

Aalborg Universitet

Compositional Schedulability Analysis of An Avionics System Using UPPAAL

Boudjadar, Abdeldjalil; Larsen, Kim Guldstrand; Kim, Jin Hyun; Nyman, Ulrik Mathias

Published in:
Proceedings of the 1st International Conference on Advanced Aspects of Software Engineering, {ICAASE} 2014,
Constantine, Algeria, November 2-4, 2014

Publication date:
2014

Document Version
Peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Boudjadar, J., Larsen, K. G., Kim, J. H., & Nyman, U. (2014). Compositional Schedulability Analysis of An
Avionics System Using UPPAAL. In Proceedings of the 1st International Conference on Advanced Aspects of
Software Engineering, {ICAASE} 2014, Constantine, Algeria, November 2-4, 2014 (Vol. 1294, pp. 140-147).
CEUR Workshop Proceedings.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 25, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60593440?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://vbn.aau.dk/en/publications/compositional-schedulability-analysis-of-an-avionics-system-using-uppaal(748cd13d-5a03-4afb-aa5a-3f13998c25f0).html

1

Compositional Schedulability Analysis of An
Avionics System Using UPPAAL

Abdeldjalil Boudjadar, Jin Hyun Kim, Kim G. Larsen, Ulrik Nyman
Institute of Computer Science, Aalborg University, Denmark

Abstract—We propose a compositional framework for analyz-
ing the schedulability of hierarchical scheduling systems. The
framework is realized using Parameterized Stopwatch Automata
to describe tasks, whereas the schedulability analysis is per-
formed using UPPAAL. The concrete behavior of each periodic
preemptive task is given as a list of timed actions to which
resources are assigned by SIRAP protocol. Our framework is
reconfigurable in which the hierarchical structure, the scheduling
policies, the concrete task behavior and the shared resources can
all be reconfigured. Finally, we use our framework to analyze
the schedulability of a real-time avionics system.

Keywords-Hierarchical scheduling systems, Parameterized
stopwatch automata, Compositional analysis, Uppaal.

I. INTRODUCTION

In the area of real-time embedded systems, like avionics and
automotive, it is primordial to ensure the continually correct
behavior of such systems. Avionics and automotive systems
consist of both safety-critical and non safety-critical features,
which are implemented in components that might share re-
sources (e.g. processors). Resource utilization represents a
common challenge for both academics and practitioners, and
thus it is important to have an efficient and reliable scheduling
policy for the individual parts of the system. Scheduling is
a widely used mechanism for guaranteeing that the different
components of a system will be provided with the correct
amounts of resources.

A scheduling system consists of a set of concurrent tasks
(processes) competing resources according to a scheduling
policy. Each task has a set of timing requirements to fulfill. A
hierarchical scheduling system consists of multiple scheduling
systems in a hierarchical structure. A scheduling system is said
to be schedulable if all its tasks achieve their jobs without
missing any deadline.

Compositional analysis has been introduced [7], [12], as a
key model-checking technology, to deal with state space explo-
sion caused be the parallel composition of components. In this
paper, we propose a model-based approach for analyzing the
schedulability of hierarchical scheduling systems. We profit
from the technological advances made in the area of model-
checking to analyze the schedulability of real-time systems.
While schedulability is a liveness property, it can be checked
in UPPAAL as a reachability property. In fact, this done by
adding to the behavior of each task an Error state. Such
a state is immediately reachable from any other state of the
given task once the deadline is missed.

The research presented in this paper has been partially supported by EU
Artemis Projects CRAFTERS and MBAT.

TimingN
requirements

ResourceNSharing
Nprotocols

HierarchicalN
architecture

L _

_

_

T2

S

C1 C2

T1 T3 T4

UPPAALN
NetworkNofNHybrid
TimedNAutomata

SchedulabilityN
analysis

)modelNchecking:

Schedulable:N
NyesN/Nno

C
on

cr
e

te
Nta

sk
Nb

eh
av

io
r

C
on

cr
e

te
Nta

sk
Nb

eh
av

io
r

Fig. 1. Overview of the analysis framework

Our framework is implemented using parameterized stop-
watch automata models. To enable and manage resource shar-
ing between tasks, we use the SIRAP (Subsystem Integration
and Resource Allocation Policy) protocol [4]. System tasks
are instances of the same timed automaton with different input
parameters. A special parameter of the task model is a list of
timed actions [8], specifying the concrete behavior of the given
task. This list includes abstract computation steps, locking
and unlocking resources. Fig. 1 summarizes our approach,
where the system aspects are separately specified in three
profiles: timing requirements, resource sharing and system
architecture. This separation of concerns leads our framework
to be reconfigurable and flexible in the way that updating a
profile does not necessary affect the other two profiles [13].

