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Joint Spatio-Temporal Filtering Methods for DOA
and Fundamental Frequency Estimation

Jesper Rindom Jensen, Member, IEEE, Mads Græsbøll Christensen, Senior Member, IEEE,
Jacob Benesty, and Søren Holdt Jensen, Senior Member, IEEE

Abstract—In this paper, spatio-temporal filtering methods are
proposed for estimating the direction-of-arrival (DOA) and fun-
damental frequency of periodic signals, like those produced by the
speech production system and many musical instruments using
microphone arrays. This topic has quite recently received some
attention in the community and is quite promising for several ap-
plications. The proposed methods are based on optimal, adaptive
filters that leave the desired signal, having a certain DOA and
fundamental frequency, undistorted and suppress everything else.
The filtering methods simultaneously operate in space and time,
whereby it is possible resolve cases that are otherwise problematic
for pitch estimators or DOA estimators based on beamforming.
Several special cases and improvements are considered, including
a method for estimating the covariance matrix based on the re-
cently proposed iterative adaptive approach (IAA). Experiments
demonstrate the improved performance of the proposed methods
under adverse conditions compared to the state of the art using
both synthetic signals and real signals, as well as illustrate the
properties of the methods and the filters.

Index Terms—2-D filtering, DOA estimation, fundamental
frequency estimation, joint estimation, LCMV beamformer, peri-
odogram-based beamformer.

I. INTRODUCTION

A FUNDAMENTAL property of speech and audio signals
is the so-called pitch. For many signals, namely periodic

signals, the pitch is equivalent to the fundamental frequency,
i.e., the frequency of which integer multiples form the frequen-
cies of the individual harmonics, even though there exists some
pathological examples where it is not quite that simple. In some
applications, the pitch itself is of interest or is being studied for
other purposes, some examples being prosody analysis and tran-
scription of music. The pitch also often forms the basis of the
processing of such signals. Some well-known examples include
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speech coding, wherein long-term predictors are used to ex-
ploit the correlation caused by the quasi-periodicity that causes
the pitch, and noise reduction, wherein the pitch can be used
to either directly enhance the signal of interest [1] or to esti-
mate the properties of the noise [2]. Filters that extract or at-
tenuate the harmonics of periodic sounds are often referred to
as comb filters, due to their characteristic frequency response.
Such comb filters have played a prominent role in the history of
signal processing, dating back to 1970’s [3], and new forms of
comb filters keep emerging. The classical comb filter is based
on signal-independent FIR or IIR filters with poles or zeros, re-
spectively, close to the unit circle at the harmonic frequencies.
Later, it was shown that more efficient filters can be obtained
via a set of notch or peak filters [4], and a few other examples of
such approaches can be found in [5] and the references therein.
More recently, it was shown that by generalizing the principle
of the Capon spectral estimator, it is possible to design optimal,
adaptive FIR comb filters [1], [6]. These filters have a number
of properties that make them desirable in several applications.
The filters are distortion-less, i.e., they let the signal of interest,
i.e., periodic signals, pass undistorted. They are adaptive and,
hence, automatically adapt to the conditions under which the
signal of interest has been recorded. This means that they can
cancel strong interferences, including also other periodic sig-
nals, without prior knowledge of their properties. The filters
also, curiously, reduce to evaluating Fourier transforms at cer-
tain frequencies or projecting onto the space spanned by Fourier
bases under certain conditions.
In microphone arrays, the direction-of-arrival (DOA) is often

