

Aalborg Universitet

Influence of trace substances on methanation catalysts in dynamic biogas upgrading

Jurgensen, Lars; Ehimen, Ehiazesebhor Augustine; Born, Jens; Holm-Nielsen, Jens Bo; Rooney, David

Publication date: 2014

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA): Jurgensen, L., Ehimen, E. A., Born, J., Holm-Nielsen, J. B., & Rooney, D. (2014). Influence of trace substances on methanation catalysts in dynamic biogas upgrading. Poster session presented at ProcessNet-Jahrestagung, Aachen, Germany.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Influence of trace substances on methanation catalysts in dynamic biogas upgrading

Lars Jürgensen^{a,b}, Ehiaze A Ehimen^c, Jens Born^b, Jens Bo Holm-Nielsen^a, David Rooney^d

^a Dept. of Energy Technology, Aalborg University Esbjerg, Denmark

^b Flensburg University of Applied Science, Germany

^c Flemish Institute for Technological Research, Belgium, ^d Queens University Belfast United Kingdom

Keywords

biogas, upgrading, Sabatier, surplus electricity, catalyst poisoning

Introduction

- Sabatier process-based biogas upgrading for utilization of surplus electricity produced from fluctuating renewable energy.
- ► 650 mostly farm scale biogas plants and a well-developed compressed natural gas (CNG) grid are located near wind farm sites [4].
- ► The Sabatier reaction is catalyzed by Nickel or Ruthenium catalyst and the equilibrium is far on the right hand site [5,7].:

$$CO_2 + 4H_2 \rightleftharpoons CH_4 + 2H_2O \Delta H^\circ = -165 \text{ kJ/mol.}$$

► Carbon formation leads to deactivation by the considered reactions [1,2]:

$$2CO \rightarrow CO_2 + C \qquad (1)$$

(2)

$$CH_4 \rightarrow 2H_2 + C$$

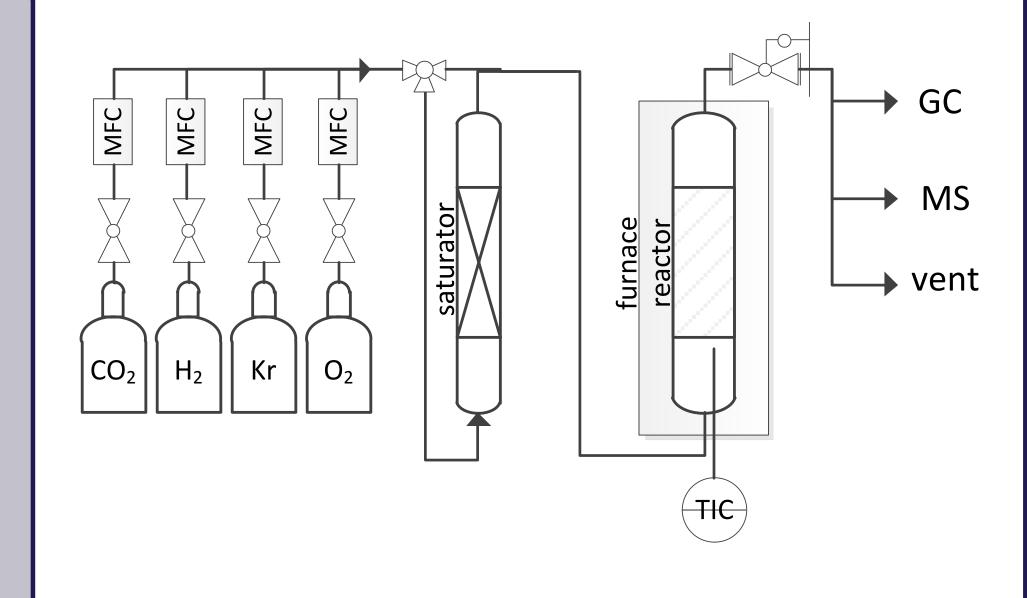
$$CO + H_2 \rightarrow H_2O + C$$
 (3)