Thanks to the parameterization, the framework can easily be
instantiated for a specific hierarchical scheduling application.
Similarly, each scheduling policy (e.g. EDF: Earliest Deadline
First, FPS: Fixed Priority Scheduling, RM: Rate Monotonic) is
separately modeled and can be instantiated for any component.

We analyze the model in a compositional manner, so that
the schedulability of each component is analyzed together with
the interface specifications of the level directly below it. In
this analysis, we non-deterministically supply the required re-
sources of each component, i.e. each component is guaranteed
to be provided its required resources for each period. This fact
is viewed by the component entities as a contract by which
the component has to supply the required resources, provided
by the component parent level, to its sub entities. The main
contribution of this paper combines:
• a compositional analysis approach where the schedula-

bility of a system relies on the recursive schedulability
analysis of its individual subsystems.

• a reconfigurable schedulability framework where a sys-

System

Component1 Component2

task1 task2 task3 task4 task5

RM

(100,37)

EDF

EDF

(70,25)

(250,40) (400,50) (140,7) (150,7) (300,30)

Fig. 2. Example of hierarchical scheduling system.

tem structure can be instantiated in different configura-
tions to fit different applications.

• modeling of concrete task behavior as a sequence of
timed actions requiring CPU and resources.

• Resource sharing between tasks which is managed by a
UPPAAL implementation of SIRAP protocol.

The rest of the paper is organized as follows: Section II is an
informal description of our compositional analysis technique
using a running example. Section III includes both the back-
ground and the modeling theory of hierarchical scheduling
systems. In section IV, we give the UPPAAL models of our
framework where we consider concrete behavior of tasks.
Moreover, we show how the compositional analysis can be
applied on the models using the UPPAAL verification engine.
Section V shows the applicability of our framework, where we
analyze the schedulability of an avionics system. Section VI
introduces related work. Finally, section VII concludes our
paper and outlines the future work.

II. COMPOSITIONAL SCHEDULABILITY ANALYSIS

In this paper, we structure our system model as a set
of hierarchical components. Each component, in turn, is the
parallel composition of a set of entities (components or tasks)
together with a local scheduler. Namely, each component is
specified with a period (prd), a budget (budget) stating the
execution time that the component should be provided with,
and a scheduling policy (s) to manage the CPU allocation
to the component child entities. The real-time interface of a
component consists of prd and budget.

A parent component treats the real-time interface of each
one of its child components as a single task with the given
real-time interface. The component supplies its child entities
with CPU and resource allocation according to their real-
time interfaces. The analysis of a component (scheduling unit)
consists of checking that its child entities can be scheduled
within the component budget according to the component
scheduling policy. A component can be also parameterized
by a set of typed resources (R) which serve as component
local resources. One can remark that the CPU can be managed
by any scheduling policy s, whereas the sharing of the other
resources will be managed by SIRAP.

Tasks represent the concrete behavior of the system. They
are parameterized with period (prd), execution time (et),
deadline (d), priority (prio) and preemption (p). The execu-
tion time (et) specifies the CPU usage time required by the

task execution for each period (prd). Deadline parameter (d)
represents the latest point in time at which the task execution
must be done. The parameter prio specifies the user priority
associated to the task. Finally, p is a Boolean flag stating
whether or not the task is preemptive. The task behavior is a
sequence of timed actions consuming CPU time and resources.
Moreover, task and component parameters prd, budget and et
can be single values or time intervals.

An example of a hierarchical scheduling system is depicted
in Fig. 2. For the sake of simplicity, we omit task deadlines
and consider them the same as periods. Moreover, we only
consider single parameter values instead of time intervals.

In this example, the top level System schedules Component1
and Component2 with the EDF scheduling algorithm. The
components are viewed by the top level System as tasks having
timing requirements. Component1, respectively Component2,
has the interface (100, 37), respectively (70, 25), as period
and execution time. The system shown through this example
is schedulable if each component, including the top level, is
schedulable. Thus, for the given timing requirements Com-
ponent1 and Component2 should be schedulable by the top
level System according to the EDF scheduling policy. The
tasks task1 and task2 should be schedulable, with respect to
the timing requirement of Component1 (100, 37), also under
the EDF scheduling policy. Similarly, task3, task4 and task5
should be schedulable, with respect to the timing requirements
of Component2, under the RM scheduling policy.

For a given system structure, we can have many different
system configurations. A system configuration consists of an
instantiation of the model where each parameter has a specific
value. Fig. 2 shows one such instantiation.

In order to design a framework that scales well for the
analysis of larger hierarchical scheduling systems, we have
decided to use a compositional approach [?], [?]. Fig. 3 shows
how the scheduling system, depicted in Fig. 2, is analyzed
using three independent analysis steps. These steps can be
performed in any order.