used as a means of locating, tracking and separating signals,
something that is often done using spatial filters, i.e., beam-
formers [7], [8]. Since speech and audio signals are generally
broadband, unlike, for example, communication and radar sig-
nals, many of the clever narrowband beamforming techniques
cannot be applied directly to such signals. Instead, speech and
audio signals are often decomposed into a set of subbands, each
of which are then processed as narrowband signals. However,
periodic signals can be modeled efficiently using the harmonic
model [9], in which the signal of interest is modeled as a set
of narrowband signals, namely sinusoids corresponding to
the individual harmonics. This means that such signals can in
fact be treated as multiple narrowband signals that share some
common parameters: the fundamental frequency and the DOA.
In fact, by finding, jointly, both the fundamental frequency (i.e.,
the pitch) and the DOA, it is possible to mitigate some of the
severe problems that pitch estimators encounter for multiple
sources, and it is possible to overcome some of the problems
that DOA estimators have with distinguishing between dif-
ferent sources when these impinge on the array from angles that
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are close. It should also be noted that the DOA along with the
pitch also are believed to be some of the governing factors that
the human auditory system uses for separating sources. This
line of reasoning has, quite recently, led to some joint DOA
and fundamental frequency estimators, including maximum
likelihood based [10], [11], subspace-based [12]–[14], corre-
lation-based [15], [16], and filtering-based [17]–[19] methods.
Notably, the problem of joint DOA and fundamental frequency
estimation was formalized and thoroughly analyzed in [10],
and a maximum likelihood estimator that achieves the highest
possible accuracy (under certain conditions) was proposed.
In this paper, we propose spatio-temporal filtering methods

for joint DOA and fundamental frequency estimation for peri-
odic signals, like, for example, speech signals or signals pro-
duced by musical instruments. The filters are based on the prin-
ciple of the Capon and Frost beamformers [20], [21] and spec-
tral estimators combined and generalized to account for the na-
ture of periodic signals, and they are controlled by two parame-
ters: the DOA and the fundamental frequency. The proposed fil-
ters are optimal and adaptive, and should, hence, be capable of
dealing with adverse conditions, like when strong background
noise or interference is present but guarantee that the signal
of interest is left undistorted. The filters can be thought of as
jointly performing beamforming and enhancement, i.e., they are
spatio-temporal. In this paper, however, we consider only the
application of these filters to parameter estimation, i.e., estima-
tion of the DOA and the fundamental frequency. We consider
various variations and simplifications of the filters, including
optimal filters for white noise and for infinitely long filters. We
also consider the application of the principle of the iterative
adaptive approach (IAA) [19], [22], [23] for finding the covari-
ance matrix, which is required to compute the optimal filters.
This can be used to obtain longer filters for a given number of
samples, something that often results in an improved estimation
of parameters, especially under adverse conditions. While the
IAA based estimators are computationally more complex than
using the traditional sample covariance matrix estimate, it has
been shown [24], [25] that the computational complexity of the
IAA can be reduced dramatically.
The rest of the paper is organized as follows: In Section II,

we introduce the problem formulation along with some useful
notation, and we proceed to motivate the usage of joint DOA
and fundamental frequency estimation in more detail. We then,
in Section III, introduce the filter designs and consider, as men-
tioned, various special cases and the IAAmethod for estimation
of the covariance matrix. In Section IV, the experimental results
are presented, after which the conclusion follows in Section V.

II. PROBLEM STATEMENT

Consider a scenario where microphones are recording a
mixture of a desired, noise, and interfering sources. At time in-
stance , we can then model the signal observed using the ’th
microphone as

(1)

where is the recording of the desired source, and
is the sum of the recorded noise and interference. In this paper,
we assume that the desired signal is periodic, which is a rea-
sonable assumption for, e.g., voiced speech and many musical
instruments. The noise can, for example, be background noise

such as sensor noise, whereas the interference covers other pe-
riodic signal not being of interest. Utilizing the periodicity as-
sumption and by exploiting that the desired signal observations
across the microphones are just delayed and attenuated version
of each other, the signal model can be further specified as

(2)

with being the number of harmonics, being the
complex amplitude of the ’th harmonic with and denoting
the positive real amplitude and phase, respectively, is the fun-
damental frequency, is the sampling frequency, is the delay
of the desired signal from microphone 0 to microphone , and
is the attenuation of the desired signal at sensor . Note that,

by using this model, we have implicitly assumed no reverber-
ation. When the array of microphones is organized in a known
way, we can also model the time delay . For example, if the
microphones are organized in a uniform linear array structure,
we have that

(3)

where is the inter microphone spacing, is the direction-of-
arrival (DOA), and is the wave propagation speed. That is,

(4)

with

(5)

being the so-called spatial frequency. In the remainder of the
paper, we assume, for simplicity, that for ,
which is a reasonable assumption for arrays with closely spaced
microphones. When this assumption does not hold, the s can
be estimated using, e.g., the techniques presented in [26]. In
practice, time-consecutive samples from each microphone
are used for the estimation of the pitch and DOA. These data
can be organized in a matrix like

...
. . .

