2) we may achieve better estimates on the RGHW than (6.2). This is done
by applying the method of Example 1 and Example 3 which corresponds to (5.8)
and (5.7), respectively. Specifically for µ1 = 5, 8, 9, 10, 12, 13 we do not have

{µ1, µ1 − 1, µ1 − 2} ⊆ H∗(Q) (7.7)

and to calculate tm we therefore apply the method of Example 1. By inspection, for
µ1 = 53, 57, 58, 61, 62, 63, 65, 66, 67, 70, 71, 75 we have that H∗(Q)\(µ1 +H(Q))
is strictly smaller than H(Q)\(µ1 +H(Q)) and also for some of these values, (7.7)
does not hold either. Hence, we apply the method of Example 3. In conclusion the
values of µ1 for which we can potentially obtain improved information on tm are

S1 = {µ(1)
1 , µ

(2)
1 , . . . , µ

(6)
1 ,

µ
(46)
1 , µ

(50)
1 , µ

(51)
1 , µ

(54)
1 , µ

(55)
1 , . . . , µ

(62)
1 } (7.8)

= {5, 8, 9, 10, 12, 13,

53, 57, 58, 61, 62, 63, 65, 66, 67, 70, 71, 75}.

We next discuss rm. Here, a little care is needed in the analysis: as an example for

(µ1, µ2) = (µ
(4)
1 , µ

(4)
2 ) = (10, 5) we have C⊥2 = CL(D, (74 − µ2)Q) = CL(D, 69Q),

but this code is the same as CL(D, 67Q) because 68 and 69 do not belong to

H∗(Q). This phenomenon corresponds to the fact that actually CL(D,µ
(s)
2 Q)⊥ =

CL(D,µ
(63−s)
1 Q), s = 1, . . . , 62. Hence, from (7.8) we see that the values of µ1 for

which we can potentially derive improved information regarding rm are

S2 = {µ(63−1)
1 , . . . , µ

(63−6)
1 , µ

(63−46)
1 , µ

(63−50)
1 , µ

(63−51)
1 ,

µ
(63−54)
1 , . . . , µ

(63−62)
1 }

= {5, 8, 9, 10, 12, 13, 14, 15, 16,

19, 20, 24, 65, 66, 67, 70, 71, 75}.

Applying a mixture of the method from Example 1 and Example 3 plus (6.2) we
derive for µ1 ∈ S1 ∪ S2 the information given in Table 7.3.
For the remaining values of µ1, that is for

µ1 ∈ {5, 8, 9, 10, 12, . . . , 63, 65, 66, 67, 70, 71, 75}
\(S1 ∪ S2)

= {17, 18, 21, 22, 23, 25, 26, 27, . . . ,

51, 52, 54, 55, 56, 59, 60}

we have µ2 = µ1−3, and the best bounds (sometimes tight) are obtained from (6.2).
They are: [t1 ≥ n − µ1 − 1, r1 ≤ n − µ1 + 7], [t2 ≥ n − µ1 + 3, r2 ≤ n − µ1 + 10]
and [t3 ≥ n− µ1 + 6, r3 ≤ n− µ1 + 14].
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Table 7.3: Lower bounds on tm and upper bounds on rm for the schemes in Exam-
ple 6.

µ1 5 8 9 10 12 13
[t1, r1] [58,62] [55,61] [54,60] [53,59] [51,58] [50,57]
[t2, r2] [62,63] [59,62] [58,61] [57,60] [57,60] [54,59]
[t3, r3] [63,64] [62,63] [61,63] [60,62] [59,62] [58,62]

µ1 14 15 16 19 20 24
[t1, r1] [49,56] [48,56] [47,55] [44,52] [43,51] [39,47]
[t2, r2] [53,58] [52,58] [51,58] [48,54] [47,54] [43,50]
[t3, r3] [56,61] [55,61] [54,61] [51,57] [50,57] [46,53]

µ1 53 57 58 61 62 63
[t1, r1] [11,18] [7,14] [7,13] [3,10] [3,9] [3,8]
[t2, r2] [14,21] [10,17] [10,16] [6,13] [6,12] [6,11]
[t3, r3] [17,25] [13,21] [12,20] [9,17] [8,16] [8,15]

µ1 65 66 67 70 71 75
[t1, r1] [2,6] [2,5] [2,4] [1,3] [1,2] [0,1]
[t2, r2] [5,10] [4,7] [4,7] [3,6] [2,5] [1,2]
[t3, r3] [7,14] [6,13] [5,11] [4,10] [3,9] [2,6]
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Abstract

Coset constructions C1/C2, where C2 ( C1 are linear codes, serve as useful prim-
itives in connection with wire-tap channels of type II and ramp secret sharing.
The corresponding relative generalized Hamming weights describe the information
leakage and security, respectively [2, 19, 17, 10]. In this paper we show how to
compute relative generalized Hamming weights when both the involved codes are
q-ary Reed-Muller codes. Our work is a non-trivial extension of material in [13] on
generalized Hamming weights.

Keywords: q-ary Reed-Muller code, relative generalized Hamming weight, secret
sharing, wire-tap channel of type II
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Chapter 1

Introduction

Relative generalized Hamming weights (RGHWs) are useful tools for estimating
the information leakage from wire-tap channels of type II when linear codes are
used [19]. Similarly they describe the security in linear ramp secret sharing schemes [2,
17, 10]. We shall give a brief overview of their use in connection with secret sharing
schemes. A linear ramp secret sharing scheme with n participants, secrets in (Fq)`,
and shares belonging to Fq can be described as follows [5]. Consider linear codes
C2 ( C1 ⊂ (Fq)n with ` = dim(C1)−dim(C2) and let L ⊆ (Fq)n be (a linear code)
such that C1 = L⊕C2, where ⊕ is the direct sum. Consider a vector space isomor-
phism ψ : (Fq)` → L. A secret ~s ∈ (Fq)` is mapped to ~x = ψ(~s) + ~c2 ∈ C1, where
~c2 ∈ C2 is chosen by random. The n shares distributed among the n participants
are the n coordinates of ~x. The parameters t and r of the scheme are the unique
numbers such that:

1. No group of t participants can recover any information about ~s, but some
groups of size t+ 1 can.

2. All groups of size r can recover the secret in full, but some groups of size r−1
cannot.

Only for ` = 1 we can hope for r = t+1 in which case we have a complete picture of
the security. Such schemes are called t-threshold secret sharing schemes. For gen-
eral linear ramp secret sharing schemes we have the parameters t1, . . . , t`, r1, . . . , r`
where for m = 1, . . . , `, tm and rm are the unique numbers such that the following
hold:

1. No group of tm participants can recover m q-bits of information about ~s, but
some groups of size tm + 1 can.

2. All groups of size rm can recover m q-bits of information about ~s, but some
groups of size rm − 1 cannot.
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Clearly, t = t1 and r = r`. From [2, Th. 6.7], [17, Th. 4] and [10, Th. 6] we have
the following characterization of these parameters:

tm = Mm((C2)⊥, (C1)⊥)− 1 (1.1)
rm = n−M`−m+1(C1, C2) + 1, (1.2)

where Mm(C1, C2) is the m-th relative generalized Hamming weight for C1 with
respect to C2 and (C)⊥ denotes the dual code of C.
Unfortunately, it is not easy to find the hierarchy of RGHWs of two general linear
codes and only for a few classes of codes these parameters have been found or es-
timated. Actually – until recently – only for a single class of codes the parameters
were known, namely MDS codes for which the situation is particular simple [19].
Recently a general method for estimating RGHWs of one-point algebraic geometric
codes was proposed in [10] leading to a bound for Hermitian codes which is tight in
some cases. In the present paper we show how to calculate RGHWs when both C1

and C2 are q-ary Reed-Muller codes. Such codes are particularly suited for secret
sharing as the dual of a q-ary Reed-Muller code is also a q-ary Reed-Muller code –
and by (1.1) and (1.2) we therefore can determine tm as well as rm, m = 1, . . . , `.
Also if one wants to apply such a scheme for the purpose of secure multiparty
computation [7, 8, 4, 9] then one would need to know the product C2 = C ∗ C
of the involved codes. Here, C2 = {~a ∗ ~b | ~a,~b ∈ C} where for ~a = (a1, . . . , an),
~b = (b1, . . . , bn), ~a∗~b = (a1b1, . . . , anbn). Also one might need to know higher pow-
ers Cp. For a q-ary Reed-Muller code C the code Cp is again a q-ary Reed-Muller
code which is easy to determine.
Our work is a non-trivial generalization of results by Heijnen and Pellikaan [13] who
showed how to calculate generalized Hamming weights of q-ary Reed-Muller codes.
Similar to Heijnen and Pellikaan we propose a low complexity method to derive the
parameters, and for the situation where the codes are defined from polynomials in
two variables we furthermore give closed formula expressions.