System
EDF

Component1 Component2

task1 task2 task3 task4

EDF,.RM:.scheduling.policies..A,.A1,.A2:.analysis.processes.

A

A1 A2

task5

EDF RM

Fig. 3. Compositional analysis

The schedulability of each component, including the top
level, is analyzed together with the interface specifications of
the level directly below it. Accordingly, we will never analyze
the whole hierarchy at once. In Fig. 3, the analysis process A
consists of checking whether the two components Component1
and Component2 are schedulable under the scheduling policy

2

EDF. In this analysis step, we only consider the interfaces of
components in the form of their execution-time (budget) and
period, so that we consider the component as an abstract task
when performing the schedulability analysis of the level above
it. In this way, we consider the component-composition prob-
lem similarly to [19] but using a non-deterministic supplier
model for the interfaces. When performing an analysis step
like A1, the resource supplier is not part of the analysis. In
order to handle this, we add a non-deterministic supplier to
the model. The supplier will guarantee to provide the amount
of execution time, specified in the interface of Component1,
before the end of the component period. We check all possible
ways in which CPU and resources can be supplied to the
subsystem in A1. The supplier of each component provides
CPU resource to the child entities of that component in a non-
deterministic way. During the analysis of A1, the supplier non-
deterministically decides to start or stop supplying, while still
guaranteeing to provide the required amount to its sub entities
before the end of the period. The analysis A2 is performed in
the same way as A1.

Our compositional analysis approach results in an over-
approximation i.e. when performing the analysis of a subsys-
tem, we over-approximate the behavior of the rest of the sys-
tem. This can result in specific hierarchical scheduling systems
that could be schedulable if one considers the entire system
at once, but that is not schedulable using our compositional
approach. We consider this fact as a design choice which
ensures separation of concerns, meaning that small changes
to one part of the system does not effect the behavior of other
components. In this way, the design of the system is more
stable which in turn leads to predictable system behavior.
This over-approximation, which is used as a design choice,
should not be confused with the over-approximation used
in the verification algorithm inside the UPPAAL verification
engine.

Thanks to the parameterization of system entities; schedul-
ing policies, preemptiveness, execution times, periods and
budgets can all easily be changed. In order to estimate the
performance and schedulability of our running example, we
have evaluated a number of different configurations of the
system. This allows us to choose the best of the evaluated
configurations of the system.

III. BACKGROUND AND THEORY

Hierarchical scheduling systems are structured to be one
or more components running on the same execution platform.
Each component, in turn, consists of a set of entities that can
be developed independently and a local scheduler. Component
entities are known by the component workload, and are either
components or tasks. The execution platform we consider in
our framework is a single processor (CPU). We specify the
behavior of each task by a sequence of timed actions (com-
putation steps, input, output, etc) that use CPU and resources.
The CPU resource is arbitrated by different scheduling policies
such as EDF, RM and FPS, whereas the resource sharing is
managed by a resource sharing protocol.

Fig. 1 summarizes our approach. Information on the
scheduling requirements of the system is combined with the

hierarchical structure of the system together with a detailed
description of the tasks behavior. A timed action can be
specified to execute on a specific piece of hardware such as
the CPU, Input or Output units. All of this information is
used as parameters for Stopwatch Automata templates that
are part of the framework. Once a specific instance of the
framework has been created, its schedulability can be checked
compositionally using UPPAAL.

The isolation of components in hierarchical scheduling
systems and the separation of profiles in our framework have
the advantage of making systems flexible, where components
can be reused, upgraded and analyzed individually.

A. Resource Sharing in Hierarchical Scheduling Systems

The limitation of resources represents a strong factor in the
setting of any software system, because resources cannot be
duplicated due to their cost. So that the concurrent processes
of a system compete to gain the access to resources in order
to perform their jobs, and only one process is allowed to use
the resource at a time. The mechanism to ensure that only
one process gains the use of a resource at time is known
as mutual exclusion. However in the area of hierarchical
scheduling systems, due to the hierarchy the classical mutual
exclusion mechanisms cannot operate fairly. Resource sharing
protocols have been designed to reasonably share (non-CPU)
resources between system tasks where the system architecture
is hierarchical. Some popular resource sharing protocols are:
Priority Inheritance Protocol (PIP) [16], the Priority Ceiling
Protocol (PCP) [15], the Stack Resource Policy (SRP) [2],
and Subsystem Integration and Resource Allocation Policy
(SIRAP) [4]. Roughly speaking, a resource sharing protocol for
hierarchical systems is equivalent to the set of local schedulers
that components use to arbitrate their tasks on CPU.