... (6)

If we consider a subblock of samples from the above
matrix, which is useful for the filter designs to follow later, we
can write the signal model on vector form as

...
. . .

...

(7)

where , and

(8)
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(9)

...
. . .

... (10)

In the optimal filter designs considered in Section III, it is
useful to stack the columns of the subblocks of the observed
signal matrix (denoted ), which yields

(11)

with , and

(12)

where denotes the Kronecker product of two vectors or
matrices.

A. Motivation for Joint Estimation

Instead of estimating the DOA and pitch jointly, we could
estimate those parameters separately with a much lower com-
putational complexity. However, there are a number of signif-
icant benefits by conducting the estimation jointly. First of all,
in scenarios where multiple periodic sources are present simul-
taneously, joint estimators may be able to resolve those sources
even if either the pitch frequencies or the DOAs of one or more
of those sources are similar. This would be impossible if the
parameters are estimated separately, since the search is here in
only one dimension. Another benefit is a potentially higher es-
timation accuracy. In [10], it was shown that the asymptotic
Cramér-Rao bounds (CRBs) for the DOA and pitch are given
by

(13)

(14)

for the scenario described by (11) when is white noise and
for , with PSNR denoting the pseudo signal-to-

noise ratio. The PSNR is defined as

(15)

and is the variance of the noise. Close investigation of these
expressions reveals the fact that the CRB of the pitch decreases
cubically and linearly for increasing ’s and ’s, respectively.
In other words, the pitch estimate can be more accurate when
multiple microphone recordings are used. Moreover, we can see
that the DOA can be estimated more accurately when taking the
harmonic structure of the periodic signal into account as op-
posed to if the DOA was estimated from, e.g., just the funda-
mental tone.
Another way of estimating the DOA and pitch is to use a cas-

caded approach where the DOA is first estimated from the mul-

tiple microphone recordings. Then, the signal impinging from
this direction is extracted using a beamformer, whereupon the
pitch is estimated from the beamformer output. This traditional
and cascaded way of estimating the parameters will most likely
increase the CRB of the parameter estimated in the second step
of this procedure. The cause of this increase, is the linear trans-
formation of the spatio-temporal data introduced by the signal
extraction after estimation of the first parameter [10].

III. SPATIO-TEMPORAL FILTERING METHODS

In this section, we present filtering methods for joint esti-
mation of the DOA and pitch from noisy, spatio-temporal, ob-
served data that can be modeled by (11). We assume that we
have sampled a signal times in time and using sensors
in space, which gives us the data matrix in (6).
Then, based on these data, we can design optimal filterbanks or
filters for estimating the aforementioned parameters. In all of
the presented filtering methods, the idea is to design a filterbank
or filter that has minimum output power, while it passes the de-
sired signal undistorted. The joint parameter estimates can then
be obtained by maximizing the output power of the so-obtained
optimal filters.

A. Optimal Filterbanks

In the filterbank approach, the idea is to design a bank of
FIR filters, where the th filter should pass the th harmonic of
the desired, periodic signal undistorted. Applying such a bank
of FIR filters on a block of the observed signal, we get

(16)

where denotes the Hadamard product, and are the tem-
poral and spatial filter lengths, respectively, is the th
coefficient of the th filter in the filterbank, ,

, is a column vector of ones, and

...
. . .

... (17)

Then, we can design a filterbank where the sum of the output
powers from the individual filters is minimized, while the th
filter passes the th harmonic undistorted and cancels out the
other harmonics. The sum of the output powers of the filters is
given by

(18)

where is the covariance matrix of
. From (11) and (18), it is clear that the aforementioned
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design goal can be achieved by solving the following optimiza-
tion problem:

(19)

with

(20)

The well known solution to this second order optimization
problem can obtained using Lagrange multipliers, and it is
given by

(21)

Note that for to be invertible, we must require that
, and this is also the case for the other optimal filter designs

proposed in the remainder of the section. Interestingly, it can be
shown that a filter identical to the one in (21) can be designed
by minimizing the sum of the powers of the noise at the output
of all the filters [27], which gives [18]