The paper is organized as follows. In Section 2 we introduce RGHWs and show
how to estimate them using the footprint bound from Gröbner basis theory. This
method is then applied to q-ary Reed-Muller codes in Section 3. In Section 4 we
elaborate on the method and formalize our findings into an algorithm. For the
special case of q-ary Reed-Muller codes defined from polynomials in two variables
we then in Section 5 provide closed formula expressions. Finally, Section 6 is the
conclusion.
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Chapter 2

Relative generalized Hamming
weights

In this section we give the definition of relative generalized Hamming weights. We
also introduce the footprint bound which will be useful when we want to calculate
the RGHWs of q-ary Reed-Muller codes and we take the first step in this direction.
A well-know concept in coding theory is the generalized Hamming weights [16, 14,
22] which we start by introducing. Recall that for D ⊆ (Fq)n the support of D is
defined as

supp(D) = {i | ci 6= 0 for some ~c = (c1, . . . , cn) ∈ D}.
Definition 1. Let C be a linear code and k its dimension. For r = 1, . . . , k, the
r-th generalized Hamming weight (GHW) of C is defined by

dr(C) = min{|supp(D)| | D is a linear subcode of C,dim(D) = r}.

The sequence (d1(C), . . . , dk(C)) is called the hierarchy of the GHWs of C.

In particular d1(C) is the minimum distance of C. The problem of computing
the GHWs for binary Reed-Muller codes was solved in [22] and for general q-ary
Reed-Muller codes in [13]. A further generalization of GHWs was introduced by
Luo et al. in [19].

Definition 2. Let C2 ( C1 be linear codes, ` = dim(C1)−dim(C2) the codimension
of C1 and C2, and n the length of the codes. For m = 1, . . . , `, the m-th relative
generalized Hamming weight (RGHW) of C1 with respect to C2 is defined by

Mm(C1, C2) = min
J⊆{1,...,n}

{|J | | dim((C1)J)− dim((C2)J) = m}

where (Ci)J = {~c ∈ Ci | ct = 0 for t /∈ J} for i = 1, 2. The sequence (M1(C1, C2), . . . ,
M`(C1, C2)) is called the hierarchy of the RGHWs of C1 with respect to C2.

If C2 is the zero code {~0} then the m-th RGHW of C1 with respect to C2

is equivalent to the m-th GHW of C1. This fact should be more clear from the
following result [18, Lem. 1].
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Theorem 3. Let C2 ( C1 be linear codes and ` = dim(C1) − dim(C2) be the
codimension of C1 and C2. For m = 1, . . . , ` we have that

Mm(C1, C2) = min{|supp(D)| | D is a linear subcode of C1,

D ∩ C2 = {~0} and dim(D) = m}.

This alternative characterization of RGHWs is useful when one considers q-ary
Reed-Muller codes which we now define.

Definition 4. Let q be a power of a prime, u an integer, s a positive integer, and
write n = qs. We enumerate the elements of (Fq)s as {P1, . . . , Pn} and consider
the evaluation map ϕ : Fq[X1, . . . , Xs] → (Fq)n, ϕ(f) = (f(P1), . . . , f(Pn)). The
q-ary Reed-Muller code of order u in s variables is defined by

RMq(u, s) = {ϕ(f) : f ∈ Fq[X1, . . . , Xs],deg(f) ≤ u}
= spanFq

{ϕ(Xa1
1 · · ·Xas

s ) | 0 ≤ a1, . . . , as < q, a1 + · · ·+ as ≤ u} (2.1)

In this paper we shall use the convention deg(0) = −1 and spanFq
{} = {~0}. Hence

RMq(−1, s) = {~0}.
Throughout the rest of the paper we shall always write n = qs. Observe that

the equality in (2.1) is a consequence of the fact that

ϕ(f) = ϕ(f rem {Xq
1 −X1, . . . , X

q
s −Xs}) (2.2)

for any f ∈ Fq[X1, . . . , Xs]. Here, the argument on the right side of (2.2) means
the remainder of f after division with {Xq

1 −X1, . . . , X
q
s −Xs} (see [6, Sec. 2.3] for

the multivariate division algorithm). Furthermore note that ϕ is surjective which
is seen by applying Lagrange interpolation. Dimension considerations now show
that the restriction of ϕ to the span of

Rsq = {Xa1
1 · · ·Xas

s | 0 ≤ ai < q, i = 1, . . . , s}

is a bijection and {ϕ(M) |M ∈ Rsq} therefore is a basis for (Fq)n as a vector space.
We write

Qsq = {(a1, . . . , as) ∈ Ns0 | 0 ≤ ai < q, i = 1, . . . , s}

and ~X~a = Xa1
1 · · ·Xas

s for ~a = (a1, . . . , as) ∈ Ns0. Hence, Rsq = { ~X~a | ~a ∈ Qsq}.
Remark 5. From the above discussion we conclude that if D ⊆ RMq(u, s) is
a subspace of dimension m then without loss of generality we may assume that
D = spanFq

{ϕ(F1), . . . , ϕ(Fm)} where the leading monomials (with respect to the
given fixed monomial ordering ≺) satisfy lm(Fi) ∈ Rsq, lm(Fi) 6= lm(Fj) for i 6= j,
and deg(Fi) ≤ u for i = 1, . . .m. For given D and fixed ≺ these leading monomials
are unique.

We could calculate the RGHWs of q-ary Reed-Muller codes using the technique
from [10] where the Feng-Rao bound for primary codes is employed. However, the
simple algebraic structure of the q-ary Reed-Muller codes suggests that instead we
should apply the footprint bound which we now introduce.
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Definition 6. Let k be a field and consider an ideal J ⊆ k[X1, . . . , Xs] and a
fixed monomial ordering ≺. Let M(X1, . . . , Xs) denote the set of monomials in
the variables X1, . . . , Xs. The footprint of J with respect to ≺ is the set

∆≺(J) = {M ∈M(X1, . . . , Xs) |M is not the leading monomial
of any polynomial in J}.

Example 1. We see immediately that ∆≺(〈Xq
1 −X1, . . . , X

q
s −Xs〉) ⊆ Rsq.

From [6, Th. 6] we have the following well-known result.

Theorem 7. Let the notation be as in Definition 6. The set {M+J |M ∈ ∆≺(J)}
is a basis for k[X1, . . . , Xs]/J as a vector space over k.

Example 2. This is a continuation of Example 1. From Theorem 7 and the fact
that ϕ : Rsq → (Fq)n is a bijection we conclude ∆≺(〈Xq

1 −X1, . . . , X
q
s −Xs〉) = Rsq.

Consider polynomials F1, . . . , Fm ∈ Fq[X1, . . . , Xs]. Let {Q1, . . . , QN} be their
common zeros over Fq and define the vector space homomorphism ψ : Fq[X1, . . . , Xs]→
(Fq)N , ψ(f) = (f(Q1), . . . , f(Qs)). This map is surjective (Lagrange interpolation
again) and as a corollary to Theorem 7 we therefore obtain the following incidence
of the footprint bound. (For the general version of the footprint bound see [15]
and [6, Pro. 8, Sec. 5.3]).

Lemma 8. Let F1, . . . , Fm ∈ Fq[X1, . . . , Xs]. The number of common zeros of
F1, . . . , Fm over Fq is at most equal to |∆≺(〈F1, . . . , Fm, X

q
1 −X1, . . . , X

q
s −Xs〉)|

(here, ≺ is any monomial ordering).

We note that actually equality holds in Lemma 8 (see [6, Pro. 8, Sec. 5.3]), but
we shall not need this fact. To make Lemma 8 operational we recall the following
notation from [3].

Definition 9. The partial ordering �P on the monomials in Rsq and on the ele-
ments in Qsq is defined by

~X~a�P
~X
~b (or ~a�P

~b) ⇐⇒ ai ≤ bi for all i ∈ {1, . . . , s}.

The upward shadow of ~a ∈ Qsq is ∇~a = {~b ∈ Qsq | ~b�P~a}.
The lower shadow of ~a ∈ Qsq is ∆~a = {~b ∈ Qsq | ~b�P~a}.
Let A ⊆ Qsq, we define ∇A =

⋃
~a∈A∇~a and ∆A =

⋃
~a∈A ∆~a.

Example 3. For ~a = (2, 3) ∈ Q2
4 we have that

∇~a = {(2, 3), (3, 3)}

∆~a = {(2, 3), (1, 3), (0, 3), (2, 2), (1, 2), (0, 2), (2, 1), (1, 1), (0, 1), (2, 0), (1, 0), (0, 0)}.
The partial ordering is not a total ordering; for example we neither have (3, 2)�P(2, 3)
nor (3, 2)�P(2, 3).
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An important tool for calculating RGHWs of q-ary Reed-Muller codes is the
following corollary to Lemma 8.

Corollary 10. Consider any monomial ordering and let D = spanFq
{ϕ(F1), . . . ,

ϕ(Fm)} be a subspace of (Fq)n of dimension m where without loss of generality we
assume lm(Fi) = ~X~ai ∈ Rsq for i = 1, . . . ,m and ~ai 6= ~aj for i 6= j (Remark 5).
Writing A = {~a1, . . . ,~am} we have |supp(D)| ≥ |∇A| .