Due to hierarchy, we have chosen to use the SIRAP protocol
[4] to manage resource sharing in our framework. In fact,
SIRAP has been developed as a way to integrate different
subsystems, endowed with different scheduling policies, in one
hierarchical scheduling system with the presence of shared
resources. Subsystems can be isolated from each other, even
though they share mutually exclusive resources, for composi-
tional verification, validation and unit testing.

B. Modeling Theory

A task has a concrete behavior performing a sequence of
timed actions. Each timed action can either be a computation
step (Compute), access or release of a shared resource
(Lock, Unlock) or particular statements marking the end
of the period (Pend) or the end of the task execution (End).

Definition 1 (Timed action): Given a set of action names
Acts = {Compute, Lock, Unlock, Pend, End}, a
CPU and a set of resources R, a timed action A is a one step
computation given by the tuple 〈Act, Proc,BCET,WCET 〉
where:
• Act ∈ Acts is the action name,
• Proc ⊆ {CPU}∪R specifies the identifiers of processor

and resources that the timed action A requires for its
execution,

3

• BCET and WCET are respectively best case and worst
case execution times,

By A we denote the set of all timed actions. In fact, the
CPU and resources can be viewed as a multi-core execution
platform. Likewise, we define the behavior B of a task as a
transition system 〈L, l0,→〉 specifying the sequence of timed
actions performed by that task, where L is a set of states,
l0 ∈ L is the initial state and →⊆ L×A×L is the transition
relation. States can be interpreted in the semantic level as
valuations of the task variables together with the state of
each task (ready, waiting, preempted, done, etc). The behavior
of a component is given by the parallel composition of the
transition systems of its nested tasks.

Definition 2 (Task structure): A task T is given by
〈Prd,BCET,WCET, Pri, B,Dln〉 where Prd is the task
period, BCET and WCET are respectively best case and
worst case execution times of T , Pri is the priority level
associated to task T , B is the task behavior stated above and
Dln is the deadline.
Therefore, the task specification is given by an interface
Prd,BCET,WCET,Dln stating the time constraints, a be-
havior B expressed by a sequence of timed actions and a
priority Pri that will be applied for each timed action of the
task in question.

Roughly speaking, a component is given by an interface
stating its timing requirements and a local policy for schedul-
ing its nested entities (workload). The interface of a component
C ′ can be viewed by its parent component C as resource
requirements that must be supplied by C to C ′, and it is viewed
by the child entities of C ′ as a contract that the component C ′

will provide the amount of resources specified in its interface
to its workload. For the sake of simplicity, we do not consider
local resources for each component, i.e. all resource are global
and shared by all of the system components.

Definition 3 (Component): A component C is a tuple
〈Prd,Budget, Pri, s, 〈e1, .., en〉〉 where:
• Prd and Pri are the same as for tasks,
• Budget is the amount of CPU time that the component

guarantees to provide to its workload,
• s ∈ {EDF,FP,RM, ..} is a scheduling policy,
• 〈e1, .., en〉 are component entities (workload), either tasks

or other components.
Similarly, a system is the top level component without tim-

ing requirements (Prd,Budget, Pri). We emphasize the fact
that our framework can be instantiated for any combination of
scheduling algorithms.

IV. UPPAAL MODELING AND ANALYSIS

The UPPAAL verification suite provides both symbolic
and statistical model checking (SMC). The models which
in practice can be analyzed statistically, using the UPPAAL
SMC verification engine, are larger and can contain more
features. Stopwatches [6] are clocks that can be stopped and
resumed without a reset. They are very practical to measure
the execution time of preemptable tasks. This section gathers
the Parameterized Stopwatch Automata (PSA) models of our
framework, as well as the UPPAAL analysis. Due to space
limitations, we only explain important features.

A. PSA Resource Model

The hierarchical scheduling system structure is a set of
scheduling components, each one includes a single specific
scheduling algorithm and a set of entities (tasks or com-
ponents). To analyze a single component by means of a
compositional manner, it is necessary to consider the inter-
rupted behavior of that component by the other concurrent
components within the same system. However, it is hard to
capture the interrupting behavior of the other components that
influence the component under analysis. For this reason, we
introduce a non-deterministic supplier to model all scenarios
that the component under analysis can run. Such a non-
deterministic fact simulates the influence of the other system
components on the execution of the component under analysis.
The scheduling policy within the component then allocates the

Fig. 4. PSA model of supplier template

CPU resource to tasks. It also abstracts the possibility that a
task from another component of the system (not part of the
current analysis step) could preempt the execution of tasks of
the current component.