(22)

This fact can be exploited to achieve some computationally
more efficient filter designs. If we, for a moment, assume that
the noise is white such that , where is the variance
of the noise, we get that

(23)

This filter will, of course, only be optimal with respect to the
aforementioned design criteria when the noise is indeed white,
but it may still be useful even in other noise settings due to
its simplicity. Finally, we can achieve an approximative filter
design by exploiting that [9]

(24)

In this case, the optimal filter for the white noise scenario
becomes

(25)

This approximative filter design can be interpreted as a filter-
bank of spatio-temporal, periodogram-based filters [18], and it
can be applied efficiently in practice using FFTs.
Using either of the aforementioned filter designs, the funda-

mental frequency and the DOA can then be estimated jointly.
This is achieved by maximizing the sum of the output powers
of the filters in these filterbanks over sets of candidate funda-
mental frequencies and DOAs, i.e.,

(26)

where and are the sets of candidate fundamental frequen-
cies and DOAs, respectively. We note that, in practice, is
most likely not known and therefore has to be estimated. More-
over, it is worth mentioning that, while the above estimator is
only for estimating the pitch and DOA of a single source, the
estimator can be used in the iterative RELAX algorithm in [28]
to estimate the parameters of multiple sources.

B. Optimal Single Filters

An alternative filtering approach to joint fundamental fre-
quency and DOA estimation is the single filter approach. In this
approach, the idea is to apply a single FIR filter on a block of
the observed signal, yielding the output:

(27)

where is defined similarly to , i.e.,

...
. . .

... (28)

and . We then want to design a single filter that
passes all of the harmonics undistorted while the output power
of the filter is minimized. The output power of the single filter
is given by

(29)

That is, a solution to the above filter design problem is, from
(11), clearly achieved by solving:

(30)

Like in the filterbank approach, the solution to this optimiza-
tion problem can be obtained using Lagrange multipliers and is
given by

(31)

The same filter is obtained if we minimize the power of the
noise after filtering under the same constraints, in which case
the optimal filter is given by [27]

(32)

If we again assume that the noise is white, with , we
get that

(33)

Then, by applying the approximation in (24), we can obtain an
approximative single filter design as

(34)

This filter can be seen as a sum of spatio-temporal, periodogram-
based filters.
In the single filter approach, the fundamental frequency and

DOA are then jointly estimated by simply maximizing the
output power of either of the filter designs proposed above over
the sets of candidate fundamental frequencies and DOAs .
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TABLE I
COST FUNCTIONS INVOLVED IN THE ESTIMATORS OBTAINED USING THE DIFFERENT FILTERING APPROACHES AND DESIGN TOPOLOGIES

Mathematically speaking, the joint estimates obtained using
the single filter approach can be put as

(35)

In Table I, an overview of the estimators obtained using the
two different filtering approaches and the different filter design
topologies is found. These have been found by first inserting the
expressions in (21), (23), and (25) in (26), and then inserting
(31), (33), and (34) in (35). We note that, except for a scaling
factor of , the cost function for the approximative filter-
bank approach resembles that of the approximative NLS esti-
mator in [10]. Furthermore, as mentioned in Section III-A, the
above estimator can be used in an iterative algorithm to estimate
the parameters of multiple sources [28].
When the assumptions on white Gaussian noise and large

sample sizes do not hold, the white noise and approximative
filtering methods will consequently not be optimal, and most
often yield less accurate estimates compared to the optimal
filtering methods as we also discovered in the experiments in
Section IV. The approximative filtering methods, however,
are computationally simpler compared to the optimal filtering
methods by not requiring any inversions. That is, the filter
design can be chosen to achieve a certain tradeoff between
computational complexity and estimation accuracy.

