

Aalborg Universitet

PatMinr

Lartillot, Olivier

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Lartillot, O. (2014). PatMinr: In-depth motivic analysis of symbolic monophonic sequences. Paper presented at
Music Information Retrieval Evaluation eXchange, Taipei, Taiwan, Province of China.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 25, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60594954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://vbn.aau.dk/en/publications/patminr(9b0e878b-cc5c-417c-8978-fdfb06467add).html

PATMINR: IN-DEPTH MOTIVIC ANALYSIS OF SYMBOLIC
MONOPHONIC SEQUENCES

Olivier Lartillot
Aalborg University, Department of Architecture, Design and Media Technology, Denmark

olartillot@gmail.com

ABSTRACT

A version of PatMinr [2] has been submitted to the MIREX
task on Discovery of Repeated Themes & Sections [1].
PatMinr can find repetitions of sequential patterns from
monophonic sequences represented in a symbolic format.

This document presents the model in more details, and
specifies the particular parameters used in the version sub-
mitted to the MIREX competition.

1. VERSION SUBMITTED TO MIREX

The MiningSuite 1 is a new open-source framework for
audio and music analysis implemented in Matlab decom-
posed into modules. In particular, the MusMinr module
concentrates on music analysis and features an option for
motivic analysis. The actual pattern analysis computation
is taken care by the PatMinr module dedicated to pattern
analysis. Version 0.7.1 of the MiningSuite has been sub-
mitted to MIREX.

1.1 mus.minr: pattern discovery

Music sequences in symbolic format can be loaded using
the text file format defined in the MIREX task, using the
following syntax:

mus.minr(’filename.txt’, ’Motif’)

where mus.minr loads the text file and perform a selec-
tion of music analysis methods on each successive note.
Here, only the ’Motif’ method is called, corresponding
to the motivic analysis, which uses the pattern mining al-
gorithms in the PatMinr module of the MiningSuite.

In this version, the algorithm searches for all possible
repetitions of subsequences along any subset of musical
dimensions. The subsequences can be heterogeneous, in
the sense that the musical dimensions describing each suc-
cessive note and interval of a subsequence can vary along

1 Freely available at http://code.google.com/p/miningsuite/.

c© Olivier Lartillot.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Olivier Lartillot. “PATMINR: IN-
DEPTH MOTIVIC ANALYSIS OF SYMBOLIC MONOPHONIC SE-
QUENCES”, 15th International Society for Music Information Retrieval
Conference, 2014.

the subsequence. Redundant structural information is fil-
tered out without loss of information through closed and
cyclic pattern mining [2].

In order to reduce the computation time, in the MIREX
version, only two musical dimensions are considered:

• chromatic dimension: MIDI pitch of each note and
inter-pitch interval between successive notes

• diatonic dimension: staff height of each note and
corresponding interval between successive notes

In particular, gross contour is not taken into account, and
no rhythmical analysis is performed.

1.2 mus.output: post-filtering and result formatting

A post-processing routine selecting the most important pat-
terns and formatting the results into a text file is coded in
the M file +mus/output.m.

Only patterns longer than 11 nodes 2 are selected.
The paradigmatic sheaf bundling described in section

3.2 in [2] is implemented in the function sheaf, also part
of the M file +mus/output.m.

2. ALGORITHMIC DETAILS

2.1 Incremental one-pass approach

The approach is incremental, progressively analysing the
musical sequence through one single pass. The main loop
of this incremental approach (Algorithm 1) consists in a
chronological scanning of the musical sequence: the anal-
ysis is carried out for each successive note of the sequence
successively. This loop is coded in the process_notes
function in the M file related to the mus.minr operator
(/+mus/minr.m).

Algorithm 1 One-pass scanning of musical sequence
for each successive note ni in the sequence do

ProcessNote(ni)
end for

2 Each pattern is a branch in the pattern tree. The first node of each
branch corresponds to the root of the tree, which is not associated to any
note description. Hence patterns longer than 11 nodes correspond to se-
quence longer than 10 notes.

2.2 Occurrences extension

As explained in sections 2.2 and 3.3 in [2], integrating a
new note consists in checking:

• whether pattern occurrence(s) ending at the previous
note can be extended with the new note,

• whether the new note initiates the start of a new pat-
tern occurrence.