Proof. The elements ofD are linear combination of ϕ(F1), . . . , ϕ(Fm), hence |supp(D)|
equals the length n minus the number of common zeros of F1, . . . , Fm over Fq. By
Lemma 8 we get

|supp(D)|
≥ n− |∆≺(〈F1, . . . , Fm, X

q
1 −X1, . . . , X

q
s −Xs〉)|

≥ n−
∣∣∣∣
(

∆≺(〈Xq
1 −X1, . . . , X

q
s −Xs〉)

\ ∪mi=1 { ~X~a ∈ ∆≺(〈Xq
1 −X1, . . . , X

q
s −Xs〉) | ~X~a is divisible by ~X~ai}

)∣∣∣∣

= n− |Rsq|+ |
m⋃

i=1

{~a ∈ Qsq | ~a�P~ai}| = |
m⋃

i=1

∇~ai| = |∇A|

and the proof is complete.

Interestingly for any choice of A as in Corollary 10 there exists some subspaces
D for which the bound is sharp.

Proposition 11. Consider any monomial ordering and A = {~a1, . . . ,~am} ⊆ Qsq
where ~ai 6= ~aj for i 6= j. Then

min{|supp(D)| | D = spanFq
{ϕ(F1), . . . , ϕ(Fm)} for some F1, . . . , Fm

with lm(Fi) = ~X~ai , i = 1, . . . ,m} = |∇A|.

Proof. From Corollary 10 we know that

min{|supp(D)| | D = spanFq
{ϕ(F1), . . . , ϕ(Fm)} for some F1, . . . , Fm

with lm(Fi) = ~X~ai , i = 1, . . . ,m} ≥ |∇A|.
Now we want to prove the other inequality. Let Fq = {γ0, . . . , γq−1} and ~a =
(a1, . . . , as) ∈ Qsq, we write ~γ~a = (γa1 , . . . , γas). For i = 1, . . . ,m, we write the
coordinates of ~ai as (ai,1, ai,2, . . . , ai,s). We define the following subspace of (Fq)n:

D̃ = spanFq
{ϕ(G1), . . . , ϕ(Gm)} with

Gi =

s∏

t=1

ai,t−1∏

j=0

(Xt − γj) for i = 1, . . . ,m.
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For i = 1, . . . ,m we have lm(Gi) = ~X~ai . Furthermore Gi(γ~a) 6= 0 if and only if
~a ∈ Qsq satisfies ~ai�P~a. The last result is equivalent to saying that Gi(γ~a) 6= 0 if
and only if ~a ∈ ∇~ai. The support of D̃ is the union of all positions where some
ϕ(Gi) does not equal 0. Hence, |supp(D̃)| = |⋃mi=1∇~ai| = |∇A|. The proof is
complete.
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Chapter 3

GHWs and RGHWs of q-ary
Reed-Muller codes

In this section we employ Proposition 11 to compute the hierarchy of RGHWs in
the case that C1 and C2 are both q-ary Reed-Muller codes. The main result is
Theorem 20. Recall that a q-ary Reed-Muller code is defined as

RMq(u, s) = spanFq
{ϕ(f) | f ∈ Rsq,deg(f) ≤ u}.

Our method for calculating the hierarchy of RGHWs involves the anti lexico-
graphic ordering on the monomials in Rsq (and on the elements in Qsq). To relate our
findings to Heijnen and Pellikaan’s work on GHWs we also need the lexicographic
ordering on the same sets.

Definition 12. The lexicographic ordering ≺Lex on the monomials in Rsq and on
the elements in Qsq is defined by

~X~a≺Lex
~X
~b(or ~a≺Lex

~b) ⇐⇒ a1 = b1, . . . , al−1 = bl−1 and
al < bl for some l.

The anti lexicographic ordering ≺A on the monomials in Rsq and on the elements
in Qsq is defined by

~X~a≺A
~X
~b(or ~a≺A

~b) ⇐⇒ as = bs, . . . , as−l+1 = bs−l+1 and
as−l > bs−l for some l.

Example 4. For s = 2, q = 3 with X = X1 and Y = X2 we have

1≺LexY≺LexY
2≺LexX≺LexXY≺LexXY

2≺LexX
2≺LexX

2Y≺LexX
2Y 2,

X2Y 2≺AXY
2≺AY

2≺AX
2Y≺AXY≺AY≺AX

2≺AX≺A1.
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From this example it is easy to see that the anti lexicographic ordering is not
the inverse ordering of the lexicographic ordering. Recalling from Definition 9 the
ordering �P we note that if ~X~a�P

~X
~b (or ~a�P

~b) then ~X~a�Lex
~X
~b and ~X~a�A

~X
~b

(or ~a�Lex
~b and ~a�A

~b).
The following concepts will be used extensively throughout our exposition.

Definition 13. Given ~a = (a1, . . . , as) ∈ Qsq, we call deg(~a) = deg( ~X~a) =
∑s
t=1 at

the degree of ~a. Let a, b be two integers with 0 ≤ a ≤ b ≤ s(q − 1), then we define

Fq((a, b), s) = {~a ∈ Qsq | a ≤ deg(~a) ≤ b} and

Wq((a, b), s) = { ~X~a ∈ Rsq | ~a ∈ Fq((a, b), s)}.
The index q and the value s will be omitted in the rest of this section, thus

instead we will use the notations F (a, b) and W (a, b), respectively.

Definition 14. Let m ∈ {1, . . . , |F (a, b)|}, we denote by L(a,b)(m) the set of the
first m elements of F (a, b) using the lexicographic ordering and by N(a,b)(m) the
set of the first m elements of F (a, b) using the anti lexicographic ordering.

The sets N(a,b)(m) will play a crucial role in the following derivation of a for-
mula for the RGHWs of q-ary Reed-Muller codes. The sets L(a,b)(m) shall help us
establish the connection to the work by Heijnen and Pellikaan on GHWs. Their
main result [13, Th. 5.10] is as follows:

Theorem 15. Let ~a = (a1, . . . , as) be the r-th element in F (s(q−1)−u1, s(q−1))
with respect to the lexicographic ordering. Then

dr(RMq(u1, s)) = |∆L(s(q−1)−u1,s(q−1))(r)| =
s∑

i=1

as−i+1q
i−1 + 1. (3.1)

Before continuing our work on establishing the RGHWs we reformulate the
expressions in (3.1). We shall need the following result corresponding to [13, Lem.
5.8].

Lemma 16. Let t be an integer satisfying 1 ≤ t ≤ qs. Write t−1 =
∑s
i=1 as−i+1q

i−1.
Then (a1, . . . , as) is the t-th element of Qsq with respect to the lexicographic ordering.

Also we shall need the bijection µ : Qsq → Qsq given by µ(a1, . . . , as) = (q − 1−
as, . . . , q − 1− a1). Observe that µ has the properties

• ~a≺A
~b ⇐⇒ µ(~a)≺Lexµ(~b),

• µ(F (a, b)) = F (s(q − 1)− b, s(q − 1)− a),

• µ(∇N(a,b)(m)) = ∆L(s(q−1)−b,s(q−1)−a)(m).

For the proofs and other properties of µ we refer to Lemma 28 in Appendix A.
Note that by the first property an element ~a in a subset A of Qsq is the t-th element
in A using the anti lexicographic ordering if and only if µ(~a) is the t-th element in
µ(A) using the lexicographic ordering. We can now reformulate Theorem 15 into
the following result which is not stated in [13].
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Theorem 17. Let ~a be the r-th element in F (0, u1) using the anti lexicographic
ordering. Because F (0, u1) ⊆ Qsq there exists t such that ~a is the t-th element in
Qsq using the anti lexicographic ordering. We have

dr(RMq(u1, s)) = |∇N(0,u1)(r)| = t.

Proof. By the properties of µ and using the lexicographic ordering, we have that
µ(~a) = (ã1, . . . , ãs) is the r-th element in F (s(q − 1) − u1, s(q − 1)) and the t-th
element in Qsq. From Theorem 15 we get

dr(RMq(u1, s)) = |∆L(s(q−1)−u1,s(q−1))(r)| =
s∑

i=1

ãs−i+1q
i−1 + 1

where by Lemma 16 the last expression can be rewritten as
∑s
i=1 ãs−i+1q

i−1 + 1 =
t− 1 + 1 = t.
From the third listed property of µ we obtain

|∇N(0,u1)(r)| = |µ(∇N(0,u1)(r))| = |∆L(s(q−1)−u1,s(q−1))(r)|.