C. Estimation of the Covariance Matrix

In the estimators presented in this section, knowledge about
the covariance matrix is needed. This covariance matrix
is obviously not known in most practical scenarios, so we
need to replace it by an estimate. One possible estimate is
the outer product estimate, which is commonly used, e.g.,
in single-channel, fundamental frequency estimation. In the
multichannel, spatio-temporal case, the outer product estimate
of is given by

(36)

The optimal estimators for the general noise case (see Table I re-
quire the covariance matrix of the observed signal to be in-
verted. To ensure that is invertible, we must require it to
be full-rank, i.e.,

(37)

needs to be fulfilled. Typically, and is desired to be
as large as possible to attain a reasonable spatial resolution. If
we, for example, choose we have that

(38)

As a result of that, may need to be very small or a large
amount of temporal samples is needed if is relatively large.
Alternatively, to circumvent this issue, an iterative adaptive

approach (IAA) [22], [23] on the estimation of the covariance
matrix can be taken. First, let the amplitude of a spatio-temporal
frequency component of interest be denoted by , where
is a frequency index, and is a direction index corresponding
to the DOA. Then, using the covariance matrix model, the noise
covariance matrix can be approximated as

(39)

where and denote frequency and direction indices, respec-
tively, is the number of frequency grid points utilized in the
IAA, is the number direction grid points utilized in the IAA,

(40)

is an estimate of the observed signal covariance matrix, and

(41)

(42)

(43)

with denoting the frequency corresponding to the ’th grid
point, and denoting the spatial frequency corresponding
to the grid points and , i.e.,

(44)

In (44), is the DOA corresponding to the ’th grid point.
The IAA is then used to obtain an estimate of the ampli-

tude by minimizing a weighted least-squares (WLS) cost
function given by

(45)
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TABLE II
IAA FOR SPATIO-TEMPORAL SPECTRUM AND COVARIANCE ESTIMATION

with . Minimizing the cost function with
respect to the unknown amplitude yields the following
closed-form estimate

(46)

Using the matrix inversion lemma on (39), it can be shown that
the amplitude estimate is equivalently found from

(47)

This expression is preferred over (46) as the covariance matrix
estimate needs to be formed only once, while needs
to be updated per frequency and direction grid point. We note
that the amplitude estimate depends on the estimate of the co-
variance matrix and vice versa, so these are estimated by iter-
ating between (40) and (47), hence the method is termed the
IAA. While the IAA has historically been used for amplitude
spectrum estimation, we here utilize it for estimation of the co-
variance matrix of the observed signal herein. As opposed to
the sample covariance matrix estimate, this estimate is formed
from a single observation, , while also being full-rank. This
enables us to choose and , but of course it is
computationally more complex to obtain this estimate than the
sample covariance matrix estimate. The algorithm is summa-
rized in Table II. As it can be seen, the algorithm is initialized
with . Typically, 10-15 iterations is sufficient to achieve
convergence in practice.

IV. EXPERIMENTAL RESULTS

We now proceed with an experimental evaluation of the
proposed filter designs. The evaluation is split into three
parts: 1) a qualitative comparison of the proposed filters, 2) a
thorough statistical evaluation of the proposed filters through
Monte-Carlo simulations including comparison with state of
the art, and 3) qualitative evaluation of the filters on a real-life
signal. First, we compare the cost functions of the optimal
filterbank and single filter when using both the sample and
IAA-based covariance matrix estimates. For this experiment,
we used a synthetic, periodic signal with harmonics
with unit amplitudes, , Hz, kHz,
and white noise was added to each sensor signal at an SNR of

Fig. 1. Plots of the cost functions for the optimal (left) filterbank and (right)
single filter methods implemented using the (top) sample and (bottom) IAA-
based covariance matrix estimates when applied on a synthetic, multichannel,
periodic signal for .

Fig. 2. Plots of the cost functions for the optimal (left) filterbank and (right)
single filter methods implemented using the (top) sample and (bottom) IAA-
based covariance matrix estimates when applied on a synthetic, multichannel,
periodic signal for .

30 dB. The other parameters of interest in the simulation were
chosen as follows: , , ,

, , , 10 iterations was used to obtain
the IAA estimate, m/s, and m. Using this
setup, we then evaluated the cost functions of the optimal filters



180 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 1, JANUARY 2015

Fig. 3. MSEs of pitch and DOA estimates for different ’s in scenarios with (a,d) and an SNR of 30 dB, (b,e) and an SNR of 20 dB, and (c,f)
and an SNR of 30 dB for the proposed methods.