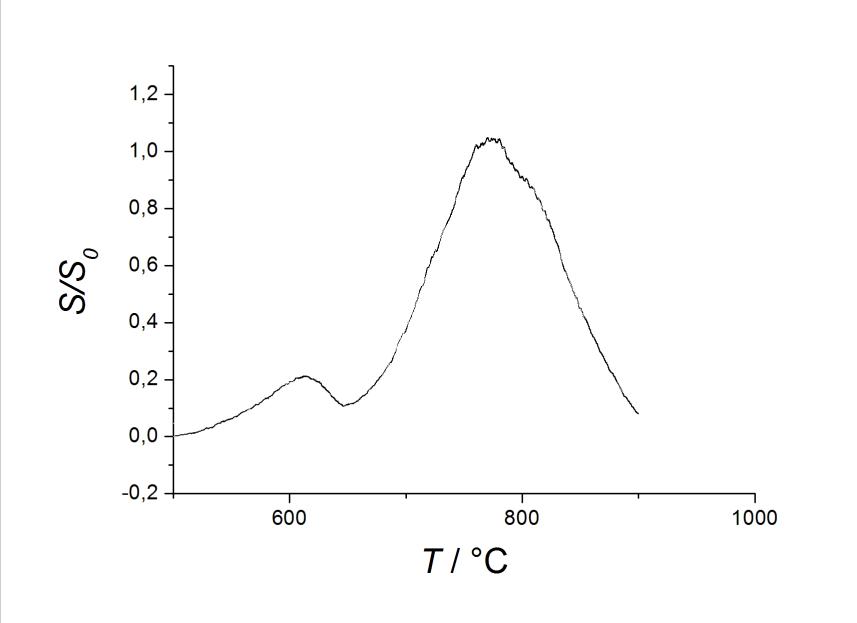
$$CO_2 + 2H_2 \rightarrow 2H_2O + C$$
 (4)

- sulfur hydrogen as a trace component is well known as poison for Ni catalyst and can be easily removed by ZnO filters.
- There is a lag of studies about the influence of ammonia on the previously mentioned reactions and as a catalyst poison.
- This study investigate the influence of ammonia as a trace substances of biogas on the methanation catalyst

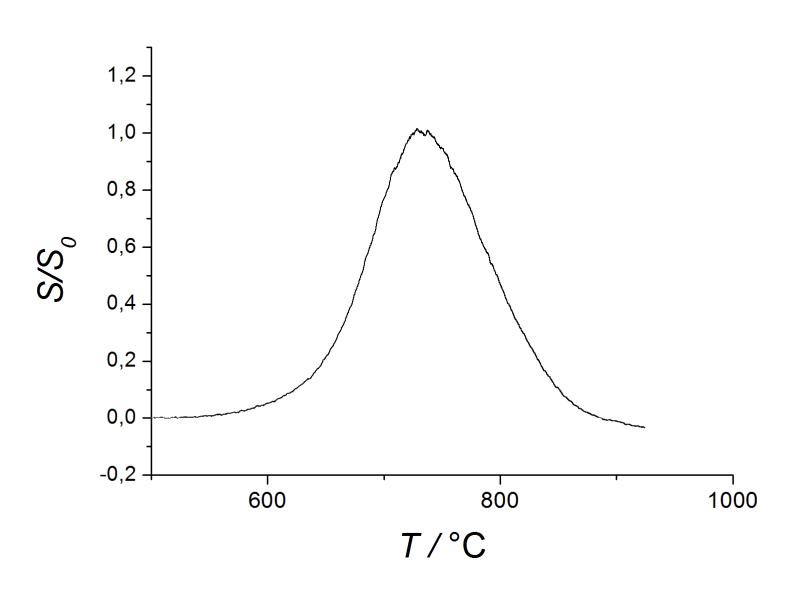
Materials and Methods

- Experimental setup as shown in Figure 1 was used to perform long lasting experiments (7 days).
- ► High loaded Ni catalyst was used to provoke coke formation in shorter time (66 %).
- ▶ 100 mg of pelleted and sieved (fraction between $425 \, \mu \text{m}$ and $250 \, \mu \text{m}$) catalyst were used in a stainless steel reactor 4 mm in diameter.
- ► A stoichiometric feed was used at flow rates of 20 ml/min.
- ► A saturator containing a 100 mM NH₃ solution was used to introduce trace amounts of NH₃ into the feed stream.
- ► GC was used to determine product concentration during the whole experiment.
- ► Temperature programmed oxidation (TPO, 95% O₂, 5% Kr as internal standard) was used to determine carbon formed on the catalyst.
- The signal S of detected CO_2 was standardized using the Kr signal S_0 as internal standard.


Large Scale Bio Energy Lab


Results

- In all experiments deactivation due to carbon formation had been observed.
- ► The rate of deactivation and the properties of the decomposed coke were influenced by the feed gas composition.
- ► The presence of small amounts of ammonia caused lower deactivation rates and resulted in a more stable system.
- ► In summary, it can be observed that trace NH₃ concentrations could convey more positive effects than negative, with no pretreatment for NH₃ removal from biogas necessary when considering it as a feed gas for methanation processes using Ni catalysts.