Having reformulated the formula by Heijnen and Pellikaan for GHWs we now
continue our work on establishing a formula for the RGHWs. Consider C2 =
RMq(u2, s) ( C1 = RMq(u1, s). Let ` be the codimension of C1 and C2, then for
m = 1, . . . , ` we have that

Mm(C1, C2) = min{|supp(D)| | D is a linear subcode of C1,

D ∩ C2 = {~0} and dim(D) = m} (3.2)
= min{|supp(D)| | D = spanFq

{ϕ(F1), . . . , ϕ(Fm)},
lm(F1) = ~X~a1 , . . . , lm(Fm) = ~X~am , ~ai 6= ~aj for i 6= j

and ~X~ai ∈W (u2 + 1, u1) for i = 1, . . . ,m} (3.3)

Equation (3.2) corresponds to Theorem 3. Equation (3.3) follows from Remark 5
and the fact that D ⊆ C1 implies lm(Fi) ∈ W (0, u1), i = 1, . . . ,m and from the
fact that D ∩ C2 = {~0} implies lm(Fi) /∈ W (0, u2), i = 1, . . . ,m. In conclusion
lm(Fi) ∈W (u2 + 1, u1), i = 1, . . . ,m. Combining (3.3) with Proposition 11 we get

Mm(C1, C2) = min{|
m⋃

i=1

∇~ai| | ~ai ∈ F (u2 + 1, u1), i = 1, . . .m

and ~ai 6= ~aj , for i 6= j}
= min{|∇A| | A ⊆ F (u2 + 1, u1), |A| = m}. (3.4)

The following lemma – which can be viewed as a generalization of [12, Th. 3.7.7] –
is proved in Appendix A.

Lemma 18. Let A be a subset of F (a, b) consisting ofm elements. Then |∇N(a,b)(m)| ≤
|∇A|.
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Proposition 19. Let C2 = RMq(u2, s) ( C1 = RMq(u1, s). We have

Mm(C1, C2) = |∇N(u2+1,u1)(m)|

Proof. Follows from (3.4) and Lemma 18.

We are now ready to present the generalization of Theorem 17 to RGHWs.

Theorem 20. Given C2 = RMq(u2, s) ( C1 = RMq(u1, s), let ~a be the m-th
element in F (u2 + 1, u1) with respect to the anti lexicographic ordering. Because
F (u2 + 1, u1) ⊆ F (0, u1) ⊆ Qsq there exist r and t such that ~a is the r-th element in
F (0, u1) and the t-th element in Qsq with respect to the anti lexicographic ordering.
We have

Mm(C1, C2) = t− r +m.

Proof. By Proposition 19 we have already proved thatMm(C1, C2) = |∇N(u2+1,u1)(m)|.
It remains to be proved that |∇N(u2+1,u1)(m)| = t− r+m. Because ~a is the m-th
element in F (u2 + 1, u1) and the r-th element in F (0, u1) we have

N(0,u1)(r) = N(0,u2)(r −m) ∪N(u2+1,u1)(m)

from which we derive

∇N(0,u1)(r) = ∇N(u2+1,u1)(m) ∪∇N(0,u2)(r −m)

= ∇N(u2+1,u1)(m) ∪ (∇N(0,u2)(r −m)\∇N(u2+1,u1)(m)).

The last union involves two disjoint sets. Hence,

|∇N(u2+1,u1)(m)| = |∇N(0,u1)(r)| − |∇N(0,u2)(r −m)\∇N(u2+1,u1)(m)|.

From Theorem 17 we have |∇N(0,u1)(r)| = t. Hence, we will be through if we can
prove that

|∇N(0,u2)(r −m)\∇N(u2+1,u1)(m)| = r −m. (3.5)

We enumerate N(0,u2)(r−m) = {~a1, . . . ,~ar−m} according to the anti lexicographic
ordering. We have

∇N(0,u2)(r −m)\∇N(u2+1,u1)(m) =

(
∇
r−m⋃

i=1

{~ai}
)
\∇N(u2+1,u1)(m)

=

(
r−m⋃

i=1

∇~ai
)
\∇N(u2+1,u1)(m) =

(
r−m⋃

i=1

∇~ai\∇{~at | t < i}
)
\∇N(u2+1,u1)(m)

=
r−m⋃

i=1

(
∇~ai\

(
∇{~at | t < i} ∪ ∇N(u2+1,u1)(m)

))
. (3.6)

We will prove that

∇~ai\
(
∇{~at | t < i} ∪ ∇N(u2+1,u1)(m)

)
= {~ai} (3.7)
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holds for i = 1, . . . , r −m.
As ~ai�A~at for t < i, we have ~ai /∈ ∇{~at | t < i}. Furthermore from deg(~ai) ≤ u2
and deg(~c) ≥ u2+1 for any ~c ∈ ∇N(u2+1,u1)(m), we conclude ~ai /∈ ∇N(u2+1,u1)(m).
It follows that

{~ai} ⊆ ∇~ai\
(
∇{~at | t < i} ∪ ∇N(u2+1,u1)(m)

)
.

Now we prove the other inclusion. Assume first ~ai ∈ F (u2, u2). For t = 1, . . . , s

we define ~bt = ~ai + ~et where ~et is the standard vector with 1 in the t-th position.
If ~bt ∈ Qsq then ~bt ∈ N(u2+1,u1)(m) because deg(~bt) = u2 + 1 and ~ai�A

~bt�A~a. It
follows that

∇~ai\
(
∇{~at | t < i} ∪ ∇N(u2+1,u1)(m)

)
⊆

⊆ ∇~ai\∇({~b1, . . . ,~bs} ∩Qsq) = {~ai}.

Assume next ~ai /∈ F (u2, u2). Again we define ~bt = ~ai + ~et for t = 1, . . . , s. If
~bt ∈ Qsq then ~bt ∈ {~at | t < i} because deg(~bt) ≤ u2 and ~ai�A

~bt. Hence,

∇~ai\
(
∇{~at | t < i} ∪ ∇N(u2+1,u1)(m)

)
⊆

⊆ ∇~ai\∇({~b1, . . . ,~bs} ∩Qsq) = {~ai}.
We have established (3.7).
Combining finally (3.7) and (3.6) we obtain

∇N(0,u2)(r −m)\∇N(u2+1,u1)(m) =
r−m⋃

i=1

{~ai} = N(0,u2)(r −m).

By Definition 14 the last set is of size r − m and (3.5) follows. The proof is
complete.

Consider the special case of Theorem 20 where C2 = {~0} = RMq(−1, s). In
this particular case we have – as already noted – dm(C1) = Mm(C1, C2). If we
apply Theorem 20 and the notion in there then we obtain r = m and consequently
Mm(C1, C2) = t. Theorem 17 gives us the same information dm(C1) = t.

We illustrate the use of Theorem 17 and Theorem 20 with an example.

Example 5. In this example we consider Reed-Muller codes in two variables over
F5. We first consider the case C1 = RM5(5, 2) and C2 = RM5(3, 2). Figure 3.1
illustrates how to find r and m for any given t and how to calculate dr(C1) and
Mm(C1, C2) from this information. The elements of Q2

5 are depicted in Part 3.1.1.
In Parts 3.1.2, 3.1.3, and 3.1.4 we illustrate how the elements of Q2

5, F (0, 5) and
F (4, 5), respectively, are ordered. Finally, Part 3.1.5 illustrates how to determine
dr(C1) and Mm(C1, C2) from Theorem 17 and Theorem 20, respectively.
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(0, 4) (1, 4) (2, 4) (3, 4) (4, 4)

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

Part 3.1.1 : Q2
5

5 4 3 2 1

10 9 8 7 6

15 14 13 12 11

20 19 18 17 16

25 24 23 22 21

Part 3.1.2: t-th
positions in Q2

5

2 1

5 4 3

9 8 7 6

14 13 12 11 10

19 18 17 16 15

Part 3.1.3: r-th
positions in F (0, 5)

2 1

4 3

6 5

8 7

9

Part 3.1.4: m-th
positions in F (4, 5)

Q2
5 t r m dr(C1) Mm(C1, C2)

= t = t− r +m

(4, 4) 1 - - - -
(3, 4) 2 - - - -
(2, 4) 3 - - - -
(1, 4) 4 1 1 4 4
(0, 4) 5 2 2 5 5
(4, 3) 6 - - - -
(3, 3) 7 - - - -
(2, 3) 8 3 3 8 8
(1, 3) 9 4 4 9 9
(0, 3) 10 5 - 10 -
(4, 2) 11 - - - -
(3, 2) 12 6 5 12 11
(2, 2) 13 7 6 13 12
(1, 2) 14 8 - 14 -
(0, 2) 15 9 - 15 -
(4, 1) 16 10 7 16 13
(3, 1) 17 11 8 17 14
(2, 1) 18 12 - 18 -
(1, 1) 19 13 - 19 -
(0, 1) 20 14 - 20 -
(4, 0) 21 15 9 21 15
(3, 0) 22 16 - 22 -
(2, 0) 23 17 - 23 -
(1, 0) 24 18 - 24 -
(0, 0) 25 19 - 25 -

Part 3.1.5

Figure 3.1: Calculation of GHWs and RGHWs for C1 = RM5(5, 2) and C2 =
RM5(3, 2).
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r = m dr(C1) Mm(C1, C2)
1 15 15
2 19 19
3 20 22

Table 3.1: C1 = RM5(2, 2), C2 = RM5(1, 2).

r = m dr(C1) Mm(C1, C2)
1 10 10
2 14 14
3 15 17
4 18 19

Table 3.2: C1 = RM5(3, 2), C2 = RM5(2, 2).