Fig. 4. MSEs of pitch and DOA estimates for different ’s in scenarios with (a,d) and an SNR of 30 dB, (b,e) and an SNR of 20 dB, and (c,f)
and an SNR of 30 dB for the proposed methods.

in Table I for different candidate pitch frequencies and DOAs
when using the sample and IAA-based covariance matrix esti-
mates, and the results are depicted in Fig. 1. From the figures,
we can see that none of the methods show a distinct peak at
the true DOA and pitch when the sample covariance matrix
estimate is used. This is opposed to when using the IAA-based
covariance matrix estimate, in which case both optimal filtering
methods each yield a distinct, maximum peak near the true
parameters. This indicates that for low numbers of samples,
the IAA-based covariance matrix estimate should be used.
Moreover, it supports the practicability of optimal filtering
with the IAA despite its computational complexity, since small
sample sizes are generally preferred when the signal of interest
is nonstationary, violating the stationarity assumption in (4).

This is often the case in practice, e.g., when processing speech
signals. The same experiment was conducted for
resulting in the cost functions in Fig. 2. For this sample length,
both optimal filtering methods seem to provide a good estimate
of the DOA and pitch for both covariance matrix estimates.
However, the sample covariance matrix estimate seems to give
the best resolution in this case due to narrower peaks around
the true parameters, with the optimal single filter having the
narrowest peak. This indicates that, for longer sample sizes, the
sample covariance matrix estimate may be preferred.
In the another series of experiments, we evaluated the sta-

tistical performance in terms of mean squared errors (MSEs)
of the proposed estimators implemented using the IAA-based
covariance matrix estimate (since relatively small sample sizes
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Fig. 5. MSEs of pitch and DOA estimates for different ’s in scenarios with (a,b,d,e) white noise, and (c,f) white noise and an interfering source for the proposed
and state-of-the-art methods.

are considered) through Monte Carlo simulations. In all these
experiments, 100 Monte Carlo simulations were conducted for
each parameter setting, and, in each simulation, the noise and
the phases of the harmonics were randomized. The MSEs of the
pitch and DOA estimates ( and ), respectively)
obtained from these simulations were calculated as

(48)

(49)

where is the number of Monte Carlo simulations, is the
simulation number, and are the true pitch and DOA in
simulation , and denotes an estimate of a parameter.
Moreover, a synthetic, multichannel periodic signal was used

in every simulation with harmonics with unit ampli-
tudes, and, in each simulation, the pitch and DOA were sam-
pled from Hz Hz and , respectively,
where denotes the continuous uniform distribution in
the interval . The methods evaluated in these experiments
are the optimal, white noise, and approximate filterbank (‘bo’,
‘bw’, and ‘ba’) and single filter (‘so’, ‘sw’, and ‘sa’) methods,
the multichannel pitch estimator (‘am’) in [29], the steered re-
sponse power method with phase transform (‘sp’) [30], and the
exact and asymptotic nonlinear least squares (NLS) methods
(‘n’ and ‘an’) in [10]. First, the performance of the proposed
methods was evaluated for different ’s in scenarios with 1)

and an SNR of 30 dB, 2) and an SNR of
20 dB, and 3) and an SNR of 30 dB. The other sim-
ulation parameters were: KHz, m/s, ,

m, and . The results from this series of sim-
ulations are depicted in Fig. 3. From this figure, we make two
important observations: first, the performances of the ‘sw’ and

‘sa’ methods are generally worse than those of the other pro-
posed methods. Moreover, the results indicate that the higher
the SNR and number of samples , the more frequency grid
points is needed in the IAA-based covariance matrix estima-
tion to achieve the highest possible performance. A similar se-
ries of simulations were conducted where the performance of
the proposed methods were evaluated for different ’s. In these
experiments, three scenarios were considered: 1) and an
SNR of 30 dB, 2) and an SNR of 20 dB, and 3)
and an SNR of 30 dB. The other simulation parameters were
the same as in the previous series of simulations except that

and , and the results are provided in Fig. 4. As
in the previous series of simulations, we observe that the higher
the SNR and number of sensors, the more spatial frequency grid
points is needed in the IAA-based covariance matrix estimation
to achieve the maximum possible performance.
Then, we conducted other series of simulations where the per-