Fig. 4 shows the PSA model of supplier. supply-
ing time[supid] is a stopwatch that measures the CPU time
provided by supplier during each period, so that it only
progresses when the supplier is at location Supplying. In
fact, the supplier keeps traveling between locations Supply-
ing and NotSupplying while the budget is not fully pro-
vided (supplying time[supid]≤ sup[supid].budget) and the slack
time (curTime ≤ sup[supid].prd -sup[supid].budget + supply-
ing time[supid]) is not expired, until the component budget is
fully provided (supplying time[supid]≥ sup[supid].budget) and
then starts a new period from location Done.

B. PSA Model of Tasks

A task model is depicted in Fig. 5. After being started
at location Idle, the task joins location WaitingOffset waiting
until the task offset is expired. From that location, the task
moves to location ReadingOP where it can read a PEND
command and thus joins ClosingPeriod to finalize a period
execution, and then moves to the location PeriodDone. At
location ReadingOP, the task can also read operations COM-
PUTE, LOCK SIRAP, and UNLOCK SIRAP from its concrete
behavior description. By reading a COMPUTE command, the
task checks it own status if it is either READY or RUNNING.
A READY status means that the task is ready to run using the
CPU, whereas RUNNING means that the task is still scheduled

4

to use CPU. From location ReqSched, the task updates its
status to RUNNING and inserts its Id into the CPU queue. From
location CheckingSupply, the task checks whether the supplier
is providing the CPU resource. If the supplier is currently
providing CPU resource, the task moves to location Execut-
ing, otherwise it moves to location Suspended. At location
Executing, the task checks if it has been assigned a CPU via
function isTaskSched(). If so, the stopwatch proTime[tid] keeps
progressing while the wcet and deadline are not reached yet.
The task may keep traveling between locations Executing and
Suspended according to whether or not the CPU is supplied.
The task joins location MissDeadline whenever the deadline is
missed.

The task execution can be delayed due to the resource
managed by SIRAP, once the task requests a resource via
command LOCK SIRAP. Such a delay can be one of the
followings:
• At location GlobalWaiting, the task is locally (designated

at the component level) allocated to use the resource, but
it is not globally allocated for the same resource, i.e. a
task from another component is using the resource.

• At location LocalWaiting, the task is not locally allocated
to use the resource.

• At location SIRAPWaiting, the task is delayed due to
SIRAP protocol, i.e. in the case of a deficit of the
remaining resource of the supply for a period.

From location CheckTaskPendingStatus, the task either
moves to LocalWaiting by losing the resource allocation, or to
location SIRAPWaiting by a deficit of the supplied resource.

By reading a UNLOCK SIRAP command at location
ReadingOP, the task withdraw its identifier tid from the
resource queue managed by SIRAP.

The schedulability of a task can be checked via the reach-
ability of location MissDeadline using the query:
E<>MissDeadline.

In order to avoid checking the schedulability of each task
separately, we introduce a global variable error that can be
updated to true by any task missing its deadline, so that
the schedulability of a component can be checked using the
following query: A[] error!=1.

C. PSA Model of Resource Sharing Protocol

To share resources between the tasks of a hierarchical
scheduling system, we use SIRAP protocol. In fact, SIRAP
enables the isolation of system components from each other
even in the presence of mutually exclusive shared resources.
We have modeled SIRAP protocol as shown in Fig. 6. Initially,
the protocol holds in the initial location, WaitSchedReq, wait-
ing for a resource request from one of the candidate tasks. By
the reception of a new resource request run schedu[SIRAP][I]
where I is the identifier of the requested resource, SIRAP
checks whether the requesting task is the current scheduled
one (sel tid(rid) == req tid(rid)) or not.

If it is not the case, the status of the requesting task
will be updated to PENDING RESOURCE and the protocol
joins the initial location. Otherwise, the protocol checks that
the time left from the component budget of the current

Fig. 7. PSA model of CPU template

task (sup[tstat[sel tid(rid)].pid].budget) covers the amount of
resource requested by the task in question. If the budget of the
current task supplier is greater than the sum of time supplied
by that supplier to its tasks and the resource usage time of
the current request (sup[tstat[sel tid(rid)].pid].budget ≥ supply-
ing time[tstat[sel tid(rid)].pid] + tstat[sel tid (rid)] .rc time) then
the resource request will be satisfied for the current task,
otherwise the current requesting task has to wait for the next
supply (tstat[sel tid(rid)].status = PENDING BUDGET).

D. PSA CPU Model

The PSA model of the CPU template is depicted in Fig. 7.
After receiving a request r req[rid] from a task, the CPU
template activates the component scheduling policy policy in
order to determine to which task the CPU resource should be
assigned. rid is the CPU resource identifier. Once the CPU
is assigned to a task, at location Assign, such a task keeps
using the CPU resource until it is done (finished[rid]?) or a new
request (r req[rid]?) to reschedule the CPU appears. Whenever
a CPU schedule is done (finished[rid]) and the CPU waiting
list is not empty (rq[rid].length>0), the CPU resource moves
to location ReqSched and restarts the scheduling process,
otherwise it keeps waiting at location Idle until a task requests
the CPU resource.