For the above choice of C1 and C2 most of the time the GHWs and RGHWs are
the same. This however, is not the general situation for q-ary Reed-Muller codes
as the following choices of C1 and C2 illustrate.
In the remaining part of this example we concentrate on q-ary Reed-Muller codes
C1 = RM5(u1, 2), C2 = RM5(u2, 2) where u1 = u2 + 1. In Table 3.1, Table 3.2,
Table 3.3, Table 3.4, and Table 3.5, respectively, we present parameters dr(C1) and
Mm(C1, C2) for (u1, u2) equal to (2, 1), (3, 2), (4, 3), (5, 4), and (6, 5) respectively.

r = m dr(C1) Mm(C1, C2)
1 5 5
2 9 9
3 10 12
4 13 14
5 14 15

Table 3.3: C1 = RM5(4, 2), C2 = RM5(3, 2).
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r = m dr(C1) Mm(C1, C2)
1 4 4
2 5 7
3 8 9
4 9 10

Table 3.4: C1 = RM5(5, 2), C2 = RM5(4, 2).

r = m dr(C1) Mm(C1, C2)
1 3 3
2 4 5
3 5 6

Table 3.5: C1 = RM5(6, 2), C2 = RM5(5, 2).
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Chapter 4

An algorithm to compute
RGHWs

By Theorem 20 there are still two questions that need to be addressed:

Q1 Given m ∈ {1, . . . , |Fq((a, b), s)|}, how can we find the m-th element ~a of
Fq((a, b), s) with respect to the anti lexicographic ordering?

Q2 Given ~a ∈ Fq((a, b), s) how can we find the corresponding position t and r
– with respect to the anti lexicographic ordering – in Qsq and in Fq((0, b), s),
respectively?

In this section we give answers to these two questions. We start by providing an
algorithm that solves the problem from question Q1. This algorithm is a gener-
alizing of a method proposed in [13, Sec. 6]. Due to the nature of the algorithm
from now on we will – in contrast to the previous section – use the full notation
Fq((a, b), s), rather than just Fq((a, b)) (Definition 13).

Definition 21. Let 0 ≤ a ≤ b ≤ s(q − 1) and 0 ≤ v ≤ w < q be integers. We
define

Fq((a, b), (v, w), s) = {(a1, . . . , as) ∈ Fq((a, b), s) | v ≤ as ≤ w}.

We denote by ρq((a, b), s) and ρq((a, b), (v, w), s) the cardinality of Fq((a, b), s) and
Fq((a, b), (v, w), s), respectively. Most of the time the index q will be omitted.

Theorem 22. Let q be a fixed prime power and consider non-negative integers
a, b, v, s,m with

a ≤ b ≤ s(q − 1), v ≤ q − 1, 1 ≤ s, and m ∈ {1, . . . , |Fq((a, b), (0, v), s)|}.

If these numbers are used as input to the procedure VECA in Figure 4.1 then the
output is the m-th element ~a = (a1, . . . , as) of Fq((a, b), (0, v), s) with respect to the
anti lexicographic ordering.
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1: procedure VECA(A,B, V, S,M, q: Non-negative integers with A ≤ B ≤
S(q − 1), V ≤ q − 1, 1 ≤ S, and M ∈ {1, . . . , |Fq((A,B), (0, V ), S)|})

2: if V > B then
3: VECA(A,B, V, S,M, q)← VECA(A,B,B, S,M, q)
4: else
5: if S 6= 1 then
6: α← max{A− V, 0}
7: r ← ρq((α,B − V ), S − 1)
8: if M > r then
9: VECA(A,B, V, S,M, q)← VECA(A,B, V − 1, S,M − r, q)

10: else if M < r then
11: VECA(A,B, V, S,M, q)←
12: (VECA(α,B − V, q − 1, S − 1,M, q), V )
13: else
14: θ1 ← α rem (q − 1)
15: θ2 ← (α− θ1)/(q − 1)
16: if θ2 < S − 1 then
17: VECA(A,B, V, S,M, q)←
18: (q − 1, . . . , q − 1︸ ︷︷ ︸

θ2

, θ1, 0, . . . , 0︸ ︷︷ ︸
S−θ2−2

, V )

19: else
20: VECA(A,B, V, S,M, q)← (q − 1, . . . , q − 1︸ ︷︷ ︸

θ2

, V )

21: end if
22: end if
23: else
24: VECA(A,B, V, S,M, q)← (V −M + 1)
25: end if
26: end if
27: end procedure

Figure 4.1: The recursive algorithm VECA. We use the notation
((β1, . . . , βκ−1), βκ) = (β1, . . . , βκ−1, βκ) for concatenation.
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Proof. Consider the condition

C1: A,B, V, S,M are non-negative integers with A ≤ B ≤ S(q − 1), V ≤ q − 1,
1 ≤ S and M ∈ {1, . . . , |Fq((A,B), (0, V ), S)|}.

We first show that the following loop invariant holds true:

• If V > B andA,B, V, S,M satisfy Condition C1 then the elements of (Ã, B̃, Ṽ ,
S̃, M̃) = (A,B,B, S,M) satisfy Condition C1.

• If V ≤ B, S 6= 1 and A,B, V, S,M satisfy Condition C1 then:

– for M > r the elements in (Ã, B̃, Ṽ , S̃, M̃) = (A,B, V − 1, S,M − r)
satisfy Condition C1,

– for M < r the elements in (Ã, B̃, Ṽ , S̃, M̃) = (α,B − V, q − 1, S − 1,M)
satisfy Condition C1. Here α = max{A− V, 0}.

Assume first V > B. We have Fq((A,B), (0, V ), S) = Fq((A,B), (0, B), S) and the
result follows. Assume next V ≤ B and S 6= 1. We consider the case M > r (line
8–9) and leave the case M < r for the reader. By inspection Ã ≤ B̃ ≤ S̃(q − 1),
Ṽ ≤ q− 1, 1 ≤ S̃, and Ã, B̃, S̃, M̃ are non-negative. Aiming for a contradiction we
assume that V = 0 is possible (which would cause Ṽ to be negative). But then

r = ρ((α,B − V ), S − 1) = ρ((A,B), S − 1)

= ρ((A,B), (0, 0), S) = ρ((A,B), (0, V ), S) ≥M

where the inequality follows by the assumption that A,B, V, S,M satisfy Condition
C1. We have reached a contradiction. Hence, we conclude 0 < V and therefore Ṽ
is non-negative. We next show that M̃ = M − r is in the desired interval. Clearly
M̃ = M − r ≥ 1. To demonstrate that M̃ ≤ |Fq((Ã, B̃), (0, Ṽ ), S̃)| we note that

M ≤ ρ((A,B), (0, V ), S)

= ρ((A,B), (0, V − 1), S) + ρ((A,B), (V, V ), S)

= ρ((A,B), (0, V − 1), S) + ρ((α,B − V ), S − 1)

= ρ((Ã, B̃), (0, Ṽ ), S̃) + r

and the last part of Condition C1 is established.
Let (Ai, Bi, Si,Mi) be the value of (A,B, S,M) before entering the loop the i-th
time. The sequence

(
(A1, B1, S1,M1), (A2, B2, S2, M2), . . .

)
is strictly decreasing

with respect to the partial ordering �P, and as A,B, S,M are upper bounded as
well as lower bounded the sequence must be finite, meaning that the algorithm
terminates.
We next give an induction proof that the algorithm returns the M -th element of
Fq((A,B), (0, V ), S) with respect to the anti lexicographic ordering.

Basis step:
First assume V ≤ B, S 6= 1 and let θ1 and θ2 be as in line 14 and 15 of the
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algorithm. Observe that θ2 ≤ S − 1 as θ2 = S would imply V = 0 and con-
sequently Fq((A,B), (0, V ), S) = ∅. This is not possible as by Condition C1,
M ∈ {1, . . . , |Fq((A,B), (0, V ), S)|}. Consider the last element of Fq((α,B −
V ), (V, V ), S) i.e.

(q − 1, . . . , q − 1︸ ︷︷ ︸
θ2

, θ1, 0, . . . , 0︸ ︷︷ ︸
S−θ2−2

, V )

if θ2 < S − 1, and
(q − 1, . . . , q − 1︸ ︷︷ ︸

θ2

, V )

if θ2 = S − 1 (in which case θ1 = 0). This element is the r-th element of
Fq((A,B), (0, V ), S) where r is as in line 7. Hence, if M = r (lines 13–22) then in-
deed VECA(A,B, V, S,M, q) equals the element in positionM of Fq((A,B), (0, V ), S).
Assume next V ≤ B and S = 1. We see that theM -th element of Fq((A,B), (0, V ), 1)
equals (V − (M − 1)) which corresponds to line 24.