These test are detailed in Algorithm 2. The two tests de-
scribed above correspond respectively to the second loop
(lines 6-14) and to the last operation (lines 15-16).

Each note is considered with respect to the previous
note (since pitch intervals are integrated in the note de-
scription). For that reason, in the actual code, each note in-
stantiates a syntagmatic connection between that note and
its previous note, which is an object of the pat.syntagm
class. The algorithm 2 is included in the constructor method
of pat.syntagm.

Algorithm 2 ProcessNote(ni)
for each cycle C ending at ni−1 do
P is the pattern related toC, PM is the periodic model
and φ is the current phase on that period.
ExtendCycle(C, ni,P ,PM ,φ)

end for
for each pattern occurrence O ending at ni−1, in de-
creasing order of specificity do
P is the pattern of O
for each pattern Pj equal to or more general than P ,
in decreasing order of specificity, except pattern equal
to or more general than more general occurrences do

ExtendOccurrence(O, ni, Pj)
end for

end for
ExtendOccurrence([], ni,∅), where ∅ represents the pat-
tern tree root, i.e. the empty pattern.

For each occurrence, the list of pattern extension oper-
ations is detailed in Algorithm 3. This algorithm is coded
in the method memorize of the pattern occurrence class
pat.occurrence.

2.3 Pattern Cyclicity

As explained in section 4 in [2], the successive repetitions
of a periodic pattern leads to the formation of a single chain
of states, where each state C is related to:

• a particular note ni in the piece of music

• the periodic model PM , which is the pattern repre-
senting the whole preceding period

• the pattern P that is constructed for that particular
note. In the simple case, it is a prefix of the periodic
model PM at phase φ, i.e., P = PM (φ)

• the phase φ on that period: a phase φ = 0 means
that the periodic pattern is now completely recon-
structed, so that a new occurrence of that pattern will

Algorithm 3 ExtendOccurrence(O,ni,P)
d is note ni’s description
for each possible extension E of P do

if E’s description entirely conforms to d then
Extend O with note n following extension E.

else if E’s description partially conforms to d then
d′ is the description common to d and E
if there is no extension of P with description d′

then
Create a new extension E′ of P based on de-
scription d′.
Extend O with note n following extension E′.

end if
end if

end for
Look at description d in the continuation memory re-
lated to pattern P .
if there exists a similar older context (occurrenceO′ fol-
lowed by note n′) and P extended with d is closed then

Create a new extension E of pattern P based on de-
scription d.
Extend O′ with note n′ following extension E, and
store the following note’s description in the continua-
tion memory related to E.
Extend O with note n following extension E.

else
Add the new note n in the continuation memory.

end if

start to be constructed from that point, a phase φ > 0
indicates that the current note is associated with the
φth note of the periodic pattern

Algorithm 4 shows how to detect the successive phases
and how to generalise progressively the period if needed.
If at a given phase φ, the next note does not extend the
pattern P = PM (φ) following the description given by
PM (φ+1), but only partially, then for the next phase φ+1,
the new pattern P is more general than PM (φ + 1). Once
the whole period is generated, the resulting more general
period P becomes the new periodic pattern PM used as
guide for the next period. This algorithm is coded in the
method track_cycle in pat.occurrence class.

3. REFERENCES

[1] T. Collins. MIREX 2013: Discovery of Repeated
Themes and Sections, 2013. http://www.music-
ir.org/mirex/wiki/2013:Discovery of Repeated Themes
& Sections Accessed on 14 August 2014.

[2] O. Lartillot: “In-Depth Motivic Analysis Based on
Multiparametric Closed Pattern and Cyclic Sequence
Mining,” Proceedings of the International Symposium
on Music Information Retrieval, 2014.

Algorithm 4 ExtendCycle(C, ni, P ,PM ,φ)
d is note ni’s description
for each possible extension E of P do
N ← []
if bothE’s and PM (φ+1)’s descriptions entirely con-
form to d then
N ← E.

else if bothE’s and PM (φ+1)’s descriptions partially
conform to d then
d′ is the description common to d and E
if there is no extension of P with description d′

then
Create a new extension E′ of P based on d′.

end if
N ← E′

end if
if N 6= [] then

if φ =length(PM) then
φ′ ← 0, PM ← P

else
φ′ ← φ+ 1

end if
Extend C: C ′ with note ni, pattern N , phase φ′,
pattern model PM

end if
end for