V. CASE STUDY

To show the applicability of our compositional framework,
we have modeled the avionics system introduced in [14],
[10], and analyzed its schedulability. In fact, this system is a
partial specification for a hypothetical avionics mission control
computer (MCC) system dedicated to combat and attack
aircrafts. The application is a composition of 15 tasks declared
with different priorities and timing requirements, together with
shared resources to perform input and output communications.
We have used SIRAP protocol [4] to assign the input and
output communication resources to the competing tasks of the
different components.

A brief description of the avionics system tasks is given
below:
• Weapon release (T1): this task checks periodically if the

bomb button is being pressed or the time of a scheduled
release is reached to drop a weapon.

• Radar tracking (T2): it explores a ground map, or per-
forms a ground search or a single-target track.

5

Fig. 5. PSA model of task template

Fig. 6. PSA model of SIRAP protocol

• Target tracking (T3): this task captures the target position
relative to the aircraft. The radar keeps tracking a target
if it is already spotted, and also designated by the aircrew
for a potential attack.

• Target sweetening (T4): no description provided for this
task.

• HOTAS Bomb Button (T5): a target is designated as an
attack target by activating the Hands-On Throttle And
Stick switch.

• Aircraft Flight data (T6): it determines the best available

estimates of aircraft position, velocity, attitude, motion
through air-mass, etc.

• HUD display (T7): the Head-Up Display shows the aircraft
flight data (airspeed, heading, etc.), the strike point and/or
seeker position.

• MPD display (T8): the Multi-Purpose Display shows the
tactical situation, the threat data, a display of stores
remaining, radar display information, etc.

• Steering (T9): it computes the steering cues for display
based either on way-point steering or target attack steer-

6

TABLE I
GENERIC AVIONICS TASK ATTRIBUTES

Tasks Prd Exec Dln Prio Input Msg Output Msg
T1 10 1 5 1 3, 1 1
T2 40 2 40 2 24, 1 3
T3 40 4 40 3 1, 4, 1, 3 6, 3
T4 40 2 40 4 1
T5 40 1 40 5 4 11
T6 50 8 50 6 5, 12, 1 3, 25, 18, 18
T7 50 6 50 7 18, 3, 4 7
T8 50 8 50 8 1, 20, 20, 7, 3, 3 5
T9 80 6 80 9 6, 1, 6, 3 3
T10 100 7 100 10 17, 3, 1, 1, 1 6
T11 100 3 100 11 1, 1
T12 200 1 200 12 4 11
T13 200 2 200 13 20 2
T14 400 6 400 14 17, 3, 1, 1, 1 6
T15 1000 5 400 15 1, 1, 1, 1, 1, 1 2

ing.
• Weapon trajectory (T10): it computes the weapon trajec-

tory (ballistics) one minute before its release based on
aircraft speed, target range, etc.

• Threat response display (T11): once the radar warning re-
ceiver detects a potential target, the current task analyzes
that warning and displays the information for the aircrew.

• AUTO/CCIP toggle (T12): the weapon release modes
include automatic (AUTO) and continuously computed
impact point (CCIP) delivery.

• Poll RWR (T13): the Radar Warning Receiver warns the
aircrew of hostile radar energy being beamed at the
aircraft.

• Reinitiate trajectory (T14): this task updates the trajectory
of aircraft based on radar status, aircrew actuation, etc.

• Periodic BIT (T15): the Built-In Test task periodically
queries each aircraft device and analyzes responses to
determine if a failure has occurred.

The task attributes of the avionics systems are depicted in
Table I. The task timing requirements are given in millisec-
onds. To each task is assigned a priority level, where lower
numbers indicate lower priorities. Tasks may perform Input
and Output actions to communicate messages on the dedicated
input and output resources, respectively. The sequence of
messages that are sent or received by a task are specified
in columns ”Input Msg” and ”Output Msg” respectively,
where each number corresponds to a certain class of words
(messages). Each class has a specific length of messages as
well as a unique transfer time to communicate any of its
messages. The sequence of numbers state how many messages
are communicated by a given task during one period. Thus,
the communication time of each task depends on how many
messages are communicated and the type of each message.
These data are exploited by the resource sharing protocol to
assign Input and Output communication resources.