Induction step:
If V > B then as already noted Fq((A,B), (0, V ), S) = Fq((A,B), (0, B), S). For
V ≤ B, S 6= 1 we next consider the two cases M > r and M < r seperately.
We first consider M > r corresponding to lines 8–9 of the algorithm. We have

ρ((A,B), (V, V ), S) = ρ((α,B − V ), (0, q − 1), S − 1) = r.

But M > r and therefore the M -th element of Fq((A,B), (0, V ), S) equals the
(M − r)-th element of Fq((A,B), (0, V − 1), S).
We next consider the case M < r. Using similar arguments as above we see that
the M -th element of Fq((A,B), (0, V ), S) is in Fq((A,B), (V, V ), S). Therefore it
equals (β1, . . . , βS−1, V ) where (β1, . . . , βS−1) is the M -th element of Fq((α,B −
V ), (0, q − 1), S − 1).

The proof is complete.

Note that for our purpose (that is, to answer Q1), the input V in the algorithm
VECA shall always be equal to q− 1. The procedure VECA in Figure 4.1 uses the
value ρq((A,B), S) for various choices of A,B, S. We therefore need an algorithm
to compute this number.

Lemma 23. Let q be a prime power and onsider integers a, b, s with 0 ≤ a ≤ b ≤
s(q − 1) and s ≥ 1. We have

ρq((a, b), s) =
b∑

i=a

bi/qc∑

j=0

(−1)j
(
s

j

)(
s− 1 + i− qj

s− 1

)
.

Proof. We rewrite the first expression as follows

ρq((a, b), s) = |Fq((a, b), s)| = |Wq((a, b), s)| =
= |Wq((0, b), s)\Wq((0, a− 1), s)|
= |Wq(0, b), s)| − |Wq((0, a− 1), s)|
= dim(RMq(b, s))− dim(RMq(a− 1, s)).
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1: procedure rho(a, b, s, q: Non-negative integers with 0 ≤ a ≤ b ≤ s(q− 1) and
1 ≤ s.)

2: sum← 0
3: for i := a, . . . , b do
4: for j := 0, . . . , bi/qc do
5: sum← sum+ (−1)j

(
s
j

)(
s−1+i−qj

s−1
)

6: end for
7: end for
8: return sum
9: end procedure

Figure 4.2: The algorithm RHO.

By [20] and by Exercise 1.2.8 of [21] we have that

dim(RMq(u, s)) =
u∑

i=0

bi/qc∑

j=0

(−1)j
(
s

j

)(
s− 1 + i− qj

s− 1

)

and the proof follows.

Theorem 24. Let q be a prime power and consider a, b, s as in Lemma 23. If
the procedure RHO (see Figure 4.2) is used with input a, b, s, q then it returns
ρq((a, b), s).

Proof. By Lemma 23.

Example 6. We use the algorithm VECA in Figure 4.1 to find the 34-th element
~a = (a1, . . . , a7) of F7((20, 22), 7). The procedure takes as input (A,B, V, S,M) =
(20, 22, 6, 7, 34). The notation Ã, B̃, Ṽ , S̃, M̃ is as in the proof of Theorem 22.

(A,B, V, S,M) = (20, 22, 6, 7, 34):
ρ7((14, 16), 6) = 23415 > 34 (lines 10–12). Thus a7 = 6, Ã = max{0, 20−6} = 14,
B̃ = 22− 6 = 16, Ṽ = q − 1 = 6 and S̃ = 7− 1 = 6.

(A,B, V, S,M) = (14, 16, 6, 6, 34):
ρ7((8, 10), 5) = 1936 > 34 (lines 10–12). Thus a6 = 6, Ã = max{0, 14 − 6} = 8,
B̃ = 16− 6 = 10, Ṽ = q − 1 = 6 and S̃ = 6− 1 = 5.

(A,B, V, S,M) = (8, 10, 6, 5, 34):
ρ7((2, 4), 4) = 64 > 34 (lines 10–12). Thus a5 = 6, Ã = max{0, 8 − 6} = 2,
B̃ = 10− 6 = 4, Ṽ = q − 1 = 6 and S̃ = 5− 1 = 4.

(A,B, V, S,M) = (2, 4, 6, 4, 34):
6 > 4 (lines 2–3). Thus Ṽ = B = 4.
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(A,B, V, S,M) = (2, 4, 4, 4, 34):
ρ7((0, 0), 3) = 1 < 34 (lines 8–9). Thus M̃ = 34− 1 = 33 and Ṽ = 4− 1 = 3.

(A,B, V, S,M) = (2, 4, 3, 4, 33):
ρ7((0, 1), 3) = 4 < 33 (lines 8–9). Thus M̃ = 33− 4 = 29 and Ṽ = 3− 1 = 2.

(A,B, V, S,M) = (2, 4, 2, 4, 29):
ρ7((0, 2), 3) = 10 < 29 (lines 8–9). Thus M̃ = 29− 10 = 19 and Ṽ = 2− 1 = 1.

(A,B, V, S,M) = (2, 4, 1, 4, 19):
ρ7((1, 3), 3) = 19 = 19 (lines 13–17). We have θ1 = 1 and θ2 = 0, thus (a1, a2, a3, a4) =
(1, 0, 0, 1) and the algorithm ends.

In conclusion the 34-th element of F7((20, 22), 7) is (a1, a2, a3, a4, a5, a6, a7) =
(1, 0, 0, 1, 6, 6, 6).

Having answered question Q1 from the beginning of the section we now turn to
question Q2. Given ~a ∈ Fq((a, b), s) we need a method to determine what are the
corresponding positions r and t in Fq((0, b), s) and Qsq, respectively. The following
proposition tells us how to find r. This is done by applying the formula (4.1) in
there in combination with the algorithm RHO.

Proposition 25. The element ~a = (a1, . . . , as) ∈ Fq((a, b), s) is the r-th element
of Fq((a, b), s) with respect to the anti lexicographic ordering, where

r =
s−1∑

j=0

q−as−j−2∑

i=0

ρq((max{0, a−
j∑

t=0

as−t− i−1}, b−
j∑

t=1

as−t− i−1), s− j−1)+1.

In particular if a = 0 then

r =
s−1∑

j=0

q−as−j−2∑

i=0

ρq((0, b−
j∑

t=1

as−t − i− 1), s− j − 1) + 1. (4.1)

Proof. We must count the number of elements ~b = (b1, . . . , bs) in Fq((a, b), s) which
are smaller than or equal to ~a with respect to the anti lexicographic ordering. This
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number equals

r = |{~b ∈ Fq((a, b), s) | ~b�A~a}|
= |{~b ∈ Fq((a, b), s) | bs > as}|+ |{~b ∈ Fq((a, b), s) | ~a�A

~b, bs = as}|
= ρ((a, b), (as + 1, q − 1), s) + |{~b ∈ Fq((a, b), s) | bs−1 > as−1, bs = as}|

+|{~b ∈ Fq((a, b), s) | ~a�A
~b, bs−1 = as−1, bs = as}|

= ρ((a, b), (as + 1, q − 1), s) + ρ((max{0, a− as}, b− as), (as−1 + 1, q − 1), s− 1)

+|{~b ∈ Fq((a, b), s) | ~a�A
~b, bs−1 = as−1, bs = as}|

= · · ·

=

s−1∑

j=0

ρ((max{0, a−
j−1∑

t=0

as−t}, b−
j−1∑

t=0

as−t), (as−j + 1, q − 1), s− j) + |{~a}|

=
s−1∑

j=0

ρ((max{0, a−
j−1∑

t=0

as−t}, b−
j−1∑

t=0

as−t), (as−j + 1, q − 1), s− j) + 1.

By the below Lemma 26, for j = 0, . . . , s− 1 we have

ρ((max{0, a−
j−1∑

t=0

as−t}, b−
j−1∑

t=0

as−t), (as−j + 1, q − 1), s− j)

=

q−as−j−2∑

i=0

ρ((max{0, a−
j∑

t=0

as−t − i− 1}, b−
j∑

t=1

as−t − i− 1), s− j − 1)

and the proof is complete.

Lemma 26. Given a prime power q, let 0 ≤ a ≤ b ≤ s(q − 1) and 0 ≤ v ≤ w <
min{b, q} be integers. Then ρq((a, b), (v, w), s) =

∑w−v
i=0 ρq((max{0, a − v − i}, b −

v − i), s− 1).

Proof.