formance of the proposed methods were also compared with the
state-of-the-art methods mentioned before. In the first of these
evaluations, the performance was measured for different ’s
in two scenarios: 1) a scenario where the periodic signal was
added with white noise at an SNR of 30 dB, and 2) a scenario
with both white noise and an interfering source added where the
SNRwas 30 dB, and the interfering source was a single sinusoid
with unit amplitude and random phase. The interfering sinusoid
had the same DOA as the desired signal, but a frequency equal
to Hz. Otherwise, the simulation parameters were
chosen as in the previous Monte-Carlo simulations except that

, , and . The results are found in Fig. 5.
First of all, we observe that the proposed ‘so’, ‘bo’, ‘bw’, and
‘ba’ methods all yield similar performance, and that they outper-
form the ‘sw’ and ‘sa’ methods for the whole range of ’s. In
the comparison with state of the art, we see that the ‘n’ method
generally has the best performance in the white noise only sce-
nario. However, for higher ’s ( , there is not much dif-
ference between the proposed optimal filtering methods and the
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Fig. 6. MSEs of pitch and DOA estimates for different ’s in scenarios with (a,b,d,e) white noise, and (c,f) white noise and an interfering source for the proposed
and state-of-the-art methods.

Fig. 7. MSEs of pitch and DOA estimates for different SNRs in a scenario with
white noise for the proposed and state-of-the-art methods. The labels for the plot
are similar to those in Fig. 5.

‘n’ method and, for , the proposed methods clearly
outperform the ‘an’ and ‘am’ methods for pitch estimation and
the ‘sp’ method for DOA estimation. Finally, in the scenario
with an interfering source, the proposed optimal filters clearly
outperform all other methods for pitch estimation in the range

, while they are only slightly worse than the ‘n’
and ‘an’ methods for DOA estimation in general. Similarly, we
also evaluated the performance for different ’s. Again, a sce-
nario with white noise and a scenario with white noise and an
additional interfering sinusoid with unit amplitude were consid-
ered. In this evaluation, however, the interfering source had the

Fig. 8. Plot of the spectrogram of a single-channel trumpet signal with vibrato.

same frequency as the pitch of the harmonic signal, while its
DOA was . The IAA grid size parameters were

and , the number of temporal samples was
, and otherwise the simulation parameters were the same

as in the previous Monte-Carlo simulations. The results from
this experiment are depicted in Fig. 6. For pitch estimation, the
‘bw’ and ‘ba’ generally yield the best performance of the pro-
posed methods, followed closely by the ‘bo’, ‘so’, ‘sa’, and ‘sw’
methods in this order. For DOA estimation, the ‘so’, ‘bo’, ‘bw’,
and ‘ba’ methods yield similar performance and outperform the
‘sw’ and ‘sa’ methods. In comparison with state of the art in the
white noise scenario, we see that the ‘so’ and ‘bo’ methods have
similar performance to the ‘an’ method for pitch estimation and
that they outperform the ‘am’ method. The ‘n’ method generally
yields the most accurate pitch estimates, though. The same ob-
servations are also valid for DOA estimation for the ‘so’, ‘bo’,
‘an’ and ‘n’ methods, whereas the ‘sp’ method shows a much
worse performance. In the scenario where an additional inter-
fering sinusoid is added, the proposed ‘so’ and ‘bo’ outperform
the ‘an’ and ‘am’ methods for all ’s, wheres the ‘n’ method
shows better performance for low ’s due to bias and worse
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Fig. 9. Plots of (top) pitch and (bottom) DOA estimates obtained from the spatially resynthesized, trumpet signal in a scenario with no reverberation.