The architecture of the whole avionics system as well as the
components interfaces are shown in Fig. 8. In fact, as commu-
nication times are given in microseconds we convert the task
timing requirements from milliseconds to microseconds. Thus,
the interface of each component is given in terms of period and
budget specified in microseconds. Tasks are gathered together

Avionics

Sensor & Navigation

(10000, 6982)

Control & Display

(10000, 7419)

HUD Display (T7)

MPD Display (T8)

HOTAS Button (T5)

Threat Display (T11)

Flight Data (T6)

Steering (T9)

Target Tracking (T3)

Target Sweetening (T4)

AUTO/CCIP Toggle(T12)

Weapon Release (T1)

Weapon Traject (T10)

Reinitiate Traject (T14)

insuf : insufficient budget

Fire & Stores

(10000, insuf)

Background

(10000, 442)

FPS

Poll RWR (T13)

Radar Tracking (T2)

Periodic BIT (T15)

FPS FPS FPS

 S

Fig. 8. Architecture of the Avionics System

within components based on their features. Component 1
(Control and Display) includes 4 tasks concerning the graphical
display of information. Component 2 (Sensor and Navigation)
encapsulates 6 tasks concerning the navigation system and
external sensors. Component 3 (Fire and Stores) includes 3
tasks. It manages the firing system and checks periodically the
weapons store. Component 4 (Background) encapsulates two
tasks to check the aircraft devices and potentially reinitiate the
trajectory. Each of these component has a local FPS scheduling
policy.

To perform the schedulability analysis of each individual
component of the avionics system, we have introduced a non-
deterministic supplier and estimated the minimum budget of
each supplier. A model-based technique for the computation of
the supplier (minimum) budget has been introduced in [?] [?].
It consists of finding a budget candidate using UPPAAL SMC
(statistical model checking), then ckecking the schedulability
of the concerned component against that budget candidate
using symbolic model checking of UPPAAL.

Following the analysis method described in section II, our
compositional analysis shows that each component is individ-
ually schedulable, except component Fire and Stores which
cannot be schedulable on a single-core execution platform.
Accordingly, the top level component (Avionics system) can-
not be schedulable under any scheduling policy S. Obviously,
it is easy to remark that the CPU utilization of the avionics
system exceeds 100% (75% + 69% + 4.4%), which means that
this system can never be schedulable on a single CPU.

By seeing the counter-example generated by UPPAAL model
checker, we can investigate the scenarios showing when one
of the tasks of component Fire and Stores misses its deadline.
Compared to analytical methods, our approach generates a
counter-example that is quite useful to update the task at-
tributes in order to achieve the schedulability of the system. We
keep the way how to exploit the counter-example in updating
the timing requirements of tasks as a future work.

A challenge encountered during this application is the
estimation of both period and budget of each supplier such
that 1) each supplier provides enough resources to its child
tasks; 2) the parallel composition of all suppliers is schedulable

7

according to the system level scheduling policy.

VI. RELATED WORK

Hierarchical scheduling systems were introduced in [11],
[9]. An analytical compositional framework for hierarchical
scheduling systems was presented in [18] as a formal way to
elaborate a compositional approach for schedulability analysis
of hierarchical scheduling systems [20]. In the same way, the
authors of [17] dealt with a hierarchical scheduling framework
for multiprocessors based on cluster-based scheduling. They
used analytical methods to perform analysis, however both ap-
proaches [18], [17] have difficulty in dealing with complicated
behavior of tasks.

Recent research within schedulability analysis increasingly
uses model-based approaches, because this allows for mod-
eling more complicated behavior of systems. The rest of the
related work presented in this section focuses on model-based
approaches.

In [3], the authors analyzed the schedulability of hierarchical
scheduling systems, using a model-based approach with the
TIMES tool [1], and implemented their model in VxWorks [3].
They constructed an abstract task model as well as scheduling
algorithms, where the schedulability analysis of a component
does not only consider the timing attributes of that component
but also the timing attributes of the other components that can
preempt the execution of the component under analysis.

In [8], the authors introduced a model-based framework
using UPPAAL for the schedulability analysis of flat systems.
They modeled the concrete task behavior as a sequence of
timed actions, each one represents a command that uses
processing and system resources and consumes time.

The authors of [5] provided a compositional framework
for the verification of hierarchical scheduling systems using
a model-based approach. They specified the system behavior
in terms of preemptive time Petri nets and analyzed the system
schedulability using different scheduling policies.

We combine and extend these approaches [5], [8] by consid-
ering hierarchy, resource sharing and concrete task behavior,
while analyzing hierarchical scheduling systems in a compo-
sitional way. Moreover, our model can easily be reconfigured
to fit any specific application. Comparing our model-based
approach to analytical ones, our framework enables to describe
more complicated and concrete systems.