ρ((a, b), (v, w), s) = |Fq((a, b), (v, w), s)|
= |{(a1, . . . , as) ∈ Fq((a, b), s) | v ≤ as ≤ w}|

= |
w−v⋃

i=0

{(a1, . . . , as) ∈ Fq((a, b), s) | as = v + i}|

= |
w−v⋃

i=0

Fq((a, b), (v + i, v + i), s)|

=
w−v∑

i=0

ρ((a, b), (v + i, v + i), s)

=
w−v∑

i=0

ρ((max{0, a− v − i}, b− v − i), s− 1).
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Setting a = 0 and b = s(q − 1) in Proposition 25 we could of course compute
the t such that ~a is the t-th element of Qsq, but with the following reformulation of
Lemma 25 we can calculate it much easier.

Lemma 27. The element (a1, . . . , as) ∈ Qsq is the t-th element of Qsq with respect
to the anti lexicographic ordering where

t = qs −
s∑

i=1

aiq
i−1.

Proof. Recall from Section 3 the map µ : Qsq → Qsq, µ(a1, . . . , as) = (q − 1 −
as, . . . , q−1−a1). By Lemma 16 µ(a1, . . . , as) = (q−1−as, . . . , q−1−a1) is the t
element of Qsq using the lexicographic ordering where t−1 =

∑s
i=1(q−1−ai)qi−1 =

qs − 1 − ∑s
i=1 aiq

i−1. Recall from Section 3 that ~c≺A
~d ⇐⇒ µ(~c)≺Lexµ(~d).

Therefore (a1, . . . , as) is the t-th element ofQsq using the anti lexicographic ordering.

Summarizing this section: to find the m-th RGHW of C1 = RMq(u1, s) with
respect to C2 = RMq(u2, s), we perform the following steps.

1. Find them-th element (a1, . . . , as) of Fq((u2+1, u1), s) by using the algorithm
VECA in Theorem 22 with input A = u2 + 1, B = u1, V = q− 1, S = s, and
M = m.

2. Find the r-th position of (a1, . . . , as) in Fq((0, u1), s) using Proposition 25 in
combination with the algorithm RHO.

3. Find the t-th position of (a1, . . . , as) in Qsq using Lemma 27.

4. Compute Mm(C1, C2) = t− r +m (Theorem 20).

Example 7. This is a continuation of Example 5, in the beginning of which we
considered C1 = RM5(5, 2) and C2 = RM5(3, 2). Applying the above procedure to
establish the 8-th RGHW we first use Theorem 22 to establish that the 8-th element
of F5((4, 5), 2) is (3, 1). Using Proposition 25 we then find that (3, 1) is the 11-th
element of F5((0, 5), 2) and Lemma 27 next tells us that it is the 17-th element of
Q2

5. Hence, M8(C1, C2) = 17− 11 + 8 = 14.

Example 8. We consider C1 = RM16(90, 7) and C2 = RM16(88, 7). We want
to compute the 1000-th RGHW of C1 with respect to C2. Applying the algorithm
VECA in Theorem 22 we find that that (9, 10, 14, 11, 15, 15, 15) is the 1000-th ele-
ment of F16((88, 90), 7). Applying next Proposition 25 and Lemma 27 we find that
it is the 14557-th element of F16((0, 90), 7) and the 16727-th element of Q7

16. Hence,
M1000(C1, C2) = 16727 − 14557 + 1000 = 3170. To find the 1000-th GHW of C1,
we use Theorem 22 with C2 = RM16(−1, 7) and we find that (5, 1, 10, 15, 15, 15, 15)
is the 1000-th element of F16((0, 90), 7). By Lemma 27 it is the 1515-th element of
Q7

16. Hence, from Theorem 17 we deduce d1000(C1) = 1515.
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Chapter 5

Closed formula expressions for
q-ary Reed-Muller codes in two
variables

In the previous section we presented a method to calculate RGHWs for any set of
q-ary Reed-Muller codes Ci = RMq(ui, s), i = 1, 2. As an alternative, for q-ary
Reed-Muller codes in two variables (which by Definition 4 means that s = 2) it is a
manageable task to list closed formula expressions for all possible situations. This
is done in the first half of the present section. Letting next u2 = −1, corresponding
to C2 = {~0}, we in particular get closed formula expressions for the GHWs (such
formulas – to the best of our knowledge – cannot be found in the literature). The
formulas in the present section can be derived by applying Proposition 19 directly.
We shall leave the details for the reader. To simplify the description we use the
notation t = u1 − u2 which of course implies that u1 = u2 + t. Hence, throughout
this section C2 = RMq(u2, 2) and C1 = RMq(u2 + t, 2).

5.1 Formulas for RGHW

We have the following three cases.

5.1.1 First case: u2 − q + 2 ≥ 0

In this case the codimension is ` = t(2q − u2 − t− 2) + t(t+1)
2 .

• If m = 1, . . . , t(2q−u2−t−2) then there exist a ∈ {0, . . . , 2(q−1)−u2−t−1}
and b ∈ {1, . . . , t} such that m = at+ b. We have

Mm(C1, C2) =
(

2q − 2− u2 −
a

2

)
(a+ 1) + b− t.
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Y 4 XY 4 X2Y 4 X3Y 4 X4Y 4

Y 3 XY 3 X2Y 3 X3Y 3 X4Y 3

Y 2 XY 2 X2Y 2 X3Y 2 X4Y 2

Y XY X2Y X3Y X4Y
1 X X2 X3 X4

W5(5, 6) underlined, i.e. u2 = 4 and t = 2
(First case)

• If m = t(2q− u2− t− 2) + 1, . . . , t(2q− u2− t− 2) + t(t+1)
2 , then there exists

c ∈
{

1, . . . , t(t+1)
2

}
such that m = t(2q − u2 − t− 2) + c. We have

Mm(C1, C2) =
1

2
(2q − u2 − t− 2)(2q − u2 + t− 1) + c.

5.1.2 Second case: u2 − q + t+ 1 ≤ 0

Y 4 XY 4 X2Y 4 X3Y 4 X4Y 4

Y 3 XY 3 X2Y 3 X3Y 3 X4Y 3

Y 2 XY 2 X2Y 2 X3Y 2 X4Y 2

Y XY X2Y X3Y X4Y
1 X X2 X3 X4

W5(2, 3) underlined, i.e. u2 = 1 and t = 2
(Second case)

In this case the codimension is ` = t(t+1)
2 + t(u2 + 1).

• If m = 1, . . . , t(t+1)
2 then there exist a ∈ {0, . . . , t− 1} and b ∈ {1, . . . , a+ 1}

such that m = a(a+1)
2 + b. We have

Mm(C1, C2) = q(q − u2 − t+ a) + b− a− 1.

• If m = t(t+1)
2 + 1, . . . , t(t+1)

2 + t(u2 + 1), then there exist a ∈ {0, . . . , u2} and
b ∈ {1, . . . , t} such that m = t(t+1)

2 + at+ b. We have

Mm(C1, C2) = q(q + a− u2) + b− t− 1− a(a+ 3)

2
.
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Y 4 XY 4 X2Y 4 X3Y 4 X4Y 4

Y 3 XY 3 X2Y 3 X3Y 3 X4Y 3

Y 2 XY 2 X2Y 2 X3Y 2 X4Y 2

Y XY X2Y X3Y X4Y
1 X X2 X3 X4

W5(3, 5) underlined, i.e. u2 = 2 and t = 3
(Third case)

5.1.3 Third case: u2 − q + 2 < 0 and u2 − q + t+ 1 > 0

In this case the codimension is ` = (2q − u2)(u2 + t) + 3(q − u2)− q2 − 2− t(t+3)
2 .

• Ifm = 1, . . . , 12 (q−u2−2)(2t−q+u2+1)+t then there exist a ∈ {0, . . . , q−u2−
2} and b ∈ {1, . . . , u2+t−q+a+2} such thatm = a(u2+t−q+1)+ a(a+1)

2 +b.
We have

Mm(C1, C2) = (a+ 2)(q − 1)− u2 − t+ b.

• Ifm = 1
2 (q−u2−2)(2t−q+u2+1)+t+1, . . . , 12 (q−u2−2)(2t−q+u2+1)+t(q−t)

then there exist a ∈ {0, . . . , q − t − 2} and b ∈ {1, . . . , t} such that m =
1
2 (q − u2 − 2)(2t− q + u2 + 1) + (a+ 1)t+ b. We have

Mm(C1, C2) = q(q − u2 + a)− a(a+ 3)

2
− t+ b− 1.

• If m = 1
2 (q−u2−2)(2t−q+u2 +1)+ t(q− t)+1, . . . , (2q−u2)(u2 + t)+3(q−

u2)− q2− 2− t(t+3)
2 then there exists c ∈ {1, . . . , 12 ((t+ 1)2− (q− u2− 1)2 +

q − u2 − t− 2)} such that m = 1
2 (q − u2 − 2)(2t− q + u2 + 1) + t(q − t) + c.

We have

Mm(C1, C2) =
1

2
(3q2 − 2u2q − 3q − t2 − t) + c.

5.2 Formulas for GHW

Applying the formulas from the previous section to the special case of u2 = −1 and
consequently u1 = t − 1 we get by letting u = u1 the following results concerning
the GHWs of RMq(u, s).