Fig. 10. Plots of (top) pitch and (bottom) DOA estimates obtained from the spatially resynthesized, trumpet signal in a scenario with reverberation and a rever-
beration time of s.

performance for higher ’s. For DOA estimation the proposed
optimal filtering methods clearly outperforms all other methods
in the comparison.
In the last series of Monte-Carlo simulations, the perfor-

mances were measured for different SNRs in a scenario with
white noise only. The setup for these simulations was: ,

, , , and the remaining parameters
were setup as in the previous Monte-Carlo simulations. We
see, from the results in Fig. 7, that the ‘n’ method has the best
performance as expected for both DOA and pitch estimation
in all scenarios, however, the difference in terms of DOA
estimation performance between the ‘n’, ‘an’, ‘so’, and ‘bo’
methods is negligible for low SNRs ( dB). In terms of

pitch estimation, the proposed methods outperform the ‘am’
and ‘an’ methods for dB, and, for DOA estimation,
the ‘sp’ method is outperformed in all scenarios.
A final evaluation of the proposed filtering methods was con-

ducted on a real-life signal. The signal used in this experiment
was a 4 seconds long, single-channel trumpet signal with vi-
brato. The spectrogram of the signal is shown in Fig. 8, and it
can be seen that it has a pitch fluctuating around . Based
on the spectrogram, we chose a fixed model order for the ex-
periment of . To obtain a multichannel signal, the signal
was resynthesized spatially, using an online available room im-
pulse response (RIR) generator [31]. The RIR generator was
set up as follows: m/s, Hz, the micro-
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phones of a ULA with 5 sensors was located at
m m, for , m, the

source was located at at a distance of 3 m from the
center of the array, the room dimensions were m m m,
the length of the RIRs was 2048, the microphones had cardioid
responses with orientation , and
the reflection order was 0. Then, we generated the multichannel,
real data using this setup, and applied the proposed optimal fil-
tering methods and the state of the art methods on time-consec-
utive frame of length of the signal. The methods were
implemented with , , and, in the ‘sp’ method,
we used an FFT length of 256 and integrated over frequencies in
the interval Hz . From this experiment, we obtained
the results depicted in Fig. 9. The results show that all methods
yield pitch estimates close to the true pitch by comparing the es-
timates with the spectrogram of the trumpet signal. Moreover,
we see that the proposed ‘so’ and ‘bo’ methods along with the
‘an’ and ‘n’ methods obtain DOA estimates closer to the true
DOA than the ‘sp’ method at most time instances. Subsequently,
a similar experiment was carried out where reverberation was
added, i.e., the same simulation setup was used except that the
reflection order was set to (maximum), and the reverber-
ation time was 0.5 s. With this setup, we obtained the results
in Fig. 10. Again, all methods seem to provide pitch estimates
close to the true pitch. The DOA estimates obtained using all
methods are less accurate and biased in this scenario. In gen-
eral, the proposed ‘so’ and ‘bo’ methods seem to perform sim-
ilar to the ‘n’, ‘an’ methods in terms of accuracy, whereas the
‘sp’ method is generally outperformed.

V. CONCLUSION

In this paper, the problem of estimating the fundamental fre-
quency as well as the direction-of-arrival of a desired, periodic
signal has been considered, and some new methods based on
spatio-temporal filtering have been proposed. The methods are
based on optimal filter designs that leave periodic signals of a
certain fundamental frequency from a certain direction-of-ar-
rival unchanged while everything else is attenuated as much as
possible. The resulting filters are adaptive if the statistics of the
observed signal is estimated adaptively, and several incarnations
of the ideas have been presented, including single filter and fil-
terbank designs, simplifications based on the assumption that
the observed noise signal is white and the filters being infin-
itely long. The application of the recently introduced iterative
adaptive approach to estimation of the involved covariance ma-
trix has also been proposed and investigated. This approach is
capable of overcoming the usual limitations on the filter length
relative to the number of samples available. That is, with this ap-
proach we can estimate the pitch and DOA using fewer samples
which is preferable when processing nonstationary signals such
as speech. In simulations, the proposed methods outperform
state-of-the-art methods under adverse conditions, including the
recently proposed maximum likelihood approach which is op-
timal for white, Gaussian noise and a single periodic signal.
More specifically, the spatio-temporal filtering methods outper-
form the competing methods when multiple periodic signals are
present at the same time, something that frequently happens in

practice, cf. the well-known cocktail party problem. Finally, ex-
periments on real data in form of a trumpet signal show the ap-
plicability of the proposed optimal filteringmethods even in sce-
narios with slight reverberation.
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