Figures

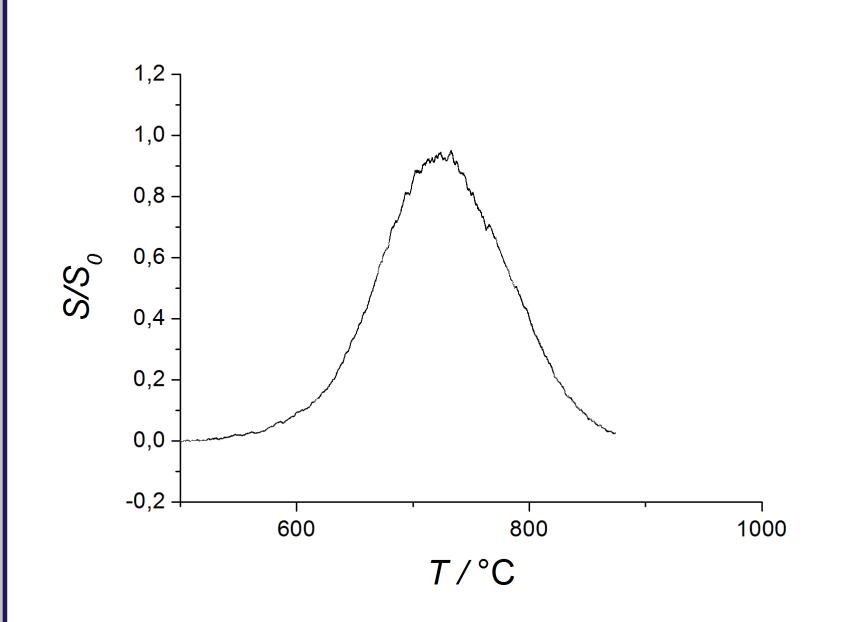

Fig. 1: Schematic representation of the experimental setup.

Fig. 2: Results of TPO for the methanation of "dry" CO₂: two different kind of formed carbon were observed.

Fig. 3: Results of TPO for the methanation of CO₂ containing small amounts of H₂O: the formation of "low temperature coke" is inhibited and the amount of "high temperature coke" is reduced.

Fig. 4: Results of TPO for the methanation of CO₂ containing small amounts of ammonia and H₂O: the amount of carbon formed in the process is further reduced.

Acknowledgment

We are gratefully acknowledged to the European INTERREG region found that this paper and the scientific work had been enabled through the project *Large Scale Bio Energy Lab* and to all students and staff working with us during the project period.

Corresponding Author

Lars Jürgensen, M.Sc. Fh Flensburg
Kanzleistr. 91-93
D-24934 Flensburg

Germany

phone: 0461 805-1262

mail: lars.juergensen@fh-flensburg.de

www.largescale-bioenergy.de

References

- [1] Arkatova, LA.: The deposition of coke during carbon dioxide reforming of methane over intermetallides. Catalysis Today, 157(1):170-176, 2010.
- [2] Bartholomew, CH,: Mechanisms of catalyst deactivation. Applied Catalysis A: General, 212(1):17-60, 2001.
- [3] DALLA BETTA, RA., PIKEN, AG., SHELEF, M.: Heterogeneous Methanation: Steady-State Rate of CO Hydrogenation on Supported Ruthenium, Nickel and Rhenium JOURNAL OF CATALYSIS 4, 173-183 (1975)
- [4] Hepola, J., Simell, P.: Sulphur poisoning of nickel-based hot gas cleaning catalysts in synthetic gasifcation gas: Ii. chemisorption of hydrogen sulphide. Applied Catalysis B: Environmental, 14(3):305-321, 1997.
- [5] Jürgensen, L., Ehimen, E.A., Born, J., Holm-Nielsen, J.B., Utilization of surplus electricity from wind power for dynamic biogas upgrading: North-Germany Biomass study, case (2014)126–132, Bioenergy 66 and http://dx.doi.org/10.1016/j.biombioe.2014.02.032
- [6] MÜLLER K., STÄNDER, M., RACHOW, F., HOFFMANBECK, D., SCHMEISSER, D., Sabatier-based co2-methanation by catalytic conversion. Environ Earth Sci 2013;70(8):3771e8.
- [7] Navarro, RM., Pena, MA., Fierro, JLP.: Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chemical Reviews, 107(10):3952-3991, 2007.
- [8] Twigg M. Catalyst handbook. CSIRO; 1989.