VII. CONCLUSION

We have introduced a compositional framework for the
schedulability analysis of hierarchical real-time systems. Sys-
tem tasks are modeled using Parameterized Stopwatch Au-
tomata (PSA) of UPPAAL. To perform the schedulability
analysis, we profit from the advances of model-checking tech-
nology. The schedulability has been verified as a reachability
property. In order to mitigate the behavior of the rest of
system when analyzing an individual component, we intro-
duced a non-deterministic supplier where the resource supply
of one budget can be given on several chunks, simulating
then the preemption that the rest of system may perform
on the behavior of the component under analysis. We also

considered resource sharing between system components and
used SIRAP protocol to manage such a sharing. We have
applied our schedulability analysis framework on an avionics
system where components are analyzed separately even they
share communication resources.

REFERENCES

[1] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Times: A
tool for schedulability analysis and code generation of real-time systems.
In K. G. Larsen and P. Niebert, editors, Proceedings of FORMATS 2003,
volume 2791 of LNCS, pages 60–72. Springer, 2003.

[2] T. P. Baker. Stack-based scheduling for realtime processes. Real-Time
Syst., 3(1):67–99, Apr. 1991.

[3] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. Bril. Towards
hierarchical scheduling in VxWorks. In OSPERT, pages 63–72, 2008.

[4] M. Behnam, I. Shin, T. Nolte, and M. Nolin. Sirap: a synchronization
protocol for hierarchical resource sharingin real-time open systems. In
Proceedings of EMSOFT 07, pages 279–288. ACM, 2007.

[5] A. Boudjadar, A. David, J. H. Kim, K. G. Larsen, M. Mikučionis,
U. Nyman, and A. Skou. Hierarchical scheduling framework based
on compositional analysis using Uppaal. In Proceedings of FACS 2013,
LNCS Volume 8348. Springer, 2013.

[6] A. Boudjadar, A. David, J. H. Kim, K. G. Larsen, M. Mikučionis,
U. Nyman, and A. Skou. Widening the schedulability of hierarchical
scheduling systems. In FACS 2014, To appear. Springer, 2014.

[7] L. Carnevali, A. Pinzuti, and E. Vicario. Compositional verification
for hierarchical scheduling of real-time systems. IEEE Transactions on
Software Engineering, 39(5):638–657, 2013.

[8] F. Cassez and K. G. Larsen. The impressive power of stopwatches.
In C. Palamidessi, editor, CONCUR, volume 1877 of Lecture Notes in
Computer Science, pages 138–152. Springer, 2000.

[9] E. M. Clarke, D. E. Long, and K. L. Mcmillan. Compositional model
checking. MIT Press, 1999.

[10] A. David, K. G. Larsen, A. Legay, and M. Mikučionis. Schedulability
of herschel-planck revisited using statistical model checking. In ISoLA
(2), volume 7610 of LNCS, pages 293–307. Springer, 2012.

[11] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open
environment. In RTSS, pages 308–319. IEEE Computer Society, 1997.

[12] R. Dodd. Coloured petri net modelling of a generic avionics missions
computer. Technical report, Department of Defence, Australia, Air
Operations Division, 2006.

[13] X. A. Feng and A. K. Mok. A model of hierarchical real-time virtual
resources. In Proceedings of RTSS 2002. IEEE Computer Society, 2002.

[14] J. Lind-Nielsen, H. R. Andersen, H. Hulgaard, G. Behrmann, K. J.
Kristoffersen, and K. G. Larsen. Verification of large state/event systems
using compositionality and dependency analysis. Formal Methods in
System Design, 18(1):5–23, 2001.

[15] G. Lipari, P. Gai, M. Trimarchi, G. Guidi, and P. Ancilotti. A hierarchical
framework for component-based real-time systems. Electronic Notes in
Theoretical Computer Science, 116(0):253 – 266, 2005.

[16] C. D. Locke, D. R. Vogel, L. Lucas, and J. B. Goodenough. Generic
avionics software specification. Technical report, DTIC Document,
1990.

[17] R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchronization
protocols for multiprocessors. In Real-Time Systems Symposium, 1988.,
Proceedings., pages 259–269, Dec 1988.

[18] L. Sha, J. P. Lehoczky, and R. Rajkumar. Task scheduling in distributed
real-time systems. In SPIE, volume 0857, pages 909–917, 1987.

[19] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling framework for
virtual clustering of multiprocessors. In ECRTS, pages 181–190. IEEE
Computer Society, 2008.

[20] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In RTSS, pages 2–13. IEEE Computer Society, 2003.

[21] I. Shin and I. Lee. Compositional real-time scheduling framework with
periodic model. ACM Trans. Embed. Comput. Syst., 7(3):30:1–30:39,
May 2008.

[22] I. Shin and I. Lee. Compositional real-time scheduling framework with
periodic model. ACM Trans. Embedded Comput. Syst., 7(3), 2008.

8