5.2.1 The case u− q + 1 ≤ 0

In this case the dimension of C1 is k1 = (u+1)(u+2)
2 .
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m 1 2 3 4 5 6 7 8 9 10
diff(m) 0 0 14 15 29 43 45 59 73 87

Mm(C1, C2) 16 31 46 61 76 91 106 121 136 151

m 11 12 13 14 15 16
diff(m) 90 104 118 132 146 150

Mm(C1, C2) 166 181 196 211 226 241

Table 5.1: The special case u2 = q − 2 and t = 1 with q = 16. That is, C1 =
RM16(15, 2) and C2 = RM16(14, 2). The function diff(m) equals Mm(C1, C2) −
dm(C1).

• For r = 1, . . . , (u+1)(u+2)
2 there exist a ∈ {0, . . . , u} and b ∈ {1, . . . , a + 1}

such that r = a(a+1)
2 + b. We have

dr(C1) = q(q − u+ a) + b− a− 1.

5.2.2 The case u− q + 1 > 0

In this case the dimension of C1 is k1 = q(2u1 − q + 3)− u1(u1+3)
2 − 1.

• For r = 1, . . . , q(u+ 2)− u(u+3)
2 − 1 there exist a ∈ {0, . . . , 2(q − 1)− u} and

b ∈ {1, . . . , u− q + 2 + a} such that r = a(u− q + 1) + a(a+1)
2 + b. We have

dr(C1) = (a+ 2)(q − 1)− u+ b.

• For r = q(u + 2) − u(u+3)
2 , . . . , q(2u − q + 3) − u(u+3)

2 − 1 there exists c ∈
{1, . . . , q(u− q + 1)} such that r = q(u+ 2)− u(u+3)

2 − 1 + c. We have

dr(C1) = q(2q − u− 1) + c.

5.3 Comparing RGHW and GHW in a special case
Consider the special case u2 = q − 2 and t = 1. If m = 1, . . . , q then there exist
a ∈ {0, . . . , q − 1} and b ∈ {1, . . . , a+ 1} such that m = a(a+1)

2 + b. We have

Mm(C1, C2) =
m

2
(2q −m+ 1) and dm(C1) = (q − 1)(a+ 1) + b

Thus
Mm(C1, C2)− dm(C1) =

1

8
(−a4 − 2a3 + (−4b+ 4q + 1)a2

+(−4b− 4q + 10)a− 4b2 + 8bq − 4b− 8q + 8).

For the particular case that q = 16 we get the values listed in Table 5.1
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Chapter 6

Concluding remarks

In this paper we found the RGHWs of q-ary Reed-Muller codes by using the foot-
print bound. There is a very strong connection between the footprint bound and
the Feng-Rao bound for primary codes [1, 11] which is the bound that we used
in [10] to estimate RGHWs of one-point algebraic geometric codes. Using in the
present paper the footprint bound rather than the Feng-Rao bound for primary or
dual codes helped us save some cumbersome notation (which is difficult to avoid
in the case of one-point algebraic geometric codes).

The authors gratefully acknowledge the support from the Danish National Re-
search Foundation and the National Natural Science Foundation of China (Grant
No. 11061130539) for the Danish-Chinese Center for Applications of Algebraic Ge-
ometry in Coding Theory and Cryptography. Also the authors gratefully acknowl-
edge the support from The Danish Council for Independent Research (Grant No.
DFF–4002-00367). Part of this work was done while the first listed order was vis-
iting East China Normal University. We are grateful to Professor Hao Chen for
his hospitality. Finally the authors would like to thank Diego Ruano and Ruud
Pellikaan for helpful discussions.

190



Appendix A

Proof of Lemma 18

To prove Lemma 18 we start by generalizing [12, Th. 3.7.7] which corresponds to
Lemma 28 below in the particular case that b = s(q − 1). The proof of [12, Th.
3.7.7] was given in [12, App. B.1].

Lemma 28. Let A be a subset of Fq(a, b) consisting ofm elements. Then |∆L(a,b)(m)| ≤
|∆A|.

Proof. In Appendix B.1 of [12] a proof for Lemma 28 is given in the particular case
that b = s(q− 1). We indicate how this proof can be modified to cover all possible
choices of b. First note that [12] uses v where we use a, uses m where we use s,
and uses r where we use m. With the following modifications the proof in [12] is
lifted to a proof of Lemma 28.

• In [12, Rem. B.1.2]: Replace F≥v with Fq(v, b) and let the parameter k go
from v to b.

• In [12, Def. B.1.6]: Replace F≥l with Fq(l, b).

• In [12, Lem. B.1.10]: Replace F≥v with Fq(v, b) and let the summation end
with Ab rather than As(q−1).

• In [12, Lem. B.1.13, Lem. B.1.14 and their proofs]: Replace F≥l, F≥(l−1),
F≥v, L≥l−1(r) and L≥l(r) with Fq(l, b), Fq(l − 1, b), Fq(v, b), L(l,b)(r) and
L(l−1,b)(r), respectively.

Recall from Section 3 the map µ : Qsq → Qsq given by µ(a1, . . . , as) = (q − 1 −
as, . . . , q − 1 − a1). To translate Lemma 28 into Lemma 18 we need the following
results.

Lemma 29. Let 0 ≤ a ≤ b ≤ s(q−1) be integers, ~a,~b ∈ Qsq andm ∈ {1, . . . , |Fq(a, b)|},
then we have that

1. ~a≺Lex
~b ⇐⇒ µ(~a)≺Aµ(~b),
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2. ~a≺A
~b ⇐⇒ µ(~a)≺Lexµ(~b),

3. ~a�P
~b ⇐⇒ µ(~a)�Pµ(~b),

4. µ(∇~a) = ∆µ(~a),

5. µ(∇A) = ∆µ(A),

6. µ(Fq(a, b)) = Fq(s(q − 1)− b, s(q − 1)− a),

7. A ⊆ Fq(a, b) ⇐⇒ µ(A) ⊆ Fq(s(q − 1)− b, s(q − 1)− a),

8. µ(N(a,b)(m)) = L(s(q−1)−b,s(q−1)−a)(m),

9. µ(∇N(a,b)(m)) = ∆L(s(q−1)−b,s(q−1)−a)(m).

Proof. Let ~a = (a1, . . . , as) and ~b = (b1, . . . , bs).

1. ~a≺Lex
~b ⇐⇒ a1 = b1, . . . , al−1 = bl−1, al < bl for some l ⇐⇒ q − 1 − a1 =

q−1−b1, . . . , q−1−al−1 = q−1−bl−1, q−1−al > q−1−bl for some l ⇐⇒
µ(~a)≺Aµ(~b).

2. Similar to 1.

3. ~a�P
~b ⇐⇒ a1 ≤ b1, . . . , as ≤ bs ⇐⇒ q−1−a1 ≥ q−1− b1, . . . , q−1−as ≥

q − 1− bs ⇐⇒ µ(~a)�Pµ(~b).

4. ~b ∈ µ(∇~a) ⇐⇒ ∃~b1 = µ−1(b) ∈ ∇~a ⇐⇒ ~b1�P~a ⇐⇒ µ(~b1)�Pµ(~a) ⇐⇒
~b�Pµ(~a) ⇐⇒ ~b ∈ ∆µ(~a).

5. µ(∇A) = µ(
⋃
~a∈A∇~a) =

⋃
~a∈A µ(∇~a) =

⋃
~a∈A ∆µ(~a) = ∆

⋃
~a∈A µ(~a) =

∆µ(A).

6. ~a ∈ Fq(a, b) ⇐⇒ a ≤ deg(~a) ≤ b ⇐⇒ a ≤∑s
i=1 ai ≤ b ⇐⇒ s(q− 1)− a ≥

s(q − 1) −∑s
i=1 ai ≥ s(q − 1) − b ⇐⇒ s(q − 1) − b ≤ ∑s

i=1(q − 1 − ai) ≤
s(q − 1)− a ⇐⇒ µ(~a) ∈ Fq(s(q − 1)− b, s(q − 1)− a).

7. Similar to 6.

8. Follows from 1,2 and 7 by induction.

9. µ(∇N(a,b)(m)) = ∆µ(N(a,b)(m)) = ∆L(s(q−1)−b,s(q−1)−a)(m).

We are now ready to prove Lemma 18.
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Proof of Lemma 18. By 7. in Lemma 29 he have µ(A) ⊆ Fq(s(q−1)−b, s(q−1)−a).
It follows that

|∇N(a,b)(m)| = |µ(∇N(a,b)(m))|
= |∆L(s(q−1)−b,s(q−1)−a)(m)|
≤ |∆µ(A)|
= |µ(∇A)|
= |∇A|,

where the first and the last line is a consequence of the fact that µ is bijective, the
second line follows from 9. in Lemma 29,the third line follows from Lemma 28, and
the fourth line follows from 5. in Lemma 29.
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